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Abstract

Two statistical techniques are presented for comparing temporal pulse trains received from
an Electronic Support receiver toa priori templates representing the expected behaviour
of radar signals. The techniques implement a specialized cross-correlation procedure and
incorporate the effects of non-cumulative jitter. A theoretical basis is presented in which
the signal of interest is modeled to be present in a noisy channel. The channel noise may
include the failure to detect some expected pulses along with the detection of unexpected
pulses. The methods are compared to the more straightforward approaches based on cross-
correlation histograms and a simulated example scenario is presented.

Résum é

Le document pŕesente deux techniques statistiques permettant de comparer des trains d’im-
pulsions temporelles obtenusà partir d’un ŕecepteur de soutieńelectronique (SE), avec des
mod̀eles a priori repŕesentant le comportement attendu de signaux radar. Ces techniques
comprennent une procédure de corŕelation croiśee sṕecialiśee et int̀egrent les effets de gigue
non cumulatifs. Le document présente une base théorique pour la mod́elisation du signal
d’intér̂et dans un canal bruyant. Le bruit du canal peutêtre d̂u entre autres̀a la non-d́etection
d’impulsions attendues aussi bien qu’à la d́etection d’impulsions inattendues. Les méthodes
sont compaŕees aux approches plus simples fondées sur des histogrammes de corrélations
croiśees, et un sćenario simuĺe est pŕesent́e à titre d’exemple.
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Executive summary

The field of “Electronic Support” (ES) depends heavily on the availability of a robust mech-
anism with which to analyze sequences of pulses. In general, the complete stream of pulses
received by an ES system is composed of multiple signals exhibiting diverse features, both
periodic and aperiodic, that are observed through a common, imperfect channel. The com-
plexity of the complete ES problem has lead to the development of numerous techniques
designed to separate and identify the constituent signals.

Pulses trains are typically analyzed and matched against some form ofa priori informa-
tion in order to determine the identity and/or behaviour of one or more uncooperative radar
signals. The techniques for temporal pulse train analysis fall primarily into two concep-
tually distinct categories. The first and perhaps the more traditional technique is to base
the analysis on generic periodicities that occur in the pulse train. Autocorrelation methods
are commonly used to identify periodic signals and are often implemented using so-called
“delta-τ histograms”. Such techniques lead ultimately to an estimation of the parameters
associated with identified pulse patterns and a comparison of those estimates with some
a priori look-up table. It has been observed that these techniques exhibit numerous short-
comings; amongst them is the inability to detect complex pulse sequences and patterns with
very long periods (such asN-level staggers, whereNÀ 1).

A second approach to pulse-train analysis is to search directly for specific sequences of
pulses usinga priori patterns and parameters. This approach has the advantage of being
somewhat more flexible than the autocorrelation approach since the patterns of interest can
be quite complicated, and need not be periodic. This approach is typically implemented us-
ing some type of cross-correlation between the observed pulse sequence and the templates
in order to detect a good match.

In this memo, two alternative cross-correlation techniques are presented based on proba-
bilistic signal models. It is argued that these approaches are theoretically well-suited to
account for such effects as the uncertainties in pulse arrival times (whether induced by
deliberate jitter or by receiver and channel imperfections) and other channel impairments
such as the effects of missing and spurious pulses. The methods are compared to a cross-
correlation histogram using a simulated pulse scenario and the results are reported.

Fred A. Dilkes. 2004. Statistical Cross-Correlation Algorithms for Temporal Pulse Profiles.
DRDC Ottawa TM 2004-220. Defence R&D Canada - Ottawa.
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Sommaire

En matìere de soutieńelectronique (SE), il est très important de disposer d’un mécanisme
robuste d’analyse de séquences d’impulsions. En géńeral, le train d’impulsions complet
reçu par un système SE se compose de multiples signaux présentant diverses caractéristiques,
tant ṕeriodiques qu’aṕeriodiques, qui sont observées dans un canal commun imparfait. La
complexit́e de l’ensemble du problème SE a conduit au développement de nombreuses
techniques en vue d’isoler et d’identifier les signaux constitutifs.

Les trains d’impulsions sont typiquement analysés et mis en correspondance avec une cer-
taine forme d’information a priori afin de déterminer l’identit́e et/ou le comportement d’un
ou plusieurs signaux radar non coopératifs. Les techniques d’analyse de trains d’impul-
sions temporelles se divisent en deux catégories distinctes du point de vue conceptuel.
Les techniques de la première cat́egorie, qui sont peut-être les plus traditionnelles, font
reposer l’analyse sur des périodicit́es ǵeńeriques qui se produisent dans le train d’impul-
sions. Des ḿethodes d’autocorrélation sont couramment utilisées pour identifier les signaux
périodiques et sont souvent mises en oeuvreà l’aide d’histogrammes dits¿ delta-tauÀ.
Ces techniques permettent finalement d’estimer les paramètres associés aux configurations
d’impulsions et de comparer ces estimations avec les données d’une table de recherche a
priori. On a observ́e qu’elles pŕesentent de nombreuses lacunes ; entre autres, elles ne per-
mettent pas de d́etecter des śequences d’impulsions complexes et des configurationsà tr̀es
longues ṕeriodes (p. ex. d́ecalages̀a N niveaux, òu NÀ 1).

