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ABSTRACT 
 
 
 
The ARIES Unmanned Underwater Vehicle (UUV) currently 

uses an Inertial Measurement Unit (IMU) with an inherent 

rotation rate error bias of 10 degrees/hour. The need for a 

more accurate IMU for long term missions led to the 

purchase of the Honeywell HG1700 IMU. The HG1700 is a ring 

laser gyroscope designed specifically as part of the 

navigation software in multiple U.S. missiles. The 

objective of this research is to perform numerous bench 

tests on the HG1700 to test its capabilities and to begin 

the process of implementing the IMU into the ARIES unmanned 

underwater vehicle. Specifically, the IMU is tested for 

correct setup configurations, angle of rotation accuracies, 

the rotation rate error bias, and positional accuracies. 

Also, guidelines for integrating the IMU with the current 

software in the ARIES vehicle are discussed. 
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I. INTRODUCTION TO RING LASER GYROSCOPES 

A. HISTORY OF THE GYROSCOPE 

A gyroscope is any device used to create a fixed 

direction in space or measure the angular rate and position 

of the platform to which it is mounted with respect to a 

fixed reference frame [1]. The idea of the gyroscope 

originated from the concept and observations of the 

spinning top. Throughout history the top was used mainly 

for entertainment, but in the late 18th century, scientists 

began to notice the top for its unique balancing 

capabilities. The top was first used as a navigational tool 

in the 1740s by an English scientist named Serson. His idea 

was to use the top in conjunction with the sextant as an 

artificial horizon for ships at sea when the weather made 

visibility of the true horizon impossible. Although the 

experiment failed, the potential of the top continued to 

grow [2].  

In 1810, G.C.Bohnenberger invented the first modern 

gyroscope, but since it lacked any scientific purposes, the 

credit for the first gyroscope usually goes to the French 

scientist Jean-Bernard-Leon Foucault. In 1852, Foucault 

used a wheel mounted in gimbal rings to successfully 

measure the rotation of the earth, and he was the first to 

coin the term ‘gyroscope’ – a combination of the Greek 

words "gyros" (revolution) and "skopein" (to see). From 

that time on, the gyroscope has been used as a navigational 

tool and a stabilizer in numerous platforms including 

torpedoes, ships, airplanes, satellites, and unmanned 

vehicles [2]. 
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B. HISTORY OF RING LASER GYROSCOPE 

Since its inception, the gyroscope has taken on many 

forms that have deviated from the original spinning-mass 

mechanical system. Out of a need to reduce the required 

maintenance on such a rapidly spinning piece of equipment 

and increase the production and installation times for the 

original gyroscope, scientist began looking for alternative 

methods to measure fixed direction and angular rate. As a 

result, in 1962, Warren Macek, from the Sperry Corporation, 

developed the first “gyroscope” without any moving parts: 

the Ring Laser Gyroscope (RLG) [3].  

The RLG’s functionality is based on the Sagnac effect, 

named after the scientist who first successfully 

demonstrated the effect in 1913 [4]. The Sagnac effect 

holds that if two identical beams of light (equal 

wavelength and phase) are sent in opposite directions 

around a stationary closed path, the two beams will arrive 

simultaneously at the opposite end of the enclosed path, 

since the speed of light is constant. If, however, the 

closed path undergoes a rotation while the light waves are 

traveling along the path, then the ray traveling in the 

direction of the rotation will take longer to travel around 

the path than the ray traveling opposite the direction of 

rotation. This time delay due to the rotation of the path 

causes the two beams of light to be out of phase upon 

reaching the end of the path, and this phase difference can 

be measured to return the rotation rate [1]. The 

mathematical derivation of the Sagnac effect can be seen 

below. 

 

 



1. Derivation of the Sagnac Effect 

Since most RLG’s use a triangular path, the derivation 

will begin with the geometric representation of an RLG 

shown in Figure 1. 

 

 
Figure 1.   Equilateral Triangle (After Ref. [4]) 

 

Given that S is the side length, and P = 3S is the total 

perimeter, then the time it takes for one beam to travel 

the complete path of the triangle is  
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where c is the speed of light. 
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The velocity of point a, given an angular rotation rate of 

w (rad/sec), is 

       wRv =

Note that R is the distance from the origin of the triangle 

to point a, and can be redefined as 
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Thus for a rotation rate w, point a moves a distance  
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The change in path length of beam 1 is simply the component 

of the distance traveled by point a along the direction of 

the beam path. 
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This equation can be simplified given that the area of the 

triangle is defined as follows: 

 
4

3))60sin((
2
1 2SSSA =°=   

Therefore 

 
c
wAP 2

=Δ   

 

4 



Since the path length must have an integral number of 

wavelengths, P must also be defined as 

 ...3,2,1== nnP λ  

Thus, when the path length changes by PΔ , the wavelength 

changes by  

 
P

P
n
P Δ
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Δ
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Likewise the frequency change can be defined as 
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But since both beams experience the same frequency shift in 

opposite directions, the total beat frequency is given by 

 '2'2 f
P
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Finally, substituting for PΔ gives 
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This equation gives the final derivation of the Sagnac 

effect [4]. 

C. HG1700 INTRODUCTION 

5 

The HG1700 Inertial Measurement Unit (IMU) is an RLG 

made by Honeywell International Incorporated. It is a six 

Degree-of-Freedom (DOF) system with the capability to 

measure acceleration, angular rotation rate, change in 

velocity, and change in angle, all in a three-dimensional 

coordinate reference frame. The IMU was originally made for 

the Joint Direct Attack Munition (JDAM) and the Wind 

Corrected Munitions Dispenser (WCMD), but it can be 

modified to function in other platforms. The following 
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chapters will discuss the configurations to set up the IMU, 

the software to run it, the tests done on the outputs to 

confirm their accuracy, and finally the steps taken to 

implement the system into the ARIES Unmanned Underwater 

Vehicle (UUV). 



II. HARDWARE CONFIGURATIONS 

A. HONEYWELL TEST BOX CONFIGURATION 

The Honeywell test box contains all the necessary 

hardware components within the box to power and read 

transmissions from the IMU. A Honeywell card associated 

with the test box had to be installed in a CPU equipped 

with Windows95, and a special 30-pin connector sent from 

Honeywell had to connect the test box to the CPU. The test 

box is powered through a standard 110V outlet. 

 
Figure 2.   Test Box Hardware 
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Figure 3.   Test Box Block Diagram 

 

B. C++ CONFIGURATION 

The next configuration is the hardware configuration 

that will be used to run the IMU when it is installed on 

the ARIES vehicle. Throughout this research it will be 

referred to as simply the C++ configuration because a C++ 

program is used to process the transmissions from the IMU. 

An Ultralife battery set at 30V DC powers the IMU. The 

positive voltage from the battery is run through a 2A  fuse 

(slow blow) before both the positive and negative voltages 

are run through a Datel DC/DC converter. The converter 

outputs +/-15V DC (1A) and +5V DC (5A) and a common ground. 

The outputs and ground from the converter run through a 6 

pin Molex connector before attaching to the IMU. A HI and 

LO output from the IMU connect to a B & B Electronics 422-

to-232 converter in order to match the interface of a 

computer serial port. Finally, a short ribbon cable 

(straight cable) connects from the 422-to-232 converter to 

the serial port.  

8 



 
Figure 4.   C++ Hardware 

 

 
Figure 5.   C++ Block Diagram 

 
 

9 



C. ORIENTATION OF IMU 

Now that the two different setup configurations have 

been explained, it is appropriate to define the orientation 

of the IMUs reference frame. The IMU was tested and will be 

installed into the ARIES vehicle in the special orientation 

shown in the previous two sections. Given that setup, the 

positive x axis points straight ahead, the y axis points 

90° to the left, and the z axis points straight up. The 

rotation rates follow the left hand rule where clockwise 

rotations are positive and counterclockwise rotations are 

negative. For the sake of standardization, the rotation 

about the x axis will be called roll, the rotation about 

the y axis will be called pitch, and the rotation about the 

z axis will be called yaw.  

 
Figure 6.   Illustrated Orientation of IMU 
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Figure 7.   Photo Orientation of IMU 

 

This reference frame orientation is modeled after the 

output from the text box configuration with one major 

modification: the y and z axes are swapped. In other words, 

the output from the test box shows the y axis as pointing 

straight up and the z axis as pointing 90° to the left. 

