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Abstract

Two statistical techniques are presented for comparing temporal pulse trains received from
an Electronic Support receiver gopriori templates representing the expected behaviour

of radar signals. The techniques implement a specialized cross-correlation procedure and
incorporate the effects of non-cumulative jitter. A theoretical basis is presented in which
the signal of interest is modeled to be present in a noisy channel. The channel noise may
include the failure to detect some expected pulses along with the detection of unexpected
pulses. The methods are compared to the more straightforward approaches based on cross-
correlation histograms and a simulated example scenario is presented.

Résum é

Le document gesente deux techniques statistiques permettant de comparer des trains d’'im-
pulsions temporelles obtenagartir d’'un ecepteur de soutigglectronique (SE), avec des
mockles a priori regFsentant le comportement attendu de signaux radar. Ces techniques
comprennent une prédure de coilation croige si@ciali€e et inégrent les effets de gigue

non cumulatifs. Le document @gente une baseébrique pour la maglisation du signal
d’intérét dans un canal bruyant. Le bruit du canal e di entre autrea la non-@tection
d’'impulsions attendues aussi bien gla cetection d'impulsions inattendues. Legtinodes

sont compages aux approches plus simples feesl sur des histogrammes de étations
croiges, et un #nario simuk est peseng a titre d’exemple.
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Executive summary

The field of “Electronic Support” (ES) depends heavily on the availability of a robust mech-
anism with which to analyze sequences of pulses. In general, the complete stream of pulses
received by an ES system is composed of multiple signals exhibiting diverse features, both
periodic and aperiodic, that are observed through a common, imperfect channel. The com-
plexity of the complete ES problem has lead to the development of numerous techniques
designed to separate and identify the constituent signals.

Pulses trains are typically analyzed and matched against some faarpradri informa-

tion in order to determine the identity and/or behaviour of one or more uncooperative radar
signals. The techniques for temporal pulse train analysis fall primarily into two concep-
tually distinct categories. The first and perhaps the more traditional technique is to base
the analysis on generic periodicities that occur in the pulse train. Autocorrelation methods
are commonly used to identify periodic signals and are often implemented using so-called
“delta-T histograms”. Such techniques lead ultimately to an estimation of the parameters
associated with identified pulse patterns and a comparison of those estimates with some
a priori look-up table. It has been observed that these techniques exhibit numerous short-
comings; amongst them is the inability to detect complex pulse sequences and patterns with
very long periods (such a¢-level staggers, whend > 1).

A second approach to pulse-train analysis is to search directly for specific sequences of
pulses using priori patterns and parameters. This approach has the advantage of being
somewhat more flexible than the autocorrelation approach since the patterns of interest can
be quite complicated, and need not be periodic. This approach is typically implemented us-
ing some type of cross-correlation between the observed pulse sequence and the templates
in order to detect a good match.

In this memao, two alternative cross-correlation techniques are presented based on proba-
bilistic signal models. It is argued that these approaches are theoretically well-suited to
account for such effects as the uncertainties in pulse arrival times (whether induced by
deliberate jitter or by receiver and channel imperfections) and other channel impairments
such as the effects of missing and spurious pulses. The methods are compared to a cross-
correlation histogram using a simulated pulse scenario and the results are reported.

Fred A. Dilkes. 2004. Statistical Cross-Correlation Algorithms for Temporal Pulse Profiles.
DRDC Ottawa TM 2004-220. Defence R&D Canada - Ottawa.
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Sommaire

En matére de soutieglectronique (SE), il estés important de disposer d’unétanisme
robuste d'analyse deequences d’impulsions. Erergral, le train d'impulsions complet
recu par un sysime SE se compose de multiples signa@spntant diverses caradstiques,
tant periodigues qu’agriodigues, qui sont obseérgs dans un canal commun imparfait. La
complexié de I'ensemble du probime SE a conduit auédeloppement de nombreuses
techniques en vue d’isoler et d’'identifier les signaux constitutifs.

Les trains d’'impulsions sont typiguement anélygt mis en correspondance avec une cer-
taine forme d’information a priori afin deeterminer I'identié et/ou le comportement d’un
ou plusieurs signaux radar non céogtifs. Les technigues d’analyse de trains d'impul-
sions temporelles se divisent en deuxégaties distinctes du point de vue conceptuel.
Les techniques de la preane cagégorie, qui sont peldire les plus traditionnelles, font
reposer I'analyse sur de€mpodicites grériques qui se produisent dans le train d’impul-
sions. Des rathodes d’autoco@tation sont couramment utiées pour identifier les signaux
périodiques et sont souvent mises en oewfaide d’histogrammes ditg delta-tau>-.