Une deuxìeme façon d’analyser les trains d’impulsions consisteà rechercher directement
des śequences d’impulsions spécifiques en utilisant des configurations et des paramètres
a priori. Cette approche a l’avantage d’être un peu plus souple que les techniques d’auto-
corŕelation, car les configurations d’intér̂et peuvent̂etre tr̀es compliqúees, et elles ne sont
pas ńecessairement périodiques. Elle fait en ǵeńeral appel̀a un certain type de corrélation
croiśee entre la śequence d’impulsions observée et les mod̀eles pour la d́etection de corres-
pondances pertinentes.

Le document pŕesente deux techniques de corrélation croiśee fond́ees sur un mod̀ele de
signal probabiliste. On soutient que ces approches offrent des bases théoriques satisfaisantes
pour rendre compte d’effets tels que les incertitudes dans les temps d’arrivée des impulsions
(dues soit̀a une gigue d́elibéŕee ouà des imperfections du récepteur et du canal) et d’autres
dégradations du canal, comme les effets d’impulsions manquantes ou non essentielles. Les
méthodes sont comparéesà un histogramme de corrélations croiśees,̀a l’aide d’un sćenario
d’impulsions simuĺe, et les ŕesultats obtenus sont présent́es.

Fred A. Dilkes. 2004. Statistical Cross-Correlation Algorithms for Temporal Pulse Profiles.
DRDC Ottawa TM 2004-220. R & D pour la défense Canada - Ottawa.
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1 Introduction

The field of “Electronic Support” (ES) depends heavily on the availability of a robust mech-
anism with which to analyze sequences of pulses. In general, the complete stream of pulses
received by an ES system is composed of multiple signals exhibiting diverse features, both
periodic and aperiodic, that are observed through a common, imperfect channel. The com-
plexity of the complete ES problem has lead to the development of numerous techniques
designed to separate and identify the constituent signals.

Pulse trains are typically analyzed and matched against some form ofa priori information
in order to determine the identity and/or behaviour of one or more uncooperative radar sig-
nals. The techniques for temporal pulse train analysis fall primarily into two conceptually
distinct categories. The first and perhaps the more traditional technique is a “data-driven”
technique whereby the analysis is based on generic periodicities that occur in the pulse
train. Autocorrelation methods are commonly used to identify periodic signals and are
often implemented using so-called “delta-τ histograms” [1, 2, 3]. Such techniques lead
ultimately to an estimation of the parameters associated with the identified pulse patterns
and a comparison of those estimates with somea priori look-up table. As discussed in [4],
these techniques exhibit numerous shortcomings, amongst them is the inability to detect
complex pulse sequences and patterns with very long periods (such asN-level staggers,
whereNÀ 1).

A second approach to pulse-train analysis is known as the “model-driven” approach whereby
one searches directly for specific sequences of pulses that are known to be associated with
particular systems, usinga priori patterns and parameters. This approach has the advan-
tage of being somewhat more flexible than the autocorrelation approach since the patterns
of interest can be quite complicated, and need not be periodic. The most straightforward
implementation of such an approach is to perform some form of cross-correlation between
the observed pulse sequence and the templates in order to detect a good match. An ex-
ample of this approach is that of Elton [5] who advocates a “cross-correlation histogram”.
Other related techniques have been explored as part of a collaboration under The Technical
Cooperation Panel [6].

In this memo, two alternative cross-correlation techniques are presented based on proba-
bilistic signal models. It is argued that these approaches are theoretically well-suited to
account for such effects as the uncertainties in pulse arrival times (whether induced by
deliberate jitter or by receiver and channel imperfections) and other channel impairments
such as the effects of missing and spurious pulses. The methods are compared to the cross-
correlation technique of [5] using a simulated pulse scenario and the results are reported.

2 Gaussian scoring profiles

In this section, a technique is presented to compute a probabilistic measure of consistency
between an observed pulse sequence and ana priori signal template. The signal of interest

DRDC Ottawa TM 2004-220 1



is represented using a Gaussian statistical model with stationary channel impairments.