This swap is done easily in the MATLAB code by renaming the 

y and z vectors. 
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III. SOFTWARE USED TO TEST AND RUN THE HG1700 IMU 

A. HG1700 OUTPUT 

The HG1700 used in this research is an asynchronous 

model that outputs a single message at a rate of 100 Hz. 

The output can be broken down into two sections, where the 

first section contains all of the flight control data, and 

the second section is compromised of the status words and 

the inertial data.  

1. Flight Control Data 

The flight control data includes the angular rotation 

rates along the x, y, and z axes, and the linear 

accelerations in the x, y, and z directions. Each parameter 

output is composed of a two-byte word, making a total of 12 

bytes for the entire flight control section, and it is 

measured at a rate of 600 Hz. Only every sixth flight 

control message is transmitted, however, due to the 100 Hz 

serial data interface. In order to get units of 

radians/second, the Least Significant Bits (LSBs) of the 

angular rotation rate parameters must be multiplied by a 

factor of 2-20 * 600, and in order to get units of 

feet/second2, the LSBs for the linear acceleration 

parameters must be multiplied by a factor of 2-14 * 600 [5].  

2. Status Words and Inertial Data 

The second section includes two status words and the 

inertial data. The inertial data is made up of the change 

in angle along the x, y, and z axes, and the change in 

velocity in the x, y, and z directions. The first status 

word displays the accelerometer temperature in degrees 

Celsius as well as an IMU pass/fail test (outputted as a 0 

or 1 respectively) in a two byte word, and the second 
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status word displays individual component pass/fail test 

results in a two byte word. Specifically, the second status 

word includes a processor test, a memory test, an 

accelerometer test, a gyro test, an “other” test, and it 

also outputs the software version number. The change in 

angle and change in velocity parameters are each composed 

of four bytes, making a total of 28 bytes for all of the 

second section. In order to get units of radians for the 

change in angle parameters, the LSBs must be multiplied by 

a factor of 2-33, and in order to get units of feet/second 

for the change in velocity parameters, the LSBs must be 

multiplied by a factor of 2-27. Unlike the flight control 

data, the status words and the inertial data are measured 

and transmitted at 100 Hz [5].  

3. Summary of Output Message 

Thus, summing up the components of the flight control 

data, the status words, and the inertial data, the entire 

message is made up of a 40-byte string. Before the message 

is sent, however, each transmission begins with a sync byte 

of A5h (or 165 in decimal format) followed by a message id 

byte of 2, and after each message a 2-byte checksum is 

transmitted. This means that 44 bytes are being transmitted 

at 100 Hz, or 4,400 bytes/second. Converting the bytes to 

bits (8 bits in a byte), the HG1700 transmits 35,200 

bits/second. In order to receive all the data, the manual 

states a baud rate of 115.2 kHz set at 8 data bits, 1 stop 

bit, and no parity [5]. See the figures and tables below 

for a graphical summary of the HG1700 output. 

 



 
Figure 8.   IMU Rate of Measurement and Transmission 

(After Ref. [5]) 
 

 
Table 1.   Asynchronous Flight Control and Serial Data 

Interface Characteristics (From Ref. [5]) 
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Table 2.   Data Message Contents (From Ref. [5]) 

 

B. SOFTWARE USED TO READ HG1700 OUTPUT 

Two different software packages were used to read and 

evaluate transmission data from the HG1700: a test box with 

the associated MS-DOS program sent from Honeywell and a C++ 

program written by the AUV lab.  

1. Test Box Software 

The Honeywell test box was used to confirm that the 

HG1700 was transmitting accurate data. A MS-DOS program, 

Menu_25.pif, was used to read, display, and save the 

transmitted data from the test box, and it can only be run 

on a Windows95 CPU. When running the program, the user must 

first select one of five options: exit program, scale 

outputs, display data to screen, record data to a file, or 

perform noise test. For all the testing done on the test 

16 
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box in this research, the option to record data to a file 

was selected. Next, the user could chose to display the 600 

Hz flight control data, but since the asynchronous model of 

the HG1700 only transmits at 100 Hz, this option was never 

selected. Finally, the user must enter the rate at which to 

display and save the data, create a file name with a *.dat 

extension to save the data, and enter a comment line on 

that file. After the comment line is entered, the program 

will begin gathering data.  

If the ‘scale outputs’ option is selected, the user 

can change the gyro scale factor to either one (LSB), 

radians, radians/second, degrees, degrees/second, or 

degrees/hour, and the user can change the acceleration 

scale factor to one (LSB), feet/second2, g’s, or 

meters/second2. For all of the testing done with the test 

box, the gyro scale factor was set to degrees/hour, and the 

acceleration scale factor was set to g’s.  

The textbox worked great for short periods of testing, 

but it consistently froze up after approximately two 

minutes or less regardless of the rate at which the data 

was displayed. Thus, the test box was useful for testing 

the angular measurements in a short rotation test, but it 

was impossible to do any long-term tests with the test box 

to determine the error bias in the drift rate. The actual 

test results for tests done with the test box will be 

discussed in the next chapter. 

2. C++ Software 

The C++ program, DECODE4, was written only as a test 

program to read saved data from a text file and output the 

results to the screen and save them to a new text file. A 

terminal emulation program such as Procomm Plus or 
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Hyperterminal reads in the binary data from the HG1700 and 

saves it in ASCII format to a file. DECODE4 then reads the 

saved file one ASCII character at a time (or one byte at a 

time) searching for the sync byte followed directly by the 

message id. Once it finds the 165-2 pair, the program takes 

the following 40 bytes and combines them into words to get 

the correct parameters in exactly the same way as discussed 

in II.A.1 and II.A.2 above. After completely evaluating and 

displaying one message, the program begins looking for the 

next 165-2 pair and repeats the entire process. This code 

can be found in the appendix. 

DECODE4 will be modified and used to actually run the 

IMU in the ARIES vehicle. The primary modification will be 

to read the transmission from the HG1700 directly into the 

program instead of reading the data from a saved file. When 

making this modification however, the program must also 

include a command to clear the buffer after each 

transmission in order to prevent the buffer from becoming 

overloaded. When the buffer can no longer hold all the 

transmitted data, data will be lost, and even the loss of 

one byte in a transmission will greatly skew the outputted 

results. This very problem occurred during the testing in 

the research and will be covered in more detail in the next 

chapter.  
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IV. TESTING ON THE HG1700 IMU 

A. EXPLANATION OF TESTS 

Once installed, the HG1700 IMU will be used primarily 

for determining initial compass heading on the ARIES 

vehicle as well as tracking the heading of the vehicle 

throughout its mission. Therefore, to determine the 

accuracy of each of these uses, two separates tests needed 

to be run and evaluated: a rotation test and an idle test. 

As an added check, a third test was done to track the IMU’s 

position based on the measured accelerations and angular 

rotation rates, and these results will be discussed as 

well.  

B. ROTATION TEST 

The rotation test was done using the foam mount on a 

flat table with the test box and Honeywell software as 

discussed and shown in chapter II. To reiterate what was 

stated in that chapter, in this setting (which is the 

orientation in which the IMU will be mounted in the ARIES 

vehicle), the positive x axis points directly ahead, the y 

axis points 90° to the left, and the z axis points straight 

up. With this configuration, the goal of the rotation test 

was to rotate the IMU about its z axis 90° to the right 

(+90°), rotate it back to the 0° position, and then repeat 

the processes in the opposite direction (to -90° and back 

to 0°). 

1. MATLAB Programming for Rotation Test 

After gathering and saving the data from the test box, 

the data output file was loaded into the MATLAB program 

IMUtest_rotation.m. This m.file loads the data file and 

first plots the acceleration along the three axes with 



respect to time. This graph is simply a check to insure 

that the z axis is reading a -1 g and the x and y axes are 

reading approximately zero acceleration. Next, the program 

plots the x, y, and z rotation vectors with respect to 

time. Since the rotation vectors were outputted from the 

IMU test box in degrees/hour, it is difficult to determine 

any specific results from this plot. Therefore, the program 

uses a discrete integration method to integrate the 

degrees/hour data with respect to time in order to achieve 

the angle of rotation at each time step. The equation for 

the discrete integration is shown below: 

0
_ (deg ) _t n

t tt
rotation value rees rotation rate t=

=
= ×Δ∑  

where 
1

_
t

measured rate
Δ = . The measuring rate for this test was 

10Hz. Thus, integrating the x, y, and z rotation vectors 

with respect to time results in the roll, pitch, and yaw 

respectively, and these values are plotted versus time in 

the last plot of the program. IMUtest_rotation.m can be 

seen in the appendix.  