Ces techniques permettent finalement d’estimer les getramassoés aux configurations
d’'impulsions et de comparer ces estimations avec les@emnd’une table de recherche a
priori. On a obser& qu’elles pesentent de nombreuses lacunes; entre autres, elles ne per-
mettent pas deé&tecter deséxjuences d'impulsions complexes et des configuratidrss
longues griodes (p. ex. &calages N niveaux, o N > 1).

Une deuxéme facon d’analyser les trains d'impulsions consistechercher directement
des €quences d’'impulsions épifiques en utilisant des configurations et des patees

a priori. Cette approche a I'avantageédtte un peu plus souple que les techniques d’auto-
corrélation, car les configurations d'&et peuvenétre tés compligées, et elles ne sont
pas recessairementapiodiques. Elle fait en@réral appeh un certain type de cariation
croisee entre la@squence d'impulsions obsé&w et les moéles pour la dtection de corres-
pondances pertinentes.

Le document gsente deux techniques de &bation croi€e fonges sur un maee de

signal probabiliste. On soutient que ces approches offrent des basagties satisfaisantes

pour rendre compte d’effets tels que les incertitudes dans les temps&kadeg impulsions

(dues soit une gigue élibérée oua des imperfections décepteur et du canal) et d’autres
dégradations du canal, comme les effets d'impulsions manquantes ou non essentielles. Les
méthodes sont compagsa un histogramme de c@lations croiéesa I'aide d’'un sénario
d’'impulsions simug, et les esultats obtenus sontgsengs.

Fred A. Dilkes. 2004. Statistical Cross-Correlation Algorithms for Temporal Pulse Profiles.
DRDC Ottawa TM 2004-220. R & D pour laéfiense Canada - Ottawa.
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1 Introduction

The field of “Electronic Support” (ES) depends heavily on the availability of a robust mech-
anism with which to analyze sequences of pulses. In general, the complete stream of pulses
received by an ES system is composed of multiple signals exhibiting diverse features, both
periodic and aperiodic, that are observed through a common, imperfect channel. The com-
plexity of the complete ES problem has lead to the development of numerous techniques
designed to separate and identify the constituent signals.

Pulse trains are typically analyzed and matched against some famradri information

in order to determine the identity and/or behaviour of one or more uncooperative radar sig-
nals. The techniques for temporal pulse train analysis fall primarily into two conceptually
distinct categories. The first and perhaps the more traditional technique is a “data-driven”
technique whereby the analysis is based on generic periodicities that occur in the pulse
train. Autocorrelation methods are commonly used to identify periodic signals and are
often implemented using so-called “dettdristograms” [1, 2, 3]. Such techniques lead
ultimately to an estimation of the parameters associated with the identified pulse patterns
and a comparison of those estimates with sarnpeiori look-up table. As discussed in [4],
these technigues exhibit numerous shortcomings, amongst them is the inability to detect
complex pulse sequences and patterns with very long periods (sudHeagl staggers,
whereN > 1).

A second approach to pulse-train analysis is known as the “model-driven” approach whereby
one searches directly for specific sequences of pulses that are known to be associated with
particular systems, using priori patterns and parameters. This approach has the advan-
tage of being somewhat more flexible than the autocorrelation approach since the patterns
of interest can be quite complicated, and need not be periodic. The most straightforward
implementation of such an approach is to perform some form of cross-correlation between
the observed pulse sequence and the templates in order to detect a good match. An ex-
ample of this approach is that of Elton [5] who advocates a “cross-correlation histogram”.
Other related technigues have been explored as part of a collaboration under The Technical
Cooperation Panel [6].

In this memo, two alternative cross-correlation techniques are presented based on proba-
bilistic signal models. It is argued that these approaches are theoretically well-suited to
account for such effects as the uncertainties in pulse arrival times (whether induced by
deliberate jitter or by receiver and channel imperfections) and other channel impairments
such as the effects of missing and spurious pulses. The methods are compared to the cross-
correlation technique of [5] using a simulated pulse scenario and the results are reported.