2.1 Stationary signal model

A Gaussian transmitted pulse sequence model is proposed. The model consists of two
components: a “pulse template”T and a time-of-arrival varianceσ2. The pulse template is
a set of nominal times, denoted byT = {t1, t2, · · · , tN} at which a pulse may be transmitted,
modulo some absolute time offset. The time-of-arrival varianceσ2 indicates the amount of
non-cumulative jitter that may be associated with each pulse inT. Each pulse time inT is
known as a “template element” and the number of such elements is denoted by|T|= N.

A simple statistical model of the transmitted pulse train is given as follows. If a pulse
sequence “T starts at time offsetτ” then the transmitted pulses form a set of normally
distributed random variables denoted byX̃ = {x̃1, x̃2, · · · , x̃N}. A model of “non-cumulative
jitter” [7] is adopted so that the transmitted pulse times are independent random variables
with Gaussian distributions

x̃ j ∼N (t j + τ,σ2) . (1)

The mean values of these distributions are modeled to beE(x j) = t j + τ and the variances
areE(x j − (t j + τ))2 = σ2. For simplicity, we suppose that all of the transmitted pulses are
contained within some observation time interval whose total time duration is denoted byD.

The transmitted pulse setX̃ is randomly mapped into a set of received pulse timesX by a
stationary channel impairment process. Each pulse inX̃, independently of the other pulses,
has a probabilityPd of being detected and appearing in the setX; conversely, the probability
of the pulse being missed, and not appearing inX, is 1−Pd. In addition, the detected pulses
are interleaved with spurious pulses. For simplicity, suppose that the spurious pulses are
distributed according to a Poisson process with pulse densityρs over a the observation
interval. The resulting set of received pulse times is denoted byX = {x1,x2, · · · ,xM} and
includes all detected and spurious pulses. The number of pulses in this set is denoted
by |X|= M.

2.2 Gaussian scores

The objective of this section is to develop a method for determining a measure of consis-
tency between a particular template model(T,σ2) and some observed pulse sequenceX.
Here, we begin by expressing the likelihood of making the observation using the particular
Gaussian model, in the presence of the stationary channel noise. An exact expression for
such a likelihood function can be expressed by enumerating every possible joint classifica-
tion of the pulses inX in terms of spurious and detected pulses. In order to facilitate this, it
is convenient to define the following notion:

An “association”(t,x) ∈ T ×X is a 2-tuple that identifies a possible correspondence be-
tween a template elementt ∈ T and an observed pulsex ∈ X. An “association relation”
K ⊂ T ×X is a set of associations that identifies a one-to-one correspondence between a

2 DRDC Ottawa TM 2004-220



subset of elements of templateT and a subset of observed pulses inX. Each observed
pulse should be associated with no more than one template element, andvice versa. Some
template elements and/or pulses may not be associated at all. The number of associations
in the relationK is denoted by|K| ≤min{|X|, |T|}.

The likelihood density for observingX given that “T starts at time offsetτ” using the above
Gaussian model with stationary channel impairments is given by

p̃N (X|T,σ2,Pd,ρs;τ) =
∑

K

[ ∏

(t,x)∈K

1√
2πσ2

e−
(t+τ−x)2

2σ2

]
(2)

×(1−Pd)|T|−|K|P
|K|
d ρ|X|−|K|s e−ρsD .

Here, the sum
∑

K extends over every possible association relationK betweenX andT; the
product

∏
(t,k)∈K extends over every association pair within the relationK. The likelihood

function given in (2) may be interpreted as an exact “score” with which to measure the
consistency of the observationX with the hypothesis that the templateT starts at time
offsetτ.

Several of the factors in (2) are independent of association relationK and can be dismissed
as overall scaling constants. After some elementary manipulations, it is found that the
likelihood density can be decomposed as follows:

p̃N (X|T,σ2,Pd,ρs;τ) = pN (X|T,σ2,c0;τ)(1−Pd)|T|ρ
|X|
s e−ρsD

where
pN (X|T,σ2,c0;τ)≡

∑

K

exp
(
−

∑

(t,x)∈K

c(t,x,τ)
)

, (3)

c(t,x,τ)≡ (t + τ−x)2

2σ2 +c0 ,

and

c0 ≡ ln

(
(1−Pd)σρs

Pd

)
+

1
2

ln(2π) .

Hereafter, it is assumed that the parameters have been chosen in such a way so thatc0 < 0;
this is generally true unless the pulse environment is extremely dense or the signal is highly
jittered. The expressionc(t,x,τ) is known below as the “cost” of the association(t,x)
for a particular value of the time offsetτ. All costs and probabilities appearing in (3) are
dimensionless.