2. MATLAB Plots for Rotation Test 

The following are the three plots in order as 

discussed in the section above. 
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Figure 9.   Rotation Test: Accelerations vs. Time 
 

Figure 9 confirms an accurate acceleration reading 

since the acceleration in the z direction reads -1 g and 

the accelerations in the x and y directions read basically 

0 g’s.  
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Figure 10.   Rotation Test: Rotation Rates vs. Time 

 

As discussed above, Figure 10 is difficult to 

interpret precisely, but it is clear that there is first a 

positive rotation rate about the z axis (clockwise), then a 

negative rotation rate (counterclockwise), then another 

negative rotation rate, and finally a positive rotation 

rotate. These are the rotation rates expected for this 

test. 
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Figure 11.   Rotation Test: Angular Position vs. Time 

 

As can be seen in Figure 11, the yaw does in fact 

rotate up to 90°, back to 0°, down to -90°, and then back 

to 0°. Based on this test we know that the output of the 

IMU can be integrated to accurately display the heading of 

the vehicle as it is carrying out its mission. 

C. IDLE TEST 

The second test, the idle test, proved to be much more 

difficult of a test to complete. The purpose of the idle 

test was to let the IMU sit motionless and run for a 

certain period of time in order to determine and factor out 

the drift rate caused by the rotation of the earth and 

ultimately determine the error bias associated with the 

HG1700 itself. The initial heading of the IMU could be 

calculated from the idle test. In a tactical mission, the 
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idle test will be used solely to determine initial heading 

since the earth rate and error bias will have been tested 

and factored out of the measurements. For testing purposes, 

however, the idle test was used to measure all three: earth 

rotation rate, error bias, and initial heading. 

The idle test was set up exactly the same as the 

rotation test with the IMU sitting in the foam mount on a 

flat table.  

1. Calculating the Earth Rotation Rate 

The rotation rate associated with the spinning of the 

earth is equal to 360 degrees/day or 15 degrees/hour 

counterclockwise, and since the IMU reads counterclockwise 

rotations as negative, the rotation of the earth is -15 

degrees/hour. When the IMU is run for a period of time 

while sitting idle, the only changes to the outputted data 

should be due to this earth drift rate and the error bias. 

Thus, by knowing and factoring out the earth drift rate, 

the error bias rate can be determined.  

In order to find and filter out the earth drift rate, 

the x, y and z axes must be defined in relation to the axis 

of rotation of the earth. If the IMU were set facing north 

or south directly on the equator, the earth drift rate 

would appear only in the roll vector because both the pitch 

vector and the yaw vector would be perpendicular to the 

axis of rotation (only the x axis would be rotating). But 

when the IMU is operating at any other latitude or any 

other orientation, all three of its axes have component 

vectors parallel to the axis of rotation. These drift rate 

components can easily be found if the latitude and compass 

heading are known. For simplicity, assume that the IMU is 

facing due north (compass heading 0.00°), but at a 



different latitude than the equator. This setup is 

illustrated in Figure 12. (The x axis points north (N). The 

y axis points west (W), and the z axis points up from the 

center of the earth (U).) The angle of latitude is labeled 

λ.  

 

 
Figure 12.   Earth Rotation 

 

This configuration can be reduced trigonometrically to 

a two-dimensional figure (Figure 13), where the axis of 

rotation is shifted to the origin of the IMU, the angle of 

latitude has been transferred by trigonometric identities, 

and the z axis has been shifted in order to complete the N 

and U components of the axis of rotation. 
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Figure 13.   Shifted Earth Rotation Axis 

 

From this figure, the following rotation equations can 

be deduced: 

sin
cos

e

e

U
N

λ
λ

= −Ω
= −Ω

 

Now assume that the IMU is at the same latitude as 

before, but the heading is rotated to some angle other than 

due north. This assumption is illustrated in Figure 14, 

where the x and y axes are rotated clockwise (positive) 

from due north and the z axis points straight up.  
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Figure 14.   X/Y Axes Rotated From N/W Directions 
 

From this figure, the rotation equation coseN λ= −Ω  must be 

redefined in x and y components where 

cos
cos cos

x

x e

Nϖ ψ
ϖ λ ψ

=
= −Ω

       

and 

sin

cos sin
y

y e

Nϖ ψ

ϖ λ ψ

=

= −Ω
 

Thus, in summary, the equations for the rotation of 

the earth measured about each axis are 

cos cos
cos sin

sin

x e

y e

z e

ϖ λ ψ
ϖ λ ψ

ϖ λ

= −Ω

= −Ω

= −Ω
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2. MATLAB Programming for Idle Test 

A MATLAB script file was written to display the 

average rotation rate about each axis in degrees/hour 

during the idle test compared to the theoretical earth 

rotation rates about each axis based on the derived 

equations above. The program, IMUtest_idle##.m, (## 

represents the test run number) outputs eight columns of 

data related to the experimental and calculated earth 

rotation rates. The first 3 columns of output are the 

experimental data gathered from the HG1700, and columns 4, 

5, and 6 are the calculated values using the equations 

derived above with a latitude of 36.5859°, a compass 

heading of 0.00°, and an earth rotation rate of (-15.00 

degrees/hour). The last two columns related to the earth 

rotation rate are the total experimental and calculated 

rotation rates, respectively, found by using the three 

dimensional application of Pythagoras’ theorem: 

2 2
t x y

2
zω ω ω ω= + +  

After producing the eight columns related to the 

earth’s rotation rate, the program outputs two more columns 

related to the initial heading. Looking again at Figure 14, 

the heading angle ψ can be found by taking the arctangent 

of ωy/ωx. Thus, the first of these two columns is the 

initial heading calculated from the experimental data, and 

the second column is the initial heading calculated using 

the calculated data. IMUtest_idle##.m can be seen in the 

appendix.  

All of the idle tests were done using the Honeywell 

test box, but, as discussed in chapter III, the test box 

software had a data storage problem making it impossible to 
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do any long-term testing with it. Seven idle tests were 

done with the test box, each at a different sampling rate, 

in order to try to maximize storage capacity. The results 

are shown below. 

 
IMUtest_idle4 
TEST 4: 1 Hz Data Rate. Duration - 70sec 
   wx_exp    wy_exp    wz_exp    wx_cal    wy_cal    wz_cal    wt_exp    wt_cal 
  -9.3419   -2.9024   -9.8148  -12.0439         0   -8.9412   13.8574   15.0000 
  
    Computed Heading by taking ATAN of Wy/Wx 
   Experiment      True 
 -162.7406         0 
  
 
 
IMUtest_idle5 
TEST 5: 10 Hz Data Rate. Duration - 102sec 
  wx_exp    wy_exp    wz_exp    wx_cal    wy_cal    wz_cal    wt_exp    wt_cal 
-10.6108   -5.9588   -8.8306  -12.0439         0   -8.9412   15.0358   15.0000 
  
    Computed Heading by taking ATAN of Wy/Wx 
   Experiment      True 
   29.3176         0 
  
 
 
IMUtest_idle6 
TEST 6: 100 Hz Data Rate. Duration - 69.1sec 
  wx_exp    wy_exp    wz_exp    wx_cal    wy_cal    wz_cal    wt_exp    wt_cal 
-11.4164   -2.1896   -9.9025  -12.0439         0   -8.9412   15.2705   15.0000 
  
    Computed Heading by taking ATAN of Wy/Wx 
   Experiment      True 
   10.8571         0 
  
 
 
IMUtest_idle7 
TEST 7: 1 Hz Data Rate. Duration - 70sec 
  wx_exp    wy_exp    wz_exp    wx_cal    wy_cal    wz_cal    wt_exp    wt_cal 
-11.2792   -3.2644   -8.5668  -12.0439         0   -8.9412   14.5350   15.0000 
  
    Computed Heading by taking ATAN of Wy/Wx 
   Experiment      True 
   16.1413         0 
  
 
 
IMUtest_idle8 
TEST 8: .2 Hz Data Rate. Duration - 75sec 
  wx_exp    wy_exp    wz_exp    wx_cal    wy_cal    wz_cal    wt_exp    wt_cal 
-10.5452   -3.7608   -8.8667  -12.0439         0   -8.9412   14.2815   15.0000 
  