2 Gaussian scoring profiles

In this section, a technique is presented to compute a probabilistic measure of consistency
between an observed pulse sequence aradiori signal template. The signal of interest

DRDC Ottawa TM 2004-220 1



is represented using a Gaussian statistical model with stationary channel impairments.

2.1 Stationary signal model

A Gaussian transmitted pulse sequence model is proposed. The model consists of two
components: a “pulse templat&”and a time-of-arrival varianae?. The pulse template is

a set of nominal times, denoted By= {t3,t,--- ,tn} at which a pulse may be transmitted,
modulo some absolute time offset. The time-of-arrival variasicidicates the amount of
non-cumulative jitter that may be associated with each pul3e Bach pulse time i is

known as a “template element” and the number of such elements is dendfeg-biN.

A simple statistical model of the transmitted pulse train is given as follows. If a pulse
sequence T starts at time offset” then the transmitted pulses form a set of normally
distributed random variables denoted¥y= {%;,%,--- , % }. A model of “non-cumulative

jitter” [7] is adopted so that the transmitted pulse times are independent random variables
with Gaussian distributions

%j ~ N[t +1,06%). (1)

The mean values of these distributions are modeled t6(x¢) = tj + T and the variances
areE(x; — (tj +1))? = 02. For simplicity, we suppose that all of the transmitted pulses are
contained within some observation time interval whose total time duration is denokd by

The transmitted pulse s#tis randomly mapped into a set of received pulse titds/ a
stationary channel impairment process. Each pul3é independently of the other pulses,

has a probability?y of being detected and appearing in the)§gtonversely, the probability

of the pulse being missed, and not appearing,iis 1 — Py. In addition, the detected pulses

are interleaved with spurious pulses. For simplicity, suppose that the spurious pulses are
distributed according to a Poisson process with pulse depsitwer a the observation
interval. The resulting set of received pulse times is denoted by{xi,x,--- ,Xu} and
includes all detected and spurious pulses. The number of pulses in this set is denoted
by |X| =M.

2.2 Gaussian scores

The objective of this section is to develop a method for determining a measure of consis-
tency between a particular template mo(@ielo?) and some observed pulse sequeXce

Here, we begin by expressing the likelihood of making the observation using the particular
Gaussian model, in the presence of the stationary channel noise. An exact expression for
such a likelihood function can be expressed by enumerating every possible joint classifica-
tion of the pulses iX in terms of spurious and detected pulses. In order to facilitate this, it

is convenient to define the following notion:

An “association”(t,x) € T x X is a 2-tuple that identifies a possible correspondence be-
tween a template elemente T and an observed pulsec X. An “association relation”
K C T x X is a set of associations that identifies a one-to-one correspondence between a

2 DRDC Ottawa TM 2004-220



subset of elements of templafeand a subset of observed pulsesxin Each observed

pulse should be associated with no more than one template elemenicamérsa Some
template elements and/or pulses may not be associated at all. The number of associations
in the relatiorK is denoted byK| < min{|X|,|T|}.

The likelihood density for observing given that T starts at time offset” using the above
Gaussian model with stationary channel impairments is given by

(t+r—x)2

ﬁN(X|T,o'2’Pd,pS;T) = Z[ H \/%ez& 2)

K (tx)eK

X (1 — Pd)‘T‘_‘K‘ P(‘jK|p|Sx‘7IK|e_psD .

Here, the sun) _, extends over every possible association relatidetweenX andT; the
product] ] ck extends over every association pair within the relatforiThe likelihood
function given in (2) may be interpreted as an exact “score” with which to measure the
consistency of the observatiot with the hypothesis that the templafestarts at time
offsetrt.

Several of the factors in (2) are independent of association relétanmd can be dismissed
as overall scaling constants. After some elementary manipulations, it is found that the
likelihood density can be decomposed as follows:

ﬁf)\[(xﬂ_, 027 Pda Ps; T) = pN(X|T, 0'2, Co,'[)(l — Pd)lT‘pLX‘e_psD

where
P (X|T,0%,¢0,7) = Zexp(— > c(t,xjr)) , (3)
K (t,x)eK
_ (t+1—x)?

C(t,x1) =55+,
and ( )

_ 1-Py)ops }

co=In (Pd ) + 5 In(2m).