It is not practical to enumerate every association relation in order to evaluate the above
likelihood functions since (i) the number of association relations is exponential in both|X|
and|T| and (ii) for a given value of the time offsetτ most of the association relations have
very large values of the total cost

∑
c(t,x,τ) and do not contribute significantly to (3). As

a result, a sub-optimal strategy is needed to appropriately estimate the score as a function
of τ.

DRDC Ottawa TM 2004-220 3



An alternative scoring function that could be used to approximate (3) is given by

qN (X|T,σ2,c0;τ)≡max
K

exp
(
−

∑

(t,x)∈K

c(t,x,τ)
)

. (4)

The score given in (4) represents a lower bound for (3),

qN (X|T,σ2,c0;τ)≤ pN (X|T,σ2,c0;τ) .

The score in (4) is known hereafter as the “qN -score” and is more often represented by its
logarithm. It may be of interest to note that theqN -score is restricted to the interval

0≤ lnqN (X|T,σ2,c0;τ)≤ |T||c0| .

2.3 Scoring intervals

TheqN -score (4) has the advantage of having a finite representation that can be computed
without further approximation. To see this, consider some particular scenario described by
(X,T,σ2,c0), and define

K̂(τ)≡ argmin
K

∑

(t,x)∈K

c(t,x,τ)

to be the optimal association relation betweenX andT at time offsetτ. This relation-valued
function is necessarily piecewise constant in the sense that there must exist a partition of the
real lineR into intervals characterized by a finite set of partition pointsTN = {τs|s= 0. . .S}
labeled monotonically

τ0 < τ1 < τ2 < · · ·< τS,

so thatK̂(τ) is unchanged over each interval of the formτ ∈ (τs−1,τs). This relation is
denoted byK̂s so that

K̂(τ) = K̂s for τ ∈ (τs−1,τs) .

SinceT and X are finite sets, it can be shown that the partition can be chosen so that
S< 2|X||T| and

K̂(τ) = /0 for τ < τ0 or τ > τS.

Correspondingly the logarithm of theqN -score

lnqN (X|T,σ2,c0;τ) =
{ −∑

(t,x)∈K̂s
c(t,x,τ) if τ ∈ (τs−1,τs), s= 1. . .S,

0 if τ < τ0 or τ > τS,

is a quadratic function ofτ over each interval.

In order to illustrate these concepts consider case in which the observations and template
are respectively given by

X = {−2,2.1,10,26,31.4,41,69.2,70,73.3} ,

T = {0,30,70} . (5)

4 DRDC Ottawa TM 2004-220



The remaining parameters are taken to beσ2 = 25µs2, ρs = 0.02/µs andPd = 0.9, leading
to c0 = −3.581. The qN -score is illustrated in Figure 1(a) and the partition points are
illustrated by vertical dashed lines. The horizontal dotted grid lines indicate multiples of
|c0|. (Figures 1(b), 1(c) and 1(d) will be discussed in subsequent sections.)

The segmentation of the real line into intervals(τs−1,τs) can be done using a straightforward
inductive algorithm with linear complexity. The algorithm is discussed in in Annex A.

3 Uniform scoring profiles

The reasoning described in the preceding section may also be applied to an probabilistic
template based on uniform distributions. In this case, we suppose the template consists
of a pulse templateT and some time interval parameterw. As in the previous section,T
is the set of nominal times, but noww is a positive parameter describing the width of a
uniform distribution interval. In this case, instead of (1), the transmitted time variables are
distributed by

x̃ j ∼U(t j −w/2+ τ, t j +w/2+ τ) . (6)

In other words,̃x j has an equal probability of taking on any value that satisfies|t j + τ− x̃ j |< w/2.

In this case, we can replace (2) by a likelihood density based on the uniform jitter model,

p̃U(X|T,w,Pd,ρs;τ) =
∑

K

[ ∏

(t,x)∈K

w−1I
(|t + τ−x|< w/2

)]
(7)

×(1−Pd)|T|−|K|P
|K|
d ρ|X|−|K|s e−ρsD

whereI
(|t + τ−x|< w/2

)
represents the indicator function

I
(|t + τ−x|< w/2

)
=

{
1 if |t + τ−x|< w/2 ,
0 if |t + τ−x| ≥ w/2 .

For simplicity, it is assumed that the elements of the templateT are well separated compared
with the widthw so that, for each value ofτ−x there is no more than one template element
t ∈ T that satisfies|t + τ−x|< w/2.

