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ABSTRACT 
 
 

In this thesis the performance of a step quantum well infrared photodetector, designed 

by Kevin Lantz (June 2002) and experimentally studied by Michael Touse (September 2003) 

and Yeo Hwee Tiong (December 2004), was simulated in Matlab using the transfer matrix 

method. The results, obtained by the Matlab program, are compared with the experimental 

results, in an attempt to make inferences about the optimum way of designing QWIP detec-

tors. 

Simulation of the above implies numerical solution of the Schrödinger equation, us-

ing algorithms and methods, which give accurate results. In our approach, the transfer matrix 

method (TMM) was used with exponentials and Airy functions to represent the solutions to 

Schrödinger equation under zero and non-zero bias, respectively. The calculated results were 

compared with the experimental data and found to provide a good agreement which validated 

the accuracy of the model employed.   

In the final section of the thesis we examine and simulate in Matlab the application of 

the extended Kalman filtering (EKF) to an infrared photodetector as a target tracking mecha-

nism to both maneuvering and non-maneuvering targets. When we used one sensor for track-

ing, the results were reliable provided that the target did not maneuver. In the case of a ma-

neuvering target the results were significantly improved when we used both sensors for 

tracking. 
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I. INTRODUCTION  

A. QUANTUM WELL INFRARED PHOTODETECTORS (QWIPS)-BRIEF 
REVIEW  
In the recent years there has been a considerable increase in research activities 

towards the development of quantum well based infrared sensors [1-4].  The use of quan-

tum wells made of larger bandgap materials, can overcome the difficulties associated 

with smaller bandgap materials, typically used in conventional infrared detectors [1].  

The smaller bandgap materials are relatively unstable, and difficult to process, resulting 

in non-uniformities when focal plane arrays are made [1].  The infrared detectors have 

many commercial and military applications. 

The operation of quantum well infrared photodetectors (QWIPs) is based on the 

excitation of bound electrons in a quantum well by infrared, as illustrated in Figure 1.1a.  

The quantum wells are formed by sandwiching a small bandgap material between large 

bandgap materials, as shown in Figure 1.1b.  It is possible to use the quantum well 

formed either in the conduction band or valence band to fabricate QWIPs.  In the case of 

conventional infrared detectors, the electrons in the valence band are excited across the 

bandgap, while in QWIP detectors it is necessary to dope the quantum well to populate 

the ground state using either n-type (for the conduction band well), or p-type (for the va-

lence band well).  

(a)                                                                              (b) 

 

  
       ωh  
 

    

                 

 

Figure 1.1 (a) excitation of bound electrons due to incident photon energy ωh . (b) 
Quantum well formation by sandwiching the appropriate bandgap material (From Ref. 

[5].)  
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In the design of quantum wells, the parameters, such as its dimension, and the 

composition of each structure material used, allow us to manipulate the behavior of the 

photoexcited carriers, so that they escape from the potential wells (quantum leak) and are 

collected as current by the application of an external bias, as shown in Figure 1.2. 
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Figure 1.2 Conduction band diagram of a QIWP in an external electric field. Excited 

electrons escape from the ground state creating a photocurrent (From Ref. [4].) 
 

The layers of QWIP detectors are primarily grown by molecular beam epitaxy 

(MBE), which gives thickness control in atomic scale [2, 4].  For achieving good material 

quality, the lattice constant of different materials used in QWIPs should be nearly the 

same.  This avoids the dislocations generated by the lattice mismatch.  

 The usual wavelength coverage of QWIPs is between 3 and 20 microns [1, 8]. By 

controlling the barrier height and well width, it is possible to adjust the energy level sepa-

ration and, hence, the wavelength dependence of the detector response. For example, the 

longer wavelength response can be achieved using shallow quantum wells. 

QWIPs can be categorized according to the electron resulting state in four types: 

bound to bound (B-B), bound to quasibound (B-QB), bound to continuum (B-C), and 

bound to miniband (B-M), as schematically shown in Figure 1.3. 
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Figure 1.3 Energy band diagram showing B-B, B-QB, B-C, and B-M QWIP struc-
tures (From Ref. [4].) 

 

The main factor which limits the QWIP performance is the dark current (the cur-

rent that flows through a biased detector in the dark with no photons impinging on it) , 

which plagues all infrared detectors. At temperatures above 45 K, the dark current of the 

QWIP is entirely dominated by classic thermionic emission of ground state electrons di-

rectly out of the well into the energy continuum. There are several theoretical techniques 

of minimizing it [3], most importantly the positioning of the first excited state to align 

with the barrier. 

Recent studies indicate that multicolor operation of QWIPs is possible by simply 

stacking different types of quantum wells. A four-color QWIP was reported [5], based on 

stacked /InGaAs AlGaAs and /GaAs AlGaAs multi-quantum wells. In addition, a great 

deal of QWIP focal plane arrays have been analyzed and demonstrated by many groups 

[6-8], showing excellent performance in LWIR atmospheric window. 

B. PURPOSE OF THIS THESIS 

The purpose of this thesis was to simulate in Matlab the performance of symmet-

ric and asymmetric quantum well structures under both zero bias and non-zero bias. It 

uses a design made in earlier thesis by Kevin R. Lantz [25] and experimental measure-

ments made by Michael P. Touse [26] and Yeo Hwee Tiong [27]. The results obtained by 
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the MATLAB program are compared with the experimental results, in an attempt to make 

inferences about the optimum way of designing QWIP detectors. Simulation of the above 

implies numerical solution of the Schrödinger equation, using algorithms and methods 

which give accurate results. Various methods have been presented to solve the 

Schrödinger equation numerically including the WKB approximation, the Monte Carlo 

method and the finite element method, which all basically deal with solving second order 

differential equations. In our approach, the transfer matrix method will be used [12, 16] 

with exponential and Airy functions to represent the solutions to Schrödinger equation 

under zero and non-zero bias, respectively. 

In the final section of the thesis, we will examine and simulate in Matlab the ap-

plication of the extended Kalman filtering (EKF) to an infrared photodetector as a target 

tracking mechanism, to both maneuvering and non-maneuvering targets. Using a recur-

sive type algorithm such as EKF, we will examine the bearing only tracking (BOT) prob-

lem classically. The main drawback of BOT is that the research is closed, meaning that 

the publication available is limited.    

C. MILITARY RELEVANCE 
QWIPs have a great deal of military and security applications. The most common 

are night vision, remote sensing and satellite IR imaging, FLIR, surveillance, targeting in 

a variety of terrains (air sea ground) and weapon delivery [4,7]. They are also widely 

used in search and rescue situations, mine detection, missile seeker formulation, smart 

munitions, weapon sights, preventive maintenance, non-destructive testing, medical im-

aging and surveillance [4].  Finally, the bearing-only-tracking application examined in 

the last chapter of the thesis, is considered a modern real-world problem featuring the ad-

vantage of passive target acquisition and surveillance. Since modern military needs are  

oriented in systems which can track targets without being noticed, the use of a modern 

QWIP sensor combined with a classic tracking algorithm, such as EKF, could result to a 

reliable surveillance system.   

D. THESIS OUTLINE 
The present thesis starts with a general discussion of the necessity of QWIPs, fol-

lowed by a brief review of how these devices are formulated and where they find applica-

tions of military interest. Next, the reader is led, through the mathematical background, to 
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the simulation program, and the comparison to the laboratory case. Finally a “real world” 

application is investigated through BOT. 

In particular, the outline of the present thesis is as follows: 

Chapter II discusses the Schrödinger equation and the formulation of the transfer 

matrix method. The Schrödinger equation is applied in solving the unbiased and biased 

quantum well, and the transfer matrix method is applied in order to expand the solution in 

more than one region of the structure. 

Chapter III provides information about the constructed Matlab code, and the labo-

ratory semiconductor, while simulations are presented to show the QWIP behavior to 

several conditions of bias. Ideas such as probability current and bound-to-continuum tran-

sitions are presented, and finally the comparison to the laboratory case takes place. 

Chapter IV is focused into the BOT problem. The used initialization of the state 

vector is presented, as long as the EKF algorithm, with emphasis into bearing tracking. 

Finally, we present and discuss several cases of sensor-target geometry. 

Chapter V is a summary of the results, followed by suggestions for probable fu-

ture research.   

Appendix A includes the Matlab coding used to model the QWIP. 

Appendix B includes the Matlab coding used to model the BOT problem. 

Appendix C is an overview of Airy functions and their asymptotic expressions 

used to model the QWIP in the low bias cases. 

Finally, Appendix D includes the complete set of resulting graphs of the BOT 

problem. 
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II. MATHEMATICAL AND PHYSICAL BACKGROUND 

A. INTRODUCTION 
The infrared photodetectors examined in this thesis are quantum mechanical de-

vices. Modeling this type of device requires solution of the key quantum mechanical 

equation, Schrödinger’s equation. Given the potential and boundary conditions, we de-

termine the shape and the temporal evolvement of the wave function by solving this sec-

ond-order, partial differential equation. Due to the one dimensional nature of quantum 

well structures used in QWIPs, it is sufficient to solve the Schrödinger equation along the 

growth direction of the layers.  

Over the years, various methods have been used for numerical solution of the 

Schrödinger equation, namely, the WKB approximation [9], the variational calculation 

method [10, 11], the Monte Carlo method [12], the finite element method (FEM) [13], 

and the transfer matrix method (TMM) [14].  In the present work, we employed the trans-

fer matrix method (TMM) due to its flexibility in analyzing complex quantum well struc-

tures under external bias.      

B. SCHRODINGER EQUATION 
The one dimensional time-dependent Schrödinger equation for an electron can be 

written as: 

                                
2

2 ( , ) ( ) ( , ) ( , )
2 e

x t U x x t i x t
m x t

∂ ∂
− Ψ + Ψ = Ψ

∂ ∂
h

h ,                           (2.1)       

where h  is the reduced Plank’s constant, em  is the electron mass, x  is the coordinate 

(usually taken along the direction of the growth), Ψ is the wavefunction and U is the po-

tential energy. 

Since the quantum well potential is independent of time, it is possible to separate 

the spatial and temporal dependencies with the spatial dependence satisfying the time-

independent Schrödinger equation: 

                                        
2 2

2 ( ) ( ) ( ) ( )
2

x U x x E x
m x

∂
− Ψ + Ψ = Ψ

∂
h .                                   (2.2) 
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C. EFFECTIVE MASS MODEL 

The periodic potential of the atoms in semiconductor materials influences the pro- 

pagation of an electron inside. In order to include the effect of the periodic potential, the 

electron mass m  is usually replaced by an effective mass *m , and treats the electron as a 

free particle [1]. The effective mass *m is related to the band structure by: 

           
2

*
2 2/

m
d E dk

=
h ,        (2.3) 

where h is the Plank’s constant, E  is the conduction band energy and k  the wavevector.  

The QWIPs are usually made using potential wells in the conduction band well 

due to smaller effective mass which gives higher absorption [1].  For the materials used 

in this thesis ( InGaAs , AlGaAs ) the effective mass of electrons for various composi-

tions is shown in Figure 2.1  
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Figure 2.1: Effective mass as a function of x for 1x xAl Ga As− and 1x xIn Ga As− . 
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D. TRANSFER MATRIX METHOD (TMM) 

1. General 

The transfer matrix method is a relatively simple approach for solving Schrödin- 

ger equation for quantum well structures. It is generally used for a number of problems 

mostly involving second-order, partial differential equations (e.g., propagation character-

istics in planar waveguides, spontaneous emission in DFB lasers) [12-14, 16]. 

Comparing this method with the other methods usually used for solving the same 

problems, TMM has the advantage both of simplicity and usage in low processing ability 

computers. Its simplicity mainly involves multiplication of 2 2x  matrices which are 

straightforward to implement on a computer. We will examine two cases using the TMM, 

quantum well structures with and without the application of an external electric field.   

2. Quantum Well Structure without Applied Electric Field 
We assume an arbitrary multilayered quantum well structure as shown in Figure 

2.2 

     ( )V x                    3 ( )V x                ( )NV x  

                          ( )jV x  

     1( )V x                1( )jV x+     *
Nm  

        *
1m            2 ( )V x           *

3m             ….……         *
jm        *

1jm +  

               *
2m  

x           

 

Figure 2.2: Multilayered quantum well structure with zero applied bias. 

 

The time independent Schrödinger equation for each square quantum well region 

of the multilayered quantum well structure reads:  

                       
22

* 2

( )
( ) ( ) ( )

2
j

j j j
j j

x
V x x E x

m x
∂ Ψ

− + Ψ = Ψ
∂

h .                               (2.4)  
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where h is the reduced Plank’s constant, *
jm is the electron effective mass in the region j , 

x is the coordinate (usually taken along the direction of the growth), Ψ is the wave- func-

tion, jV is the potential energy in region j , and E stands for the associated electron en-

ergy. The general solution of Equation (2.17) in each region is a superposition of the left 

and the right traveling waves and is given by: 

                                    ( )  + j jik x ik x
j j jx C e D e−Ψ = ,                                              (2.5) 

where jk is implemented from the separation of variables and represents the wavenumber 

and ,j jC D are arbitrary constants. The value of jk depends on the region effective mass 

*
jm and the potential height jV in the region j  as: 

                                     
( )*2 j j

j

m E V
k

−
=

h
.                                                      (2.6) 

At each boundary the probability current should be continuous which implies: 

                                     ( ) ( )1j j j jx x+Ψ = Ψ ,                                                      (2.7) 

                      1 1* *
1

1 1( ) ( )j j j j
j j

d dx x
m dx m dx + −

+

⎡ ⎤ ⎡ ⎤Ψ = Ψ⎣ ⎦ ⎣ ⎦ ,                                      (2.8) 

where jx is the coordinate at the boundary between j and 1j + layers. 

Applying the solution of Equation (2.4), given by Equation (2.5), to Equations 

(2.7) and (2.8), we can find after some algebra: 

  1 1

* * * *
1 1 1 1

1 * *
1 12 2

j j j j j j j jik x ik x ik x ik xj j j j j j j j
j j j

j j j j

k m k m k m k m
C e e C e e D

k m k m
+ +− − −+ + + +

+
+ +

+ −
= + ,             (2.9) 

  1 1

* * * *
1 1 1 1

1 * *
1 12 2

j j j j j j j jik x ik x ik x ik xj j j j j j j j
j j j

j j j j

k m k m k m k m
D e e C e e D

k m k m
+ +− ++ + + +

+
+ +

− +
= + .            (2.10) 

The results in Equations (2.9) and (2.10) can be expressed in a matrix form as 

                                        1

1

j j
j

j j

C C
M

D D
+

+

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
,                                                   (2.11) 
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where jM is given by as 

          

1 1

1 1

* *
( ) ( )1 1

* *
1 1

* *
( ) ( )1 1

* *
1 1

1 1
1=
2

1 1

j j j j j j

j j j j j j

i k k x i k k xj j j j

j j j j

j
i k k x i k k xj j j j

j j j j

k m k m
e e

k m k m
M

k m k m
e e

k m k m

+ +

+ +

− − ++ +

+ +

+ − −+ +

+ +

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

⎜ ⎟
⎛ ⎞ ⎛ ⎞⎜ ⎟− +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

.                    (2.12) 

Repeatedly applying Equation (2.11), it is possible to relate the coefficients if the 

outermost layers as: 

               1 111 12
1 2 1

21 221 1

......N
j j

N

C C Cm m
M M M M

m mD D D−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞
= = ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎝ ⎠⎣ ⎦ ⎣ ⎦⎣ ⎦
.                        (2.13) 

In the case of bound states, the wavefunction must decrease exponentially to zero 

at the outermost boundaries. This implies that exponential growing coefficients in Equa- 

tion (2.5), namely ( ND , 1C ), should equate to zero. Under this condition Equation (2.13) 

reduces to: 

                                   11 12

21 22 1

0
  0

NC m m
m m D

⎡ ⎤ ⎛ ⎞ ⎡ ⎤
= ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎝ ⎠ ⎣ ⎦⎣ ⎦

.                                             (2.14) 

It can be easily seen from Equation (2.14) that, to satisfy the boundary conditions, 

we demand the matrix element 22 0m = . Since 22m depends only on energy E , the bound 

states can be found by plotting ( )22m E and identifying the zero crossings.     

3. Quantum Well Structure under Applied Electric Field 

a. General 

During the QWIP operation, it is necessary to apply external bias to extract 

photoexcited electrons. Under an external electric field, the quantum well potential tilts, 

as illustrated in Figure 2.3. The amount of the tilt depends on the strength and the direc-

tion of the applied field. The bias alters the energy levels in the quantum well structure, 

and hence, the photoresponse. In the section following, the effect of an external electric 

field on QWIP operation is analyzed by solving Schrödinger equation with a linear poten-

tial in addition to the quantum well potential.  
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Figure 2.3 Multilayered quantum well structure with forward applied bias (left), and 
reverse applied bias (right). 

 

b. Solution of the Schrödinger Equation in a Linear Potential 

We first consider the solution of Schrödinger equation in a linear potential 

as shown in Figure 2.4.  

             y  

                    ( )U x xα= −  

                                                                                            x  

                                                             O            

 

 

Figure 2.4: Linear potential. 
 

Using Schrödinger’s Equation (2.2) and substituting the value of 

( )U x xα= − we can get to the following form: 

                            
2 2

2 ( ) x ( ) ( )
2

x x E x
m x

α∂
− Ψ − Ψ = Ψ

∂
h .                  (2.15) 

It is possible to convert Equation (2.15) to a standard differential equation 

by using the following change of variables. 

                                                xx y y γβ γ
β
−

= + ⇔ = ,                                              (2.16) 
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where β  and γ  have units of length, while y  is considered dimensionless.  