    Computed Heading by taking ATAN of Wy/Wx 
   Experiment      True 
   19.6279         0 
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IMUtest_idle9 
TEST 9: 10 Hz Data Rate. Duration - 48.2sec 
  wx_exp    wy_exp    wz_exp    wx_cal    wy_cal    wz_cal    wt_exp    wt_cal 
-12.2331   -3.7360   -9.7339  -12.0439         0   -8.9412   16.0734   15.0000 
  
    Computed Heading by taking ATAN of Wy/Wx 
   Experiment      True 
   16.9830         0 
  
 
 
IMUtest_idle10 
TEST 10: 20 Hz Data Rate. Duration - 15.95sec 
  wx_exp    wy_exp    wz_exp    wx_cal    wy_cal    wz_cal    wt_exp    wt_cal 
-10.3930   -1.0867   -8.7919  -12.0439         0   -8.9412   13.6562   15.0000 
  
    Computed Heading by taking ATAN of Wy/Wx 
   Exp (deg)       True (deg) 
    5.9690         0 
 

Table 3.   MATLAB Output From Idle Tests 
 
3. Conclusions for Idle Tests 

According to manufacture specifications, the error 

drift rate of the HG1700 should be less than 1 

degrees/hour, meaning that the experimental rotation rates 

from the seven tests should range between 14.9° and 15.1° 

[5]. From the seven tests, however, the total experimental 

rotation rates range from 13.6562° to 16.0734° with a 

standard deviation of 0.8486. Thus these seven tests prove 

that over a short period of time, the HG1700 fails to meet 

the expected specifications. This outcome was expected, 

however, since the output from the IMU must be measured 

over a long period of time (~30 minutes) in order to 

accurately calculate the drift rate. Therefore, a series of 

longer idle tests must be done. 

Another important point to notice in the short idle 

tests is the headings calculated from the experimental 

data. The heading angle should read approximately 0.00°, 

but in fact it ranges from -162.7406° to 29.3176°. This is  
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further proof that enough data cannot be gathered in two 

minutes in order to accurately calculate the error drift 

rate or the heading. 

The C++ program DECODE4 should have provided the 

capabilities to perform long-term tests with the IMU, but a 

data acquisition problem prevented the program from ever 

being able to read and display accurate information. By 

analyzing the capture files from whichever terminal 

emulation program was used, it was revealed that the sync 

byte and the message id (165, 2) were not showing up 

consistently in the data string. This seems to indicate 

that at certain times the buffer was overwhelmed by bursts 

of data resulting in the terminal emulation program not 

being able to capture all that data [6]. This information 

is good in the sense that the setup of the hardware 

components is correct, but it also means that more work 

needs to be done to make the software compatible at the 

serial data port interface. 

D. POSITIONAL TESTING 

The rotation test proved that it is possible to 

integrate the rate of rotation in order to get angle of 

rotation, and since the IMU also measures the acceleration 

along each axis, it would seem that by double integrating 

the acceleration components in a constant frame of 

reference, the position of the IMU could be recorded.  

The positional testing involved moving the IMU along 

four different routes and running the MATLAB program 

IMUtest_position.m to plot the position of each track. The 

four routes were as follows: a complete circle with a 

radius of approximately two feet, a complete square with 

the length of each side being approximately four feet, a 
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ten foot long straight line parallel to the x axis of the 

constant reference frame, and a ten foot line that drifted 

two feet at a constant rate off the x axis of the constant 

reference frame while the IMU remained facing the constant 

reference frame. 

In order to derive the equations for this test, the 

concept of a constant frame of reference must be explained. 

When the IMU is first initialized, it is placed in a 

certain direction and orientation. This configuration will 

be called the initial reference frame. As the IMU is moved 

and/or rotated, however, the reference frame associated 

with the IMU will deviate from the initial reference frame, 

but the IMU’s reference frame can always be translated back 

to the initial reference frame by using the rotation and 

acceleration data gathered throughout the run. When the 

IMU’s reference frame is translated back to the initial 

reference frame, the movement of the IMU in that reference 

frame can be tracked. Thus, in order to track the position 

of the IMU, the IMU’s reference frame must be translated 

back to the initial reference frame. This idea of tracking 

the position with respect to the initial reference frame is 

know as using a constant frame of reference. The equations 

and diagrams below will explain how to translate the IMU’s 

reference frame back to the initial reference frame. 

1. Derivations for Calculating Position 

To track position, the only parameters of importance 

are the accelerations along the x, y, and z axes of the 

constant reference frame because these accelerations can be 

double integrated with respect to time to produce position. 

In order to derive these accelerations, the accelerations  



associated with the IMU’s reference frame must be 

translated back to the constant reference frame using 

simple trigonometry. 

Consider the two-dimensional figures below:  

 
Figure 15.   Translation to Reference Frame 

 

Looking at the first figure, the angle of rotation σ 

is marked negative because of the counterclockwise rotation 

about the z axis of the IMU. If x1 and y1 are acceleration 

vectors in this figure, and all of the vectors point in the 

positive direction, then the components of x1 and y1 can be 

related back to xo and yo by the equations 

( ) ( )
( ) (

0 1 1

0 1 1

( ) ( )cos ( )sin

( ) ( )cos ( )sin

accel x accel x accel y

accel y accel y accel x )
σ σ

σ σ

= − +

= − −

−

−
 

Likewise, in the second figure the angle of rotation σ is 

positive since the rotation is in the clockwise direction. 

Because of the sign change on the angle, the equations to 
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relate x1 and y1 back to xo and yo are exactly the same. And 

since all of the positioning tests were done in the x-y 

plane (no change in z), these two equations will suffice. 

For situations in which the IMU is rotated about more 

than one axis, the rotation rates must be converted to 

Euler rotation rates before being integrated into angles 

(Euler angles). Even though the positioning tests only 

involved rotations about the z axis, the method of 

calculating the Euler angles was used to ensure that the 

correct roll, pitch, and yaw angles were being recorded and 

to simply become familiar with the method since it must be 

used when the IMU is implemented into the ARIES vehicle. 

The rotation rates transmitted from the IMU can be 

converted to Euler rotation rates by the transformation 

matrix 

1 sin tan cos tan
0 cos sin
0 sin / cos cos / cos

p
q
r

φ φ θ φ θ
θ φ φ
ψ φ θ φ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where p, q, and r are the transmitted rotation rates about 

the x, y, and z axes respectively, and φ , θ , and ψ  are the 

roll, pitch and yaw respectively [7]. The specifics as to 

how this transformation matrix must be implemented into 

MATLAB will be discussed later in this section. 

Once the acceleration components have been translated 

to the constant reference frame, the acceleration along the 

x and y axes must be double integrated to get position 

along these axes. Integrating once yields 

1 0adt at c at v v= + = + =∫  
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and a second integration yields 

1 0vdt vt c vt x x= + = + =∫  

Now, converting the integral to a discrete integration 

form, 

1 11
( ) i n

i ii
v n a t v=

− −=
= Δ +∑  

and 

1 11
( ) i n

i ii
x n v t=

− −=
= Δ +∑ x  

These derivations provide enough background to now 

sufficiently discuss the MATLAB programming results. 

2. MATLAB Programming for Positioning Tests 

The equations derived above were used in the program 

IMUtest_position.m to first derive the Euler angles, then 

calculate the acceleration vectors in the constant frame of 

reference, and finally integrate the acceleration vectors 

twice to get an x and y position at each time interval.  

Specifically, Figure 16 below shows the loop used to 

calculate the Euler angles at each time interval. 

 
Figure 16.   Euler Angle Loop 
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The rotation rates from the IMU are multiplied by the 

transformation matrix to get the Euler rotation rates. 

These rotation rates are then integrated to get the Euler 

angles, and the Euler angles are fed back into the 
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transformation matrix in order to calculate the Euler 

rotation rates at the next time interval. This loop is 

similar to the loop that will be used when the IMU is 

implemented into the ARIES vehicle, with the only 

difference being that the rotation of the earth will be 

factored out of the initial rotation rates before they are 

multiplied by the transformation matrix. Since all of these 

position tests were less than one minute in duration, 

however, it was not necessary to factor out the rotation of 

the earth. After the Euler angles have all been calculated, 

the program then translates the acceleration vectors back 

to the constant reference frame and double integrates to 

get position. 