Now, for τ ∈ R andt ∈ T, let lt(τ) denote the number of received pulsesx∈ X that satisfy
|t + τ−x|< w/2. It is not difficult to demonstrate that (7) can be rewritten as

p̃U(X|T,w,Pd,ρs;τ) = pU(X|T,w,d0;τ)(1−Pd)|T|ρ
|X|
s e−ρsD

where

ln pU(X|T,w,d0;τ) =
∑

t∈T

ln

[
Pdlt(τ)

(1−Pd)wρs
+1

]
. (8)

Here it has been recognized that the dependence of the right hand side of the this equation
on the parametersPd, ρs andw can be summarized by a single composite parameter, denoted

DRDC Ottawa TM 2004-220 5
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(c) qU-scorelnqU(X|T,w,d0;τ) usingw = 5, d0 =−4.511.
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(d) Cross-correlation histogram|RT,X,∆; j | using∆ = 5

Figure 1: Scores for the example configuration (5).
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by d0. For later convenience, this parameter is taken to be

d0 ≡− ln

[
Pd

(1−Pd)wρs
+1

]
< 0.

Sincelt(τ) is a discrete-valued, and therefore piecewise constant, function ofτ, so must be
ln pU . That is, it must be possible to partition the real line at a finite number of points so
that ln pU(X|T,w,d0;τ) is constant over each interval. In fact, the set of discontinuities in
ln pU is almost surely equal to the finite set

TU = {τ ∈ R|∃x∈ X, t ∈ T,τ = x− t±w} .

Consequently, a brute-force approach to computing the complete partition is to first calcu-
late each of the2|X||T| differencesx− t±w, and then sort the resulting set.

Figure 1(b) illustrates the thepU-score for the example in (5) using parameter valuesw= 5,
ρs = 0.02, Pd = 0.9. Note that the dotted horizontal grid lines represent multiples of|d0|=
4.511.

If, instead of the summation
∑

K in (7), amaxK operation is used, then the result would
become

q̃U(X|T,w,Pd,ρs;τ) ≡ max
K

∏

(t,x)∈K

[
w−1I

(|t + τ−x|< w/2
)]

×(1−Pd)|T|−|K|P
|K|
d ρ|X|−|K|s e−ρsD

= qU(X|T,w,d0;τ)(1−Pd)|T|ρ
|X|
s e−ρsD .

where

lnqU(X|T,w,d0;τ) = N(τ)|d0| . (9)

HereN(τ) indicates the number of template elementst ∈ T for which there is at least one
pulsex∈ X satisfying|t + τ−x|< w/2. Like ln pU , this function is piecewise constant; its
discontinuities form a subset ofTU .

The score in (9) is a lower bound for (8)

qU(X|T,w,d0;τ)≤ pU(X|T,w,d0;τ) ,

andlnqU is restricted to the interval

0≤ lnqU(X|T,σ2,c0;τ)≤ |T||d0| .

TheqU-score is illustrated in Figure 1(c) for the example (5) using parameter valuesw= 5,
ρs = 0.02, Pd = 0.9 andd0 =−4.511.
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4 Histogram scoring profiles

In Section 5, theqN - andpU-scoring techniques are contrasted against the cross-correlation
histogram presented in [5]. The latter technique is briefly paraphrased here. In that ap-
proach, the received pulse time setX is compared to the template setT using the cross-
correlation function

ST,X(τ)≡
∑

x∈X

∑

t∈T

δ(t + τ−x) ,

whereδ(·) refers to the delta function of Dirac. This function is then smoothed in some
fashion. In [5], the smoothing is accomplished by integrating over sequential intervals of
the form(( j − 1)∆, j∆] where∆ is some specified bin width andj is a bin counter. The
result is ∫ j∆

( j−1)∆
ST,X(τ) dτ =

∣∣RT,X,∆; j
∣∣ ,

where
∣∣RT,X,∆; j

∣∣ counts the number of elements in the set

RT,X,∆; j ≡ {(t,x)|t ∈ T,x∈ X,( j−1)∆ < x− t ≤ j∆} .

Like the association relations introduced in Subsection 2.2, each setRT,X,∆; j ⊂ T×X is a
collection of associations between elements ofT andX. However, unlike the previous rela-
tions, there is no one-to-one requirement onRT,X,∆; j so that two or more different pulses in
X may be associated with the same template element inT. Although the perfect association
would have exactly|T| elements, there is no fundamental upper bound on|RT,X,∆; j |.

By plotting |RT,X,∆; j | against the bin centers( j − 0.5)∆, for sequential values ofj, one
obtains the cross-correlation histogram of described in [5].

For illustration, the cross-correlation histogram for the configuration in (5) is shown in
Figure 1(d) using a bin-width of∆ = 5. The optimal number of associations is|T|= 3 and
is indicated by a solid horizontal line. Note that the bin corresponding toτ ∈ (0,5] contains
|RT,X,∆;1| = 4 associations, despiteT containing only three elements. This function can
be compared with the other scoring functions shown in Figure 1 for the same example
configuration.