Differentiating (2.16) with respect to x and substituting back into (2.15) 

yields: 

                           1d x dy d x d
dx dx dy dy

γ γ
β β β

⎛ ⎞ ⎛ ⎞− −
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
,                                     (2.17) 

                    ( )
2

2 2 2 2

1 2 2+ ( )d ma my E x
y

β γ
β

Ψ + Ψ = − Ψ
∂ h h

,                               (2.18) 

                    ( )
2 3 2

2 2 2

2 2+ + 0d ma my a E
y

β β γΨ Ψ + Ψ =
∂ h h

.                                (2.19) 

The variablesβ andγ can be chosen as given in Equation (2.16) to further 

simplify Equation (2.19), so: 

                                            1/33 2

2

0 ,

2 1 .
2

Ea E

ma
ma

γ γ
α

β β

+ = ⇒ = −

⎛ ⎞
= − ⇒ = −⎜ ⎟

⎝ ⎠

h

h

                                      (2.20) 

Using the parameters as defined in Equation (2.20), the Equation (2.19) 

can be transformed into the Airy’s differential equation: 

                                            
2

2 0d y
y

Ψ − Ψ =
∂

,                                                   (2.21) 

which has two linearly independent solutions and are given in terms of Airy functions of 

the first and the second kind ( Ai and Bi ).   The general solution can be written as a linear 

combination of the two Airy function multiplied by two arbitrary constantsC and D [16]:   

                                   ( ) ( )( )  y +y CAi DBi yΨ = .                                            (2.22) 

Figures (2.5) and (2.6) show the Airy functions of the first kind, Ai , and 

the second kind, Bi , as a function of y for both positive and negative directions. 
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Figure 2.5: Airy functions of the first kind. 
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Figure 2.6: Airy functions of the second kind. 
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In Equation (2.16) by replacing the values of γ and β we get: 

                                         
1/32

2

Ex
y

ma

α
+

= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

h
,                                                     (2.38) 

where 0y =  or x E α= −  corresponding to the classical turning point as shown in Figure 

2.7. 
                                                    y  

                         Turning point      E  

                                   

 

                 Ex
α

= −                                                                    x  

                                                                                           ( )U x xα= −  

 

Figure 2.7: Classical turning point at x E a= − and y E= . 
 

Using the solutions of the Airy equation given by (2.22) and replacing the 

variable y , the solution in terms of the original  coordinate x , the energy E , the con-

stantsα and h , the particle mass m and the constants C  and D  can be written as: 

               1/3 1/32 2( )  +

2 2

E Ex x

x CAi DBi

ma ma

α α

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ +
⎜ ⎟ ⎜ ⎟− −Ψ = ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

h h
.                           (2.39) 

The constantsC and D are determined by the boundary conditions and for 

the above potential 0D = since Bi is exponentially growing in the barrier region or nega-

tive x  direction. 
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c. Square Quantum Well Under an Electric Field 

Generally, when an electric field is applied to a quantum well structure as 

schematically illustrated in Figure 2.8, the profile of the potential will be changed [1, 12].  

   ( )V x  

 

                                                F  
 
          

 

 α  

                                                                                                          x  

  

 

Figure 2.8:  Single quantum well structure with forward applied bias. 
 

This change is given by the equation: 

                                         ( ) ( ), ,0V x F V x e x F= − ,                                       (2.40) 

where  ( ,0)V x  is the potential profile of the quantum well, F is the applied electric field  

in V/m , e is the electron charge and x is the associated spatial coordinate. 

By substitution of Equation (2.40) into the Schrödinger equation we arrive 

at the following formula: 

             ( )
22

* 2

( )
( ) ( ) ( )

2 ( )
j

j j j
j j

x
V e x F x x E x

m x x
∂ Ψ

− + − Ψ = Ψ
∂

h .                        (2.41) 

Since the potential energy jV is a constant within the t hj layer of the quan-

tum well, the solution to Equation (2.41) can be written as a linear combination of Airy 

functions [16] as: 

                         ( ) ( )( )  ( )  ( )j j j jx C Ai x D Bi xρ ρΨ = + ,                                    (2.42) 

and j(x)ρ  is defined as 
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                                         j 1/3
2 2

*

( )

2
j

jFx
x

F
m e

η
ρ

− −
=
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

h

,                                                 (2.43) 

where *
j

m  is the  effective mass associated with the t hj layer and jη is given by: 

                                             j
j

E V
e

η
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,                                                     (2.44) 

where E is the energy of the electron. 

The boundary conditions given by Equations (2.7) and (2.8) are still appli-

cable to the Airy functions solution, given by Equation (2.42). An arbitrary coordinate 

system was chosen to be at the upper left end of the potential well, for simplicity pur-

poses, as we illustrated in Figure 2.8.  

The boundary conditions between two neighbor layers j and 1j + of the 

quantum well, give the following relations between the coefficients: 

     
}{ }{' ' ' '

1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

j

j j j j j j j j j j j j

C

C Ai Bi Ai Bi D Bi Bi Bi Bi
π

β β ξ β β β β ξ β β+ + + + + +

=

− + −

    (2.45)   

    
}{ }{' ' ' '

1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

j

j j j j j j j j j j j j

D

C Ai Ai Ai Ai D Ai Bi Ai Bi
π

ξ β β β β ξ β β β β+ + + + + +

=

− + −

    (2.46)   

where 1jβ + and jβ are defined as: 

                              

1

1/3*

1 1 2

1/3*

2

2
( ) ,

2
( ) ,

j

j

j j j

j j j

m ef
x

m ef
x

β η

β η

+

+ +

⎧ ⎫⎪ ⎪= − − ⎨ ⎬
⎪⎪ ⎭⎩

⎧ ⎫⎪ ⎪= − − ⎨ ⎬
⎪⎪ ⎭⎩

h

h

                                        (2.47) 

and jξ  is the ratio between the effective masses of the two layers. 

                                           
1

2/3
*

* .
j

j
j

m
m

ξ
+

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

                                                       (2.48) 
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Equations (2.45) and (2.46) can be written in matrix form as: 

 

     
' ' ' '

11 1 1 1
' ' ' '

1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

j

j

jj j j j j j j j j j

j j j j j j j j j j j

C

D

CAi Bi Ai Bi Bi Bi Bi Bi
Ai Ai Ai Ai Ai Bi Ai Bi D
β β ξ β β β β ξ β β

π
ξ β β β β ξ β β β β

++ + + +

+ + + + +

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞− −
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

     (2.49) 

A repeated application of boundary conditions, similar to that of the unbi-

ased case, the coefficients of the outermost layers can be related as: 

             1 11 12
1 2 1

21 221

...... N N
j j

N N

C CC m m
M M M M

m mD D D−

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎛ ⎞
= = ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥

⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦
.                         (2.50) 

In the case of bound states, the wavefunctions in the outermost layers 

should decay, which implies that the coefficients that make them grow ( 1D and NC ) 

should equate to zero.  Thus, Equation (2.50) reduces to:     

                                              1 11 12

21 22

 0
 0 N

C m m
Dm m
⎡ ⎤⎡ ⎤ ⎛ ⎞

= ⎜ ⎟ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎝ ⎠ ⎣ ⎦

.                                              (2.51) 

This implies that,   

                                             22 ( ) 0m E = ,                                                          (2.52) 

which corresponds to quantized energy states E  inside the well under the electric field.  

Figure 2.9 represents a single 0.3 0.7Al Ga As quantum well of 40 Angstroms 

width where the applied field is 72 10  V/m× . We represent the potential of the well using 

a blue line, the wavefunction with the black line, and the energy level with the red line. 
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Figure 2.9: Single quantum well structure with large forward applied bias 

( 72 10 V/m× ). 
 

For example, the bound state energies in the quantum well were obtained 

by plotting 22 ( )m E as a function of energy, as shown in Figure 2.10, and identifying the 

energies where 22 ( ) 0m E = .  For the parameters used, there was one bound state in the 

quantum well, at energy of about 0.089 eV .  The extent of the wavefunction beyond the 

right side of the barrier indicates tunneling through the barrier due its finite width.  This 

is responsible for leakage current in quantum well detectors at low temperatures.  
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Figure 2.10: Zeros of the matrix element 22m determines the energy characteristic      

values. 
 

E. SUMMARY 

In this chapter, we developed the necessary tools to comprehend the solution of 

the Schrödinger equation in a quantum well structure, with and without the presence of 

electric field. The use of transfer matrix method with Airy functions enabled the analysis 

of quantum well structures under external bias.  In the next chapter, response of a QWIP 

made from 1- /x xIn Ga As GaAs  step quantum well will be simulated and compared with 

available experimental data. Ideas such as continuous states and “normalization” of them, 

Fermi’s golden rule for optical transitions and probability current will be developed.  
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III. IMULATION ANALYSIS AND DATA 

A. INTRODUCTION 

The simulation program developed in Chapter II was employed to analyze a 

QWIP detector designed by Kevin Lantz [25] and experimentally studied by Michael 

Touse [26], and Yeo Hwee Tiong [27]. The comparison between the analysis and ex-

perimental results is focused on the infrared absorption and detector responsivity.  

B. DESCRIPTION OF QWIP SAMPLE 

The fabricated step QWIP consists of a multiple quantum well structure. The 

layer specification of the complete detector is presented in Table 1. 

 
Table 1. Specifications of the test QWIP (From [26].) 

 

To increase the active layer thickness of the detector, 25 step 1x xIn Ga As− quantum 

wells were employed. A single period of the step quantum well is schematically shown in 

Figure 3.1.The width of the well, and the step, are 40 Angstroms each, while a 300-

Angstrom barrier of GaAs  was placed between, in order to reduce the tunneling losses. 

The sample was grown by molecular beam epitaxy (MBE), which offers high accuracy 

for the design parameters, such as doping and layer thickness, since we have disposition  

of one or more pure materials onto the crystal wafer, one layer of atoms at the time, under 

ultra-high vacuum. The preliminary design of the QWIP predicted an IR absorption peak 

at 10.2 µm  [26].  
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Figure 3.1: Diagram of the designed and simulated QWIP (From [26].) 
 
 

C. DESCRIPTION OF THE COMPUTER MODEL 

The structure used in simulation is a 1x xIn Ga As− single step quantum well as 

shown in Figure 3.2.  

 

    

 

                                inf              40 A     40 A             inf 

                                                                

                               x=0%      x=30%     x=10%         x=0% 

 

      

  

 

Figure 3.2: Potential diagram of simulated 1x xIn Ga As−  quantum well structure. 
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This quantum well is divided into four regions. The percentage of xIn  in the first, 

and the fourth regions is zero, while for regions two and three is 30 and 10 percent, re-

spectively. Similarly the width of the regions one and four is considered infinite, while 

regions two and three are 40 Angstroms wide each. 

The behavior of a 1x xIn Ga As−  single quantum well was investigated in the three 

main cases. In the first case we have studied the 1x xIn Ga As−  quantum well without the 

application of an electric field, in the second case the electric field is present, and finally 

in the third case the electric field is present but its value is relatively small, which needed 

a special treatment. The main difference between these three cases, is that, in the first 

case, we have used the exponential solution of the Schrödinger equation, while in the 

case of large and small bias we took advantage of the Airy and asymptotic Airy solutions, 

respectively (Appendix C). 

1. Simulation Parameters 

For our numerical calculations, the values of the effective mass *
j

m , potential 

height V , and energy gap gE for the 1x xIn Ga As−  quantum well, were employed as: 

                               
( )

%
*

%
0

0

11
0.067

0.028

j

j

j

x
m

mx
m

−
= +
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

,                   (3.1) 

where 0m is the rest mass of the electron and %
jx is the mole fraction of In in the region 

j . The bandgap energy gE (in eV ) of the four layers and the corresponding barrier 

heights jV can be obtained by the following formulas according to [1]: 

                                           ( )1 4 %1.519 1.247g g jE E x= = + ,                   (3.2) 

                               ( )2 3 %1.519 1.102g g jE E x= = − ,                    (3.3) 

                                       ( )20.62 j
j g gV E E= − .                                   (3.4) 

Equations (3.1) through (3.3) characterize the physical, structural and electronic 

properties of 1x xIn Ga As−  under specific conditions.  
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D. STEP QUANTUM WELL WITHOUT AN APPLIED ELECTRIC FIELD 

1. Bound State Energies 
The bound state energies are calculated using the transfer matrix method (TMM), 

according to the derivation of Subsection E-2 of the Chapter II. The energy eigenvalues 

are derived by the condition ( )22 0m E = , given in Equation (2.14). In order to find the 

values of E that satisfy the above condition, ( )22m E was evaluated for energies from the 

bottom of the quantum well ( 0E = ), to the top ( 1 4E V V= = ), using small increments E∆ . 

In the numerical analysis, the ( )22m E derived at each energy was multiplied by the corre-

sponding value at the previous energy and, if the resulting quantity is negative, then 

( )22m E  had crossed a zero.  This procedure allowed us to determine the bound state en-

ergies in the quantum well.  

In the case of the step quantum well, there are four layers, which require three 

matrices to relate the coefficients of the outermost layers as given in Equations (3.5) to 

(3.7):  

          
11 1

2 1 12 111 12
1 1 1 1 1

1 12 1 21 22 22 1

0 0C C m Dm m
M M

D DD D m m m D

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,                    (3.5) 

      
2121 21

3 2 1 12 111 12
2 2 1 21 21 21

13 2 1 21 22 22 1

0C C C m Dm m
M M M

DD D D m m m D

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,                  (3.6) 

               
321321 321

34 1 12 111 12
3 3 2 1 321 321 321

14 3 1 21 22 22 1

0CC C m Dm m
M M M M

DD D D m m m D

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,             (3.7) 

where jM , 1, 2,3j = , is given by Equation (2.12) and 1mµν , 21mµν , 321mµν ,where , 1,2µ ν = , 

are the matrix elements of 1M ,the resulting elements of the multiplication of  2 1M M , and 

the resulting elements of the multiplication of 3 2 1M M M , respectively. 

The next step involves normalization of the bound wavefunction, which allows 

the determination of 1D . Normalization implies: 

                                      *( ) ( ) 1j jx x dx
+∞

−∞

Ψ Ψ =∫ ,                                                  (3.8) 
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where ( )xΨ  and *( )xΨ  are the wavefunction and its complex conjugate, respectively.  

For the parameters used for the step quantum well, there was only one bound state 

in the well as shown in Figure 3.3, alone with the normalized wave function. 
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Figure 3.3: 1x xIn Ga As−  step quantum well ground state energy without applied bias. 

 
2. Continuum State Energies 
The responsivity of QWIP detectors is strongly dependent on the location of the 

excited state [1, 17, 18].  To avoid the suppression of photocurrent due to tunneling, the 

excited state is usually aligned with the barrier which also minimizes the thermionic 

emission of ground state electrons [1].  It is possible to calculate the continuum state 

wavefunctions by using the transfer matrix method, with proper boundary conditions.  If 

the electron is incident from the left side of the potential well, as shown in Figure 3.2, 

then the coefficient 4 0D = , since it is not possible to have a left moving wave in the right 

side of the well.   

Using the transfer matrix method, the coefficients of the fourth and the first re-

gions can be related as: 
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321 321

1 14 11 12
3 2 1 321 321

1 121 22 0
C CC m m

M M M
D Dm m

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
.                            (3.9) 

The coefficients 1D and 4C can be obtained in terms of the matrix elements de-

fined earlier as: 

                                                     
321
21

1 1321
22

mD C
m

= − ,                                                         (3.10) 

                 
321 321 321 321 321 321

321 321 321 12 21 11 22 1 12 21
4 11 1 12 1 11 1 321 321

22 22

m m m m C m mC m C m D m C
m m

−
= + = − = .             (3.11) 

Similarly, the transfer matrix method gives the coefficients of the continuum 

wavefunctions for the second and third regions:                      

                  

1 321
1 12 21

1 11 1 3211 1
2 1 2211 12 321

1 1 1 21 1 321
2 1 21 22 1321 22 21

21 122 321
22

     
,

m mC m C
C C mm m

M mD D m m m mm Cm
m

⎛ ⎞
−⎛ ⎞ ⎜ ⎟⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟= = =⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ −⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟

⎝ ⎠

                (3.12) 

                   

21 321
21 12 21

1 11 1 32121 21
3 1 2211 12 321

2 1 21 21 21 21 321
3 1 21 22 21321 22 21

2122 321
22

      
.

m mC m C
C C mm m

M M mD D m m m mmm
m

⎛ ⎞
−⎛ ⎞ ⎜ ⎟⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟= = =⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟ −⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟

⎝ ⎠

             (3.13)  

Figure 3.4 shows the dependence of coefficients in different layers as a function 

of energy, for the step quantum well structure.  
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Figure 3.4:  Coefficients of the continuous states vs. energy difference. 

 

Normalization of the continuum wavefunctions cannot be executed using Equa-

tion (3.8), since these wavefunctions extend to infinity.  The normalization of the contin-

uum wavefunctions are usually done either using a hypothetical box around the quantum 

well [18], or using momentum space δ function normalization as described in [20]. Fig-

ure 3.5 illustrates 100continuum wavefunctions up to 0.285 eV above the ground state 

using an arbitrary scale.  The red curve in Figure 3.5, illustrates the ground state wave-

function.  The oscillatory behavior of continuum wavefunctions represents the free mo-

tion of in the continuum. 
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Figure 3.5: Continuum wavefunctions (blue) and ground state wavefunction (red). 
 

E. STEP QUANTUM WELL STRUCTURE UNDER AN APPLIED ELEC-
TRIC FIELD 

1. General 

As described in Chapter II, it is necessary to use Airy functions to represent wave-

functions when the quantum well is under bias.  The implementation of Airy’s function 

routines in a computer proved to be a relatively complicated task, especially when the 

electric field is small. Thus, a “weak field limit” was placed where the built-in Matlab 

Airy functions give numerical overflows, so lower biases than this threshold were treated 

using the asymptotic expressions of Airy functions. This limit was found to be about 
510 V/m . The analytic coding used for this case, along with the previously examined 

cases is presented in the Appendix A.  

