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Abstract

The Internet consists of thousands of nodes interconnected in compiess with millions of
users sending traffic over the network. To understand such a comydteqs it is necessary to
develop accurate, yet simple, models to describe the performance otwerkeThe models have
to be then used to design new algorithms that dramatically improve networkmperioe. In this
project, we have developed a variety of models to capture many phenomiealimernet. These
include the following:

Deterministic fluid models to describe and analyze the performance of dmgesmnage-
ment mechanisms in the Internet.

Stochastic models to obtain further insight into the behavior of a single naaessed by
many congestion-controlled sources and to prove that the fluid modelppnapaiate limits
of the stochastic models when the number of users is large.

Fluid models to design new congestion-aware routing algorithms that improtiertheghput
of the Internet.

Fluid models for understanding the performance of peer-to-peer networ

Game-theoretic models to understand incentives to deter selfish behaveeritoppeer re-
sources.

Fluid and stochastic models to design joint scheduling and flow control algwivhich lead
to fair resource allocation.

Game-theoretic models that capture the interaction between selfish usersrtipete for a
common pool of bandwidth.
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1 Introduction

Our goal in the project was to develop models of the Interheh@tiple time-scales to capture the
traffic behavior and to develop models to capture the ecormwfi providing resources to competing
users. A detailed simulation model of the Internet wouldurexja stochastic description of the packet
arrival process for various types of traffic streams. Howesech models would not be amenable for
analysis and would be too slow for simulation purposes. Thugood model should be amenable to
fast simulation or analysis by identifying the critical ploenenon in the time scale of interest.

It has now been established that traffic in the Internet etehgelf-similarity. A major reason for
this is the distribution of file sizes is heavy tailed. Thisans that most files are short, but there are
few files that are extremely large. It is commonly describsuhg the Internet “80-20" rule: 80% of
the Internet’s traffic is due to 20% of the files. While thesecim® numbers are subject to continual
change, the fact remains that a few files contribute to moshetraffic. Thus, the key observation
is that, to improve network performance, it is important ewelop models to control the behavior of
the few large files. In this project, we developed a colletid models that answered fundamental
guestions on the behavior of the Internet and we will desdfilese in the following sections.

As motivation, we now present a very simple model of congestontrol in the Internet and use it
to study the performance of current versions of TCP. This Emmodel provides a powerful argument
for the importance of mathematical modelling of the Intérn@ongestion control is implemented in
the Internet using avindow flow controlalgorithm. A source’svindowis the maximum number of
unacknowledged packets that the source can inject intoagheonk at any time. For example, if the
window size isl, then the source maintains a counter which has a maximum @élueThe counter
indicates the number of packets that it can send into thearktwThe counter’s value is initially
equal to the window size. When the source sends one packdhmtwetwork, the counter is reduced
by 1. Thus, the counter in this example would become zero aften packet transmission and the
source cannot send any more packets into the network tikdlmter hitsl again. To increment the
counter, the source waits for the destination to acknovdatigt it has received the packet. This is
accomplished by sending a small packet calledattiepacket, from the destination back to the source.
Upon receiving the ack, the counter is incremented laynd thus, the source can again send one more
packet. We use the terraund-trip time (RTT}o refer to the amount of time that elapses between the
instant that the source transmits a packet and the instavittiah it receives the acknowledgment for
the packet. The RTT consists of three components: the patippagdelay of the packet through the
transmission medium (which is determined by the distan¢ed®n the source and destination), the
gueueing delay at the routers in the network and the timentakprocess a packet at the routers in the
network. Typically, the processing time is negligible cargd to the other two components. With a
window size ofl, since one packet is transmitted during every RTT, the s®ide¢a transmission rate
is1/RTT packets/sec.

If the window is2, the counter’s value is initially set t& Thus, the source can send two back-to-
back packets into the network. For each transmitted patketcounter is decremented by Thus,
after the first two packet transmissions, the counter isaeented to zero. When one of the packets is
acknowledged and the ack reaches the source, then the socrements the counter dyand can send
one more packetinto the network. Once the new packet isrtrighes!, the counter is again decremented
back to zero. Thus, after each ack, one packet is sent, andttieesource has to wait for the next ack
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before it can send another packet. If one assumes that tlcegmiag speed of the link is very fast
and that the processing times at the source and destinagoregligible, then the source can transmit
two packets during every RTT. Thus, the source’s transonissite is2/RT'T packets/sec. From the
above argument, it should be clear that, if the window sizB/ighen the transmission rate can be
approximated byV/RTT packets/sec.

If the link capacity isc and the source’s window siZ& is such that?V/RT'T < ¢, then the system
will be stable. In other words, all transmitted packets Wil eventually processed by the link and
reach the intended destination. However, in a general mkpilee available capacity cannot be easily
determined by a source. The network is shared by many sowlsiet share the capacities at the
various links in the network. Thus, each source has to addptstimate the value of the window size
that can be supported by the network. The most widely-usgatigthm for this purpose in the Internet
today is called TCP-Reno.

The TCP-Reno algorithm is quite complicated and thereforepdio modelling purposes, we con-
sider the following simplified version of the algorithm. Asse that there is a mechanism for the
receiver to indicate to the source that a packet has beemltiat network. Then, the essential features
of the TCP-Reno algorithm can be summarized as below:

e Uponreceipt of an ack, the source increases its currentomirsize, denoted bywnd, as follows:

cwnd «— cwnd + 1/cwnd.

e Upon being informed of a loss, the source decreases its wisdee by a factor of two:

cwnd «— cwnd/2.

The key feature of TCP-Reno is that it increases its window sizen it does not detect congestion
which is indicated by the reception of an ack, and it decredsavindow size upon detecting conges-
tion, which is indicated by the detection of a lost packet.