5 Simulation

This section demonstrates the effectiveness of the scoring approaches introduced here and
compares them with the cross-correlation histogram of [5] by using a synthetic data set.

5.1 Configuration

Following the example of [5], a synthetic experiment is conducted in which three signals
are interleaved and observed through a noisy channel.

The characteristics of these signals are as follows:
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1. The first signal is a set of transmitted pulsesX̃1 described by a constant pulse-to-pulse
interval of875µs, without jitter.

2. The second signal̃X2 is a 5 element/5 position staggered sequence whose pulse-to-
pulse intervals are{620µs,325µs,220µs,475µs,490µs}. These intervals are repeated in
cyclic order, without jitter

3. The third signalX̃3 exhibits non-cumulative jitter with a nominal pulse-to-pulse interval
of 875µs. The actual transmission time of each pulse is a random variable normally
distributed about a nominal time with a standard deviation of12µs.

In the simulation, each of these signals is persistent over a long period of observation and
each is characterized by a starting phase that has been selected from a uniform distribution.

The complete set of transmitted pulses is the unionX̃ = X̃1∪ X̃2∪ X̃3. This sequence is then
mapped into a received pulse sequenceX̃ 7→ X by a stationary noise model in which (i)
each pulse inX̃ has a probability of0.9 of being detected and appearing inX, and (ii) X
includes additional spurious pulses that are distributed according to a Poisson process over
the observation width with average density of1 pulse every150µs. The received setX is
the union of all detected and spurious pulses.

5.2 Results

Several scores for this scenario are computed for values of the offset in the interval0≤ τ≤
6000µs. These are illustrated in Figures 2-7. In each figure, the three panels showqN -, pU-
and histogram-scores with the horizontal dotted grid lines indicating multiples of|c0|, |d0|
or 1 respectively. TheqU-scores have been omitted since they are almost indistinguishable
from the pU-scores. Where relevant, the scoring parametersρs = 0.02µs−1, andPd = 0.9
have been used to computec0 andd0.

Figures 2 and 3 show the results of comparingX with a pulse template containing eleven
equally spaced elements,

T1 = {0.0,875.0,1750.0,2625.0,3500.0,4375.0,

5250.0,6125.0,7000.0,7875.0,8750.0} ,

corresponding to the expected behaviour of signalX̃1. In Figure 2, theqN - andpU-scores
are calculated, respectively, usingσ = 3µs andw = 3µs. The histogram is computed using
∆ = 3µs. Figure 3 illustrates theqN -, pU- and histogram-scores using, respectively,σ =
12µs, w = 12µs and∆ = 12µs. It should be noted that, since there is no jitter on the signal
X̃1, the scoring approaches with the smaller values ofσ, w or ∆ are expected to be more
suitable than those with the larger values.

Figures 4 and 5 show similar results using the template

T2 = {0.0,620.0,945.0,1165.0,1640.0,2130.0,

2750.0,3075.0,3295.0,3770.0,4260.0} ,

DRDC Ottawa TM 2004-220 9



0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

τ / µs

ln
 q

(X
|T

,σ
2 ,c

0;τ
)
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(b) pU -score withw = 3µs , d0 =−5.017.
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(c) Histogram with∆ = 3.

Figure 2: Cross-correlation scores for X computed with template T1 and narrow tolerance.
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(a) qN -score withσ = 12µs , c0 =−2.705.
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(b) pU -score withw = 12µs , d0 =−3.651.
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(c) Histogram with∆ = 12.

Figure 3: Cross-correlation scores for X computed with template T1 and wide tolerance.
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corresponding to the expected behaviour of signalX̃2. Like the previous signal,̃X2 has no
jitter on the arrival times, and the smaller values ofσ, w or ∆ shown in Figure 4 should be
considered to more suitable than the larger values shown in Figure 5.

Finally, Figures 6 and 7 show the scores when the template

T3 = {0.0,600.0,1200.0,1800.0,2400.0,3000.0,

3600.0,4200.0,4800.0,5400.0,6000.0} ,

is applied. This template represents the expected behaviour ofX̃3. Since the signal is
associated with a non-cumulative1σ jitter of 12µs, the smaller valuesσ = 3µs, w = 3µs or
∆ = 3µsshown in Figure 6 are not expected to perform as well as the larger valuesσ = 12µs,
w = 12µsor ∆ = 12µsshown in Figure 7.

Some observations about these results are in order. BothX̃1 and X̃2 represent idealized
signals that contain no jitter, or time-of-arrival uncertainty. Although this situation is some-
what idealized, it illustrates the limiting behaviour of the various scoring techniques. When
the templatesT1 andT2 are applied to the interleaved signal, we see that, in all cases, it is
preferable to use smaller values of the parametersσ, w and∆. Moreover, the histogram
performs as well or better than theq- andqu scores.