3. MATLAB Plots for Positioning Tests 

IMUtest_position.m displays two plots per route. The 

first plot is a plot of the roll, pitch, and yaw versus 

time in order to confirm that the Euler angles were 

calculated correctly. The second plot is the primary plot 

of interest for this test: the actual track of the IMU as 

integrated from the accelerometers. These plots are shown 

in the figures below. IMUtest_position.m is given in the 

appendix.  



 
Figure 17.   Positioning Tests: Circular Route 
 

The circular test shows that the Euler angles have 

been calculated correctly (Figure 17, upper panel). The 

roll and pitch remain at approximately 0° while the yaw 

changes gradually from 0° to -360° indicating a circular 

pattern. However, the track obtained from double 

integration of the accelerometers deviates greatly from a 

circular track (Figure 17, lower panel). It appears that 

the IMU failed to measure accurate acceleration values 

throughout the route.  
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Figure 18.   Positioning Test: Square Route 

 

 The plots from the square test (Figure 18) show 

similar results. Again, the square test shows an accurate 

output of Euler angles. The roll and pitch stay at 

approximately 0° while the yaw decreases in a stair step 

pattern from 0° to -360° indicating a square pattern. Like 

the circular test, though, the square test failed to plot 

an accurate route.  
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Figure 19.   Positioning Tests: Straight Route 

 

The straight line test shows very little change in the 

roll, pitch, and yaw, as expected, and, consistent with the 

previous tests, the position plot in greatly skewed (Figure 

19). 
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Figure 20.   Positioning Tests: Drift Route 

 

 The drift test was designed to see if the IMU could 

measure the effects of the ocean currents during a mission. 

Based on the results shown in Figure 20, however, it is 

clear that such a capability does not exist. The drift test 

displays the same results as the other tests: accurate 

Euler angles with an extremely inaccurate position plot. 

4. Conclusions for Positioning Tests 

Based on the results from these four figures, it is 

obvious that the HG1700 cannot be used to track its 

position at very low accelerations. The reason for this is 

that first, each of the accelerometers in the IMU has an 

error bias associated with it. When you double integrate 

the acceleration to get position, the error bias integrates 

as well, causing the error in the accelerometers to grow at 
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an exponential rate over time. Thus in a very short amount 

of time, the error bias begins to dominate the data.  

Second, when translating the acceleration vectors to a 

constant frame of reference, the translated vectors are 

often smaller than the noise in the vectors, causing a very 

wide standard deviation for a very small acceleration 

value. Third, if the x and y axes of the IMU are not 

oriented exactly perpendicular to gravity, components of 

the acceleration due to gravity will appear in the x and/or 

y acceleration vectors. All these reasons combine to 

explain why the IMU at low accelerations fails to produce 

accurate positioning data.  
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V. PLANS FOR IMPLEMENTATION 

When the HG1700 is implemented into the ARIES vehicle, 

it should incorporate the same filter used in the Small AUV 

Navigation System (SANS) software. The SANS requires a 

GPS/DGPS receiver, IMU, compass, water speed sensor, water 

depth sensor, and a data processing computer -  all of 

which are found on the ARIES vehicle. The current SANS 

navigation software uses the twelve-state complementary 

filter shown in Figure 21. The twelve state variables are 

as follows: the outputs of the three integrator blocks, 

estimated current in both the north and east directions, 

and the error bias estimates for the angular rate readings. 

A more detailed list of these state variables is shown in 

Table 4. Note also that in Figure 21, ( , , )R φ θ ψ  is a rotation 

matrix and ( , , )T φ θ ψ  is an Euler transformation matrix [8]. 

 
Table 4.   State Variables (From Ref. [8]) 
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Figure 21.   SANS Navigation Software Filter (From Ref. 

[8]) 
 

The filter gains K1, K2, K3, and K4 and constant. They 

must initially be determined by bandwidth considerations, 

but they can be modified and corrected afterwards by 

experimental tuning. For more information on how to tune 

the filter gains, see [8]. The only change needed to be 

made to the SANS software is to filter out the rotation of 

the Earth from the Angular-rate Sensors (p, q, r) using the 

equations discussed in section IV.C.1. 
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VI. CONCLUSION 

It was the objective of this thesis to evaluate the 

accuracy of the HG1700 in order to determine its usefulness 

as part of the navigational components in the ARIES 

vehicle, and that goal was met in multiple categories. 

First, this thesis allowed for the two different setup 

configurations associated with the IMU to be examined. 

Second, through the rotation test, the idle test, and the 

positioning test, the inertial data from the IMU was 

evaluated for accuracy and consistency. And finally, this 

thesis showed the need for specific further evaluation, and 

the necessary steps to be taken when implementing the IMU 

into the UUV. While not everything is this thesis can be 

called successful, it certainly was useful and should be 

viewed as a necessary stepping stone in the process of 

implementing the HG1700 into the ARIES vehicle. 

Throughout all the testing done on the IMU, the 

capabilities and difficulties related to the test box and 

C++ setup were examined. The test box proved useful for 

testing the IMU, only because the C++ setup never worked 

properly, but it still had two major limitations. First, 

the test box could only run on a Windows95 CPU, which 

prevented the mobility of testing on a laptop computer. And 

second, the test box software could not store more than two 

minutes worth of data regardless of the rate at which the 

data was displayed. This fact was shown especially true in 

the idle tests. The C++ software and setup has worked in 

the past, but due to problems with the serial data 

acquisition it never displayed accurate data during the 

testing time period for this research. Before the IMU can 
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be implemented into the vehicle, this problem must be 

corrected because long term testing must still be done and 

also because a similar setup and software will be used for 

the IMU when it operates on the ARIES vehicle.  

In the rotation test, the accuracy of the rotation 

rates was tested and the ability to be able to integrate 

those rotation rates to get angles was evaluated. This test 

proved successful in that the IMU measured accurate 

rotation rates and those rates were integrated to reflect 

accurate angle measurements. Therefore, the IMU can and 

certainly will be used to measure the heading of the ARIES 

vehicle once it is installed. It must be remembered, 

however, that when the IMU is implemented into the vehicle, 

the earth rates must be factored out of the measured 

rotation rates, and then those rotation rates must be 

transformed to Euler rates before integrating into angle 

measurements. 

In the idle test, the measured earth rates and error 

bias were examined. These tests had limited success due to 

the memory storage error associated with the test box setup 

and the data acquisition problems associated with the C++ 

setup. The short term testing done with the test box proved 

that neither the Earth rate, nor the error bias, nor the 

compass heading could be accurately measured in a short 

period time. Thus, the limited results from these tests 

necessitate a long term test in order to factor out an 

accurate earth rate measurement and to calculate the 

inherent error bias associated with the IMU. The accuracy 

of the calculated compass heading must also be checked in a 

long term test. 
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The positioning tests assessed the accuracy of double 

integrating the acceleration vectors in a constant frame of 

reference to get the position of the IMU at each discrete 

time step. These tests were successful in transforming the 

transmitted rotation rates to Euler rates, but other than 

that they were largely unsuccessful. They failed the 

primary purpose of the test: to produce an accurate two 

dimensional plot of the position of the IMU. Based on the 

results of this test, the position of the ARIES vehicle 

cannot be evaluated solely by the HG1700 nor can the IMU be 

used to measure the ocean currents. When used with the SANS 

navigation software filter, however, the IMU can be used to 

assist in the measurement of the velocity and acceleration 

of the vehicle. 

As stated already, before the IMU can be implemented, 

the C++ setup must be debugged and sufficient long term 

testing must be done. When implementing the IMU, it should 

be incorporated with the SANS twelve-state complementary 

filter or something similar to it, and the C++ program 

DECODE4 must be modified to read the transmissions directly 

from the IMU. These are the necessary evaluations and 

modifications still needing attention before 

implementation.  