We now present a differential equation model that desciibed CP-Reno congestion control al-
gorithm. ConsidetN TCP-Reno sources, all with the same RTT, accessing a single liet W,.(¢)
denote the window size of flow, 7" be its RTT, and;(¢) be the fraction of packets lost at the link at
timet. Then, the congestion avoidance phase of TCP-Reno can be subdsl!

i, = 2D D) g (- )WL), (1)

wherez,.(t) = W,(t)/T is the transmission rate. The parametes the decrease factor and is taken to
be1/2 although studies show that a more precise valué when making a continuous-time approxi-
mation of TCP’s behavior is closer &y3. Substituting foriV/,.(¢) in terms ofz,.(¢) gives
. (t—T)(1 —q(t
Ty = ( ) ®) _ B, (t —T)q(t)z,(t). (2)

T
T2z,

The loss probability(¢) is a function of the arrival rate at the link. Thus, let

q(t) = fy(t = T)),
2



wheref(-) is an increasing function angdt) is the total arrival rate at the link and is given by

M®=§%®-

The equilibrium value of.,. is easily seen to be

o 1—g1
T, = — 3
5 T 3

whereq is the equilibrium loss probability. We us® denote equilibrium values. The functional form
of f(y) could be quite complicated in general. Among other thirtgsili depend upon the assumptions
on the stochastic behavior of the packet arrival procedseatduter. To simplify the analysis, we will
assume thaf(y) is of the following simple form:

f@0==<y;c>+

Thus, this form off (y) can be interpreted as a fluid approximation to the loss pibtyalit is equal

to zero if the arrival rate is less than the capacity of thk &nd is otherwise equal to the fraction by
which the arrival rate exceeds the link capacity. Recall thatRTT T consists of two components,
namely the propagation deldy and the queueing delay at the router. Just like the loss pilitiait is
difficult to precisely capture the queueing delay using g$nanalytical formula. To obtain a tractable
expression for the queueing delay, we recall that the TCP-Restocol attempts to fill up the buffer
at the router and uses the resulting packet loss to obtaigesbion information. Therefore, it seems
reasonable to assume that the queue is full most of time. Lthdeassumption, our approximation to
the queueing delay takes the fofBy ¢, whereB is the buffer size at the router. Thus, for all users, the
RTT is given by

B
T=T,+=.
C

To study the stability of the congestion controller giver{2j, we first linearize the system around
its equilibrium point. Definingyz, = z, — z,, anddq = ¢ — ¢, the linearized form of the congestion
control algorithm is given by

. (1—§ 1 . )
ox, = I, <T2—£2593T + T2 d0q + Bqox, + ﬁx,ﬁq) ,

and c
dq = ?;5%(15 -T).
Definingdy = y — ¢, and using the equilibrium relationship (3) yields
0y + 10z, + asdz, (t —T) =0, (4)
where
oy = 2064, oy = [T,

A well-known result called Hayes’ lemma states that thednmeed delay-differential equation de-
scribing TCP-Reno’s dynamics is stable if one of the followogditions is satisfied:
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e oy > (o,

e o < ay and

2
Of]_ Oél
aT'\| 1 — — < arccos (——) .
a5 (0%)]

For the first condition to be satisfied, we requjre> 1/2. This is not a practical scenario since it
requires at least half the packets to be dropped at the rdtttersecond condition can be written as

c 1 (1 — q)arccos(—2q,)
—T < — : 5
N'S3 1= ®)

Note that the equilibrium relationship (3) can be rewritsen

48y

If we let¢/N (which is simply the capacity per user) be a constant an@aser the RTT, then it is clear
from the previous equation thatmust decrease. Thus, for lar@ethe right-hand side of the stability
condition can be approximated by letting= 0 which gives the following condition for stability

C s

NT < %
Clearly, this condition will be violated &6 increases o¢/N increases. From the above analysis, we
can conclude that TCP-Reno is not a scalable protocol, isestatbility is compromised if either the
RTT of the users is large or if the available capacity per agehe router is large. In the following
sections, we present our results on the the use of many atbkmsodels to analyze and improve the
performance of resource allocation protocols for the h#eand wireless networks. Papers resulting
from the work carried out in this project can be downloadednfithe following websites:
http://www.comm.csl.uiuc.edu/"srikant and http://wwamm.csl.uiuc.edu/"hajek.

2 AdaptiveVirtual Queue: An Active Queue Management Scheme
for Internet Routers

In the modern day Internet, there has been a strong dema@bf®r(Quality-of-Service) and fairness
among flows. As a result, in addition to the sources, the lats play an active role in congestion con-
trol and avoidance. Random Early Discard (RED) was originalbposed to achieve fairness among
sources with different burstiness and to control queuetlengRED allows for dropping packets at a
router before buffer overflow occurs. Another form of cortgasnotification that has been discussed
since the advent of RED is Explicit Congestion Notification (BCBRICN has been proposed to allow
each link to participate in congestion control by notifyugers when it detects an onset of congestion.
Upon detecting incipient congestion, a bit in the packetlee&s set to one for the purpose of notifying
the user that a link on its route is experiencing congestibime user then reacts to tmeark as if a
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packet has been lost. Thus, the link avoids dropping thegidtthereby enhancing good throughput)
and still manages to convey congestion information to tlee. us

To provide ECN marks or drop packets in order to control quengths or provide fairness, the
routers have to select packets to be marked in a manner tagyinformation about the current state
of the network to the users. Algorithms that the routers empd convey such information are called
Active Queue Management (AQbbHhemes. An AQM scheme might mark or drop packets depending
on the policy at the router. Here, we use the term “markingtergenerally to refer to any action taken
by the router to notify the user of incipient congestion. &k&on can, in reality, be ECN-type marking
or dropping (as in RED) depending upon the policy set for theeio As in earlier work on studying
AQM schemes, this distinction is blurred in the matheméatealysis to allow for the development of
simple design rules for the choice of AQM parameters. Howeua simulations considered marking
and dropping schemes separately.