Hereafter, it is assumed that the parameters have been chosen in such a waggsa that

this is generally true unless the pulse environment is extremely dense or the signal is highly
jittered. The expression(t,x,T) is known below as the “cost” of the associatifinx)

for a particular value of the time offset All costs and probabilities appearing in (3) are
dimensionless.

It is not practical to enumerate every association relation in order to evaluate the above
likelihood functions since (i) the number of association relations is exponential irXpth
and|T| and (ii) for a given value of the time offsetmost of the association relations have
very large values of the total cost c(t,x, 1) and do not contribute significantly to (3). As

a result, a sub-optimal strategy is needed to appropriately estimate the score as a function
of 1.

DRDC Ottawa TM 2004-220 3



An alternative scoring function that could be used to approximate (3) is given by

2 oy
Qo (X[ T, 0%, Co;T) = max exp(—(tzéKc(t,x,r)). (4)
X

The score given in (4) represents a lower bound for (3),
A (X|T,0%,€0;T) < pa(X|T, 0%, co; ).

The score in (4) is known hereafter as thig“~score” and is more often represented by its
logarithm. It may be of interest to note that ttpg-score is restricted to the interval

0 < Ingy (X|T,0%,0;T) < [T]|Co -

2.3 Scoring intervals

Theqa-score (4) has the advantage of having a finite representation that can be computed
without further approximation. To see this, consider some particular scenario described by
(X,T,02,¢0), and define

K(t)=argmin > c(t,x1)

to be the optimal association relation betweeandT at time offsetr. This relation-valued
function is necessarily piecewise constant in the sense that there must exist a partition of the
real lineR into intervals characterized by a finite set of partition poffi{s= {1s|s=0...S}
labeled monotonically

To<T1<T2<--- < Ts,

o} thatK(r)A is unchanged over each interval of the forng (1s_1,Ts). This relation is
denoted byKg so that A A
K(t) =Ksfort e (1s-1,Ts).

SinceT and X are finite sets, it can be shown that the partition can be chosen so that
S< 2|X||T|and
K(t)=0fort<Ttp0rt >Tts.

Correspondingly the logarithm of thg, -score

- ; c(t,x,1) if 1€ (Ts-1,Ts),5=1...S
In X|T 2 ~eT) — Z(t7x)eKSC( s N . ’ ) ’
A (X[T, 0%, CorT) { 0 if T<ToOrtT>Ts,
is a quadratic function af over each interval.

In order to illustrate these concepts consider case in which the observations and template
are respectively given by

X = {-2,2.1,10,26,314,41,69.2,70,733},
T = {0,30,70}. (5)

4 DRDC Ottawa TM 2004-220



The remaining parameters are taken taBe- 25us%, ps = 0.02/ps andPy = 0.9, leading

to ¢p = —3.581 The gy -score is illustrated in Figure 1(a) and the partition points are
illustrated by vertical dashed lines. The horizontal dotted grid lines indicate multiples of
|co|- (Figures 1(b), 1(c) and 1(d) will be discussed in subsequent sections.)

The segmentation of the real line into interv@ls 1, Ts) can be done using a straightforward
inductive algorithm with linear complexity. The algorithm is discussed in in Annex A.

3 Uniform scoring profiles

The reasoning described in the preceding section may also be applied to an probabilistic
template based on uniform distributions. In this case, we suppose the template consists
of a pulse templat& and some time interval parametgr As in the previous sectiorT,
is the set of nominal times, but now is a positive parameter describing the width of a
uniform distribution interval. In this case, instead of (1), the transmitted time variables are
distributed by

Xj~ Ut —wW/24+ Tt +W/24+T1). (6)

In other wordsg; has an equal probability of taking on any value that satidfigst — X;| < w/2.

In this case, we can replace (2) by a likelihood density based on the uniform jitter model,

Pu(X|T, W, Py, p5:T) = Z[ 11 W_1|(|t+T—X]<W/2)} @)

K (t,x)eK
X (]_ _ Pd)|T‘_‘K|P(|jK|p‘sx|*|K|e—psD

wherel (|t + 1 —X| <w/2) represents the indicator function

1if t+1—X <w/2,
'(It+T—X<W/2):{ 0if Jt+1—x>w/2.

For simplicity, it is assumed that the elements of the temflatee well separated compared
with the widthw so that, for each value af— x there is no more than one template element
t € T that satisfiest +1— x| <w/2.