2. Bound State Energies 

The following shows the calculation of bound state energies in the step quantum 

well under a moderate electric field of 610 V/m . The energy eigenvalues can be found by 
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satisfying the condition (2.52), while the coefficients of Airy functions for different re-

gions can be obtained as: 

                                             123 23 3
1 12 2 12 3 11 4, , , 0C m C m C m C= = = = ,                               (3.14) 

                                   23 3
1 2 21 3 21 40, , ,  1D D m D m D= = = = ,                                (3.15) 

where 3mµν , 23mµν , 123mµν , , 1, 2µ ν = , are elements of 3M , 2 3M M , 1 2 3M M M matrices, respec-

tively . There was only one bound state in the well as shown in Figure 3.6:  
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Figure 3.6: Ground energy and wavefunction in the step quantum well under an elec-

tric field of 610 V/m . 
 

In the case of negative applied electric field of 610  V/m− the ground state energy 

increases compared to the unbiased quantum well as shown in Figure 3.7. 
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Figure 3.7: Ground energy and wavefunction in a 1x xIn Ga As− quantum well under 

610 V/m− applied field. 
 

It is well known that the bound state energies in a quantum well do not shift when 

measured from the center of the well [1, 17].  Since our origin is at the edge of the well, 

the amount of the energy shift can be estimated using: 

                                           shift
2

e FL
= − ,                                                     (3.16) 

where e is the electron charge, F  is the applied bias, L  is the length of the well which 

confines the energy state. This implies that for a 610 V/m applied field, the shift is about 

0.002 eV− from the unbiased position, and for 610 V/m− the shift is about 0.002 eV .  

This gives an energy separation of 0.004 eV for 610 V/m± field which is very close to the 

simulated value of 0.005 eV . 

 In the case of application of an electric field of 47 10  V/m× , the asymptotic 

expressions of Airy functions were needed to obtain the ground state energy and the 

associated wavefunction are illustrated in Figure 3.8.  
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Figure 3.8: Ground energy and wavefunction in a quantum well under 47 10  V/m× . 
 
In the case of the same bias applied in the negative direction, the program gives 

that the ground energy 1E  lies at 0.091 eV , as shown in Figure 3.9. 
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Figure 3.9: Ground energy and wavefunction in a quantum well under 47 10 V/m− × . 



32 

Again, the difference between the values of the ground energy level can be exp-

lained by Equation (3.18) since, for an 47 10  V/m× applied field, the shift is about 
47 10  eV−− × from the unbiased position, and for 47 10 V/m− ×  is about 47 10  eV−× .  This 

gives an energy separation of 0.00143 eV for 47 10 V/m± × field which is very close to 

the simulated value of 0.00137 eV . Finally the lowest bias that we have achieved in our 

simulation was 47 10  V/m± × or 0.7 kV/cm± , which is much smaller than typically used 

in QWIP detector operation (10 kV/cm ) [1, 16].  

3. Continuum State Energies 

The continuum state wavefunctions are obtained by assuming the electron is inci-

dent from the right side and setting the following boundary conditions for the coefficients 

of the outermost layers: 

                                                             1 0D = .                                                             (3.17) 

Then applying the TMM, the coefficients in each layer can be obtained as: 

                                                       

123
21

4 4123
22

mD C
m

= − ,                                                      (3.18) 

                 
123 3 123 3 123

3 3 3 3 21 11 22 4 21 21
3 11 4 21 4 11 4 21 123 123

22 22

m m m C m mC m C m D m C m
m m

⎛ ⎞−
= + = − = ⎜ ⎟

⎝ ⎠
,              (3.19) 

                
123 3 123 3 123

3 3 3 3 21 21 22 4 22 21
3 21 4 22 4 21 4 22 123 123

22 22

m m m C m mD m C m D m C m
m m

⎛ ⎞−
= + = − = ⎜ ⎟

⎝ ⎠
,              (3.20) 

                                                                             
123 23 123 23 123

23 23 23 23 21 11 22 4 12 21
2 11 4 12 4 11 4 12 123 123

22 22

m m m C m mC m C m D m C m
m m

⎛ ⎞+
= + = + = ⎜ ⎟

⎝ ⎠
,             (3.21) 

                                                                               
123 123 123 123 123

123 123 123 123 21 11 22 4 12 21
1 11 4 12 4 11 4 12 123 123

22 22

m m m C m mC m C m D m C m
m m

⎛ ⎞−
= + = − = ⎜ ⎟

⎝ ⎠
.           (3.22) 

For the normalization of the continuous wavefunctions, the technique described in 

the Appendix of Ref. [21] was used, since δ function normalization was not valid due to 

spatial dependence of the potential energy.  
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The absolute values of the coefficients as a function of continuum energy are 

illustrated in Figure 3.10. In the same figure, we observe the oscillatory behavior of the 

coefficients due to the resonances formed in the continuum region, due to constructive 

interference of incident and reflected waves.   
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Figure 3.10: Absolute value of coefficients under 610 V/m  forward bias. 
 
The first 100 continuum wavefunctions of the tilted well are illustrated in Figure 

3.11, along with the ground state wavefunction.   
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Figure 3.11: Continuum wavefunctions (blue) and ground state wavefunction (red) for 

the step quantum well under 610 V/m  forward bias. 
 

F. BOUND-TO-CONTINUUM TRANSITIONS IN A QUANTUM WELL 

1. Fermi’s Golden Rule 

It was shown by Enrico Fermi [9], that the transition probability W of a quantum 

system from an initial state I to a final state F is given by: 

       ( )
22

I F F p I F I
F

W V E Eπ δ ω→ = Ψ Ψ − −∑ h
h

,                             (3.23) 

where  FΨ  and IΨ  are the final and the initial wavefunctions, respectively, FE and IE  

the associated energies, pV is the interaction potential and ωh  the interaction photon 

energy. The photon interaction potential in dipole approximation is given by [2]: 

                      
1/ 2

* 2
p

p e
o

IeV p
m c

ε
ε εω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

h r ,                                               (3.24) 

where e is the electron charge, *m the electron effective mass, pI is the incident photon 

flux, andoε ε characterize the electric permittivity, c is the speed of light, ω  is the 
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frequency of the photon, ep  defines the momentum of the electron and εr  is the 

polarization vector of the photon. 

2. Oscillator Strength 

The oscillator strength oscf  for a transition from an initial state to a final state is 

defined as [1]: 

       ( ) ( ) ( ) ( )2

1

* *2 *2 2 z

osc F I F I I Fz

m mf E E z E E z z z dz= − = − Ψ Ψ∫h h
,           (3.25) 

where  FE  and FΨ are the final energy and wavefunction, respectively, IE  and IΨ  are 

the initial energy and wavefunction, *m  is the effective mass, h is Plank’s constant 

and z is the direction of growth. 

 Generally the oscillator strength is an indication of how strong the transition is, 

which directly translates to the performance of a QWIP detector.  

 Figure 3.12 shows the calculated oscillator strength for the step quantum well, 

under zero bias, using the wavefunctions derived in Subsection D-2.  The energy was 

measured from the ground state.  
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Figure 3.12: Oscillator strength versus energy for bound-to-continuum transitions in an 

unbiased 1x xIn Ga As−  step quantum well. 
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Under an applied electric field the oscillator strength can be calculated using the 

wavefunctions derived in Subsection D-3.  Figure 3.13 shows the oscillator strength for 
610  V/m  applied bias.  
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Figure 3.13: Oscillator strength under 610  V/m applied bias vs. energy. 
 

The oscillatory behavior of the oscillator strength is due to the constructive inter-

ference of incident and reflected electron waves, from the tilted left quantum well barrier.  

This oscillatory behavior becomes denser, as the strength of the electric field was 

reduced, as illustrated in Figure 3.14.  As the bias approaches zero, the oscillations be-

come closer and closer, to form a continuous curve as shown in Figure 3.12. 
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Figure 3.14: Oscillator strength under 47 10  V/m× applied bias vs. energy. 
 

The origin of oscillations as a function of electric field can be understood by esti-

mating the amount of energy change ( )E∆ required for obtaining path difference between 

incident and reflected electron waves ( )z∆ by one wavelength.  This can be estimated by 

using the linear potential generated by the electric field as: 

                                            E e F z∆ = ∆ .                                                       (3.26) 

It can be seen from Equation (3.26) that as the electric field becomes smaller, the 

amount of energy change needed to get one wavelength path difference reduces.  This 

implies that the constructive interference occurs at a rapid rate, as the energy of the elec-

tron goes up, resulting a rapid oscillation of the oscillator strength.  

3. Absorption Coefficient 

The performance of photodetectors can be conveniently characterized using the 

absorption coefficient which is defined as: 
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( ) ( )number of transitions per unit volume and time
incident energy flux

h
a h

ω
ω

×
= .          (3.34) 

For a QWIP detector the absorption coefficient can be expressed using the density 

of states and oscillator strength as [1, 2]: 

       ( )
( ) ( ) ( )

2
2 2 *

2 2*
0

2
2

d b
F I

r F b

N e L m da h
dxm n c E V

ω
ε ω

= Ψ Ψ
−

h

h
,                       (3.35) 

where  dN is the doping density in the well, L is the total length of the doped region, *
bm  

and bV  are the barrier effective mass and potential height, respectively, and ωh  is the 

incident photon energy.  Figure 3.15 shows the oscillator strength and the density of 

states for the step quantum well under a 610  V/m electric field. 

 
Figure 3.15: Oscillator strength and density of states vs. energy. 

 
 The absorption coefficient was calculated for the step quantum well assuming the 

doping density to be 18 -310  cm and the result is shown in Figure 3.16. The calculated 
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absorption coefficient is in good agreement with that typically observed experimentally 

( -1800 cm� ) [22]. 
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Figure 3.16: Absorption coefficient vs. photon energy under  610  V/m  applied bias. 

 
G. COMPARISON WITH EXPERIMENT 

The step quantum well structure used for the simulation in the present Chapter 

was fabricated and characterized by Touse [26] and Yeo [27] using photocurrent spec-

troscopy.   In this section, the measured responsivity of the detector is compared with the 

simulated responsivity using the absorption coefficient and outgoing probability current 

of the excited electron. 

1. Responsivity 
For a detector the normalized voltage or current signal per incident optical power 

is called responsivity [24]. We can express the responsivity R as: 

                                       eR g
h

η
ν

= ,                                                           (3.36) 

where η  is the quantum efficiency, e is the electron charge, hν is the average photon 

energy and g is the photoconductive gain.  



40 

Taking into account all the geometrical and optical factors, the test detector re-

sponsivity can be estimated using [23]:  

                           detdet

det det

2 ref

ref ZnSe GaAs

I R d SwIR
P V A T T

⋅ ⋅ ⋅ ⋅
= =

⋅ ⋅ ⋅
,                                       (3.37) 

where detI refers to the photocurrent, detP is the optical power incident on the test detector 

power, refR is the responsivity of the reference detector, d Sw⋅ refers to the reference de-

tector surface area, refV is the generated by the reference detector voltage, detA is our own 

detector surface area, ZnSeT and GaAsT are the transmittances of  Zinc Selenide and Gallium 

Arsenide, respectively, of the cold head where the detector was situated.  

During the experiment the temperature was kept fixed at 40K, so the photocur-

rents for the test detector under different applied electric fields were measured, and the 

responsivities calculated using Equation (3.37).  

The experimental responsivity as a function of wavelength, for the step quantum 

well detector, for a set of biases is illustrated in Figure 3.17. The shifting of the peak po-

sition in Figure 3.17 is mainly due to the linear Stark effect in step quantum well as ex-

plained in Chapter II. 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.17: Experimental responsivity vs. wavelength at 40 KT =  (From [27].) 



41 

2. Absorption 

The normalized absorption coefficients calculated using the approach described in 

Subsection F-3 of the present Chapter, as a function of wavelength for the bias voltages 

used in the experiment are shown in Figure 3.18.  The shifting of the peak position can be 

clearly seen from Figure 3.18. 
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Figure 3.18: Computer simulation of absorption vs. wavelength for the step quantum 

well structure.  
 
3. Photocurrent 
The photocurrent density can be estimated by taking the product of quantum effi-

ciency with the outgoing current density of the excited electron.  The current density as-

sociated with a quantum state can be calculated using the wavefunction [24], as:    

                                
*

*

2
e d dJ

mi dx dx
⎛ ⎞Ψ Ψ

= Ψ −Ψ⎜ ⎟
⎝ ⎠

h
,                                           (3.38) 

where h  is the reduced Plank’s constant, m  is the electron mass, x  is the direction 

where the current is evaluated and Ψ is the wavefunction.  

Assuming the wavefunction has the following form: 
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                                              CAi DBi+ ,                                                         (3.39) 

and after some algebraic effort, the quantity in the bracket of Equation (3.38) can be ob-

tained as: 

                            ( )( )
*

* * * ' 'd d C D D C AiBi Ai Bi
dx dx
Ψ Ψ

Ψ −Ψ = − − ,                            (3.40) 

Using the Wronskian (W) of the two Airy functions [40] the second bracket in 

Equation (3.40) can be further simplified as: 

                      ' '
' '

1Ai Bi
W AiBi Ai Bi

Ai Bi π
= = − = .                                       (3.41) 

The current density given by Equation (3.38) can be expressed using the result in 

Equation (3.41) as: 

                                 ( )* *

2
e

J C D D C
i mπ β

= −
h

,                                            (3.43) 

where β  is given by Equation (2.20), and appears in the denominator of Equation (3.43) 

due to the argument of the Airy functions of Equation (3.39),which according to Equation 

(2.39) is: 

                                                         

Ex
α

β

⎛ ⎞+⎜ ⎟
⎝ ⎠− .                                                          (3.44) 

Equation (3.43) represents the total current density which should be zero, since 

the probability density is time independent [20].  This requires that the coefficients 

 and C D must be related as: 

                                         * * C D D C× = × .                                                    (3.45) 

In our simulations, it was found that this condition holds for all the regions of the 

quantum well structure. This indicates that the current density given in Equation (3.43) 

consists of two identical components, (a) outgoing current and (b) incoming current, 

which cancel to give zero net current.  
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In order to estimate the photocurrent after excitation of the electron from the 

ground state, it is necessary to extract the outgoing component from the current density 

that is given in Equation (3.43). The incoming and outgoing components of the current 

are not obvious in the case of the linear combinations of Airy functions, while they are 

usually obvious for exponential wavefunctions obtained for the zero bias case.  

However, it can be shown that the linear combinations shown in Equations (3.46) 

and (3.47) produce pure outgoing and incoming currents by substituting in Equation 

(3.38):  

                                            out Ai i BiΨ = − ,                                                    (3.46) 

                                            in Ai i BiΨ = + .                                                     (3.47) 

The magnitudes of current density corresponding to the outgoing and incoming 

wavefunctions are given by: 

                                       *

2out
dJ

mi dx
Ψ⎛ ⎞= Ψ⎜ ⎟

⎝ ⎠
h ,                                                (3.48) 

                                       
*

2in
dJ

mi dx
⎛ ⎞Ψ

= −Ψ⎜ ⎟
⎝ ⎠

h .                                               (3.49) 

Under a positive bias, the photoexcited electrons moves to the right of the quan-

tum well and the wavefunction in outermost right region, given in Equation (3.50) can be 

used to determine the outgoing current. 

                                         4 4 4C Ai D BiΨ = + ,                                                  (3.50) 

where 4C and 4D are the coefficients defined in Subsection D-2 of Chapter II . 

Equation (3.50) can be rewritten using the outgoing and incoming wavefunctions 

given in Equations (3.46) and (3.47) as: 

                                        4 out inC DΨ = Ψ + Ψ ,                                                (3.51) 

where the constants C and D are related to the coefficients 4C and 4D ,since: 

                                            4 4

2
C iDC −

= ,                                                       (3.52) 

                                            4 4

2
C iDD +

= .                                                       (3.53) 
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The corresponding currents are given by:  

                                   
2

4 4

2out
C i DJ

mπ β
+

=
h ,                                               (3.54) 

                                   
2

4 4

2in
C i DJ

mπ β
−

=
h .                                                (3.55) 

The photocurrent density was calculated using the outgoing current given in 

Equation (3.54) and the quantum efficiency Lη α= as: 

                                       
2

4 4

2
C i DJ

m
η
π β

−
=

h ,                                           (3.56) 

whereα is the absorption coefficient and L is the total length of the quantum well struc- 

ture. 

Figure 3.19 shows the calculated photocurrent for the biases used in the experi-

mental measurement of the step quantum well detector. 
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Figure 3.19: Calculated photocurrent vs. wavelength.  
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Figure 3.20 compares the absorption and normalized photocurrent density with 

the measured normalized responsivity at 0.81 V forward bias. It can be observed from 

this figure that the simulated photocurrent density provides a good description of the ex-

perimental observations.  The absorption is found to be higher than the photocurrent den-

sity in the longer wavelength regime.  This is mainly due to the difficulty of extraction of 

electrons after excitation due to the triangular barrier on the right side of the biased quan-

tum well. 
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Figure 3.20: Measured responsivity, simulation photocurrent density and absorption vs. 

photon wavelength for 0.81 V forward bias.   
 

H. SUMMARY 

In this chapter, we presented the calculation of absorption and photocurrent den-

sity for the step quantum well detector under an external bias.  The calculated results 

were compared with the experimental data and found to provide a good agreement which 

validated the accuracy of the model employed.  In the following chapter, we will present 

a simulation code based in EKF for angle only tracking using an IR sensor. Ideas such as 

initialization using two synchronous bearing and EKF angle tracking will be developed 

and finally, selected results will be presented. 
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IV. PERFORMANCE OF QUANTUM WELL INFRARED 
PHOTODETECTORS IN TARGET TRACKING  

A. INTRODUCTION 

Quantum well infrared photodetectors constitute a tool for target tracking since 

they offer the advantage of passivity. As we have discussed in the previous chapters, tak-

ing advantage of our ability to design multi-wavelength tunable infrared detectors, we 

can combine them with batch processing or recursive type algorithms in order to track 

targets passively.  