Designing robust AQM schemes has been a very active resaagahin the Internet community.
Some AQM schemes that have been proposed include RED, SRED, Bdportional Integral (PI)
controller, and REM. While most of the proposed AQM schemesaebngestion based on the queue
lengths at the link (e.g., RED), some AQM schemes detect atiogebased on the arrival rate of the
packets at the link (e.g., virtual queue-based schemes3@mné use a combination of both (e.g., PI).
Also, most of the AQM schemes involve adapting the markirappbility (as noted before we use the
termmarkingto refer to bothmarkinganddropping in some way or the other. An important question
is how fast should one adapt while maintaining the stabdityhe system? Here the system refers
jointly to the TCP congestion controllers operating at thgesdof the network and the AQM schemes
operating in the interior of the network. Adapting too fasght make the system respond quickly to
changing network conditions, but it might lead to large batry behavior or in the worst-case even
instability. Adapting too slowly might lead to sluggish la&ior and more losses or marks than desired,
which might lead to a lower throughput.

In this project, we developed a virtual-queue based AQM ehenamely the Adaptive Virtual
Queue (AVQ). The motivation behind the AVQ algorithm is tesim an AQM scheme that results in
a low-loss, low-delay and high utilization operation at lin. We then developed a methodology for
finding the fastest rate at which the marking probabilitymdtaon can take place, given certain system
parameters like the maximum delay and the number of usetthasdhe system remains stable. We
note that the marking probability in AVQ is implicit, no mamk) probability is explicitly calculated and
thus, no random number generation is required. On the otret,lwe replace the marking probability
calculation with the computation of the capacity of a vittgaeue.

The AVQ algorithm maintains a virtual queue whose capacali¢dvirtual capacity is less than
the actual capacity of the link. When a packet arrives in tla¢ geieue, the virtual queue is also
updated to reflect the new arrival. Packets in the real queumarked/dropped when the virtual buffer
overflows. The virtual capacity at each link is then adaptednsure that the total flow entering each
link achieves a desired utilization of the link. An appeglfieature of the AVQ scheme is that, in the
absence of feedback delays, the system is fair in the seat# thaximizes the sum of utilities of all
the users in the network. Combining this with the fact that a TG€rr with an RTT ofd, can be

approximated by a user with a utility functi%gi;—r, wherez,. is the rate of the TCP user, shows that the
network as a whole converges to an operating point that nzeisy _, ﬁ

The criterion we use to choose the parameters is local 'rtyain‘iIthe7c6ngestion-controllers and the
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AQM scheme together. We were able to show through simulatizat the AVQ controller out performs

a number of other well-known AQM schemes in terms of lossgl&zation and average queue length.
In particular, we showed that AVQ is able to maintain a smatrage queue length at high utilizations
with minimal loss at the routers. This conclusion also hahde presence of short flows arriving and
departing at the link. We also showed that AVQ responds toging network conditions better than
other AQM schemes (in terms of average queue length, utdizand losses).

We also studied the performance of AVQ when dropping (irstfamarking) is employed at the
routers. While AVQ performs better than other AQM schemesiims of utilization and average queue
length, the fairness of AVQ can be improved using a probstinliAQM scheme (like RED) on AVQ.
We note that a probabilistic AQM scheme on the virtual queuequired only when the link drops
packets and not when the link marks packets because muttigiks within a single window does not
cause TCP to time-out or go into slow-start.

An important feature of the AVQ algorithm is that one can emgEny AQM algorithm in the virtual
queue. Thus, if there are desirable properties in any otlagking schemes, one can easily incorporate
it into the AVQ scheme. However, when marking is employed,eperience has been that a simple
mark-tail would suffice.

3 Scalable Congestion Control and AQM Schemes for Arbitrary
Network Topologies

Recently, there has been a flurry of research activity on desdezed end-to-end network congestion
control algorithms. A widely-used framework is to assaeiatutility function with each flow and
maximize the aggregate system utility function subjecirtk tapacity constraints. Congestion control
schemes can be viewed as decentralized source and roubeithaits to drive the system operating
point to the optimum or some suboptimum solution of this mazation problem.

Congestion control schemes can be divided into three clapsi@sal algorithms, dual algorithms
and primal-dual algorithms. In primal algorithms, the wsadapt the source rates dynamically based
on the route prices, and the links select a static law to deterthe link prices directly from the arrival
rates at the links. In dual algorithms, on the other hand ittks adapt the link prices dynamically
based on the link rates, and the users select a static lawtéontee the source rates directly from
the route prices and the source parameters. Primal-duadithigis combine these two schemes and
dynamically compute both user rates and link prices.

A modified primal algorithm, called the AVQ (Active Virtual@gue) algorithm, was introduced in
the previous section. Here the link prices in the originainait algorithm are slowly adjusted so that
asymptotically in time, the link prices become equal to tlagiange multipliers. More importantly, in
the presence of feedback delays, the parameters of thisthlgacan be chosen such that the network
is locally stable. The main benefit of this algorithm is thatdhieves arbitrary fairness among the users
and leads to full link utilization. This idea was adopted llyays to modify the dual algorithm to allow
slow adaptation at the sources and achieve the same besdhis A/Q algorithm.

Both the modified primal algorithm and the modified dual altjon have dynamic adaptations
at both sources and routers, and thus can be regarded mhrakl-However, all the algorithms in
the primal family relate the network congestion measureatly with the link aggregate rate, which
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corresponds to averaging the feedback from the networkeasahirces; and all the algorithms in the
dual family relate the source rate directly with the routegestion measure, which corresponds to
averaging the source rates at the links before the feedidatlo@ explicit congestion information to
the sources.

In this section, we briefly describe our work on generalizing class oprimal-dual algorithms,
and provide design guidelines to stabilize these algostimgeneral topology networks with hetero-
geneous feedback delays. In this class of algorithms, thecealynamics are similar to those in the
primal algorithm in while the link dynamics are similar ta#e in the dual algorithm. We obtained a
local stability result which subsumes the dual algorithntsabmiting case when the source adaptation
speed approaches infinity.

From the stability analysis of the general primal-dual alpo, we also showed that RED (Random
Early Detection) could stabilize TCP-Reno if modified slightlOur modification to RED sets the
packet marking probability to be an exponential functiotheflength of a virtual queue whose capacity
is slightly smaller than the link capacity. Due to the expared marking profile, we call it Exponential-
RED (E-RED). From our analysis, it can be shown that E-RED st&isilTCP-Reno and all its packet
loss/mark based variations. Compared with other queudHdrased AQM schemes, like RED, REM,
Pl and BLUE, E-RED is the first such scheme that can be prove@bdaige TCP-Reno for a general
topology network with heterogeneous delays.