Now, fort € R andt € T, letl;(t) denote the number of received pulses X that satisfy
lt+1—x| < w/2. Itis not difficult to demonstrate that (7) can be rewritten as

Par (X[ T, W, Py, ps; T) = par(X|T, W, do; T) (1 — pd)\T\p\SXIe—psD
where

In pe(X| T, w,do;T) = Y I [1Pd'F§ - +1]. 8)
teT d)WPs

Here it has been recognized that the dependence of the right hand side of the this equation
on the parametei;, ps andw can be summarized by a single composite parameter, denoted

DRDC Ottawa TM 2004-220 5
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(a) gy -scorelng, (X|T,02,co; T) usinga? = 25, ¢y = —3.581

In pu(X|T,w,d0;r)
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(b) pg-scoreln pe (X|T,w,do; T) usingw=>5, dp = —4.511

In qu(X|T,w,d0;r)
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T/us

(c) gq-scorelnqq (X|T,w,do; T) usingw =5, dg = —4.511

-80 -60 -40 -20 0 20 40 60 80
A(-0.5) / ps

(d) Cross-correlation histograjRr x a;j| usingA =5

Figure 1. Scores for the example configuration (5).
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by dg. For later convenience, this parameter is taken to be

Py
do=-In|———-+—+1| <O0.
0 [(1Pd)Wps }

Sincel; (1) is a discrete-valued, and therefore piecewise constant, functirsofmust be
Inpg. That s, it must be possible to partition the real line at a finite number of points so
thatIn p¢ (X|T,w, do; T) is constant over each interval. In fact, the set of discontinuities in
In p¢; is almost surely equal to the finite set

Tu={t1eR|IxeX;teT,T=x—-tLw}.

Consequently, a brute-force approach to computing the complete partition is to first calcu-
late each of th@|X||T| differencesx—t +w, and then sort the resulting set.

Figure 1(b) illustrates the the;;-score for the example in (5) using parameter values5,
ps = 0.02, Py = 0.9. Note that the dotted horizontal grid lines represent multipledgt=
4511

If, instead of the summatioh_, in (7), amax operation is used, then the result would
become

G (X|T,w, Py, ps;T) = mKax( 1:[,( W (jt+1—x <w/2)]
tx)e

x (1~ Py TI=KIp I pE = Klg=psD

= Qu(X|T,w,do;T)(1— Pd)‘T‘p‘lee*PsD '

where
INgz (X|T,w,do; T) = N(T)|do| . 9)

HereN(1) indicates the number of template eleman¢sT for which there is at least one
pulsex € X satisfying|t + T — x| < w/2. Like In pq, this function is piecewise constant; its
discontinuities form a subset @f;.
The score in (9) is a lower bound for (8)
Qu(X|T,w,do; 1) < paur(X|T, W, do; 1),
andinqq, is restricted to the interval
0 < Inqy(X|T,0%,¢0;T) < |T||do].

Theqgq-score is illustrated in Figure 1(c) for the example (5) using parameter valaes,
ps=0.02, Py=0.9anddy = —4.511

DRDC Ottawa TM 2004-220 7



4 Histogram scoring profiles

In Section 5, they, - andp¢;-scoring techniques are contrasted against the cross-correlation
histogram presented in [5]. The latter technique is briefly paraphrased here. In that ap-
proach, the received pulse time 3€is compared to the template Sktusing the cross-

correlation function
Stx(D) =) d(t+1-x),

xeX teT
whered(-) refers to the delta function of Dirac. This function is then smoothed in some
fashion. In [5], the smoothing is accomplished by integrating over sequential intervals of
the form ((j — 1)A, jA] whereA is some specified bin width andis a bin counter. The
result is _
jA
Srx(T) dt = |Rrx.a;j
(i-na

Where}RT,x7A;j\ counts the number of elements in the set

Y

Rrxaj={tXteT,xeX,(j—1)A<x—t < jA}.

Like the association relations introduced in Subsection 2.2, ead®rset;j C T x X is a
collection of associations between element$ aindX. However, unlike the previous rela-
tions, there is no one-to-one requirementRyx a;j SO that two or more different pulses in
X may be associated with the same template elemént Although the perfect association
would have exactlyT | elements, there is no fundamental upper bountRem a;j.

By plotting |Rr x a:;j| against the bin center§ — 0.5)A, for sequential values of, one
obtains the cross-correlation histogram of described in [5].