In this chapter we simulate in Matlab the scenario of bearing-only tracking of a 

target using a recursive algorithm based on the Kalman filter. We investigate the bearing- 

only tracking problem in two main cases, namely tracking a non-maneuvering target and 

tracking a maneuvering target using either one or two sensors.  Since we study only the 

tracking problem, we suppose that the detectors are tuned in such way that they provide 

the highest contrast and avoid the extensive clutter so they generate relatively reliable 

bearings. More analytic information about the coding used can be found in Appendix B. 

Finally the BOT problem is considered trivial since limited information is available 

B. DESCRIPTION OF THE MODEL 

The simulation model and the encounter geometry are illustrated in Figure 4.1. 

          y  

 

 

 

        1θ     …       nθ               '
2θ  

  

    ( )Sensor 1 0,0            ( )Sensor 2 10 km,0       x  

Figure 4.1: Encounter geometry of the Sensors and the target. 
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 Sensor 1 is located at position ( )0,0  of the local coordinate system, while sensor 

2 was placed at ( )10 km,0 . These sensors, since they are IR, can make measurements of 

the bearing of the target only. The first step of the bearing-only tracking using an ex-

tended Kalman filter is the initialization of the filter. Initialization in the case of EKF is 

sufficient if we estimate two positions of the target. This is possible either by taking ad-

vantage of the observer and target relative trajectory in the case that we use one sensor, or 

by assuming synchronous multiplatform bearings. BOT using asynchronous bearings will 

not be examined. So without the loss of generality in our case, we assume two stationary 

IR observers and synchronous initialization and tracking bearings. 

C. INITIAL ESTIMATE OF THE TARGET POSITION 

The initial estimate of the target position is determined using two sets of time syn- 

chronous bearings. We have used the fact that, in order to initialize our filter, we do not 

need to have the exact position of the target, only a reliable estimate of its position. The 

simplified geometrical problem is illustrated in Figure 4.2. 

    y  

                       2 2( , )C x y  

 

          1 1( , )B x y                   3 3( , )D x y   

                     4 4( , )K x y  

                           

 

 
         1θ +  1θ  1θ −                 2θ +          2θ     2θ −                 x   

      O   ( )Sensor 1 0,0      A   ( )Sensor 2 10 km,0          

Figure 4.2: Encounter geometry of the initialization problem. 
  

We suppose that the first set of the synchronous bearings from our IR sensors are 

1θ and 2θ  as shown in Figure 4.2. The reliability of the bearings depends on the quality of 
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the sensors, the sensors-target geometry and the distance between the sensors and the tar-

get. Since we examine the general case of the problem of initialization, we suppose that 

the sensors we use give a random error in bearing of maximum magnitude of approxi-

mately 2° . This error is considered very high for sensors designed to provide only the 

bearing, and it can be positive or negative.  

So, examining sensor 1, the angular real position of the target must be between:    

                                   ( )1 1,true truex yθ θ− +≤ ≤ ,                                                      (4.1) 

where   

                                1 1 rand(0,1) 2θ θ− = − ⋅ ° ,                                                     (4.2) 

                                1 1 rand(0,1) 2θ θ+ = + ⋅ ° ,                                                     (4.3) 

while bearings 1θ −  and  1θ +  are shown in Figure 4.2 with the blue dashed line.  

Treating the sensor 2 case, using the methodology used for sensor 1, we observe 

that the target must be inside the quadrilateral BCDK . In order to find the coordinates of 

BCDK we apply Euclidian geometry to each triangle of Figure 4.2. So, examining trian-

gleOBA and applying the sine law, we get: 

                            
1
31 2 sin( )sin( ) sin( )

AB OB OA
θθ π θ+ +−

= = ,                                          (4.4) 

where AB , OB , OA  are the lengths of the sides of the triangle as shown in Figure 4.2 

while 1
3θ  refers to the third angle of the triangle, namely angle �OBA . From Equation 

(4.4) we can find the length  OB  as: 

                                       2
1
3

sin( )
sin( )

OB OA π θ
θ

+−
= ,                                                 (4.5) 

where OA  is the distance of the two sensors while angle 1
3θ   is obtained since:  

                              1
3 1 2 2 1( )θ π θ π θ θ θ+ + + += − − − = − .                                          (4.6) 

Obtaining the length of OB  we can find the coordinates using: 

                  2 1
1 1

2 1

sin( )cos( )cos( )
sin( )

x OB OA θ θθ
θ θ

+ +
+

+ +
= =

−
,                                     (4.7) 
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                        2 1
1 1

2 1

sin( )sin( )sin( )
sin( )

y OB OA θ θθ
θ θ

+ +
+

+ +
= =

−
.                                     (4.8) 

We observe that finding the coordinates of point B involves only the sensor dis-

tance and the uncertainty bearings obtained by the two sensors. Following the same pro-

cedure the coordinates of pointC are given by: 

                     2 1
2 1

2 1

sin( ) cos( )cos( )
sin( )

x OC OA θ θθ
θ θ

− +
+

− +
= =

−
,                                 (4.9) 

                          2 1
2 1

2 1

sin( )sin( )sin( )
sin( )

y OB OA θ θθ
θ θ

− +
+

− +
= =

−
.                                 (4.10) 

For the coordinates of point D our calculations give: 

                     2 1
3 1

2 1

sin( ) cos( )cos( )
sin( )

x OD OA θ θθ
θ θ

− −
−

− −
= =

−
,                               (4.11) 

                          2 1
3 1

2 1

sin( )sin( )sin( )
sin( )

y OD OA θ θθ
θ θ

− −
−

− −
= =

−
,                                (4.12) 

while for point K  

                     2 1
4 1

2 1

sin( )cos( )cos( )
sin( )

x OK OA θ θθ
θ θ

+ −
−

+ −
= =

−
,                               (4.13) 

                          2 1
4 1

2 1

sin( )sin( )sin( )
sin( )

y OK OA θ θθ
θ θ

+ −
−

+ −
= =

−
.                                (4.14) 

The next step involves determination of the maximum between the two diagonal 

lengths BD  andCK . This determination is used for initialization of the covariance ma-

trix P  of the extended Kalman filter. The determination is illustrated in Figure 4.3. 

                   y                          2 2( , )C x y  

                                            

                       1 1( , )B x y            φ  

  

         4(0, )y            2 4( , )M x y                           3 3( , )D x y  

        4 4( , )K x y        x  

                                         2( ,0)x  

Figure 4.3: Encounter geometry for the determination of the diagonal lengths. 
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The diagonal length can be extracted either using the angle φ  of the orthogonal 

triangle MCK whose inverse tangent is: 

                                   4 21

2 4

tan x x
y y

φ −
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
,                                                      (4.15) 

while the length CK  according to this approach: 

                              
( )4 2

4 21

2 4

sin tan

x x
CK

x x
y y

−

−
=

⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

,                                             (4.16) 

or using the well known approach for finding length: 

                              ( ) ( )2 2
1 3 1 3BD x x y y= − + − .                                           (4.17) 

Since the target can be anywhere inside the quadrilateral we assume without the 

loss of generality that it is located at: 

                                   1 2 3 4

4t
x x x xx + + +

= ,                                                     (4.18) 

                                   1 2 3 4

4t
y y y yy + + +

= .                                                    (4.19) 

We have implemented the above considerations in Matlab and we have produced 

Figure 4.4, for the target initialization: 
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Figure 4.4: Matlab initialization using two sets of synchronous bearings. 
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The position of the target during the first and the second time that the bearings 

took place is illustrated in Figure 4.5:  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: The position of the target is located inside the uncertainty bearing box. 
 

D. EXTENDED KALMAN FILTERING CONSIDERATIONS 

1. General 
The problem considered in the bearing-only tracking is that the target motion is 

modeled in linear Cartesian coordinates, while the measurements are in polar coordinates. 

We begin by assuming the following non-linear discrete-time system: 

                          
( ) ( )( ) ( )( )

( ) ( )( )
1 , , ,

, ,
k

k

x k f k x k g k x k v

z k h k x k ω

+ = +

= +
                                   (4.20) 

where x provides the target position data, z is the measurement, f and h are non-linear 

vector-valued functions, g  is a non-linear matrix valued function and kv , kω  are uncor-

related Gaussian processes. 

 According to [28-30], it can be proved that the prediction using an extended Kal-

man filter is given by: 

                                          ( )1| |ˆ ˆ, ,k k k kx f k x+ =                                                    (4.21) 

                                      1| |k k k k k k k k kP F P F G Q G+ = +′ ′ ,                                          (4.22) 
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where 1|ˆk kx +  is the state vector at time 1k + given its value at time k , 1|k kP +  is the cova- 

riance prediction matrix at time 1k + given its value at time k , kF  and kF ′  are the gradient 

and the transpose gradient of ( )|ˆ, k kf k x , kG and kG′  are the zero order term for ( )|ˆ, k kg k x  

evaluated at |ˆk kx  and its transpose, respectively and, finally, kQ is a matrix related to the 

noise inserted in the system.  

We define kQ according to [27] as: 

                                                  2
k iQ q Q=                                                         (4.23) 

where iQ is the sampling interval matrix and q arbitrary chosen parameter of the design 

[30]. 

The update of the measurement according to [28, 29], can be expressed as: 

                           ( )( )1| 1 1| 1 1 1|ˆ ˆ ˆ1, ,k k k k k k k kx x K z h k x+ + + + + += + − +                           (4.24) 

               ( ) ( )1| 1 1 1 1| 1 1 1 1 1k k k k k k k k k k kP I K H P I K H K H K+ + + + + + + + + +
′= − − + ′ ,            (4.25) 

where 1kz +  is the measurement at time 1k + , I stands for the associated to the problem 

identity matrix, 1kH +  is the gradient of  ( )1|ˆ1, k kh k x ++  and 1kK +  is defined as: 

                              ( ) 1

1 1| 1 1 1| 1 1k k k k k k k k kK P H H P H R
−

+ + + + + + += +′ ′ ,                           (4.26) 

where  1kR +  is associated to the uncertainty of the measurement at time 1k + . 

2. Bearing Tracking Expansion of EKF 

The initialization in the EKF BOT case provides the vector of the two positions of 

the target after the second set of the synchronous bearings. This vector is: 

                                       ( )2 2 1 1  Tx x y x y= ,                                                     (4.27) 

where 2x , 2y , 1x , 1y  are the estimated possible positions of the target obtained during the 

initialization process by the two sets of the tautochronous bearings. Since our state vector 

is in the form: 

                                         ( )ˆ    
T

x yx x v y v= ,                                                     (4.28) 
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where x , y is the position of the target and xv , yv the associated velocity, we use matrix D  

to obtain: 

                                                  x̂ Dx= ,                                                           (4.29) 

where the matrix D  is defined as: 

                      

1 0 0 0
1/ 0 1/ 0

0 1 0 0
0 1/ 0 1/

dt dt
D

dt dt

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

,                                        (4.30) 

where dt  is the time between the measurements. 

The initialization of the covariance matrix P involves the maximum diagonals of 

the quadrilaterals and it is given according to [29, 30] by: 

                          

2
2

2
2

2
1

2
1

0 0 0
0 0 0
0 0 0
0 0 0

initial

d
d

P
d

d

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

,                                                (4.31) 

where 1d  is the maximum distance of the diagonals of the  quadrilateral formed by the 

first set of bearings, while 2d  refers to the second. During the EKF update and for the 

rest of the calculation the covariance matrix P  is obtained by Equation (4.25). 

The bearing-only measurements are θ  angle measurements, so they can be ex-

pressed by:   

                                                    ( ) ( )( ) kz k x kθ ω= + .                                               (4.32) 

where 

                                                 ( )( ) arctan k

k

xx k
y

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.                                              (4.33) 

The gradient of ( ) ( )h x xθ=  for the bearing-only measurements can be expressed 

by the following matrix: 

                                ( )
2 2 2 2

0 0k

x y xH
x x y x y

θ∂ ⎛ ⎞
= = −⎜ ⎟∂ + +⎝ ⎠

,                              (4.34) 

where x and y  are obtained by Equation  (4.27). 
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3. Maneuvering Target Considerations 

According to [29] and [30], in the maneuvering case target, the equations of 

measurement and update do not change. However, the transition matrices should be cal-

culated as: 

                 ( )

sin( ) 1 cos( )1 0

0 cos( ) 0 sin( )
1 cos( ) sin( )0 1

0 sin( ) 0 cos( )

jF

ω ω
ω ω
ω ω
ω ω

ω ω
ω ω

∆ − ∆⎛ ⎞
⎜ ⎟
⎜ ⎟

∆ − ∆⎜ ⎟= ⎜ ⎟− ∆ ∆
⎜ ⎟
⎜ ⎟
⎜ ⎟∆ ∆⎝ ⎠

,                                 (4.35) 

where  ω  is the turn rate and ∆  is the sampling interval. The determination of ( )jF  is 

possible by application of simple target motion analysis for a rotating mass around a 

complete circle. The turn can be either clockwise or anticlockwise. 

4. Trajectory Error and Measurement-Angle Chi-square Formulation 
The error is determined by the difference between the trajectory that the EKF pre-

dicts and the real trajectory of the target: 

                                               
ˆ
ˆ

error real

error real

x xx
y y y

⎛ ⎞ ⎛ ⎞⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

,                                                (4.36) 

where  errorx , errory  are the difference between the predicted by the EKF x̂ , ŷ and the real 

coordinates realx , realy of the position of the target. As a consequence the total distance 

error is obtained by: 

                                      ( )Total Error  error
error error

error

x
x y

y
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.                                   (4.37) 

The Chi-Square values of the angle allow us to observe the angle variations dur-

ing the measurements. These values according to [27] are obtained by: 

                                     ( ) ( )2 1ˆˆ ˆchi   ( )z z H P H R z z−′= − ⋅ ⋅ ⋅ + ⋅ −′ ,                            (4.38) 

where  z  is defined by Equations (4.32) and (4.33), ẑ is the non-linear angular measure- 

ment, H  is the gradient defined by Equation (4.34), P  is the covariance matrix and R  

involves the error of the measurement. In every sampling interval the 2chi  value changes 

since the measured angle of the target is different. 
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E. PROBLEM FORMULATION AND RESULTS 

The mathematical considerations above are the basis of tracking a moving target 

both in a straight line and during a turn using either one or two sensors, with or without 

the presence of measurement noise. For the purpose of this thesis we simulated each case 

separately in Matlab, although only selected cases will be presented. Analytic informa-

tion for the all the cases can be found in Appendix C. In our simulation we assumed that 

the position of the sensors and the bearing measurements were according to Figure 4.2. 

The initialization always takes place using two sensors since these are assumed station-

ary, but it is possible to use only one if a sensor motion is assumed. In this case the 

mathematical equations should be corrected in such way that the relative trajectory of the 

target-observer is taken under consideration [29].    

1. Non-Maneuvering Target BOT using One or Two IR Sensors in Noise 
Presence 

In the case of a non-maneuvering target the initialization of the filter takes place 

using both sensors, while during the tracking we can use either one or two without any 

difference in the results. The geometry is illustrated in Figure 4.6.   
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Figure 4.6: True position and track position of straight line moving target using two 

IR sensors in the presence of measurement noise. 
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The error during the tracking and the values of the measurement angle are pre-

sented in Figure 4.7.   

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800
Track Position Errors: B0 Tracking two Sensors,Noise presence,q2 = 1000, accel =0g

Sample number

m
et

er
s

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2
Chi-Squared Values for Measurement Association

Sample number

ra
d

 
Figure 4.7: Track position error and chi-squared values vs. sample number for non-

maneuvering target - two IR sensors in the presence of measurement noise. 
 

In Figure 4.6 we observe that, when we use both sensors for initialization and 

tracking, the filter tracks the flying target almost from the starting point of our simulation 

run until the final point. We have selected a geometry for the simulation which does not 

offer advantage to the EKF since the target flies away from the sensors and the bearing 

angles are not perpendicular. Despite these facts, the filter error generally remains under 

200 m for most of the simulation time, although there is an interval of 40 samples  

where the error increases.  

In Figure 4.7 we also observe that the values of the chi-squared variable remain 

under 0.20 which means that the effort of the filter to correct the bearing angle and, 

hence, to obtain a more accurate position of the target is minimal. This means that the 

filter in unaware that there is a difference between the tracking position and the real posi-

tion of the target. This result was expected since we are simulating a filter that tracks only 
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with angle measurements, so in a case when the EKF is used with radar sensor that pro-

vides range information, these effects are eliminated.    

2. BOT of Low Maneuvering Target using IR Sensors in Noise Presence 

In this case the target turn was simulated according to Equation (4.35). We will 

examine two cases in this category. The first case involves a smooth target turn of not 

more than3 g , while in the other case the target will execute a sharp high g turn. The ge-

ometry for the filter and the target for the first case are shown in Figure 4.8. 
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Figure 4.8: True position and track position of a low g turning target using one IR 

sensor in the presence of measurement noise. 
 

From Figures 4.7 and 4.8 above we conclude that as long as the target flies on a 

straight course the single sensor filter responds positively. When the target starts its turn 

we observe a slow response time from the EKF which results in the loss of the target for 

almost 4km .When the filter realizes that a turn has occurred, it turns sharply seeking for 

the true target track. The track subsequently generated by the EKF parallels the true tar-

get path, matching the true bearing closely but missing in range. So the filter tracks the 

target path only in bearing. This behavior appears because we applied the EKF algorithm 

to track a turning target using only one sensor so, once the sensor loses the real position 
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of a target can only recover the target’s bearing, but not the distance. The error and the 

chi-squared graphs presented in Figure 4.9 supports the previous arguments.    
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Figure 4.9: Track position error and chi-squared values vs. sample number for low g 

maneuvering target - single IR sensor in the presence of measurement noise. 
 

 In Figure 4.9 we observe that using both sensors for initialization and a single 

sensor for tracking results in an increasing error to almost 700 meters before the target 

starts its turn. The filter tracks the target almost from the starting point of our simulation 

run until the final point. The tracking in this case is characterized as low quality since the 

true position of the target after the turn is never obtained. Atsample 28 , as we clearly ob-

serve, the error starts growing and, at the end of the simulation, it becomes almost 

30 km .We also observe that the values of the chi-squared remain under 0.10 when the 

target is out of the turn loop and close to0.50 radians when the target is inside the turn. 