We performedns-2 and Matlab simulations to compare E-RED with RED and to disdhe de-
pendence of E-RED’s performance on the network scenariote&tRED parameter choices. The
simulation results showed that E-RED outperforms RED whenbdoed with TCP-Reno in the sense
that it achieves less queue length oscillation, higher Wadtt utilization, and lower queueing delay at
the same time. The simulation results also show that E-REBsweell with other proposals for TCP
in future high bandwidth networks, namely HighSpeed TCP araleble TCP.

4 Validity of Fluid M odels of Congestion Control

As mentioned previously, deterministic fluid-flow modelsd@aeen widely used to describe congestion
control and active queue management (AQM) schemes in teenktt These models capture the mean
behavior of the congestion controlled sources. All of theselels use a packet marking (or packet
dropping) function to describe the fraction of packets redrkor dropped) at a link. Depending upon
the model, the marking function is either a function of thewgl length or a function of the instanta-
neous arrival rate at the router. In this project, we consd@QM schemes where the router decides
the fraction of packets to be marked based on the occupanelydta real or virtual queue.

We start with a stochastic model of a single link accessed agyntongestion-controlled flows.
Randomness in the congestion-controlled Internet may bécduany reasons:

e unresponsive flows which do not respond to congestion itidica
o the probabilistic nature of packet marking by an AQM scheme,
e asynchronous updates among sources,

¢ the inability to precisely model window flow control mechsmi, and
7



o the initial ramp-up phase (for exampkdow startin TCP flow control) of the congestion control
mechanism.

In addition to deriving a deterministic model from this dtastic system under a limiting regime where
the number of sources is large, we also derived a stochastieinto capture the deviations from the
deterministic limit. We used the stochastic model to furtsteidy the performance of rate-based and
gueue-based models of AQM schemes.

Our main contributions were as follows: depending upon thamer in which a parameter in REM
is scaled with the number of flows, we showed that the limitleterministic/stochastic model of the
congestion-controlled link would capture the AQM behavising either a rate-based or a jointly rate-
and-queue-based marking function. The choice of the apjtepmodel for the marking function is
critical in designing the parameters of the congestionrod®QM scheme.

To demonstrate our results, we simulate a single bottleleiclaccessed by multiple TCP sources,
all of which are in the congestion avoidance phase. Aparhftbe TCP sources we also consider
unresponsive flows. We use an ON-OFF model for the uncoattdlows. The uncontrolled flows
toggle between ON and OFF state which are exponentiallyildised with mear).2 s. In the ON
state, an uncontrolled flow sends data at a pgpackets/s. In all our simulations with various AQM
schemes, we changé, the number of TCP sources, which is also the number of unaitedrflows in
the system. The link capacity in all our simulations\is, wherec = 80 packets/s. The flow rate of
the uncontrolled flows in the ON state is adjusted so that minotbed flows deliver a load of 25% into
the link. Every simulation result is averaged over 10 rung. rédport simulation results with four sets
of parameters as follows:

1. 6 = 0.85,v) = 0.0075/N
2. 0 =0.85,~+) = 0.0075,
3.0=1,7"™ =0.05/N,

4.0=1,7"N =0.05,

whered is the fraction of the virtual queue capacity as a functiotheflink capacity, and(") is the
REM parameter, i.e., when the queue length, ishve marking probability id — e*7<N)‘1, andN is the
number of TCP users.

We first show results for the cage= 0.85, i.e., when the capacity of the virtual queud&i85Nc,
N being the number of TCP flows in the system. We compare the geéhaoughput obtained from
the simulation with the predicted equilibrium of the sul&alimiting model for two different parameter
scalings of REM:y) = 0.0075/N and~") = 0.0075. The plots are shown in Figure 1. The
equilibrium point of the suitable limiting models predibttaverage throughput into the link reasonably
accurately. Further, if the capacity of the virtual queu@.&5 fraction of the link capacity, it is possible
to attain a mean queue-length (at the real-queue) that duegrow with NV, and thus, providing a
queueing delay ab(1/N). Such a behavior can be observed in the both the regimg$ bEonsidered
in the plots.

Next we consider the cage= 1. Observe that = 1 is equivalent to marking packets based on
the occupancy of the real-queue. In Figure 2, we show the ploaverage throughput at the link and
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the mean queue-length fér= 1 with two different parameters scalings ¢f*): 4") = 0.05/N and
7™ = 0.05. Note that, in this case, an(1) queue length (and thus a queueing delay¢f /N)) at
the real-queue is obtained only in the parameter regiffié= 0.05.

Based on the two sets of plots, we summarize our observatsfulaws:

o If the capacity of the virtual queue is less than that of th& kapacity, it is possible to attain
a negligible queueing delay in the either parameters regiofie ™). The limiting models as
obtained in the previous sections quite accurately preédéeequilibrium values.

o If the capacity of the virtual queue is identical to the lirdpacity, simulations suggests that neg-
ligible queueing delay can be obtained only in the paramegime~"Y) = ~. In this case, the
appropriate limiting model is a rate-based marking modehetnough marking may be imple-
mented based on the contents of the queue.
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Figure 1: Comparison of average utilization, coefficientari&tion and mean queue length with virtual
queue based REM. On the left-hand panel we show plots whéris scaled ag") = 0.0075/N, and
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5 Modeling Peer-to-Peer Networks

Peer-to-Peer (P2P) applications have become immenselylgrop the Internet. Traffic measure-
ments shows that P2P traffic is starting to dominate the bahidwn certain segments of the Internet.
Among P2P applications, file sharing is perhaps the mostlpoppplication. Compared to traditional
client/sever file sharing (such as FTP, WWW), P2P file sharingohasbig advantage, namely, scal-
ability. The performance of traditional file sharing apptions deteriorates rapidly as the number of
clients increases, while in a well-designed P2P file shasysiem, more peers generally means better
performance. There are many P2P file sharing programs, sukhzza, Gnuttella, eDonkey/overnet,
BitTorrent, to name a few. In this project, we developed sanpbdels to understand and study the
behavior of BitTorrent which is proving to be one of the mor@ylar P2P applications today.