 Based on all these conclusions, this thesis has made 

great strides in taking an IMU designed for the high speed 

JDAM missile and installing it onto the slow moving ARIES 

UUV, but the process is far from complete. The test results 

have been made clear and the outline for future work well 

defined. With that, this thesis is concluded with the hope 

that it will be used as a guide for follow-on work to 

complete the implementation process.  
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APPENDIX 

A. C++ PROGRAM DECODE4.CPP 

/* DECODE4.cpp 
 This program reads binary data from a text file and outputs the 
14 measurements that the HG1700 IMU transmits with each message */ 
 
#include<stdio.h> 
#include<stdlib.h> 
 
 
 
/* Processes word1.   
  Format of word1 is:   
 bits 15-8: Accelerometer temperature (centigrade) 
 bit 7: a axis RLG in PLC reset (=1) 
 bit 6: b axis RLG in PLC reset (=1) 
 bit 5: c axis RLG in PLC reset (=1) 
 bit 4: IMU failure 
 bits 0-3: 4-bit counter*/ 
 
/* Output format is (IMU pass/fail, temperature (Celsius degrees), 
counter (0-15) */ 
 
char word1(double decimal)  
{   int bitvalue=32768, bitnumber=15, counter=0, bit=0, temperature=0; 
    char test; 
    

while(bitnumber>=0) //scans and processes individual bits 
    {   if((decimal-bitvalue)>=0) 
        {   bit=1; 
            decimal=decimal-bitvalue; 
            if(bitnumber<=3) 
               counter = counter + bitvalue; 
            else if(bitnumber==4) 
                 test = 70; 
            else if(bitnumber>=8) 
               temperature = temperature+bitvalue/256; 
            else;                 
        }else  
            if(bitnumber==4) 
                test = 80; 
            else; 
        bitnumber = bitnumber - 1; 
        bitvalue = bitvalue/2; 
    } 
    printf("(%c, %d, %d)\t",test,temperature,counter); 
 
 return test; // SPK 5/24/05: added to make this compile 
} 
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/* Processes word2.   
  Format of word2 is:   
 bits 7-0: software version number 
 bits 8-10: reserved 
 bits 11-15: process tests */   
 
/* Tests (0=pass, 1=fail):   
 bit 15: Processor 
 bit 14: Memory 
 bit 13: Other 
 bit 12: Accelerometer 
 bit 11: Gyroscope */  
 
/* Output format:  If all tests pass:  "Pass [version number]";  if 
test(s) failed: "Fail: [process]" */ 
void word2(double decimal) 
{   double error=0; 
    int bitvalue=32768, version=0, bit=0, temperature=0; 
    char bitnumber=15; 

while(bitnumber>=0) scans and processes individual bits 
    {   if((decimal-bitvalue)>=0) 
        {   bit=1; 
            decimal=decimal-bitvalue; 
            if(bitnumber<=7) 
               version = version + bitvalue; 
            else 
                error = error + bitvalue;               
        }else; 
        bitnumber = bitnumber - 1; 
        bitvalue = bitvalue/2; 
    } 
    if(error==0) // read test output and display results to screen 
        printf("(Pass %d)\t",version); 
    else if(error==32768) 
        printf("(Fail: Processor)\t"); 
    else if(error==16384) 
        printf("(Fail: Memory)\t"); 
    else if(decimal==8192) 
        printf("(Fail: Other)\t"); 
    else if(error==4096) 
        printf("(Fail: Accel)\t"); 
    else if(error==2048) 
        printf("(Fail: Gyro)\t"); 
    else 
        printf("(Fail: Multi.)\t"); 
} 
 
 
FILE *IMUfp; 
FILE *SAVEfp; 
 
void main() 
{   unsigned char bytevalue; 
    int i=0, count=0, size; 
    char filename[64], savename[64]; 
    double lsb, value; 
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    const double lsb1=0.00057220458984375, lsb2=0.03662109375, 
lsb3=0.000000000116415321826934814453125, 
lsb4=0.000000007450580596923828125; 
/*(least significant bit (LSB) values according to unit spec. sheet)*/ 
 
    system("cls"); 
    printf("\n************************************\n** Set Screen 
buffer width to 300 **\n************************************\n"); 
    printf("\nPossible data files in current directory:\n\n"); 
    system("dir *.cap /od /b");     // Possible file extensions 
    system("dir *.txt /od /b");     // to display to screen  
    printf("\nChoose a data file to view: "); 
    scanf("%s",&filename);   // Selected file to view 
    printf("Output file name: ");      
    scanf("%s",&savename);   // Selected file to save 
    printf("Enter number of data segments: "); 
    scanf("%d",&size); 

printf("Filename: %s   Number of data segments: 
%d\n\n",filename,size); 

 
printf("Angular Rate X\tAngular Rate Y\tAngular Rate Z\tLinear 

accel X\tLinear accel Y\tLinear accel Z\tStatus Word1\tStatus 
Word2\tDelta angle X\tDelta angle Y\tDelta angle Z\tDelta vel X\tDelta 
vel Y\tDelta vel Z\n"); 

 
    printf("  (rad/sec)\t  (rad/sec)\t  (rad/sec)\t  (ft/sec^2)\t  
(ft/sec^2)\t  (ft/sec^2)\t(P/F, deg.C)\t (Pass/Fail)\t (radians)\t 
(radians)\t (radians)\t (ft/sec)\t (ft/sec)\t (ft/sec)\n\n"); 
     
    SAVEfp = fopen(savename,"wb"); 
    IMUfp = fopen(filename,"rb"); 
    while(count<size) // Constant loop looking for (165,2) combo 
    {   fread(&bytevalue,1,1,IMUfp); 
        printf("%d\n",bytevalue);   
        if(bytevalue==165) //finds  sync. byte/message id (165, 2) 
        {   fread(&bytevalue,1,1,IMUfp); 
            if(bytevalue==2) 
            {   while(i<40) // evaluates next 40 bytes  
                {   fread(&bytevalue,1,1,IMUfp); // Combines bytes 
                    value = bytevalue; 
                    ++i; 
                    fread(&bytevalue,1,1,IMUfp); 
                    value = value + 256*bytevalue; 
                    ++i; 
                    if(i>=18) 
                    {   fread(&bytevalue,1,1,IMUfp); 
                        value = value + 256*256*bytevalue; 
                        ++i; 
                        fread(&bytevalue,1,1,IMUfp); 
                        value = value + 256*256*256*bytevalue; 
                        ++i; 
                        if(value>=2147483648) 
                            value = value - 2147483648 - 2147483648; 
                        }else  
                        if(value>=32768) 
                            value = value - 65536;       
                        else; 
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                        if(i<=6)     //applies lsb values 
                        value = value*lsb1; 
                        else if(i<=12) 
                            value = value*lsb2; 
                        else if(i<=14);         //word1 
                        else if(i<=16);         //word2 
                        else if(i<=28) 
                            value = value*lsb3; 
                        else if(i<=44) 
                            value = value*lsb4; 
                        else; 
                         
                        if(i==14) 
                           word1(value);  // Calls word1 function 
                        else if(i==16) 
                           word2(value);  // Calls word2 function 
                        else 
                        {   printf("%f\t",value); 
                            fprintf(SAVEfp,"%f ",value); 
                        } 
                 } 
   
                 printf("\n"); 
                 fprintf(SAVEfp,"\r\n"); 
                 ++count; 
                 i=0;         
            }else; 
        }else; 
    } 
}  
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B. MATLAB PROGRAM IMUTEST_ROTATION.M 

% IMUtest_rotation.m 
% This progam integrates the rotation rates to get angle of rotation. 
% It also plots the accelerations vs. time, the rotation rates vs.        
% time, and the angle of rotation vs. time. 
% 042105 
% Joel Gow 
  
clear all 
  
  
test1 = load('042105_02mod.txt');       % 10Hz test 
  
  
%/////////////////// Rotation Test \\\\\\\\\\\\\\\\\\\\\\\ 
t1 = 0:0.1:42.9;                        % Time vector in seconds 
  
% Plot accelerations vs. time 
figure(1) 
plot(t1,test1(:,1),'-')         % aX 
hold on 
plot(t1,test1(:,3),'-.')        % aY 
plot(t1,test1(:,2),':')         % aZ 
title('Test1: Acceleration in the X,Y, and Z directions') 
xlabel('Time (sec)') 
ylabel('Acceleration (g)') 
legend('X axis','Y axis','Z axis') 
  
% Plot rotation rates vs. time 
figure(2) 
plot(t1,test1(:,4),'-')         % rotation about x 
hold on 
plot(t1,test1(:,6),'-.')        % rotation about y 
plot(t1,test1(:,5),':')         % rotation about z 
title('Test1: Rotation about the X,Y, and Z axes') 
xlabel('Time (sec)') 
ylabel('Rotation (deg/hr)') 
legend('Roll','Pitch','Yaw') 
  
  
  