For illustration, the cross-correlation histogram for the configuration in (5) is shown in
Figure 1(d) using a bin-width af = 5. The optimal number of associationgT§ = 3 and

is indicated by a solid horizontal line. Note that the bin corresponding=¢0, 5| contains
IRt x a:1] = 4 associations, despife containing only three elements. This function can
be compared with the other scoring functions shown in Figure 1 for the same example
configuration.

5 Simulation

This section demonstrates the effectiveness of the scoring approaches introduced here and
compares them with the cross-correlation histogram of [5] by using a synthetic data set.

5.1 Configuration

Following the example of [5], a synthetic experiment is conducted in which three signals
are interleaved and observed through a noisy channel.

The characteristics of these signals are as follows:

8 DRDC Ottawa TM 2004-220



1. The first signal is a set of transmitted pul$@sdescribed by a constant pulse-to-pulse
interval of 875us, without jitter.

2. The second signaf, is a 5 element/5 position staggered sequence whose pulse-to-
pulse intervals ar¢62Qus, 3251s, 220us, 475us,49Qus}. These intervals are repeated in
cyclic order, without jitter

3. The third signaKs exhibits non-cumulative jitter with a nominal pulse-to-pulse interval
of 875us. The actual transmission time of each pulse is a random variable normally
distributed about a nominal time with a standard deviatioh2ps.

In the simulation, each of these signals is persistent over a long period of observation and
each is characterized by a starting phase that has been selected from a uniform distribution.

The complete set of transmitted pulses is the utfiea X, UX, U Xs. This sequence is then
mapped into a received pulse sequeice> X by a stationary noise model in which (i)

each pulse irX has a probability 0D.9 of being detected and appearingXn and (ii) X
includes additional spurious pulses that are distributed according to a Poisson process over
the observation width with average densitylopulse everyl5Qus. The received seX is

the union of all detected and spurious pulses.

5.2 Results

Several scores for this scenario are computed for values of the offset in the iftervat
600Qus. These are illustrated in Figures 2-7. In each figure, the three panelsighow;-

and histogram-scores with the horizontal dotted grid lines indicating multiplgs|ofdo|

or 1 respectively. The,-scores have been omitted since they are almost indistinguishable
from the py-scores. Where relevant, the scoring paramaiges 0.02us 1, andPy = 0.9

have been used to compuganddy.

Figures 2 and 3 show the results of compangith a pulse template containing eleven
equally spaced elements,

T, = {0.0,8750,17500,26250,35000,43750,

52500,61250,70000,78750,875Q0},

corresponding to the expected behaviour of sighalln Figure 2, theg, - and pg-scores
are calculated, respectively, usiag= 3us andw = 3us. The histogram is computed using
A = 3ps. Figure 3 illustrates the, -, py- and histogram-scores using, respectively:
12us, w = 12us andA = 12ps. It should be noted that, since there is no jitter on the signal

X1, the scoring approaches with the smaller values,off or A are expected to be more
suitable than those with the larger values.

Figures 4 and 5 show similar results using the template

T, = {0.0,6200,9450,11650,16400,213Q0,
27500,30750,32950,37700,42600} ,

DRDC Ottawa TM 2004-220 9



N
o
T

L

w
o
T

|

In q(X|T,02,c0;r)
]
o
T
|

10 ‘ ‘ , ' —
M L B
0 'l‘ A " U ‘I i " LN || wlld
0 1000 2000 3000 4000 5000 6000
T/ us
(a) gg-score witho = 3us, o = —4.092
50
40 s
!'c_;b
s 30r s
=
5/: 20 I —
o
c
10 ‘ T
o LA | | Il |
0 1000 2000 3000 4000 5000 6000
T/ s
(b) pg-score withw = 3us, dg = —5.017.
10
8 A
= 6 =
2
i_ 4+ -
2 ;
. i QA1
0 1000 2000 3000 4000 5000 6000

A(j—-0.5) / us
(c) Histogram withA = 3.

Figure 2: Cross-correlation scores for X computed with template T; and narrow tolerance.