The fact that the values are kept low means that the filter assumes that it is tracking the 

target accurately after the turn. This is true in bearing but not in range. Again since we 

combine the EKF with a single angle tracking sensor, the algorithm is unable to regain 
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the real position. The tracking results become worse when the simulation involves higher 

random errors and sharper turns, as we will present. 

To improve the performance in the case of a3g turn, we employed both sensors in 

the tracking effort. The results are shown in Figures 4.10 and 4.11. 
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Figure 4.10: True position and track position of a low g turning target using two IR 
sensors in the presence of measurement noise. 
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Figure 4.11: Track position error and chi-squared values vs. sample number for low g 

maneuvering target – two IR sensors in the presence of measurement noise. 
 

We observe that using the second sensor has improved the tracking conditions; 

namely, it has reduced the resulting error from 30km to almost 4km . If the simulation 

was free to run for a longer sampling time, the real position and the tracking position 

would eventually converge. At the same time the chi squared values were found almost 

the same. 

3. BOT of High Maneuvering Target using IR Sensors in Noise Pres-
ence. 

We present two sub-cases in BOT of a high maneuvering target. Firstly, the concept 

of EKF angle tracking using one sensor. In this case, a turn of no more than 9 g is pre-

sented since, with the particular geometry and with the particular initialization bearings 

and sampling time, higher turns result in a breakdown of the EKF algorithm. So employ-

ing a 9 g turn of a target, which is moving with velocity339 m/s , results to the geometry 

of Figure 4.12. 
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Figure 4.12: True position and track position of a high g turning target using one IR 

sensor in the presence of measurement noise. 
 

We observe that the single sensor combined with the EKF tracks the target relia-

bly when we have a straight-line motion, but when the turn takes place it follows with a 

time delay and finally manages to recover the correct bearing tracking. The associated 

error and the values of chi-squared are illustrated in Figure 4.13. 
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 B0 Tracking single Sensor,Noise presence,q2 = 1000, accel =9g

 
Figure 4.13: Track position error and chi-squared values vs. sample number for 

high g maneuvering target – single IR sensor in the presence of measurement noise. 
 

Figure 4.13 shows that the error is kept small before the target starts the turn, it 

grows to almost 8km during the turn, then it reduces due to the convergence of the real 

and the estimate position but finally it grows due to the divergence of the two tracks. The 

chi-squared values are also higher compared to the other cases due to the high g turn, so 

we observe that the values are over 1 during the turn, while for the half of the simulation 

time, they are close to 0.1.       

 Second, in order to obtain more reliable results we employ the second sensor in 

the tracking effort. We expect the performance of our system to be improved similar to 

the results of the low g turning target. In fact, the tracking results turned out to be better 

than expected, meaning that the IR sensors combined with the EKF algorithm track the 

target with small error. The explanation of the reliable tracking is that in this case the tar-

get follows a reverse course towards our system. This means that the distance to our sen-

sor system is reduced, so the suggested rule that the tracking distance should not be much 

higher than the sensor distance is satisfied [30]. The results and the encounter geometry 

are shown in Figures 4.14 and 4.15. 
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Figure 4.14: True position and track position of a high g turning target using two IR 

sensors in the presence of measurement noise. 
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Figure 4.15: Track position error and chi-squared values vs. sample number for high g 

maneuvering target – single IR sensor in the presence of measurement noise. 
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Figure 4.15 illustrates that the error remains high during the turn, but it is also 

significantly reduced compared to all the previous cases. In addition, the filter with the 

two sensors recovers quickly after the turn and seeks the real path of the target. The chi-

squared values are much higher than all the previous cases but they last for shorter sam-

ple periods, which means that the tracking effort is large during the turn and minimal at 

all the other times.   

F. SUMMARY 

We have investigated a classical algorithm applied to two modern sensors. It is 

obvious that the results are significantly improved in the case where two sensors are used 

for tracking. In real applications more than two sensors may be used at the same time. In 

addition, three dimensional cases are examined in the literature [31]. Other techniques not 

explored in the present thesis may also be used. Some alternative methods involve parti-

cle filters [29], and combined IR and radar sensors with EKF application [32].     
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V. CONCLUSIONS AND FUTURE WORK. 

We have modeled the behavior of QWIPs in various conditions of operation 

through a computer algorithm and we have simulated the behavior of an infrared sensor 

in the bearing-only tracking application. Our goal, optimization of the performance of 

QWIPs and their application to target tracking, was achieved by implementing in a com-

puter fundamental quantum mechanical equations and nonlinear control theory, respec-

tively. Our conclusions are summarized per chapter along with suggestions for future 

work. 

A. CONCLUSIONS  
In Chapter II we began with the fundamental quantum mechanical concept, the 

Schrödinger equation. By application of this equation in the quantum structures of inter-

est we studied their behavior. Then, using a well known mathematical technique, the 

method of the transfer matrix (TMM), we were able, not only to have our equations in a 

consistent form, but also to implement them inside the simulation program and study 

them. During the program simulations we were able to observe theoretically predicted 

and experimentally observed concepts, such as tunneling through the quantum well bar-

rier and leakage current. Finally we developed a set of programming functions using as-

ymptotic expressions of Airy’s functions to study the behavior of our structure in the case 

of very low biases. 

Chapter III provided a discussion of the fabricated QWIP. A single quantum well 

of the multi-quantum structure was examined in various cases. Namely, we studied the 

behavior of bound, quasibound and continuous states in the case of forward and reverse 

bias, both above and below the arbitrarily placed threshold and in the case of absence of 

electric field. We examined the concept of bound and continuous coefficients of the 

wavefunctions used in the TMM and we developed their value in every region of the well 

and for the bias used. In addition, we examined the performance of the detector by study-

ing its oscillator strength using characteristic biases and we found the theoretically pre-

dicted rapid oscillations when we apply very low biases. Moreover, we compared the ex-

perimental and the simulation results and we concluded that they match. Finally, we de-

veloped and simulated the concept of photocurrent in the quantum well. 
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Finally, Chapter IV presented the basic concepts of nonlinear extended Kalman 

filtering. We developed the mathematical model of initialization of the filter using two 

sets of synchronous bearings. The algorithm was initialized by the user and, based in that 

geometry, various cases were studied, either using one, or two sensors with and without 

the presence of ambient noise. Results and conclusions were made for the optimal design 

of a bearing only tracking system based on IR sensors.  

B. FUTURE WORK 
There are many concepts based on this work that further research is recom-

mended. For instance, using the simulation program developed, we can design the desired 

QWIP, predicting its behavior in the laboratory. In addition, we can predict the necessary 

bias to observe the theoretically predicted constructive interference oscillations. Further-

more, we can design the optimal quantum well to minimize the quantum tunneling and to 

maximize the photocurrent before testing it in the laboratory. 

Finally, it is recommended to expand the EKF simulation program, using the 

same initialization process, so that the number of the sensors exceeds two. In that way we 

can simulate sensors arrays and the expected tracking results will be better. Furthermore 

we can expand the simulation into three dimensional cases. Concluding, it is strongly 

recommended to study similar cases using particle filters and compare the results with the 

EKF, especially in three dimensional and in terrain mapping cases using synchronous or 

asynchronous bearings.           
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APPENDIX A: QWIP SIMULATION PROGRAMS 

In the present Appendix we present selected programs of the simulation of the 

/InGaAs AlGaAs quantum well. The core of the simulation is E_InGaAs.m. Once this 

program is executed, every other sub-matlab file is called automatically.    

%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
% E_InGaAs 
%LT Psarakis Eftychios Hellenic Navy 
clc 
clear all 
global E E_c 
%defining the constants 
hbar = 1.05557e-34;  %[J*s]  
m0 = 9.10939e-31; %[kg] 
q = 1.60218e-19; %[C] 
F = input('Electric Field in [V/m]:          '); 
% Percentage in region 
x=[0,0.3,0.1,0]; 
% Width of the region 
width=[inf,40,40,inf]; 
ii=4; 
for tt=1:ii 
    %X(i)=input('Percentage of Al (0-1) in region '); 
    %width(i) = input('Give width:  ');       
end 
y = 0;      %Initial value of y & z to correct the logic of the later condition 
z = 0; 
for tt=2:3 
L(1) = width(1)*1e-10;       
L(2) = width(2)*1e-10; 
L(tt+1) = (width(tt)+width(tt+1))*1e-10; 
end 
if F>-2*10^5 & F<10^5 
    %EwellNoBiasAiry 
    EwellsmallBiasAiry 
    %EwellNoBias 
    break 
end 
if F>=10^5 
    for tt=1:4 
      if width(tt)==inf 
         Z_dir(tt)=0; 
      else 
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         Z_dir(tt) = L(tt); 
      end 
    end 
    Z_dir; 
end 
if F<=-2*10^5   
     for tt=1:4 
       if width(tt)==inf 
          Z_dir(tt)=0; 
       else 
          Z_dir(1) = L(3); 
          Z_dir(2) = L(2); 
       end 
       end 
   x=[x(4),x(3),x(2),x(1)] 
end 
Z_dir 
eg(1) = 1.519 + 1.247.*x(1); 
eg(2) = 1.519 - 1.102.*x(2); 
eg(3) = 1.519 - 1.102.*x(3); 
eg(4) = 1.519 + 1.247.*x(4); 
eg=[eg(1) eg(2) eg(3) eg(4)]; 
for tt=1:ii 
if F>0 
    V(tt) = 0.62*(eg(tt) - eg(2)); 
    else 
    V(tt) = 0.62*(eg(tt) - eg(3)); 
end 
m_eff(tt) = 1/((x(tt)/(0.028*m0)) + ((1-x(tt))/(0.067*m0))); 
C(tt) = ((2*m_eff(tt)*q)/((F*hbar)^2))^(1/3); 
end 
for tt=1:ii-1 
sigma(tt) = ((m_eff(tt)*C(tt+1))/(m_eff(tt+1)*C(tt))); 
end 
if F < 0;    
DD = 0; 
V2_ = V(1); 
else 
DD = -F*L(2); 
V2_ = V(1)- F*L(3);   
end 

%&&&&&&&&&&&&&&&&&&&&continous states&&&&&&&&&&&&&&&& 
ac =1; 
n  = 0; 
ll=1; 
%by varing dE we can ajust the number of states found 
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E_c  =min(V(1),V(4))-.03; 
Vb=input('give Vb in eV :'); 
disp('The continuus states energy are:') 
% dE_c = 1.2490e-004; 
dE_c=(Vb-E_c)/1001; 
while E_c < Vb   
E_c = E_c + dE_c; 
for jj=1:4 
eta(jj) = (E_c - V(jj)); 
end 
for jj=1:4 
Alpha(jj) = -C(jj)*(F*Z_dir(jj) + eta(jj)); 
Alphaout(ll,jj)=[Alpha(:,jj)]; 
end 
for jj=1:3 
alpha(1)=0; 
alpha(jj+1)= -C(jj+1)*(F*Z_dir(jj) + eta(jj+1)); 
alphaout(ll,jj+1)=[alpha(:,jj+1)]; 
end 
for jj=1:3 
m11_c=(pi)*(airy(0,alpha(jj+1))*airy(3,Alpha(jj))- 

sigma(jj)*(airy(2,Alpha(jj))*airy(1,alpha(jj+1)))); 
m12_c= (pi)*(airy(2,alpha(jj+1))*airy(3,Alpha(jj)) - 

sigma(jj)*(airy(2,Alpha(jj))*airy(3,alpha(jj+1)))); 
m21_c= (pi)*(sigma(jj)*(airy(0,Alpha(jj))*airy(1,alpha(jj+1))) - 

airy(1,Alpha(jj))*airy(0,alpha(jj+1))); 
m22_c= (pi)*(sigma(jj)*(airy(0,Alpha(jj))*airy(3,alpha(jj+1))) - 

airy(1,Alpha(jj))*airy(2,alpha(jj+1))); 
%checking the output data 
m11out_c(ll,jj)=[m11_c]; 
m12out_c(ll,jj)=[m12_c]; 
m21out_c(ll,jj)=[m21_c]; 
m22out_c(ll,jj)=[m22_c]; 
M_c(:,jj)=[m11_c;m12_c;m21_c;m22_c]; 
end 
%finding Mn 
M12_c=[M_c(1,1),M_c(2,1);M_c(3,1),M_c(4,1)]*[M_c(1,2),M_c(2,2);M_c(3,2),

M_c(4,2)]; 
M23_c=[M_c(1,2),M_c(2,2);M_c(3,2),M_c(4,2)]*[M_c(1,3),M_c(2,3);M_c(3,3),

M_c(4,3)]; 
M123_c=[M_c(1,1),M_c(2,1);M_c(3,1),M_c(4,1)]*[M_c(1,2),M_c(2,2);M_c(3,2)

,M_c(4,2)]*[M_c(1,3),M_c(2,3);M_c(3,3),M_c(4,3)]; 
    disp(E_c) 
    Eout_cont(ac) = E_c; 
    Epsi_cont;   
 hold on 
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   r = 0:.1:width(2)+width(3); 
   plot(r,Eout_cont(ac),'r') 
   text(0,Eout_cont(ac)+.01,['E_',num2str(ac+2),' = 

',sprintf('%4.3f',Eout_cont(ac)),' eV']) 
     plot((X*1e10),(real(Psi1_cont(ac,:)/5e5)+E_c),'k') 
     plot((Y*1e10),(real(Psi2_cont(ac,:)/5e5)+E_c),'k') 
     plot((Z*1e10),(real(Psi3_cont(ac,:)/5e5)+E_c),'k') 
     plot((T*1e10),(real(Psi4_cont(ac,:)/5e5)+E_c),'k') 
ac=ac+1; 
ll=ll+1; 
end 
text(-40,1.15*V(1),['V(1) = ',sprintf('%4.3f',V(1)),' eV']) 
xlabel('X (Angstroms)') 
ylabel('Potential Height (eV)') 
title('Quantum Well') 
%&&&&&&&&&&&&&&&&&Endofcontinuous states&&&&&&&&&&& 
%**********************Ewell2**************************** 
%******************************************************** 
hold on 
x1 = -100:.1:0; 
h1 = 0:.001:V(1); 
plot(x1,(V(1)-F*(x1*1e-10)),'LineWidth',3) 
 
x2 = 0:.1:width(2); 
x3 = width(2):.1:(width(2)+width(3)); 
 
if F > 0 
    h2 = (-F*L(2)):.001:(V(3)-(F*L(2))); 
    h3 = (V(3)-(F*L(3))):.001:(V(1)-(F*L(3))); 
    plot(x3,((V(3)-F*(x3*1e-10))) ,'LineWidth',3) 
end 
 
if F < 0 
    h2 = (-F*L(2)):.001:(V(2)-F*L(2)); 
    h3 = (V(2)-F*L(3)):.001:(V(1)-F*L(3)); 
    plot(x3,((V(2)-F*(x3*1e-10))) ,'LineWidth',3) 
end 
x4 = (width(2)+width(3)):.1:(width(2)+width(3)+100); 
plot(x4,((V(1)-F*(x4*1e-10))),'LineWidth',3) 
plot(x2,(-F*(x2*1e-10)),'LineWidth',3) 
plot(0,h1,'LineWidth',1) 
plot(width(2),h2,'LineWidth',1) 
plot((width(2)+width(3)),h3,'LineWidth',1) 
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% %******************************************************** 
% %*********************BOUND STATES*********************** 
% %******************************************************** 
clear a n ll dE E eta alpha Alpha E; 
a =1; 
n  = 0; 
ll=1; 
dE = 5*10^-4; 
E  = DD; 
%Evaluate the energy from the bottom to the top of the well; 
while E < V2_-dE   
if E > V2_-10^-3 
    dE = 10^-6; 
end 
E = E + dE; 
for tt=1:4 
eta(tt) = (E - V(tt)); 
end 
for jj=1:4 
Alpha(jj) = -C(jj)*(F*Z_dir(jj) + eta(jj)); 
end 
for jj=1:3 
alpha(jj+1)= -C(jj+1)*(F*Z_dir(jj) + eta(jj+1)); 
end 
for jj=1:3 
m11= (pi)*(airy(0,alpha(jj+1))*airy(3,Alpha(jj)) - 

sigma(jj)*(airy(2,Alpha(jj))*airy(1,alpha(jj+1)))); 
m12= (pi)*(airy(2,alpha(jj+1))*airy(3,Alpha(jj)) - 

sigma(jj)*(airy(2,Alpha(jj))*airy(3,alpha(jj+1)))); 
m21= (pi)*(sigma(jj)*(airy(0,Alpha(jj))*airy(1,alpha(jj+1))) - 

airy(1,Alpha(jj))*airy(0,alpha(jj+1))); 
m22= (pi)*(sigma(jj)*(airy(0,Alpha(jj))*airy(3,alpha(jj+1))) - 

airy(1,Alpha(jj))*airy(2,alpha(jj+1))); 
%checking the output data 
m11out(ll,jj)=[m11]; 
m12out(ll,jj)=[m12]; 
m21out(ll,jj)=[m21]; 
m22out(ll,jj)=[m22]; 
M(:,jj)=[m11;m12;m21;m22]; 
end 
%finding Mn 
M12=[M(1,1),M(2,1);M(3,1),M(4,1)]*[M(1,2),M(2,2);M(3,2),M(4,2)]; 
M23=[M(1,2),M(2,2);M(3,2),M(4,2)]*[M(1,3),M(2,3);M(3,3),M(4,3)]; 
M123=[M(1,1),M(2,1);M(3,1),M(4,1)]*[M(1,2),M(2,2);M(3,2),M(4,2)]*[M(1,3),