The signalX̃3 is more realistic. It is fairly clear that the larger parameter shown in Figure 7
result in a cleaner signal detection than do the smaller values shown in Figures 6. In fact,
the∆ = 3µs histogram results in the most ambiguous results. By contrast, the cleanest and
most consistent results are generated by theqN -score withσ = 12µs, possibly owing to the
fact that this score is a most closely matches the signal generation model.

6 Conclusions

This paper has described candidate techniques that may be applied in Electronic Support
for identifying fixed patterns of pulses in an observed sequence specified using ana pri-
ori template. The techniques described apply to temporal pulse sequences in which the
pulse descriptor words consist of pulse arrival times. However, it is not difficult to modify
these techniques to include more general pulse parameters, such as carrier frequency, and
pulse modulation parameters whose measured values may follow some known probability
distribution.

The first method, known herein as theqN -score, attempts to formulate a lower bound for
the likelihood of observing a measured sequence given somea priori model. The com-
plete model consists of a characteristic template of relative pulse arrival times, a Gaussian
non-cumulative jitter variance and two stationary parameters describing the spurious pulse
density and pulse detection probability. An algorithm is presented whereby an exact repre-
sentation for theqN -score can be evaluated with linear time complexity.

The second method, known aspU-score, is similar to theqN -score, but attempts to compute
the likelihood of observing a sequence using a non-cumulative jitter model that follows a
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(a) qN -score withσ = 3µs , c0 =−4.092.
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(b) pU -score withw = 3µs , d0 =−5.017.
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(c) Histogram with∆ = 3.

Figure 4: Cross-correlation scores for X computed with template T2 and narrow tolerance.
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(a) qN -score withσ = 12µs , c0 =−2.705.
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(b) pU -score withw = 12µs , d0 =−3.651.
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(c) Histogram with∆ = 12.

Figure 5: Cross-correlation scores for X computed with template T2 and wide tolerance.
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(a) qN -score withσ = 3µs , c0 =−4.092.
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(b) pU -score withw = 3µs , d0 =−5.017.
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(c) Histogram with∆ = 3.

Figure 6: Cross-correlation scores for X computed with template T3 and narrow tolerance.
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(a) qN -score withσ = 12µs , c0 =−2.705.
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(b) pU -score withw = 12µs , d0 =−3.651.
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(c) Histogram with∆ = 12.

Figure 7: Cross-correlation scores for X computed with template T3 and wide tolerance.
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uniform distribution. A lower bound for thepU-score, known as theqU-score, is also
presented and is found to be nearly identical to thepU-score in practice.

Each of theqN - and pU-scores depend on two parameters. One parameter (eitherσ or w
respectively) measures the tolerance of the arrival time around some expected value. The
second parameter (eitherc0 or d0) measures the cost of associating elements of the template
with pulses in the observation and depends on the estimated pulse density and detection
probability.

The two methods are compared against a cross-correlation histogram introduced in [5]. It
is found, using a synthetic experiment, that for signals without jitter or time-of-arrival un-
certainties, theqN -andpU-scores have similar or slightly worse discriminating power than
the cross-correlation histogram. However, for a signal with a significant degree of jitter,
theqN -score whose parameters are chosen to match the expected jitter variance provides
a cleaner template detection measure than either thepU-score or the cross-correlation his-
togram.
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Annex A
Segmentation Algorithm

In Subsection 2.3, it was claimed that theqN -score defined in (4) is piecewise smooth and
quadratic over intervals of the form(τs−1,τs) whereTN = {τs|s= 0. . .S} represents some
collection of partition points. This appendix describes an efficient recursive algorithm with
which one can determine the elements ofTN , in increasing order.

Suppose that some partition pointτs−1 is known and it is required to find the next subse-
quent partition pointτs. Within the intervalτ ∈ (τs−1,τs), the optimal association relation
K̂s is assumed to have been determined. For eacht ∈ T, there are two possibilities:

1. It may be that for allx∈ X, the cost of associatingt with x is non-negativec(t,x,τ)≥ 0
for ∀τ ∈ (τs−1,τs). If this is the case, then the optimal association relationK̂s does not
include any association fort and we may say thatt is “unassociated” on this interval.

2. Alternatively, there may existx∈X such thatc(t,x,τ) < 0 for τ∈ (τs−1,τs). In this case,
we can definêx = argminx∈X c(t,x,τ). Then,(t, x̂) ∈ K̂s andt is said to be “associated
with x̂” on (τs−1,τs).