For a BitTorrent network (or a general P2P file sharing netyyadwveral issues have to be addressed
in order to understand the behavior of the system.

e Peer Evolution:In P2P file sharing, the number of peers in the system is anrtiapidactor in de-
termining network performance. Therefore, it is usefulttalg how the number of peers evolves
as a function of the request arrival rate, the peer deparateethe uploading/downloading band-
width of each peer, etc.

e Scalability: To realize the advantages of P2P file sharing, it is impofftarthe network perfor-
mance to not deteriorate, and preferably to actually imprasg the size of the network increases.
Network performance can be measured by the average file dadinlg time and the size of the
network can be characterized by the number of peers, thahbrate of peers, etc.

¢ File Sharing Efficiency:It is common for peers in a P2P network to have different ujploa
ing/downloading bandwidths. Further, in BitTorrent-likgseems, a file may be broken into
smaller pieces and the pieces may be distributed at randoomgthe peers in the network.
To efficiently download the file, it is important to design file-sharing protocol such that each
peer is matched with others who have the pieces of the filetthaeds and further, to ensure that
the downloading bandwidth of each peer is fully utilized.

e Incentives to prevent free-ridindrree-riding is a major cause for concern in P2P networkse-Fre
riders are peers who try to download from others while notrioming to the network, i.e., by
not uploading to others. Thus, most P2P networks try to boikbme incentives to deter peers
from free-riding. Once the incentive mechanism is intraetlgto the network, each peer may
try to maximize its own net benefit within the constraintshad tncentive mechanism. Thus, it is
important to study the effect of such behavior on the netvpaiformance.

The basic idea of P2P network is to have peers participata apalication level overlay network
and operate as both servers and clients. Since the serviderbis distributed to all participating
peers, the system is expected to scale well even when thereiswery large. Besides file sharing,
P2P overlays have also been deployed in distributed dinestervice, web cache, storage, and grid
computation.

Our work differs from prior work in the following respects:

11



¢ Instead of developing and numerically studying a detaitedrsastic model, we develop a simple
deterministic model which allows us to obtain simple expi@ss for the average file-transfer
time, thus providing insight into the performance of the P2Rvork. We also incorporate realis-
tic scenarios in our fluid model such as the abandonment dfditesfers by peers and download
bandwidth constraints.

e Then, we develop a simple stochastic fluid model which charaes the variability of the num-
ber of peers around the equilibrium values predicted by #terchinistic fluid model.

e We also develop a simple model to study the efficiency of doagiing from other peers and
argue that the file-sharing protocol in BiTorrent is very édfint.

e Finally, we consider the mechanisms built into BitTorrenttwid free-riding and analyze the
impact of these mechanisms on the users’ behaviors and nepedormance.

We now briefly describe BitTorrent. BitTorrent is a P2P applara whose goal is to facilitate
fast downloads of popular files. Here we provide a brief dpion of how BitTorrent operates when
a single file is downloaded by many users. Typically the nundfesimultaneous downloaders for
popular files could be of the order of a few hundreds while ¢it@l number of downloaders during the
lifetime of a file could be of the order of several tens or sames$ even hundreds of thousands. The
basic idea in BitTorrent is to divide a single large file (tygllg a few 100 MBytes long) into pieces of
size256 KB each. The set of peers attempting to download the file dyswmbnecting to several other
peers simultaneously and download different pieces of ladérém different peers.

To facilitate this process, BitTorrent uses a centralizdthswe called thdracker. In a BitTorrent
network, a peer that wants to download a file first connectbddracker of the file. The tracker then
returns a random list of peers that have the file. The dowelotebn establishes a connection to these
other peers and finds out what pieces reside in each of the ptiees. A downloader then requests
pieces which it does not have from all the peers to which itoisnected. But each peer is allowed
to upload only to a fixed number (default is four) at a givenetinuploading is calledinchokingin
BitTorrent. Which peers to unchoke is determined by the ctidewnloading rate from these peers,
i.e., each peer uploads to the four peers that provide it thghbest downloading rate even though it
may have received requests from more than four downloadéris mechanism is intended to deter
free-riding. Since a peer is only uploading four other pegrany time, it is possible that a peer, say
Peer A, may not be uploading to a peer, say Peer B, which coolda a higher downloading rate
than any of the peers to which Peer A is currently uploadirtteré&fore, to allow each peer to explore
the downloading rates of other peers, BitTorrent uses a psocalledoptimistic unchoking Under
optimistic unchoking, each peer randomly selects a fifth freen which it has received a downloading
request and uploads to this peer. Thus, including optimshaking, a peer may be uploading to
five other peers at any time. Optimistic unchoking is attesdpince every(0 seconds and to allow
optimistic unchoking while keeping the maximum number ofoapls equal to five, an upload to the
peer with the least downloading rate is dropped.

BitTorrent distinguishes between two types of peers, namalynloadersandseeds Downloaders
are peers who only have a part (or none) of the file while seeglpeers who have all the pieces of
the file but stay in the system to allow other peers to downfoa them. Thus, seeds only perform
uploading while downloaders download pieces that they ddvage and upload pieces that they have.
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Ideally, one would like an incentive mechanism to encoursegs to stay in the system. However,
BitTorrent currently does not have such a feature. We simpifyae the performance of BitTorrent as
is.