M(2,3);M(3,3),M(4,3)]; 
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M22 = real(M123(2,2)); %in case we have three matrices 
%checking the output data 
M22out(ll)=[M22]; 
EM22(ll)=[E]; 
%%%%%%%end of check%%%%%%%%%%%%%%% 
z = y; 
y = M22; 
ll=ll+1; 
if z*y < 0         %Determine the approximate eigen energy first 
    n = n +1; 
    if n < 2        %Increase the acuaracy of eigen energy 
        E = E-dE;     
        dE = 1e-6; 
        y = z; 
    end     
end     
if n > 1    
    disp('The ground state energy is:') 
    disp(E) 
    Eout(a) = E;    %Stores energy levels into an array 
    Epsi_bound; 
    dE = 5e-4; 
    n = 0; 
   hold on 
    r = 0:.1:width(2)+(a-1)*width(3); 
    if a < 3 
        plot(r,Eout(a),'r') 
        text(0,Eout(a)+.01,['E_',num2str(a),' = ',sprintf('%4.3f',Eout(a)),' eV']) 
        plot((X*1e10),(real(Psi1_bound(a,:)/5e5)+Eout(a)),'k') 
        plot((Y*1e10),(real(Psi2_bound(a,:)/5e5)+Eout(a)),'k') 
        plot((Z*1e10),(real(Psi3_bound(a,:)/5e5)+Eout(a)),'k') 
        plot((T*1e10),(real(Psi4_bound(a,:)/5e5)+Eout(a)),'k') 
    end     
    a = a+1; 
end 
end 
ZETA; 
%******************************************************** 
%**************oscillator strength*********************** 
%******************************************************** 
for ai=1:ac-1; 
    DE(ai)=(Eout_cont(ai)-Eout); 
    f_oscil(ai)=2*(m_eff(1))/(hbar^2).*DE(ai)*q.*Zeta_final(ai)'; 
end 
figure 
plot(DE,real(f_oscil)) 
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xlabel('\DeltaE') 
ylabel('oscillator strength f') 
title('oscillator strength Vs \DeltaE') 
    for ai=1:ac-1; 
Prod_f_oscil_DOS(ai)=f_oscil(ai).*DOS(ai)*q; 
OSCSTR(ai)=f_oscil(ai).*DOS(ai)*q*dE_c; 
OSCSTR_INTEG=sum(OSCSTR); 
    end 
figure 
plot(DE,real(Prod_f_oscil_DOS)) 
xlabel('\DeltaE') 
ylabel('(oscillator strength)*(density of states)') 
title('oscillator strength multiplied by  density of states Vs \DeltaE') 
disp('The (oscillator strength)*(density of states) integral is') 
round(OSCSTR_INTEG) 
% %******************************************************** 
% %***********************absorption*********************** 
% %******************************************************** 
q = 1.60218e-19; %[C] 
h=6.626*10^-34; 
m_eff(1)=1.0e-031*0.6103; 
N_d=1e24; 
e0=8.85e-12; 
n_r=3.5; 
c=3*10^8; 
Cb_c=pi*(N_d*q*hbar^2)./(2*m_eff(1).^2*e0*n_r*c); 
total_length=380*10^-10; 
for kk=1:ac-1 
beta4=((hbar^2)/(2*m_eff(4)*F))^(1/3); 
%region IV 
quantum_eff=total_length*Cb_c.*Prod_f_oscil_DOS; 
J4R(kk)=hbar/(4*m_eff(4)*pi*abs(beta4))*(b3_cont(kk).*A4(kk)+b3_cont(kk).*(

i*B4(kk))).*conj((b3_cont(kk).*A4(kk)+b3_cont(kk).*(i*B4(kk))))*q; 
% I=J_total*Area; 
end 
J_total=quantum_eff.*J4R'.*q; 
figure 
plot((h*c)./(q*DE),real(J_total)/max(real(J_total)),'b') 
hold on 
plot((h*c)./(q*DE),real(Cb_c*Prod_f_oscil_DOS)./max(real(Cb_c*Prod_f_oscil_

DOS)),'r') 
xlabel('Wavelength-\mum') 
ylabel('Normalized photocurrent, Normalized absorption') 
legend('photocurrent','absorption') 
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%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
% EwellNoBias 
%LT Psarakis Eftychios Hellenic Navy 
hbar = 1.05557e-34;  %[J*s]  
m0 = 9.10939e-31; %[kg] 
q = 1.60218e-19; %[C] 
F =F; 
% Percentage in region 
x=[0,0.3,0.1,0]; 
% Width of the region 
width=[inf,40,40,inf]; 
ii=4; 
y = 0;       
z = 0; 
for tt=2:ii-1 
L(1) = width(1)*1e-10;       
L(2) = width(2)*1e-10; 
L(tt+1) = (width(tt)+width(tt+1))*1e-10; 
end 
eg(1) = 1.519 + 1.247.*x(1); 
eg(2) = 1.519 - 1.102.*x(2); 
eg(3) = 1.519 - 1.102.*x(3); 
eg(4) = 1.519 + 1.247.*x(4); 
eg=[eg(1) eg(2) eg(3) eg(4)]; 
V(1)=0.62*(eg(1)-eg(2)); 
V(2)=0; 
V(3)=0.62*(eg(3)-eg(2)); 
V(4)=0.62*(eg(4)-eg(2)); 
V=[V(1),V(2),V(3),V(4)]; 
for jj=1:4 
    m_eff(jj) = 1/((x(jj)/(0.028*m0)) + ((1-x(jj))/(0.067*m0))); 
end 
for t=1:ii 
      if width(t)==inf 
         Z_dir(t)=0; 
      else 
         Z_dir(t) = L(t); 
      end 
  end 
ac =1; 
n  = 0; 
ll=1; 
%by varing dE we can ajust the number of states found 
E  =max(V(1),V(4)); 
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jj=0; 
Vb=input('give Vb in eV :') 
dE_c=10^-4; 
disp('The continuus states energy are:') 
while E<Vb  
E=E+dE_c; 
    for nn=1:4 
 k(nn)=sqrt((2*m_eff(nn)*(E-V(nn))*q)/hbar^2); 
    end 
    for nn=1:3 
XI(nn)=(k(nn)*m_eff(nn+1))/(k(nn+1)*m_eff(nn)); 
    end 
    for jj=1:3 
m11_c= 1/2*((1+XI(jj))*exp(i*(k(jj)-k(jj+1))*Z_dir(jj))); 
m12_c= 1/2*((1-XI(jj))*exp(-i*(k(jj)+k(jj+1))*Z_dir(jj))); 
m21_c= 1/2*((1-XI(jj))*exp(i*(k(jj)+k(jj+1))*Z_dir(jj))); 
m22_c= 1/2*((1+XI(jj))*exp(-i*(k(jj)-k(jj+1))*Z_dir(jj))); 
M_c(:,jj)=[m11_c;m12_c;m21_c;m22_c]; 
m11out_c(ll,jj)=[m11_c]; 
m12out_c(ll,jj)=[m12_c]; 
m21out_c(ll,jj)=[m21_c]; 
m22out_c(ll,jj)=[m22_c]; 
    end 
%finding Mn 
M21_c=[M_c(1,2),M_c(2,2);M_c(3,2),M_c(4,2)]*[M_c(1,1),M_c(2,1);M_c(3,1),

M_c(4,1)]; 
M32_c=[M_c(1,3),M_c(2,3);M_c(3,3),M_c(4,3)]*[M_c(1,2),M_c(2,2);M_c(3,2),

M_c(4,2)]; 
M321_c=[M_c(1,3),M_c(2,3);M_c(3,3),M_c(4,3)]*[M_c(1,2),M_c(2,2);M_c(3,2)

,M_c(4,2)]*[M_c(1,1),M_c(2,1);M_c(3,1),M_c(4,1)]; 
 
M22_c =real(M321_c(2,2)); 
%checking the output data 
disp(E) 
    Eout_cont(ac) = E; 
    integration_cont;   
hold on 
       r = 0:.1:width(2)+width(3); 
      plot(r,Eout_cont(ac),'r') 
      text(0,Eou_contt(ac)+.01,['E_',num2str(ac),' = 

',sprintf('%4.3f',Eout_cont(ac)),' eV']) 
      plot(reg1*10^10,(real(psi1_cont(ac)/5e5)+Eout_cont(ac)),'k') 
      plot(reg2*10^10,(real(psi2_cont(ac)/5e5)+Eout_cont(ac)),'k') 
      plot(reg3*10^10,(real(psi3_cont(ac)/5e5)+Eout_cont(ac)),'k') 
%         plot(reg4*10^10,(real(psi4_cont(ac)/5e5)+Eout_cont(ac)),'k') 
ac=ac+1; 
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end 
xlabel('X (Angstroms)') 
ylabel('Potential Height (eV)') 
title('Quantum Well') 
%**********************Well****************************** 
%******************************************************** 
hold on 
x1 = -100:.1:0; 
h1 = 0:.001:V(1); 
plot(x1,(V(1)-F*(x1*1e-10))) %,'LineWidth',5) 
x2 = 0:.1:width(2); 
x3 = width(2):.1:(width(2)+width(3)); 
h2 = (-F*L(2)):.001:(V(3)-(F*L(2))); 
h3 = (V(3)-(F*L(3))):.001:(V(1)-(F*L(3))); 
plot(x3,((V(3)-F*(x3*1e-10)))) %,'LineWidth',5) 
x4 = (width(2)+width(3)):.1:(width(2)+width(3)+100); 
plot(x4,((V(1)-F*(x4*1e-10)))) %,'LineWidth',5) 
x5 = 0:.1:(width(2)+width(3)); 
plot(x2,(-F*(x2*1e-10))) %,'LineWidth',5) 
plot(0,h1) %,'LineWidth',8) 
plot(width(2),h2) %,'LineWidth',3) 
plot((width(2)+width(3)),h3) %,'LineWidth',5) 
%************************************************************** 
%************************************************************** 
%********************bound states************************** 
a =1; 
n  = 0; 
ll=1; 
dE = 5*10^-4; 
E  = 0; 
jj=0; 
while E<max(V)  
if E > max(V)-10^-3 
    dE = 10^-6; 
end 
E=E+dE; 
for nn=1:4 
    k(nn)=sqrt((2*m_eff(nn)*(E-V(nn))*q)/hbar^2); 
end 
for nn=1:3 
    XI(nn)=(k(nn)*m_eff(nn+1))/(k(nn+1)*m_eff(nn)); 
end 
for jj=1:3 
m11= 1/2*((1+XI(jj))*exp(i*(k(jj)-k(jj+1))*Z_dir(jj))); 
m12= 1/2*((1-XI(jj))*exp(-i*(k(jj)+k(jj+1))*Z_dir(jj))); 
m21= 1/2*((1-XI(jj))*exp(i*(k(jj)+k(jj+1))*Z_dir(jj))); 
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m22= 1/2*((1+XI(jj))*exp(-i*(k(jj)-k(jj+1))*Z_dir(jj))); 
M(:,jj)=[m11;m12;m21;m22]; 
m11out(ll,jj)=[m11]; 
m12out(ll,jj)=[m12]; 
m21out(ll,jj)=[m21]; 
m22out(ll,jj)=[m22]; 
end 
%finding Mn 
M21=[M(1,2),M(2,2);M(3,2),M(4,2)]*[M(1,1),M(2,1);M(3,1),M(4,1)]; 
M32=[M(1,3),M(2,3);M(3,3),M(4,3)]*[M(1,2),M(2,2);M(3,2),M(4,2)]; 
M321=[M(1,3),M(2,3);M(3,3),M(4,3)]*[M(1,2),M(2,2);M(3,2),M(4,2)]*[M(1,1),
M(2,1);M(3,1),M(4,1)]; 
M22 =real(M321(2,2)); 
%checking the output data 
M22out(ll)=[M22]; 
EM22(ll)=[E]; 
%%%%%%%end of check%%%%%%%%%%%%%%% 
z=y; 
y=M22 ; 
ll=ll+1; 
if z.*y < 0 
    n = n +1; 
    if n < 2        %Increase the acuaracy of eigen energy 
        E = E-dE;     
        dE = 1e-6; 
        y = z; 
    end     
end     
if n > 1 
    disp('The ground state energy is:') 
    disp(E) 
    Eout(a) = E; 
    xx=E; 
    integration; 
    dE = 5e-4; 
    n = 0;     
    hold on 
    r = 0:.1:width(2)+(a-1)*width(3); 
    Eout(a) = E; 
    hold on  
    if a<3 
        plot(r,Eout(a),'r') 
        text(0,Eout(a)+.01,['E_',num2str(a),' = ',sprintf('%4.3f',Eout(a)),' eV']) 
        plot(reg1*1e10,(real(Psi1_bound/5e5)+E),'k') 
        plot(reg2*1e10,(real(Psi2_bound/5e5)+E),'k') 
        plot(reg3*1e10,(real(Psi3_bound/5e5)+E),'k') 
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        plot(reg4*1e10,(real(Psi4_bound/5e5)+E),'k') 
    end 
    a=a+1; 
end 
end 
ZETA1; 
%******************************************************** 
%**************oscillator strength*********************** 
%******************************************************** 
for ai=1:ac-1; 
    DE(ai)=(Eout_cont(ai)-Eout(1)); 
    f_oscil(ai)=2*(m_eff(1))/(hbar^2).*DE(ai)*q.*Zeta_final(ai)'; 
end 
figure(2) 
plot(DE,real(f_oscil)) 
 
xlabel('\DeltaE') 
ylabel('oscillator strength f') 
title('oscillator strength Vs \DeltaE') 
    for ai=1:ac-1; 
Prod_f_oscil_DOS(ai)=f_oscil(ai).*DOS(ai)*q; 
OSCSTR(ai)=f_oscil(ai).*DOS(ai)*q*dE_c; 
OSCSTR_INTEG=sum(OSCSTR); 
    end 
figure(3) 
plot(DE,real(Prod_f_oscil_DOS)) 
xlabel('\DeltaE') 
ylabel('(oscillator strength)*(density of states)') 
title('oscillator strength multiplied by  density of states Vs \DeltaE') 
disp('The (oscillator strength)*(density of states) integral is') 
round(OSCSTR_INTEG) 
 

 
%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
% integration 
%LT Psarakis Eftychios Hellenic Navy 
dx = 10^-11; 
    reg1= -300e-10:dx:0; 
    reg2 = 0:dx:L(1,2); 
    reg3 = L(1,2):dx:L(1,3); 
    reg4 = L(1,3):dx:(L(1,3)+300e-10); 
 
A1=0; 
B1=1; 
A2=M(2,1); 
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B2=M(4,1); 
A3=M21(1,2); 
B3=M21(2,2); 
A4=M321(1,2); 
B4=0; 
psi1_bound=A1*exp(i*k(1)*reg1)+B1*exp(-i*k(1)*reg1); 
psi2_bound=A2*exp(i*k(2)*reg2)+B2*exp(-i*k(2)*reg2); 
psi3_bound=A3*exp(i*k(3)*reg3)+B3*exp(-i*k(3)*reg3); 
psi4_bound=A4*exp(i*k(4)*reg4)+B4*exp(-i*k(4)*reg4); 
integral1=sum((psi1_bound.*conj(psi1_bound))*dx); 
integral2=sum((psi2_bound.*conj(psi2_bound))*dx); 
integral3=sum((psi3_bound.*conj(psi3_bound))*dx); 
integral4=sum((psi4_bound.*conj(psi4_bound))*dx); 
total_integral=integral1+integral2+integral3+integral4; 
b1=(sqrt(total_integral)); 
Psi1_bound=1/b1*psi1_bound; 
Psi2_bound=1/b1*psi2_bound; 
Psi3_bound=1/b1*psi3_bound; 
Psi4_bound=1/b1*psi4_bound; 
Integral1=sum((Psi1_bound.*conj(Psi1_bound))*dx); 
Integral2=sum((Psi2_bound.*conj(Psi2_bound))*dx); 
Integral3=sum((Psi3_bound.*conj(Psi3_bound))*dx); 
Integral4=sum((Psi4_bound.*conj(Psi4_bound))*dx); 
Total_integral=Integral1+Integral2+Integral3+Integral4; 

 
%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
% integration_cont 
%LT Psarakis Eftychios Hellenic Navy 
dx = 10^-11; 
    reg1= -300e-10:dx:0; 
    reg2 = 0:dx:L(1,2); 
    reg3 = L(1,2):dx:L(1,3); 
    reg4 = L(1,3):dx:(L(1,3)+300e-10); 
A1_c(ac)=1/sqrt(2*pi); 
B1_c(ac)=-A1_c(ac)*M321_c(2,1)/M321_c(2,2); 
A2_c(ac)=M_c(1,1)*A1_c(ac)+M_c(2,1)*B1_c(ac); 
B2_c(ac)=M_c(3,1)*A1_c(ac)+M_c(4,1)*B1_c(ac); 
A3_c(ac)=M21_c(1,1)*A1_c(ac)+M21_c(1,2)*B1_c(ac); 
B3_c(ac)=M21_c(2,1)*A1_c(ac)+M21_c(2,2)*B1_c(ac); 
A4_c(ac)=M321_c(1,1)*A1_c(ac)+M321_c(1,2)*B1_c(ac); 
B4_c(ac)=0; 
psi1_cont(ac,:)=A1_c(ac)*exp(i*k(1)*reg1)+B1_c(ac)*exp(-i*k(1)*reg1); 
psi2_cont(ac,:)=A2_c(ac)*exp(i*k(2)*reg2)+B2_c(ac)*exp(-i*k(2)*reg2); 
psi3_cont(ac,:)=A3_c(ac)*exp(i*k(3)*reg3)+B3_c(ac)*exp(-i*k(3)*reg3); 
psi4_cont(ac,:)=A4_c(ac)*exp(i*k(4)*reg4)+B4_c(ac)*exp(-i*k(4)*reg4); 
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%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
% ZETA1 
%LT Psarakis Eftychios Hellenic Navy 
dx = 10^-11; 
    reg1= -300e-10:dx:0; 
    reg2 = 0:dx:L(1,2); 
    reg3 = L(1,2):dx:L(1,3); 
    reg4 = L(1,3):dx:(L(1,3)+300e-10); 
 dim=max(reg4)-min(reg1);  
for kk=1:ac-1 
Zita1(kk,:)=conj(Psi1_bound(1,:)).*reg1.*psi1_cont(kk,:).*dx; 
Zita2(kk,:)=conj(Psi2_bound(1,:)).*reg2.*psi2_cont(kk,:).*dx; 
Zita3(kk,:)=conj(Psi3_bound(1,:)).*reg3.*psi3_cont(kk,:).*dx; 
Zita4(kk,:)=conj(Psi4_bound(1,:)).*reg4.*psi4_cont(kk,:).*dx; 
OSC_integral1(kk,:) = sum(Zita1(kk,:)); 
OSC_integral2(kk,:) = sum(Zita2(kk,:)); 
OSC_integral3(kk,:) = sum(Zita3(kk,:)); 
OSC_integral4(kk,:) = sum(Zita4(kk,:)); 
OSC_finali(kk,:)=(OSC_integral1(kk,:)+ OSC_integral2(kk,:)+ 
OSC_integral3(kk,:)+OSC_integral4(kk,:)); 
Zeta_final(kk,:)=(OSC_finali(kk,:)).*conj(OSC_finali(kk,:)); 
%DOS(kk)=dim./(hbar*pi)*sqrt(m_eff(1)./(2*q*(Eout_cont(kk)-
Eout_cont(1)+0.001))); 
DOS(kk)=1/(hbar*pi)*sqrt(m_eff(1)./(2*q*(Eout_cont(kk)-V(1)+0.0001))); 
end 
 