%//////////////////// Calculations \\\\\\\\\\\\\\\\\\\\ 
angular_position(1) = 0;        % initialize angular position 
tO = 0.1/3600;                  % time step (hrs) 
for i=1:430 
    integral_stepPitch(i) = test1(i,6)*tO;   % integrate each time step 
    integral_stepRoll(i) = test1(i,4)*tO; 
    integral_stepYaw(i) = test1(i,5)*tO; 
     
    angular_positionPitch(i) = sum(integral_stepPitch); % sum steps  
    angular_positionRoll(i) = sum(integral_stepRoll); 
    angular_positionYaw(i) = sum(integral_stepYaw); 
end 
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% Plot angle of rotation vs. time 
figure(3) 
plot(t1,angular_positionRoll,'-') 
hold on 
plot(t1,angular_positionPitch,'-.') 
plot(t1,angular_positionYaw,':') 
title('Angular Position vs. Time') 
xlabel('Time (sec)') 
ylabel('Pitch Angle (degrees)') 
legend('Roll','Pitch','Yaw') 
  
  
% Plot lines at +/- 90 degrees for check 
for i = 1:430 
    y1(i) = 90; 
    y2(i) = -90; 
end 
  
plot(t1,y1,'--') 
plot(t1,y2,'--') 
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C. MATLAB PROGRAM IMUTEST_IDLE##.M 

% IMUtest_idle4.m 
% This program measures rotation rates over time compares with known  
% earth rotation rates 
% 042105 
% Joel Gow 
  
  
clear all 
  
% These are the only inputs that change from each idle test 
test1 = load('042105_04mod.txt');       % 1Hz test 
  
file_length = 70;       % Length of file in seconds 
rate = 1;               % Period of each time step 
  
%/////////////////// Test 1 \\\\\\\\\\\\\\\\\\\\\\\ 
  
t1 = 0:1/rate:(file_length - 1)/rate;     % Create time vector (sec) 
  
% Plot acceleration vs. time 
figure(1) 
plot(t1,test1(:,1),'g') 
hold on 
plot(t1,test1(:,3),'r') 
plot(t1,test1(:,2),'b') 
title('Test1: Acceleration in the X,Y, and Z directions') 
xlabel('Time (sec)') 
ylabel('Acceleration (g)') 
legend('X axis','Y axis','Z axis') 
  
% Plot rotation rates vs. time 
figure(2) 
plot(t1,test1(:,4),'g') 
hold on 
plot(t1,test1(:,6),'r') 
plot(t1,test1(:,5),'b') 
title('Test1: Rotation about the X,Y, and Z axes') 
xlabel('Time (sec)') 
ylabel('Rotation (deg/hr)') 
legend('Roll','Pitch','Yaw') 
  
  
wx = test1(:,4);        % Rotation rate vector about x 
wy = test1(:,6);        % Rotation rate vector about y 
wz = test1(:,5);        % Rotation rate vector about z 
  
  
% mean values for rotation rates 
wx_exp = mean(wx);      
wy_exp = mean(wy); 
wz_exp = mean(wz); 
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% Total experimental rotation rate 
w_total_exp = sqrt(wx_exp^2 + wy_exp^2 + wz_exp^2); 
  
lat = 36.5896;  % Latitude in degrees 
we = 15;        % Earth's rotation rate in degrees/hour 
N_offset = 0;   % IMU heading in degrees 
  
% Calculate earth rotation rates about x, y, and z axes 
wx_cal = -we*cos(lat*pi/180)*cos(N_offset*pi/180); 
wy_cal = -we*cos(lat*pi/180)*sin(N_offset*pi/180); 
wz_cal = -we*sin(lat*pi/180); 
  
% Total calculated rotation rate 
w_total_cal = sqrt(wx_cal^2 + wy_cal^2 + wz_cal^2); 
  
% Display data to screen 
disp('TEST 4: 1 Hz Data Rate. Duration - 70sec') 
disp('    wx_exp    wy_exp    wz_exp    wx_cal    wy_cal    wz_cal    
wt_exp    wt_cal') 
disp([wx_exp wy_exp wz_exp wx_cal wy_cal wz_cal w_total_exp 
w_total_cal]) 
  
disp('    ') 
disp('    Computed Heading by taking ATAN of Wy/Wx') 
disp('   Experiment      True') 
  
% Calculate heading 
heading = atan2(wy_exp,wx_exp)*180/pi; 
heading_check = atan(wy_cal/wx_cal)*180/pi; 
  
  
% Display data to screen 
disp([heading heading_check]) 
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D. MATLAB PROGRAM IMUTEST_POSITION.M 

% IMUtest_position.m 
% This program double integrates the acceleration vectors in the x 
% and y axes to get position, and it plots the results. 
% 04APR05 
% Joel Gow 
  
clear all 
  
% Test one had corrupted data. Only test 2-5 were used. 
 
test2 = load('040605_07mod.txt');       % 10Hz circular path test 
test3 = load('040605_09mod.txt');       % 10Hz square path test 
test4 = load('040605_11mod.txt');       % 10HZ straight path test 
test5 = load('040605_12mod.txt');       % 10HZ drift path test 
  
% Initial Variables 
tOs = 0.1;                  % Time step for 10Hz = 0.1 second 
tOh = 0.1/3600;             % Convert time step to hours 
g = 32.2;                   % Force of gravity in ft/sec^2 
rad = pi/180;               % conversion factor for degrees to radians 
  
  
% ///////////////// Test 2 \\\\\\\\\\\\\\\\\\\ 
% Circular Path Test 
t2 = 0:.1:22.4;             % Length of test 2 in seconds 
  
% Acceleration vectors 
aX = test2(:,1)*g; 
aY = test2(:,3)*g; 
aZ = test2(:,2)*g; 
  
% Initialize angle of rotation values 
Roll2(1) = 0; 
Pitch2(1) = 0; 
Yaw2(1) = 0; 
  
% Calculate Euler angles 
for i = 1:224 
    % Transformation matrix 
    T = [1 sin(Roll2(i)*rad)*tan(Pitch2(i)*rad) 
cos(Roll2(i)*rad)*tan(Pitch2(i)*rad); 0 cos(Roll2(i)*rad) -
sin(Roll2(i)*rad); 0 sin(Roll2(i)*rad)/cos(Pitch2(i)*rad) 
cos(Roll2(i)*rad)/cos(Pitch2(i)*rad)]; 
     
    % Euler rotation rates 
    Euler_angle = T*[test2(i,4); test2(i,6); test2(i,5)]; 
    Ex = Euler_angle(1); 
    Ey = Euler_angle(2); 
    Ez = Euler_angle(3); 
     
    % Integrate rotation rates to get angles 
    Roll2(i+1) = Ex*tOh + Roll2(i); 
    Pitch2(i+1) = Ey*tOh + Pitch2(i); 
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    Yaw2(i+1) = Ez*tOh + Yaw2(i);  
end 
  
  
figure(1) 
  
% Plot angular position vs. time 
subplot(2,1,1) 
plot(t2,Roll2,'-') 
hold on 
plot(t2,Pitch2,'-.') 
plot(t2,Yaw2,':') 
title('Circular Test: Angular Position vs. Time') 
xlabel('Time (sec)') 
ylabel('Pitch Angle (degrees)') 
legend('Roll','Pitch','Yaw') 
  
% Transfer acceleration vectors to constant reference frame 
net_aX = aX'.*cos(Yaw2*rad) + aY'.*sin(Yaw2*rad); 
net_aY = -aX'.*sin(Yaw2*rad) + aY'.*cos(Yaw2*rad); 
  
% Initialize position and velocity values 
pX2(1) = 0; 
pY2(1) = 0; 
vX2 = 0; 
vY2 = 0; 
  
% get position by double integration of acceleration 
for i=2:225 
    vX2 = vX2 + net_aX(i-1)*tOs; 
    vY2 = vY2 + net_aY(i-1)*tOs; 
     
    pX2(i) = pX2(i-1) + vX2*tOs; 
    pY2(i) = pY2(i-1) + vY2*tOs; 
end 
  
% Plot track of IMU 
subplot(2,1,2  )
plot(pX2,pY2) 
title('Circular Test: 2D XY Plot') 
xlabel('X position (ft)') 
ylabel('Y position (ft)') 
grid 
  
  
  
% ///////////////// Test 3 \\\\\\\\\\\\\\\\\\\ 
% Square Path Test 
t3 = 0:.1:37.2;             % Length of test 3 in seconds 
  
% Acceleration vectors 
aX3 = test3(:,1)*g; 
aY3 = test3(:,3)*g; 
aZ3 = test3(:,2)*g; 
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% Initialize angle of rotation values 
Roll3(1) = 0; 
Pitch3(1) = 0; 
Yaw3(1) = 0; 
  