In practice, a BitTorrent network is a very complicated systélhere may be hundreds of peers
in the system. Each peer may have different parts of the fil=hEpeer may also have different up-
loading/downloading bandwidth. Further, each peer onfygaatial information of the whole network
and can only make decisions based on local information. diitiad, BitTorrent has a protocol (called
therarest-first policy to ensure a uniform distribution of pieces among the peedspaotocols (called
the endgame moddo prevent users who have all but a few of the pieces fromimgatoo long to
finish their download. As with any good modelling exercise, wadeoff between the simplicity of the
model and its ability to capture all facets of the protocahu3, we use a simple fluid model to study
the scalability and the stability of the system. We thenralostd the built-in incentive mechanism of
BitTorrent and studied its effect on network performancedéhcertain conditions, we proved that a
Nash equilibrium exists, under which each peer choosesisigal uploading bandwidth to be equal
to the actual uploading bandwidth. We also briefly discusbedeffect of optimistic unchoking on
free-riding. Our experimental results show that the sinfiipiel model can capture the behavior of the
system even when the arrival rate is small.

We performed a series of experiments to validate the fluidehdd the first two experiments, we
compare a simulated BitTorrent-like network and the fluid glodh the last experiment, we actually
introduced a seed into the BitTorrent network, studied tha@dutn of the seeds/downloaders, and
compared it to our fluid model results. Due to copyright reaseve obviously could not introduce a
very popular file into the network. However, as we will showour experimental results, even for a
file which had a total of less thaii0 completed downloads, the match between the fluid model and th
observed data is quite close.
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Figure 3. Experiment : The evolution of the number of seeds as a function of time

Experiment 1 In Figs 3 and 4, we compare the simple deterministic fluid rhdiuzt we derived
with the results from a discrete-event simulation of a Bit&at-like network. In the discrete-event
simulation, we use a Markov model. We chose the followingpaaters for this simulation: the upload
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Figure 4. Experiment : The evolution of the number of downloaders as a functionméti

rate of a peep. = 0.00125, the download rate of a peer= 0.002, the rate at which a user aborts a
downloadd and the rate at which a seed leaves the systere chosen to bé = v = 0.001. When
the number of downloaders is we set the probability with which a contacted peer is usefanother
peer, denoted by the parameters taken to be zero; otherwise, we get 1. Initially, there is one seed
and no downloader. We also keep the number of seeds no lessrtieaduring the entire simulation.
We change the arrival ratefrom 0.04 to 40 and plot number of seeds/downloaders normalized by the
arrival rate, i.e.2% and”?  from both simulations and the fluid model. From the figuressee that
the simple fluid model is a good approximation of the systererwhis large, but the match is quite
good even for small. The figures also indicate that the number of downloadergasas linearly with
the arrival rate\. By Little’s law, this implies that the average download tirmeonstant, independent
of the peer arrival rate, which shows that the system scalgswell. In other words, even very popular
files can be downloaded at the same speed as less popular files.
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Experiment 2 In Figs. 5 and 6, we have the same setting as the first expetimarept that now we
sety = 0.005. With the change ofy, the uploading bandwidth now becomes the bottleneck. b thi
setting, we have the similar result as before. Again, welsatghe simple fluid model is accurate when
A is large, but performs well even for smallerWe also plot the histogram afandy (the deviation of
number of downloaders and seeds, respectively, from thudt fhodel values) in Figs. 7 and 8,

Tsim(t) — x(t)

(1) = =

e (®) -yt
~ Ysim )
)= ——F="",
g(t) Y
wherez;,, (t) andys;,, (t) are the number of downloaders and seeds respectively icthal simulation
andz(t) andy(t) are the number of downloaders and seeds in deterministit faidel. From the
theory that we developed, we expect the histograms to loogily Gaussian and this fact is borne out
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by the figures for sufficiently larg&. We can see that the varianceioAndy do not change much when
A changes frond.04 to 40.

Experiment 3 In this experiment, we introduced a file into the BitTorrentwmrk and collected the
log files of the BitTorrent tracker for a time period of arouhdee days. When a peer joins/leaves the
system or completes the download, it reports the event todloker. In addition, peers regularly report
information such as the total amount of data uploaded/dosddd so far, the number of bytes that
still need to be downloaded, etc. The tracker keeps all tfegrmation in the log files. Hence, we can
analyze the tracker log files and retrieve useful infornmatithe parameters, 6, andy can be measured
by counting the peer arrival, the downloader departure taedeed departure respectively. However,
from the tracker log files, we cannot determine whether tHeaging bandwidth or the downloading
bandwidth is the bottleneck. So we assume the uploadingwidtidis the bottleneck and estimate
by dividing the measured total uploading rate by the numlbgreers (i.e., we assume that= 1).
The size of the file that was introduced was aroGfd)M B. The average uploading bandwidth was
estimated to b&0kb/s. We usel min as the time unit to calculate arrival rates, departure yates
The normalized uploading bandwidth (normalized by the fide &1 bytes) was estimated= 0.0013.
The downloader leaving rate was estimated t@be 0.001. An interesting feature that we observed
in the real BitTorrent is thak and~ are in fact time-varying. We attribute this to the fact thdten a
new file is introduced into the system, the first few seedsistélye system long enough to ensure that
there is a sufficient population of peers to sustain the sysliethe initial seeds depart too quickly, the
system will simply die, i.e., there will be no one to downldeaimn.

From the tracker logs, we estimate that, foK 800min, A\ = 0.06 andy = 0.001. Whent >
1300min, A = 0.03 andy = 0.0044. In between, the arrival rate increases roughly linearlyour fluid
model simulation, for time betwees®)0min and1300min, we letA and~ change linearly. We also set
the downloading bandwidth = 1 for the fluid model simulation (note that the actual value: @fill
not affect the fluid model results if it is above a certain shald).

The simulation results are shown in Figs 9 and 10. The ree¢ immeasured from the tracker log
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Figure 10: Experimerg : Evolution of the number of downloaders

file and the fluid model is calculated by using the above measparameters. For the fluid model,
we also numerically calculate the standard deviation from dteady state network parameters and
plot the error bar fob5% confidence intervals. From Fig. 9, we see that the fluid modetwes the
evolution of the number of seeds well. In Fig. 10, the ostdlaof the number of downloaders is more
significant. This is because that the file is not very poputel the arrival rate\ is small. Hence, our
model is only an approximation of the real network. But desfiits, we can see that the oscillation is
within the level suggested by tl96% confidence interval.