 
%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
%EwellsmallBiasAiry 
%LT Psarakis Eftychios Hellenic Navy 
if F>0 
    for tt=1:4 
      if width(tt)==inf 
         Z_dir(tt)=0; 
      else 
         Z_dir(tt) = L(tt); 
      end 
    end 
    Z_dir 
else 
     for tt=1:4 
       if width(tt)==inf 
          Z_dir(tt)=0; 
       else 
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          Z_dir(1) = L(3); 
          Z_dir(2) = L(2); 
       end 
       end 
   x=[x(4),x(3),x(2),x(1)]; 
end 
 
eg(1) = 1.519 + 1.247.*x(1); 
eg(2) = 1.519 - 1.102.*x(2); 
eg(3) = 1.519 - 1.102.*x(3); 
eg(4) = 1.519 + 1.247.*x(4); 
eg=[eg(1) eg(2) eg(3) eg(4)]; 
for tt=1:ii 
   if F>0 
    V(tt) = 0.62*(eg(tt) - eg(2)); 
    else 
    V(tt) = 0.62*(eg(tt) - eg(3)); 
    end 
m_eff(tt) = 1/((x(tt)/(0.028*m0)) + ((1-x(tt))/(0.067*m0))); 
C(tt) = (((2*m_eff(tt)*q)/((F*hbar)^2))^(1/3)); 
end 
for tt=1:ii-1 
sigma(tt) = ((m_eff(tt)*C(tt+1))/(m_eff(tt+1)*C(tt))); 
end 
if F < 0;    
DD = 0; 
V2_ = V(1); 
else 
DD = -F*L(2); 
V2_ = V(1)- F*L(3);   
end 
ac =1; 
n  = 0; 
ll=1; 
%by varing dE we can ajust the number of states found 
E_c  =min(V(1),V(4))-.03; 
Vb=input('give Vb in eV :'); 
disp('The continuus states energy are:') 
dE_c = (Vb-E_c)/1001; 
while E_c < Vb   
E_c = E_c + dE_c; 
for tt=1:4 
eta(tt) = (E_c - V(tt)); 
end 
for jj=1:4 
Alpha(jj) = -C(jj)*(F*Z_dir(jj) + eta(jj)); 
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Alphaout(ll,jj)=[Alpha(:,jj)]; 
end 
for jj=1:3 
alpha(jj+1)= -C(jj+1)*(F*Z_dir(jj) + eta(jj+1)); 
alphaout(ll,jj)=[alpha(:,jj)]; 
end 
for jj=1:3 
m11_c= (pi)*(airy(0,alpha(jj+1))*airy(3,Alpha(jj)) - 
sigma(jj)*(airy(2,Alpha(jj))*airy(1,alpha(jj+1)))); 
m12_c= (pi)*(airy(2,alpha(jj+1))*airy(3,Alpha(jj)) - 
sigma(jj)*(airy(2,Alpha(jj))*airy(3,alpha(jj+1)))); 
m21_c= (pi)*(sigma(jj)*(airy(0,Alpha(jj))*airy(1,alpha(jj+1))) - 
airy(1,Alpha(jj))*airy(0,alpha(jj+1))); 
m22_c= (pi)*(sigma(jj)*(airy(0,Alpha(jj))*airy(3,alpha(jj+1))) - 
airy(1,Alpha(jj))*airy(2,alpha(jj+1))); 
%checking the output data 
m11out_c(ll,jj)=[m11_c]; 
m12out_c(ll,jj)=[m12_c]; 
m21out_c(ll,jj)=[m21_c]; 
m22out_c(ll,jj)=[m22_c]; 
M_c(:,jj)=[m11_c;m12_c;m21_c;m22_c]; 
end 
%finding Mn 
M12_c=[M_c(1,1),M_c(2,1);M_c(3,1),M_c(4,1)]*[M_c(1,2),M_c(2,2);M_c(3,2),
M_c(4,2)]; 
M23_c=[M_c(1,2),M_c(2,2);M_c(3,2),M_c(4,2)]*[M_c(1,3),M_c(2,3);M_c(3,3),
M_c(4,3)]; 
M123_c=[M_c(1,1),M_c(2,1);M_c(3,1),M_c(4,1)]*[M_c(1,2),M_c(2,2);M_c(3,2)
,M_c(4,2)]*[M_c(1,3),M_c(2,3);M_c(3,3),M_c(4,3)];  
    disp(E_c) 
    Eout_cont(ac) = E_c; 
    Epsi_cont;   
hold on 
       r = 0:.1:width(2)+width(3); 
       plot(r,Eout_cont(ac),'r') 
        text(0,Eout_cont(ac)+.01,['E_',num2str(ac+2),' = 

',sprintf('%4.3f',Eout_cont(ac)),' eV']) 
      plot((X*1e10),(real(psi1_cont(ac,:)/5e5)+Eout_cont(ac)),'k') 
      plot((Y*1e10),(real(psi2_cont(ac,:)/5e5)+Eout_cont(ac)),'k') 
       plot((Z*1e10),(real(psi3_cont(ac,:)/5e5)+Eout_cont(ac)),'k') 
       plot((T*1e10),(real(psi4_cont(ac,:)/5e5)+Eout_cont(ac)),'k') 
ac=ac+1; 
ll=ll+1; 
end 
text(-40,1.15*V(1),['V(1) = ',sprintf('%4.3f',V(1)),' eV']) 
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xlabel('X (Angstroms)') 
ylabel('Potential Height (eV)') 
title('Quantum Well') 
% %**********************Ewell2**************************** 
% %******************************************************** 
hold on 
x1 = -100:.1:0; 
h1 = 0:.001:V(1); 
plot(x1,(V(1)-F*(x1*1e-10)),'LineWidth',3) 
x2 = 0:.1:width(2); 
x3 = width(2):.1:(width(2)+width(3)); 
if F > 0 
h2 = (-F*L(2)):.001:(V(3)-(F*L(2))); 
h3 = (V(3)-(F*L(3))):.001:(V(1)-(F*L(3))); 
plot(x3,((V(3)-F*(x3*1e-10))) ,'LineWidth',3) 
end 
if F < 0 
h2 = (-F*L(2)):.001:(V(2)-F*L(2)); 
h3 = (V(2)-F*L(3)):.001:(V(1)-F*L(3)); 
plot(x3,((V(2)-F*(x3*1e-10))) ,'LineWidth',3) 
end 
x4 = (width(2)+width(3)):.1:(width(2)+width(3)+100); 
plot(x4,((V(1)-F*(x4*1e-10))),'LineWidth',3) 
plot(x2,(-F*(x2*1e-10)),'LineWidth',3) 
plot(0,h1,'LineWidth',1) 
plot(width(2),h2,'LineWidth',1) 
plot((width(2)+width(3)),h3,'LineWidth',1) 
% *************************************************************** 
%*******************BOUND STATES****************************** 
%************************************************************** 
% clear M22 M22out n ll dE E m11 m12 m21 m22 alpha alphaout  
% clear m11out m12out m21out m22out M12 M23 M123 Alpha Alphaout 
ab =1; 
n  = 0; 
ll=1; 
dE = 5*10^-4; 
E  = DD; 
%Evaluate the energy from the bottom to the top of the well; 
while E < V2_-dE   
 
if E > V2_-10^-3 
    dE = 10^-6; 
end 
E = E + dE; 
for tt=1:4 
eta(tt) = (E - V(tt)); 
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end 
for jj=1:4 
Alpha(jj) = -C(jj)*(F*Z_dir(jj) + eta(jj)); 
Alphaout(ll,jj)=[Alpha(:,jj)]; 
end 
for jj=1:3 
alpha(jj+1)= -C(jj+1)*(F*Z_dir(jj) + eta(jj+1)); 
alphaout(ll,jj)=[alpha(:,jj)]; 
end 
for jj=1:3 
m11=(pi)*(asymptoticAiry(0,alpha(jj+1))*asymptoticAiry(3,Alpha(jj)) - 

sigma(jj)*(asymptoticAiry(2,Alpha(jj))*asymptoticAiry(1,alpha(jj+1)))); 
m12=(pi)*(asymptoticAiry(2,alpha(jj+1))*asymptoticAiry(3,Alpha(jj)) - 

sigma(jj)*(asymptoticAiry(2,Alpha(jj))*asymptoticAiry(3,alpha(jj+1)))); 
m21= 

(pi)*(sigma(jj)*(asymptoticAiry(0,Alpha(jj))*asymptoticAiry(1,alpha(jj+1))) - asymp-
toticAiry(1,Alpha(jj))*asymptoticAiry(0,alpha(jj+1))); 

m22= 
(pi)*(sigma(jj)*(asymptoticAiry(0,Alpha(jj))*asymptoticAiry(3,alpha(jj+1))) - asymp-
toticAiry(1,Alpha(jj))*asymptoticAiry(2,alpha(jj+1))); 

%checking the output data 
m11out(ll,jj)=[m11]; 
m12out(ll,jj)=[m12]; 
m21out(ll,jj)=[m21]; 
m22out(ll,jj)=[m22]; 
M(:,jj)=10^-40*[m11;m12;m21;m22]; 
end 
%finding Mn 
M12=[M(1,1),M(2,1);M(3,1),M(4,1)]*[M(1,2),M(2,2);M(3,2),M(4,2)]; %10^60 
M23=[M(1,2),M(2,2);M(3,2),M(4,2)]*[M(1,3),M(2,3);M(3,3),M(4,3)]; %10^60 
M123=[M(1,1),M(2,1);M(3,1),M(4,1)]*[M(1,2),M(2,2);M(3,2),M(4,2)]*[M(1,3),

M(2,3);M(3,3),M(4,3)]; %10^90  
M22 = real(M123(2,2));  
%checking the output data 
M22out(ll)=[M22]; 
EM22(ll)=[E]; 
%%%%%%%end of check%%%%%%%%%%%%%%% 
ll=ll+1; 
z = y; 
y = M22; 
if z*y < 0         %Determine the approximate eigen energy first 
    n = n +1; 
    if n < 2        %Increase the acuaracy of eigen energy 
        E = E-dE;     
        dE = 1e-6; 
        y = z; 
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    end     
end     
if n > 1   
    disp('The ground state energy is:') 
    disp(E) 
%     disp(M123) 
%     disp(M23) 
    Eout(ab) = E;    %Stores energy levels into an array 
    Epsi_bound1; 
    dE = 5e-4; 
    n = 0;    
hold on 
r = 0:.1:width(2)+(ab-1)*width(3); 
if ab < 3 
plot(r,Eout(ab),'r') 
text(0,Eout(ab)+.01,['E_',num2str(ab),' = ',sprintf('%4.3f',Eout(ab)),' eV']) 
plot((X*1e10),(real(Psi1_bound(ab,:)/5e5)+E),'k') 
plot((Y*1e10),(real(Psi2_bound(ab,:)/5e5)+E),'k') 
plot((Z*1e10),(real(Psi3_bound(ab,:)/5e5)+E),'k') 
plot((T*1e10),(real(Psi4_bound(ab,:)/5e5)+E),'k') 
end      
    ab = ab+1; 
end 
end 
ZETA; 
%******************************************************** 
%**************oscillator strength*********************** 
%******************************************************** 
for ai=1:ac-1; 
    DE(ai)=(Eout_cont(ai)-Eout); 
    f_oscil(ai)=2*(m_eff(1))/(hbar^2).*DE(ai)*q.*Zeta_final(ai)'; 
end 
figure(2) 
plot(DE,real(f_oscil)) 
 
xlabel('\DeltaE') 
ylabel('oscillator strength f') 
title('oscillator strength Vs \DeltaE') 
    for ai=1:ac-1; 
Prod_f_oscil_DOS(ai)=f_oscil(ai).*DOS(ai)*q; 
OSCSTR(ai)=f_oscil(ai).*DOS(ai)*q*dE_c; 
OSCSTR_INTEG=sum(OSCSTR); 
    end 
figure(3) 
plot(DE,real(Prod_f_oscil_DOS)) 
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xlabel('\DeltaE') 
ylabel('(oscillator strength)*(density of states)') 
title('oscillator strength multiplied by  density of states Vs \DeltaE') 
 
disp('The (oscillator strength)*(density of states) integral is') 
round(OSCSTR_INTEG) 
 

 
%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
%Epsi_bound1 
%LT Psarakis Eftychios Hellenic Navy 
warning off 
deltax = 10^-11;    
B4 = 1; 
A4 = 0; 
A3(ab) = 10^40*M(2,3)*B4; 
B3(ab) = 10^40*M(4,3)*B4; 
A2(ab) = 10^80*M23(1,2); 
B2(ab) = 10^80*M23(2,2)*B4; 
% if ab==1 
%     A1(1)=0; 
% else 
   A1(ab) =10^20*M123(1,2); 
% end 
B1 = 0; 
 
if F > 0 
    X = -300e-10:deltax:0; 
    Y = 0:deltax:L(1,2); 
    Z = L(1,2):deltax:L(1,3); 
    T = L(1,3):deltax:(L(1,3)+300e-10); 
else     
    X = L(1,3):deltax:(L(1,3)+300e-10); 
    Y = L(1,2):deltax:L(1,3); 
    Z = 0:deltax:L(1,2); 
    T = -300e-10:deltax:0; 
end 
P1_bound(ab,:) = -C(1).*(F.*X + eta(1)); 
P2_bound(ab,:) = -C(2).*(F.*Y + eta(2)); 
P3_bound(ab,:) = -C(3).*(F.*Z + eta(3)); 
P4_bound(ab,:) = -C(4).*(F.*T + eta(4)); 
 
psi1_bound(ab,:) = (A1(:,ab).*asymptoticAiry(0,P1_bound(ab,:)) + 

B1.*asymptoticAiry(2,P1_bound(ab,:))); 
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psi2_bound(ab,:) = (A2(:,ab).*asymptoticAiry(0,P2_bound(ab,:)) + 
B2(:,ab).*asymptoticAiry(2,P2_bound(ab,:))); 

psi3_bound(ab,:) = (A3(:,ab).*asymptoticAiry(0,P3_bound(ab,:)) + 
B3(:,ab).*asymptoticAiry(2,P3_bound(ab,:))); 

psi4_bound(ab,:) = (A4.*asymptoticAiry(0,P4_bound(ab,:)) + 
B4.*asymptoticAiry(2,P4_bound(ab,:))); 

psi1_bound(ab,:) = 10^0*psi1_bound(ab,:); 
psi2_bound(ab,:) = 10^-100*psi2_bound(ab,:); 
psi3_bound(ab,:) = 10^-100*psi3_bound(ab,:); 
psi4_bound(ab,:) = 10^-100*psi4_bound(ab,:); 
integrand1_bound(ab,:) = (psi1_bound(ab,:).*conj(psi1_bound(ab,:)))*deltax; 
integrand2_bound(ab,:) = (psi2_bound(ab,:).*conj(psi2_bound(ab,:)))*deltax; 
integrand3_bound(ab,:) = (psi3_bound(ab,:).*conj(psi3_bound(ab,:)))*deltax; 
integrand4_bound(ab,:) = (psi4_bound(ab,:).*conj(psi4_bound(ab,:)))*deltax; 
integral1_bound(ab,:) = sum(integrand1_bound(ab,:)); 
integral2_bound(ab,:) = sum(integrand2_bound(ab,:)); 
integral3_bound(ab,:) = sum(integrand3_bound(ab,:)); 
integral4_bound(ab,:) = sum(integrand4_bound(ab,:)); 
finali_bound(ab,:) = integral1_bound(ab,:) + integral2_bound(ab,:) + inte-

gral3_bound(ab,:) + integral4_bound(ab,:); 
b3_bound(ab,:) = 1./(sqrt(finali_bound(ab,:))); 
Psi1_bound(ab,:) = b3_bound(ab,:).*psi1_bound(ab,:); 
Psi2_bound(ab,:) = b3_bound(ab,:).*psi2_bound(ab,:); 
Psi3_bound(ab,:) = b3_bound(ab,:).*psi3_bound(ab,:); 
Psi4_bound(ab,:) = b3_bound(ab,:).*psi4_bound(ab,:); 
Integral1_bound(ab,:)=sum((Psi1_bound(ab,:).*conj(Psi1_bound(ab,:)))*deltax); 
Integral2_bound(ab,:)=sum((Psi2_bound(ab,:).*conj(Psi2_bound(ab,:)))*deltax); 
Integral3_bound(ab,:)=sum((Psi3_bound(ab,:).*conj(Psi3_bound(ab,:)))*deltax); 
Integral4_bound(ab,:)=sum((Psi4_bound(ab,:).*conj(Psi4_bound(ab,:)))*deltax); 