10 DRDC Ottawa TM 2004-220



= n )
o o o
T T T
! ! L

[uy
o
T

In q(X|T,02,c0;r)

1 1 1 1
0 1000 2000 3000 4000 5000 6000
T/ us

(a) gg -score witho = 12s, cp = —2.705

N w w
[8)] o a1
T T T

1 1 1

=
(&)

Inp,(X|T.w,d,:1)
N
o

=
o

1000 2000 3000 4000 5000 6000
1/us

o o
o

(b) pe;-score withw = 12us, dg = —3.651

10

IRy

2
Il | |
| | i

0 1000 2000 3000 4000 5000 6000
A(j—0.5) / us

(c) Histogram withA = 12.

Figure 3: Cross-correlation scores for X computed with template Ty and wide tolerance.

DRDC Ottawa TM 2004-220 11



corresponding to the expected behaviour of sighalLike the previous signa¥, has no
jitter on the arrival times, and the smaller valuessofv or A shown in Figure 4 should be
considered to more suitable than the larger values shown in Figure 5.

Finally, Figures 6 and 7 show the scores when the template

T; = {0.0,6000,12000,18000,24000,300Q0,
36000, 42000, 48000, 54000, 60000},

is applied. This template represents the expected behavioXs. oSince the signal is
associated with a non-cumulatite jitter of 12us, the smaller values = 3us, w = 3usor
A = 3usshown in Figure 6 are not expected to perform as well as the larger @id2)s,
w=12usor A = 12us shown in Figure 7.

Some observations about these results are in order. Botnd X, represent idealized
signals that contain no jitter, or time-of-arrival uncertainty. Although this situation is some-
what idealized, it illustrates the limiting behaviour of the various scoring techniques. When
the templated; andT, are applied to the interleaved signal, we see that, in all cases, it is
preferable to use smaller values of the parameders andA. Moreover, the histogram
performs as well or better than tigeandq, scores.

The signalXs is more realistic. It is fairly clear that the larger parameter shown in Figure 7
result in a cleaner signal detection than do the smaller values shown in Figures 6. In fact,
the A = 3ps histogram results in the most ambiguous results. By contrast, the cleanest and
most consistent results are generated bygtpescore witho = 12us, possibly owing to the

fact that this score is a most closely matches the signal generation model.

6 Conclusions

This paper has described candidate techniques that may be applied in Electronic Support
for identifying fixed patterns of pulses in an observed sequence specified usangran

ori template. The techniques described apply to temporal pulse sequences in which the
pulse descriptor words consist of pulse arrival times. However, it is not difficult to modify
these techniques to include more general pulse parameters, such as carrier frequency, and
pulse modulation parameters whose measured values may follow some known probability
distribution.

The first method, known herein as tqQ—score, attempts to formulate a lower bound for

the likelihood of observing a measured sequence given sopréri model. The com-

plete model consists of a characteristic template of relative pulse arrival times, a Gaussian
non-cumulative jitter variance and two stationary parameters describing the spurious pulse
density and pulse detection probability. An algorithm is presented whereby an exact repre-
sentation for they,-score can be evaluated with linear time complexity.

The second method, known pg-score, is similar to thg,-score, but attempts to compute
the likelihood of observing a sequence using a non-cumulative jitter model that follows a

12 DRDC Ottawa TM 2004-220
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uniform distribution. A lower bound for th@q;-score, known as thge-score, is also
presented and is found to be nearly identical toghescore in practice.

Each of theg, - and py-scores depend on two parameters. One parameter (eithew
respectively) measures the tolerance of the arrival time around some expected value. The
second parameter (eitheyor dyg) measures the cost of associating elements of the template
with pulses in the observation and depends on the estimated pulse density and detection
probability.

The two methods are compared against a cross-correlation histogram introduced in [5]. It
is found, using a synthetic experiment, that for signals without jitter or time-of-arrival un-
certainties, thej, -and p¢;-scores have similar or slightly worse discriminating power than

the cross-correlation histogram. However, for a signal with a significant degree of jitter,
the g,-score whose parameters are chosen to match the expected jitter variance provides
a cleaner template detection measure than eithepdhscore or the cross-correlation his-
togram.
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Annex A
Segmentation Algorithm

In Subsection 2.3, it was claimed that pg-score defined in (4) is piecewise smooth and
quadratic over intervals of the for(us_1,Ts) whereZ, = {15/s=0...S} represents some
collection of partition points. This appendix describes an efficient recursive algorithm with
which one can determine the elementsrgg, in increasing order.