6 Multipath Routing

In most prior models of Internet congestion control, it hasrbassumed that each user is assigned a
single path between its source and destination. The userdaets to congestion on its path. However,
congestion may be caused indirectly due to inefficienciglenrouting protocol itself. For example,
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BGP is primarily a policy-based protocol and depending ufangolicy, it can sometimes choose a
low bandwidth path for a source, even when an alternate hagiuwidth path is available. In this
project, we consider networks where multiple paths areaia for each user between its source and
destination, and the user can direct its flow along thesespegimg source routing. The amount of flow
on each path is determined by the user in response to comgéstiications from the routers on the
path. Currently, source routing is not supported in routerthe Internet and so we have tverlay
the network with routers that allow source routing. Consttlerscenario depicted in Figure 11, which
shows a network of ISP clouds connected by peering pointthismetwork of ISP clouds, depending

P1

P4

P3

Figure 11: A network of ISP clouds. In this figure, the ISPs@renected via peering points, denoted
by P1 throughP4.

on the policy employed by the ISPs, a connection from ISPS®4Imay be routed via peering point
P4 even though more bandwidth may be available on a differetfit, gay via ISP5, through peering
points P1 and P3. This presents an opportunity for overlayariing to improve the service provided
to the end users in the following manner: suppose that onalimeverlay routers at the peering points
and allows source routing at these overlay routers. Fuiifitae provider of the overlay routing service
buys bandwidth from the ISPs, then one can create a logitabnleas shown in Figure 12. This would
allow us to provide a service where data transfer can simedtasly take place over multiple routes in
the overlay network.

Two questions immediately arise: (i) where to place theselay routers given an existing network
topology?, and (ii) given an overlay network of routers, hawes one design stable congestion control
algorithms that exploit the multi-path routing capabifityVe are interested in the second question in
this project. This question was answered by Kelly, Maullod &an in the case where there are no
round-trip delays. In this project, we derived a stabilipndition when there is feedback delay in
obtaining the congestion information. The key idea is thatly traffic will be shifted from congested
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Figure 12: A logical network formed from the network in Figutl by overlaying routers and using
virtual pipes through the ISP clouds. In this example, twarsesS; and.S, are transferring data to a
single destination using two paths each

paths to less congested paths. If this process is carriegufitiently slowly, then large oscillations
can be avoided in the network and the network reaches a faratpg point.

7 Congestion Control in Wireless Networ ks

The wireless channel is a shared medium over which many osergete for resources. Since there are
many users, it is important to allocate this shared resanredair manner among the users. Further,
since the available spectrum is limited, it is also impartarefficiently use the channel. However, the
time-varying nature of the wireless environment, couplét different channel conditions for different
users, poses significant challenges to accomplishing thesls. Moreover, the lack of availability of
channel and arrival statistics further complicates thatgmh.

We assume that the packets destined for the different r@seare stored in separate queues. The
scheduler is responsible for allocating resources to tfierdnt queues as a function of the current
channel conditions as well as the queue lengths. Prior worthis problem can be largely classified
into two main categories:

e Throughput-optimal schedulingHere it is assumed that the mean arrival rates of the packets
into each queue lie within the capacity region (the set ofesnable arrival rates) of the channel.
However, neither the actual arrival rates nor the chann@ @y region is assumed to be known.
The scheduler is allowed to know the current queue lengttigtacurrent channel conditions.

It has been shown that allocating resources to maximize aeglemgth-weighted sum of the
rates (which are feasible in the current time slot) is a 8tabhg policy. Such policies are called
throughput optimasince the queues are stable if the arrival rates lie withencipacity region.
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e Fair Scheduling:An obvious drawback of throughput-optimal policies is thattraffic policing
is enforced. For instance, if one or more sources mishehagengrease their arrival rates so
that the set of arrival rates lies outside the capacity regleen the system becomes unstable. In
other words, all flows will be penalized due to the behavioa &¢w misbehaving flows. Thus,
an alternative is to provide some degree of flow isolatioreast in the long term, by allocating
resources in a fair manner to the various queues. It was shotke literature that proportional
fairness can be achieved in TDMA cellular networks by scheduhe user which has the largest
ratio of the achievable data rate at the current instantd@terage rate that it has been allocated
so far.

From an applications point of view, throughput-optimal eghling as described above is more
suitable for inelastic traffic where the sources do not attet transmission rate based on congestion
in the network. In this case, admission control is requitedrisure that the arrival rates lie within the
capacity region of the network and further, in the case oél@ss networks, due to the time-varying
nature of the network, an appropriate scheduling algorihnequired to ensure that the network can
stably serve the admitted traffic. On the other hand, faiedahng is more suited for elastic traffic
sources which can adjust their traffic rates in responseadbiack from the network regarding the
network conditions. Without such a rate-control mechanfamscheduling would either lead to under
utilization (when a traffic source is not generating enougtado make use of the bandwidth allocated
to it) or packet losses or large delays (when a traffic sowgemnerating data at a much larger rate than
the rate allocated to it by the base station).

In this project, we are interested in allocating resourceslastic sources whose utilities are de-
scribed by concave functions. Specifically, usélerives a utilityU;(a;) when it transmits at rate;.
For ease of exposition, we consider utility functions of fibien

agl—m)

Ui(a;) = @(1 )’
wherem is a positive constant angl is some fixed weight, which can be different for differentrgse
Thus, we considem—weighted proportionally fair resource allocation. As — 1, this allocation
converges to the weighted proportionally fair allocation &sm — oo, it gives the weighted max-
min fair allocation. We assume that congestion informai®ronveyed to the sources by putting
the corresponding congestion price in the ACK packets. Eaalcs react to its congestion price by
choosing its transmission rates such that its marginatyui; (a;)) is equal to the congestion price.
We take the queue length at the base station to be the camgesice. In the Internet context, this is a
special case of what is known as the dual algorithm. In wieshetworks, this interpretation of queue
length (or delay) as the congestion price naturally aris@as fin convex optimization perspective where
the resource constraints are linear. However, in wirelesgarks, this interpretation is not immediately
obvious since the resource constraints are not necestagdr. Despite this, we show that the dual
algorithm at the sources, along with queue-length-baseedsding at the base station, can be used to
approximate weighted proportional fairness arbitrarilysely, where the approximation depends on
the choice of a certain parameter used in the congestionat@hgorithm.