Now, for a particular value oft ∈ T, it is of interest to find the smallest value ofτ exceeding
τs−1 at which the association fort within K̂(τ) exhibits a change. This is denoted byτs,t

and is guaranteed to satisfyτs−1 < τs≤ τs,t . The criterion for determiningτs,t depends on
whether or nott is associated in̂Ks.

1. If t is unassociated on(τs−1,τs), thenτs,t is the first value beyondτs−1 at which it
becomes beneficial to add an association fort. More precisely, we have

τs,t = inf
τ

{
τ > τs−1

∣∣∣∃x,c(t,x,τ) < 0
}

.

2. However, if t is associated with somêx on (τs−1,τs), thenτs,t is the first value after
τs−1 at which it becomes beneficial either to remove the association(t, x̂) or to replace
it with a different association fort,

τs,t = inf
τ

{
τ > τs−1

∣∣∀x,c(t,x,τ)≥ 0
}
∪

{
τ > τs−1

∣∣∃x,c(t,x,τ) < c(t, x̂,τ)
}

.

For sufficiently large values ofτs−1, some values ofτs,t may not exist since the relevant
infimum may extend over an empty set. If none of these values exists, then we may conclude
that there are no partition points exceedingτs−1 so thatS= s−1. However, if some of the
infima exist then

τs = min
t
{τs,t}

t̂s = argmin
t

{τs,t}
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It is then straightforward to determineKs+1 from Ks, depending on which of the above cases
gave rise to the relevant infimum, by either adding, removing or replacing the association
involving thet̂s.

For the implementation of the algorithm discussed below, it is required to assume that the
elements ofT = {tn|n = 1. . .N} andX = {xm|m= 1. . .M} are indexed in increasing order
so that order so thatt1 < t2 < · · · < tN andx1 < x2 < · · · < xM. As discussed above, the
algorithm operates on the premise that a particulartn ∈ T need be associated only if there
exists somex ∈ X so thatc(t,x,τ) < 0. Referring to (3), it is found that this condition is
equivalent to

t−n < x− τ < t+n

wheret±n = tn±
√
−2σ2c0. It is furthermore assumed that these thresholds do not overlap,

ensuring that

t−1 < t1 < t+1 < t−2 < t2 < t+2 < t−3 < .. . < t+n−1 < t−n < tn < t+n .

When applied methodically, these variables can be used to evaluate the infima described
above.

For convenience, the algorithm has been divided into several procedures shown in Fig-
ures A.1, A.2, and A.3. The entry point is the method “IteratePartition” that takes, as
parameters, all values oftn, t±n andxm. Although the only explicit output of this algorithm
is the set of partition pointsTN , additional processing can be applied on an interval-by-
interval basis by inserting an optional method called “ProcessAssociationRelation”.

DRDC Ottawa TM 2004-220 19



procedure TN = IteratePartition({(t−n , tn, t+n )|n = 1. . .N},{xm|m= 1. . .M})
for ∀n = 1. . .N do

m̂n ← 1
qn ← Unassociated
τn ← xm̂n− t+n

end
Ñ← N
n̂← N
T ←{τn̂}
repeat

if qn̂ = AssociatedImprove
m̂n̂ ← m̂n̂ +1
MakeAssociation

elseifqn̂ = Unassociated
MakeAssociation

elseifqn̂ ← AssociatedLose
RemoveAssociation
if Ñ = 0 return end

end
n̂← argminn{τ̂n|n = 1. . . Ñ}
TN ← TN ∪{τ̂n̂}
ProcessAssociationRelation

end
end

Figure A.1: “IteratePartition” iterates through the interval partitions TN = {τs|s= 0. . .S}.

procedureMakeAssociation
τ−← xm̂n̂− t−n̂
if m̂n̂ < M do

τ← (xm̂n̂ +xm̂n̂+1)/2− tn̂
if τ < τ− do

qn̂ = AssociatedImprove
τn̂ = τ
return

end
end
qn̂ = AssociatedLose
τn̂ = τ−
return

end

Figure A.2: “MakeAssociation” determines the state parameters for the current interval
after an association has been made.
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procedureRemoveAssociation
qn̂ = Unassociated
m̂n̂ ← m̂n̂ +1
if m̂n̂ ≤M do

τ̂n̂ ← xm̂n̂− t+n̂
else

Ñ← n̂−1
end
return

end

Figure A.3: “RemoveAssociation” determines the state parameters for the current interval
after an association has been eliminated.

DRDC Ottawa TM 2004-220 21



References

1. Wiley, R. G. (1993). Electronic intelligence: the analysis of radar signals, Second ed.
Norwood, MA: Artech House.

2. Mardia, H. K. (1989). New techniques for the deinterleaving of repetitive sequences.
IEE Proc. F, Commun., Radar & Signal Process., 136(4), 149–154.
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