Suppose that some partition point ; is known and it is required to find the next subse-
quent partition points. Within the intervalt € (1s_1,Ts), the optimal association relation
Ks is assumed to have been determined. For each, there are two possibilities:

1. It may be that for alk € X, the cost of associatirtgwith x is non—negativegt,x,T) >0

for V1 € (1s-1,Ts). If this is the case, then the optimal association relaiigdoes not
include any association forand we may say thatis “unassociated” on this interval.

2. Alternatively, there may existe X such that(t,x, 1) < 0for T € (1s_1,Ts). In this case,
we can defin& = argmin.y c(t,x,T). Then,(t,X) € Ks andt is said to be “associated
with X" on (Ts_1,Ts).

Now, for a particular value dfe T, it is of interest to find the smallest valuetéxceeding
Ts_1 at which the association farwithin K(T) exhibits a change. This is denoted ty
and is guaranteed to satisfy ; < Ts < Tst. The criterion for determinings; depends on
whether or not is associated iKs.

1. If t is unassociated ofts_1,Ts), thents; is the first value beyonds 1 at which it
becomes beneficial to add an associatiort fdore precisely, we have

Tst = irrlf{r > Ts,l)Elx, c(t,x, 1) < O},

2. However, ift is associated with someon (T1s_1,Ts), thents; is the first value after
Ts—1 at which it becomes beneficial either to remove the associéti&hor to replace
it with a different association fdr,

Tot = inf{r > Ts 1 |VX,C(t,X,T) > O} u {T > Ts_1|3X,C(t,X,T) < c(t,f(,r)} .
T
For sufficiently large values afs_1, some values ofs; may not exist since the relevant
infimum may extend over an empty set. If none of these values exists, then we may conclude
that there are no partition points exceedigg; so thatS= s— 1. However, if some of the

infima exist then

s = mtin{TSt}

ts = argmin{ts;}
t
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It is then straightforward to determit&, 1 from Kg, depending on which of the above cases
gave rise to the relevant infimum, by either adding, removing or replacing the association
involving thefs.

For the implementation of the algorithm discussed below, it is required to assume that the
elements off = {to/n=1...N} andX = {xm/m=1...M} are indexed in increasing order
so that order so thdt <ty < --- <ty andXx; < X < --- < Xyv. As discussed above, the
algorithm operates on the premise that a particillar T need be associated only if there
exists some € X so thatc(t,x, 1) < 0. Referring to (3), it is found that this condition is
equivalent to

ty <xX—1<t’

wheret? = t, 4 \/—202co. It is furthermore assumed that these thresholds do not overlap,
ensuring that

t <ti<ty <ty <tb<ty <ty <...<ti, <ty <ty <ti.

When applied methodically, these variables can be used to evaluate the infima described
above.

For convenience, the algorithm has been divided into several procedures shown in Fig-
ures A.1, A.2, and A.3. The entry point is the method “IteratePartition” that takes, as
parameters, all values &f, t¥ andxy. Although the only explicit output of this algorithm

is the set of partition pointgy,, additional processing can be applied on an interval-by-
interval basis by inserting an optional method called “ProcessAssociationRelation”.
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procedure 7, = IteratePartition{(t, ,t,,t;)In=1...N} {Xm/m=1...M})
forvn=1...Ndo
M1
gn < Unassociated
Tn — Xdy, — 47
end
N <N
i« N
T — {ta}
repeat
if gs = Associatedimprove
My — i+ 1
MakeAssociation
elseifgs = Unassociated
MakeAssociation
elseifgs < AssociatedLose
RemoveAssociation
if N = 0 return end
end
A «— argmin,{T,jn=1...N}
TN — ‘TN U {"l:ﬁ}
ProcessAssociationRelation
end
end

Figure A.1: “lteratePartition” iterates through the interval partitions 7 = {Ts|s=0...S}.

procedure MakeAssociation
T Xpy — 5
if My <M do
T (X +Xig+1) /2—ta
if t<t_do
gn = Associatedlmprove
Ta=T
return
end
end
gs = AssociatedLose
Ta=T1T_
return
end

Figure A.2: “MakeAssociation” determines the state parameters for the current interval
after an association has been made.
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procedure RemoveAssociation
gs = Unassociated
My — M+1
if iy <M do
Th—Xm — 1ty
else
N—A-1
end
return
end

Figure A.3: “RemoveAssociation” determines the state parameters for the current interval

after an association has been eliminated.
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