The algorithms developed for wireless networks in this gebcan be immediately implemented
in cellular networks with a base station to perform the sahied, i.e., the single-hop case. The re-
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sults can also be extended to cover the multi-hop networ&. ceswever the scheduler is not imple-
mentable in the absence of a base station since then thesecentral scheduler to solve the wireless
resource allocation problem. The challenging problem déioling reasonable distributed solutions
for the scheduling problem is still the hurdle whether onesiders the throughput-optimal scheduling
problem or the fair scheduling problem that we have consitléere.

One penalty for achieving user-defined fairness (as opptusseetwork-dictated fairness) is the
possibility of large delays at the base station buffers. afe aleviate this problem by implementing
the base station scheduler using virtual queues descrdrédran this report. For each flow, the base
station maintains a counter called the virtual queue. Asxamgle, consider flow. The virtual queue
of flow i keeps track of a virtual queue length, where the virtual gueangth of flow: is simply the
length of a queue whose arrivals are the same as that ofifllwt whose service rate is always a
fixed fractionp < 1 of the actual service rate. Therefore, the size of the Viquaue will always be
larger than the actual queue-length. The congestion feg&diaen to usei is the virtual queue length
and therefore, userwill reduce its arrival rate well before its real queue bsilgb significantly. See
Figure 13 for the model from flows perspective.

X[

Base Station

Transmitteﬂ ai y :- pi iy Receiver

O KK

Figure 13: The virtual queue implementation at the baseostat

By choosing thep parameter appropriately the delay levels and the packstdozbabilities can
be adjusted: the lower the the lower the actual queue lengths. However, there is a lgessiss
in throughput by choosing < 1. Simulations not reported here show that, by choogirgose to
1, but not equal td, we can reduce the queue lengths dramatically while maingiciose to100%
throughput.

8 Network Economics

Studying the allocation of resources to strategic agentgenta that try to optimize local objective

functions that may not be the same as system-wide objectiveshe focus of micro-economics. In

this project, we explored generic allocation models iresppiy modern communication and computa-
tion resources, which have many characteristics not pteisexarlier models. Two characteristics in

particular are:
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1. Users/ agents may be very heterogeneous, and properklimgdheir value functions may not
be possible.

2. Allocation may have to be carried out under constrainedroanication: it may not be possible
for agents to reveal much information about their prefeesrio the allocation mechanism.

These characteristics give rise to a few common themes tuthieewise diverse models and analysis
presented in this report. The most important one, arisimgpfthe first observation about heterogeneous
agents, is that all the models have a “worst-case” as theitraleconcept: a worst case taken over
very broad spectrum of scenarios under which the resourghtrhave to be allocated. In particular,
minimal assumptions are made on the “types” or value funstiaf the agents. This is in contrast to
say, Bayesian-Nash analysis, where a-priori probabilispiagptions are made and the average case is
considered.

Our work addresses the resource allocation problem in theaguics literature under auction the-
ory. The users send bids to the network. The network allscthie resources and charges the users
following some mechanism. In the rest of this report, we gbweall a network user Buyerand fre-
guently call the network theeller. The buyers have valuation functions determining the vafube
resources allocated to them. Each buyer tries to maximszedthie by adjusting his own bid. Therefore,
the auction is formulated as a game. An allocatioefigient(i.e., socially optimal) if the aggregate
value of the buyers is maximized. In this report, we only edeisa network with a single network
manager, who wishes to allocate network capacity effigieidence, in the setting of auctions, there
are multiple buyers and one seller. Furthermore, the Vialuatf the buyers are deterministic, which
implies that the auction game is a Nash game. Note that theoae special properties of the auction
game on a network. First, the resources such as capacitgfariéely divisible. Next, the resources in
a network are inter-connected and a buyer bids for the resswlong his path.

Our work consisted of two parts:

In the first part, two different auction game models are dised. Basically, both models are ex-
tensions of the auction game on a single link network. Sinlbayar in the game uses a path through
the network which is combined with several links, the resesiit requests from the network is the rate
along the path. One extension of the auction game on sindtenktwork is to let the buyers bid for
the capacity on each link separately. We call thislteenized bid gamsince a buyer should have a
bid vector along the path. Another model is em bid gamewhich allows the buyers to have single
value bids. The network allocates the rate along the path Wgighted proportionally fair fashion.
We discuss and compare the condition for a Nash equilibriamtpn these two games on a two-link
network. We argue that the sum bid game captures more fudlyntieractions among strategic buyers.
However, the sum bid game has worse efficiency compared tieimized bid game and the payoff
function of a buyer in the sum bid game need not to be concave.

In the second part, we focus on the auction game on a sindgdenétwork and design an efficient
mechanism. That is, we design an efficient mechanism focatilon of an infinitely divisible good.
We present an efficient mechanism in which the bids of the tsugee scale-valued. Basically, the
efficient allocation can be achieved by allocating the goodrbportion to the bids and charging the
buyers some non-uniform prices. A buyer has incentive tddnifficiency by the rule that he has to
pay an amount equal to the externality he exerts on other etingpbuyers. Also, the mechanism is
implemented in a decentralized dynamic system. It alloweshiliyers to update their bids unilaterally
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in seeking personal payoff maximization and finally the egsteaches the efficient allocation.

9 Conclusions

In this project, we have demonstrated that simple mathealathodels can accurately capture the
dynamics of a complex interconnected system such as theéttand wireless networks. We have
developed models at various time scales of interest andeshtvat these models can be used to both
predict network performance as well as to design new prédamoimprove the performance. The
majority of the models developed are in the form of deterstiaidelay differential equations. We have
also used stochastic models to justify that, under prdatigavork operating conditions, the stochastic
models can be well approximated by the delay differentialagign models. The models developed
in this project provide a clear insight into the operatiorcomplex communication networks and also
allow us to improve the design of such networks.
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