% Calculate Euler angles 
for i = 1:372 
    % Transformation matrix 
    T = [1 sin(Roll3(i)*rad)*tan(Pitch3(i)*rad) 
cos(Roll3(i)*rad)*tan(Pitch3(i)*rad); 0 cos(Roll3(i)*rad) -
sin(Roll3(i)*rad); 0 sin(Roll3(i)*rad)/cos(Pitch3(i)*rad) 
cos(Roll3(i)*rad)/cos(Pitch3(i)*rad)]; 
  
    % Euler rotation rates 
    Euler_angle = T*[test3(i,4); test3(i,6); test3(i,5)]; 
    Ex = Euler_angle(1); 
    Ey = Euler_angle(2); 
    Ez = Euler_angle(3); 
     
    % Integrate rotation rates to get angles 
    Roll3(i+1) = Ex*tOh + Roll3(i); 
    Pitch3(i+1) = Ey*tOh + Pitch3(i); 
    Yaw3(i+1) = Ez*tOh + Yaw3(i);  
end 
  
  
figure(2) 
  
% Plot angular position vs. time 
subplot(2,1,1) 
plot(t3,Roll3,'-') 
hold on 
plot(t3,Pitch3,'-.') 
plot(t3,Yaw3,':') 
title('Square Test: Angular Position vs. Time') 
xlabel('Time (sec)') 
ylabel('Pitch Angle (degrees)') 
legend('Roll','Pitch','Yaw') 
  
% Transfer acceleration vectors to constant reference frame 
net_aX3 = aX3'.*cos(Yaw3*rad) + aY3'.*sin(Yaw3*rad); 
net_aY3 = -aX3'.*sin(Yaw3*rad) + aY3'.*cos(Yaw3*rad); 
  
% Initialize position and velocity values 
pX3(1) = 0; 
pY3(1) = 0; 
vX3 = 0; 
vY3 = 0; 
  
% get position by double integration of acceleration 
for i=2:373 
    vX3 = vX3 + net_aX3(i-1)*tOs; 
    vY3 = vY3 + net_aY3(i-1)*tOs; 
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    pX3(i) = pX3(i-1) + vX3*tOs; 
    pY3(i) = pY3(i-1) + vY3*tOs; 
end 
  
% Plot track of IMU 
subplot(2,1,2) 
plot(pX3,pY3) 
title('square Test: 2D XY Plot') 
xlabel('X position (ft)') 
ylabel('Y position (ft)') 
grid 
  
  
  
% ///////////////// Test 4 \\\\\\\\\\\\\\\\\\\ 
% Staight Path Test 
t4 = 0:.1:16.4;             % Length of test 4 in seconds 
  
% Acceleration vectors 
aX4 = test4(:,1)*g; 
aY4 = test4(:,3)*g; 
aZ4 = test4(:,2)*g; 
  
% Initialize angle of rotation values 
Roll4(1) = 0; 
Pitch4(1) = 0; 
Yaw4(1) = 0; 
  
% Calculate Euler angles 
for i = 1:164 
    % Transformation matrix 
    T = [1 sin(Roll4(i)*rad)*tan(Pitch4(i)*rad) 
cos(Roll4(i)*rad)*tan(Pitch4(i)*rad); 0 cos(Roll4(i)*rad) -
sin(Roll4(i)*rad); 0 sin(Roll4(i)*rad)/cos(Pitch4(i)*rad) 
cos(Roll4(i)*rad)/cos(Pitch4(i)*rad)]; 
     
    % Euler rotation rates 
    Euler_angle = T*[test4(i,4); test4(i,6); test4(i,5)]; 
    Ex = Euler_angle(1); 
    Ey = Euler_angle(2); 
    Ez = Euler_angle(3); 
     
    % Integrate rotation rates to get angles 
    Roll4(i+1) = Ex*tOh + Roll4(i); 
    Pitch4(i+1) = Ey*tOh + Pitch4(i); 
    Yaw4(i+1) = Ez*tOh + Yaw4(i);   
end 
  
  
figure(3) 
  
% Plot angular position vs. time 
subplot(2,1,1) 
plot(t4,Roll4,'-') 
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hold on 
plot(t4,Pitch4,'-.') 
plot(t4,Yaw4,':') 
title('Straight Line Test: Angular Position vs. Time') 
xlabel('Time (sec)') 
ylabel('Pitch Angle (degrees)') 
legend('Roll','Pitch','Yaw') 
  
% Transfer acceleration vectors to constant reference frame 
net_aX4 = aX4'.*cos(Yaw4*rad) + aY4'.*sin(Yaw4*rad); 
net_aY4 = -aX4'.*sin(Yaw4*rad) + aY4'.*cos(Yaw4*rad); 
  
% Initialize position and velocity values 
pX4(1) = 0; 
pY4(1) = 0; 
vX4 = 0; 
vY4 = 0; 
  
% get position by double integration of acceleration 
for i=2:165 
    vX4 = vX4 + net_aX4(i-1)*tOs; 
    vY4 = vY4 + net_aY4(i-1)*tOs; 
     
    pX4(i) = pX4(i-1) + vX4*tOs; 
    pY4(i) = pY4(i-1) + vY4*tOs; 
end 
  
% Plot track of IMU 
subplot(2,1,2) 
plot(pX4,pY4) 
title('Straight Line Test: 2D XY Plot') 
xlabel('X position (ft)') 
ylabel('Y position (ft)') 
grid 
  
  
% ///////////////// Test 5 \\\\\\\\\\\\\\\\\\\ 
% Drift Path Test 
t5 = 0:.1:17.3;             % Length of test 5 in seconds 
  
% Acceleration vectors 
aX5 = test5(:,1)*g; 
aY5 = test5(:,3)*g; 
aZ5 = test5(:,2)*g; 
  
% Initialize angle of rotation values 
Roll5(1) = 0; 
Pitch5(1) = 0; 
Yaw5(1) = 0; 
  
% Calculate Euler angles 
for i = 1:173 
    % Transformation matrix 
    T = [1 sin(Roll5(i)*rad)*tan(Pitch5(i)*rad) 
cos(Roll5(i)*rad)*tan(Pitch5(i)*rad); 0 cos(Roll5(i)*rad) -



64 

sin(Roll5(i)*rad); 0 sin(Roll5(i)*rad)/cos(Pitch5(i)*rad) 
cos(Roll5(i)*rad)/cos(Pitch5(i)*rad)]; 
     
    % Euler rotation rates 
    Euler_angle = T*[test5(i,4); test5(i,6); test5(i,5)]; 
    Ex = Euler_angle(1); 
    Ey = Euler_angle(2); 
    Ez = Euler_angle(3); 
     
    % Integrate rotation rates to get angles 
    Roll5(i+1) = Ex*tOh + Roll5(i); 
    Pitch5(i+1) = Ey*tOh + Pitch5(i); 
    Yaw5(i+1) = Ez*tOh + Yaw5(i);  
end 
  
  
figure(4) 
  
% Plot angular position vs. time 
subplot(2,1,1) 
plot(t5,Roll5,'-') 
hold on 
plot(t5,Pitch5,'-.') 
plot(t5,Yaw5,':') 
title('Drift Test: Angular Position vs. Time') 
xlabel('Time (sec)') 
ylabel('Pitch Angle (degrees)') 
legend('Roll','Pitch','Yaw') 
  
% Transfer acceleration vectors to constant reference frame 
net_aX5 = aX5'.*cos(Yaw5*rad) + aY5'.*sin(Yaw5*rad); 
net_aY5 = -aX5'.*sin(Yaw5*rad) + aY5'.*cos(Yaw5*rad); 
  
% Initialize position and velocity values 
pX5(1) = 0; 
pY5(1) = 0; 
vX5 = 0; 
vY5 = 0; 
  
% get position by double integration of acceleration 
for i=2:174 
    vX5 = vX5 + net_aX5(i-1)*tOs; 
    vY5 = vY5 + net_aY5(i-1)*tOs; 
     
    pX5(i) = pX5(i-1) + vX5*tOs; 
    pY5(i) = pY5(i-1) + vY5*tOs; 
end 
  
% Plot track of IMU 
subplot(2,1,2) 
plot(pX5,pY5) 
title('Drift Test: 2D XY Plot') 
xlabel('X position (ft)') 
ylabel('Y position (ft)') 
grid 
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