Ttal_integral_bound(ab,:)=Integral1_bound(ab,:)+Integral2_bound(ab,:)+Integral3_boun
d(ab,:)+Integral4_bound(ab,:) 
 

 
%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
%Epsi_cont1 
%LT Psarakis Eftychios Hellenic Navy 
deltax = 10^-11; 
if F>0 
    X = -300e-10:deltax:0; 
    Y = 0:deltax:L(1,2); 
    Z = L(1,2):deltax:L(1,3); 
    T = L(1,3):deltax:(L(1,3)+300e-10); 
    A4(ac) = 1/sqrt(2*pi); 
    B4(ac) = -(M123_c(2,1)/M123_c(2,2))*A4(ac) ; 
    A3(ac) = (M_c(1,3)*A4(ac) + B4(ac)*M_c(2,3)); 
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    B3(ac) = (M_c(3,3)*A4(ac) + B4(ac)*M_c(4,3)); 
    A2(ac) = (M23_c(1,1)*A4(ac)+B4(ac)*M23_c(1,2)); 
    B2(ac) = (M23_c(2,1)*A4(ac)+B4(ac)*M23_c(2,2)); 
    A1(ac) = (M123_c(1,1)*A4(ac) + B4(ac)*M123_c(1,2)); 
    B1(ac) = 0; 
else 
    X = L(1,3):deltax:(L(1,3)+300e-10); 
    Y = L(1,2):deltax:L(1,3); 
    Z = 0:deltax:L(1,2); 
    T = -300e-10:deltax:0; 
    A4(ac) = 1/sqrt(2*pi); 
    B4(ac) = -(M123_c(2,1)/M123_c(2,2))*A4(ac) ; 
    A3(ac) = (M_c(1,3)*A4(ac) + B4(ac)*M_c(2,3)); 
    B3(ac) = (M_c(3,3)*A4(ac) + B4(ac)*M_c(4,3)); 
    A2(ac) = (M23_c(1,1)*A4(ac)+B4(ac)*M23_c(1,2)); 
    B2(ac) = (M23_c(2,1)*A4(ac)+B4(ac)*M23_c(2,2)); 
    A1(ac) = (M123_c(1,1)*A4(ac) + B4(ac)*M123_c(1,2)); 
    B1(ac) = 0;   
end 
P1_cont(ac,:) = -C(1).*(F.*X + eta(1)); 
P2_cont(ac,:) = -C(2).*(F.*Y + eta(2)); 
P3_cont(ac,:) = -C(3).*(F.*Z + eta(3)); 
P4_cont(ac,:) = -C(4).*(F.*T + eta(4)); 
psi1_cont(ac,:) = A1(ac)*asymptoticAiry(0,P1_cont(ac,:)) + 

B1(ac)*asymptoticAiry(2,P1_cont(ac,:)); 
psi2_cont(ac,:) = A2(ac)*asymptoticAiry(0,P2_cont(ac,:)) + 

B2(ac)*asymptoticAiry(2,P2_cont(ac,:)); 
psi3_cont(ac,:) = A3(ac)*asymptoticAiry(0,P3_cont(ac,:)) + 

B3(ac)*asymptoticAiry(2,P3_cont(ac,:)); 
psi4_cont(ac,:) = A4(ac)*asymptoticAiry(0,P4_cont(ac,:)) + 

B4(ac)*asymptoticAiry(2,P4_cont(ac,:)); 
integrand1_cont(ac,:) = (psi1_cont(ac,:).*conj(psi1_cont(ac,:)))*deltax; 
integrand2_cont(ac,:) = (psi2_cont(ac,:).*conj(psi2_cont(ac,:)))*deltax; 
integrand3_cont(ac,:) = (psi3_cont(ac,:).*conj(psi3_cont(ac,:)))*deltax; 
integrand4_cont(ac,:) = (psi4_cont(ac,:).*conj(psi4_cont(ac,:)))*deltax; 
integral1_cont(ac,:) = sum(integrand1_cont(ac,:)); 
integral2_cont(ac,:) = sum(integrand2_cont(ac,:)); 
integral3_cont(ac,:) = sum(integrand3_cont(ac,:)); 
integral4_cont(ac,:) = sum(integrand4_cont(ac,:)); 
finali_cont(ac,:) = integral1_cont(ac,:) + integral2_cont(ac,:) + inte-

gral3_cont(ac,:) + integral4_cont(ac,:); 
b3_cont(ac,:) = 1/(sqrt(finali_cont(ac,:))); 
Psi1_cont(ac,:) = b3_cont(ac,:)*psi1_cont(ac,:); 
Psi2_cont(ac,:) = b3_cont(ac,:)*psi2_cont(ac,:); 
Psi3_cont(ac,:) = b3_cont(ac,:)*psi3_cont(ac,:); 
Psi4_cont(ac,:) = b3_cont(ac,:)*psi4_cont(ac,:); 
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Integral1_cont(ac,:)=sum((Psi1_cont(ac,:).*conj(Psi1_cont(ac,:)))*deltax); 
Integral2_cont(ac,:)=sum((Psi2_cont(ac,:).*conj(Psi2_cont(ac,:)))*deltax); 
Integral3_cont(ac,:)=sum((Psi3_cont(ac,:).*conj(Psi3_cont(ac,:)))*deltax); 
Integral4_cont(ac,:)=sum((Psi4_cont(ac,:).*conj(Psi4_cont(ac,:)))*deltax); 

To-
tal_integral_cont(ac,:)=Integral1_cont(ac,:)+Integral2_cont(ac,:)+Integral3_cont(ac,:)+Int
egral4_cont(ac,:); 
 

 
%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
%Epsi_bound 
%LT Psarakis Eftychios Hellenic Navy 
deltax = 10^-11; 
A4_b = 0; 
B4_b = 1; 
A3_b(a) = M(1,3)*A4_b + M(2,3)*B4_b; 
B3_b(a) = M(3,3)*A4_b + M(4,3)*B4_b; 
A2_b(a) = M23(1,2)*B4_b; 
B2_b(a) = M23(2,1)*A4_b + M23(2,2)*B4_b; 
A1_b(a) = M123(1,2)*B4_b; 
B1_b = 0; 
if F > 0 
    X = -300e-10:deltax:0; 
    Y = 0:deltax:L(1,2); 
    Z = L(1,2):deltax:L(1,3); 
    T = L(1,3):deltax:(L(1,3)+300e-10); 
else     
    X = L(1,3):deltax:(L(1,3)+300e-10); 
    Y = L(1,2):deltax:L(1,3); 
    Z = 0:deltax:L(1,2); 
    T = -300e-10:deltax:0; 
end 
P1_bound(a,:) = -C(1).*(F.*X + eta(1)); 
P2_bound(a,:) = -C(2).*(F.*Y + eta(2)); 
P3_bound(a,:) = -C(3).*(F.*Z + eta(3)); 
P4_bound(a,:) = -C(4).*(F.*T + eta(4)); 
 
psi1_bound(a,:) = A1_b(:,a).*airy(0,P1_bound(a,:)) + 

B1_b.*airy(2,P1_bound(a,:)); 
psi2_bound(a,:) = A2_b(:,a).*airy(0,P2_bound(a,:)) + 

B2_b(:,a).*airy(2,P2_bound(a,:)); 
psi3_bound(a,:) = A3_b(:,a).*airy(0,P3_bound(a,:)) + 

B3_b(:,a).*airy(2,P3_bound(a,:)); 
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psi4_bound(a,:) = A4_b.*airy(0,P4_bound(a,:)) + B4_b.*airy(2,P4_bound(a,:)); 
 
 
psi_1_bound(a,:) = conj(psi1_bound(a,:)); 
psi_2_bound(a,:) = conj(psi2_bound(a,:)); 
psi_3_bound(a,:) = conj(psi3_bound(a,:)); 
psi_4_bound(a,:) = conj(psi4_bound(a,:)); 
 
integrand1_bound(a,:) = (psi1_bound(a,:).*psi_1_bound(a,:))*deltax; 
integrand2_bound(a,:) = (psi2_bound(a,:).*psi_2_bound(a,:))*deltax; 
integrand3_bound(a,:) = (psi3_bound(a,:).*psi_3_bound(a,:))*deltax; 
integrand4_bound(a,:) = (psi4_bound(a,:).*psi_4_bound(a,:))*deltax; 
 
integral1_bound(a,:) = sum(integrand1_bound(a,:)); 
integral2_bound(a,:) = sum(integrand2_bound(a,:)); 
integral3_bound(a,:) = sum(integrand3_bound(a,:)); 
integral4_bound(a,:) = sum(integrand4_bound(a,:)); 
 
finali_bound(a,:) = integral1_bound(a,:) + integral2_bound(a,:) + inte-

gral3_bound(a,:) + integral4_bound(a,:); 
 
b3_bound(a,:) = 1/(sqrt(finali_bound(a,:))); 
 
Psi1_bound(a,:) = b3_bound(a,:)*psi1_bound(a,:); 
Psi2_bound(a,:) = b3_bound(a,:)*psi2_bound(a,:); 
Psi3_bound(a,:) = b3_bound(a,:)*psi3_bound(a,:); 
Psi4_bound(a,:) = b3_bound(a,:)*psi4_bound(a,:); 
 

 
%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
%Epsi_cont 
%LT Psarakis Eftychios Hellenic Navy 
deltax = 10^-11; 
 
if F>0  
    X = -300e-10:deltax:0; 
    Y = 0:deltax:L(1,2); 
    Z = L(1,2):deltax:L(1,3); 
    T = L(1,3):deltax:(L(1,3)+300e-10); 
     
    A4(ac) = 1/sqrt(2*pi); 
    B4(ac) = -(M123_c(2,1)/M123_c(2,2))*A4(ac) ; 
    A3(ac) = (M_c(1,3)*A4(ac) + B4(ac)*M_c(2,3)); 
    B3(ac) = (M_c(3,3)*A4(ac) + B4(ac)*M_c(4,3)); 
    A2(ac) = (M23_c(1,1)*A4(ac)+B4(ac)*M23_c(1,2)); 
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    B2(ac) = (M23_c(2,1)*A4(ac)+B4(ac)*M23_c(2,2)); 
    A1(ac) = (M123_c(1,1)*A4(ac) + B4(ac)*M123_c(1,2)); 
    B1(ac) = 0; 
else 
 
    X = L(1,3):deltax:(L(1,3)+300e-10); 
    Y = L(1,2):deltax:L(1,3); 
    Z = 0:deltax:L(1,2); 
    T = -300e-10:deltax:0; 
     
    A4(ac) = 1/sqrt(2*pi); 
    B4(ac) = -(M123_c(2,1)/M123_c(2,2))*A4(ac) ; 
    A3(ac) = (M_c(1,3)*A4(ac) + B4(ac)*M_c(2,3)); 
    B3(ac) = (M_c(3,3)*A4(ac) + B4(ac)*M_c(4,3)); 
    A2(ac) = (M23_c(1,1)*A4(ac)+B4(ac)*M23_c(1,2)); 
    B2(ac) = (M23_c(2,1)*A4(ac)+B4(ac)*M23_c(2,2)); 
    A1(ac) = (M123_c(1,1)*A4(ac) + B4(ac)*M123_c(1,2)); 
    B1(ac) = 0;   
end 
 
P1_cont(ac,:) = -C(1).*(F.*X + eta(1)); 
P2_cont(ac,:) = -C(2).*(F.*Y + eta(2)); 
P3_cont(ac,:) = -C(3).*(F.*Z + eta(3)); 
P4_cont(ac,:) = -C(4).*(F.*T + eta(4)); 
 
 
psi1_cont(ac,:) = A1(ac)*airy(0,P1_cont(ac,:)) + B1(ac)*airy(2,P1_cont(ac,:)); 
psi2_cont(ac,:) = A2(ac)*airy(0,P2_cont(ac,:)) + B2(ac)*airy(2,P2_cont(ac,:)); 
psi3_cont(ac,:) = A3(ac)*airy(0,P3_cont(ac,:)) + B3(ac)*airy(2,P3_cont(ac,:)); 
psi4_cont(ac,:) = A4(ac)*airy(0,P4_cont(ac,:)) + B4(ac)*airy(2,P4_cont(ac,:)); 

 
psi_1_cont(ac,:) = conj(psi1_cont(ac,:)); 
psi_2_cont(ac,:) = conj(psi2_cont(ac,:)); 
psi_3_cont(ac,:) = conj(psi3_cont(ac,:)); 
psi_4_cont(ac,:) = conj(psi4_cont(ac,:)); 
 
integrand1_cont(ac,:) = (psi1_cont(ac,:).*psi_1_cont(ac,:))*deltax; 
integrand2_cont(ac,:) = (psi2_cont(ac,:).*psi_2_cont(ac,:))*deltax; 
integrand3_cont(ac,:) = (psi3_cont(ac,:).*psi_3_cont(ac,:))*deltax; 
integrand4_cont(ac,:) = (psi4_cont(ac,:).*psi_4_cont(ac,:))*deltax; 
 
integral1_cont(ac,:) = sum(integrand1_cont(ac,:)); 
integral2_cont(ac,:) = sum(integrand2_cont(ac,:)); 
integral3_cont(ac,:) = sum(integrand3_cont(ac,:)); 
integral4_cont(ac,:) = sum(integrand4_cont(ac,:)); 
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finali_cont(ac,:) = integral1_cont(ac,:) + integral2_cont(ac,:) + inte-
gral3_cont(ac,:) + integral4_cont(ac,:); 

 
b3_cont(ac,:) = 1/(sqrt(finali_cont(ac,:))); 
Psi1_cont(ac,:) = b3_cont(ac,:)*psi1_cont(ac,:); 
Psi2_cont(ac,:) = b3_cont(ac,:)*psi2_cont(ac,:); 
Psi3_cont(ac,:) = b3_cont(ac,:)*psi3_cont(ac,:); 
Psi4_cont(ac,:) = b3_cont(ac,:)*psi4_cont(ac,:); 
 
psi1_cont_der(ac,:) = A1(ac)*airy(1,P1_cont(ac,:)) 

+B1(ac)*airy(3,P1_cont(ac,:)); 
psi2_cont_der(ac,:) = A2(ac)*airy(1,P2_cont(ac,:)) + 

B2(ac)*airy(3,P2_cont(ac,:)); 
psi3_cont_der(ac,:) = A3(ac)*airy(1,P3_cont(ac,:)) + 

B3(ac)*airy(3,P3_cont(ac,:)); 
psi4_cont_der(ac,:) = A4(ac)*airy(1,P4_cont(ac,:)) + 

B4(ac)*airy(3,P4_cont(ac,:)); 
Psi1_cont_der(ac,:) = b3_cont(ac,:)*psi1_cont_der(ac,:); 
Psi2_cont_der(ac,:) = b3_cont(ac,:)*psi2_cont_der(ac,:); 
Psi3_cont_der(ac,:) = b3_cont(ac,:)*psi3_cont_der(ac,:); 
Psi4_cont_der(ac,:) = b3_cont(ac,:)*psi4_cont_der(ac,:); 
Integral1_cont(ac,:)=sum((Psi1_cont(ac,:).*conj(Psi1_cont(ac,:)))*deltax); 
Integral2_cont(ac,:)=sum((Psi2_cont(ac,:).*conj(Psi2_cont(ac,:)))*deltax); 
Integral3_cont(ac,:)=sum((Psi3_cont(ac,:).*conj(Psi3_cont(ac,:)))*deltax); 
Integral4_cont(ac,:)=sum((Psi4_cont(ac,:).*conj(Psi4_cont(ac,:)))*deltax); 
 
To-

tal_integral_cont(ac,:)=Integral1_cont(ac,:)+Integral2_cont(ac,:)+Integral3_cont(ac,:)+Int
egral4_cont(ac,:); 
 

 
%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
%LT Psarakis Eftychios Hellenic Navy 
function y=aproxAiry(x) 
%this function aproximates the airy's functions and their 
%dirivatives 
%Author: © E.Psarakis, § 31-Aug-2004 
%Ai(x)-->ans(1,1) --> ai         
%Bi(x)-->ans(1,2) --> bi       
%Ai'(x)-->ans(1,3)--> ad 
%Bi'(x)-->ans(1,4)--> bd 
%ai=[];bi=[];ad=[];bd=[]; 
%ai=(4*pi)^(-1/2)*(x).^(-1/4).*exp(-2/3*(x).^(3/2)); 
%bi=(pi)^(-1/2)*(x).^(-1/4).*exp(2/3*(x).^(3/2)); 
%ad=-(4*pi)^(-1/2)*(x).^(1/4).*exp(-2/3*(x).^(3/2)); 
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%bd=(pi)^(-1/2)*(x).^(1/4).*exp(2/3*(x).^(3/2)); 
%[ai; bi ;ad ;bd]; 
%y=eval('[ai;bi;ad;bd]'); 
index=0; 
ai=[];bi=[];ad=[];bd=[]; 
for index=1:length(x); 
    if x(index)>=0  
ai(index)=(4*pi)^(-1/2)*(x(index)).^(-1/4).*exp(-2/3*(x(index)).^1.5); 
bi(index)=(pi)^(-1/2)*(x(index)).^(-1/4).*exp(2/3*(abs(x(index))).^1.5); 
ad(index)=-(4*pi)^(-1/2)*(x(index)).^(1/4).*exp(-2/3*(x(index)).^1.5); 
bd(index)=(pi)^(-1/2)*(x(index)).^(1/4).*exp(2/3*(x(index)).^1.5); 
else   
ai(index)=(pi)^(-1/2)*(-(x(index))).^(-1/4).*sin(2/3*(-(x(index))).^1.5+pi/4); 
bi(index)=(pi)^(-1/2)*(-(x(index))).^(-1/4).*cos(2/3*(-(x(index))).^1.5+pi/4); 
ad(index)=-(pi)^(-1/2)*(-(x(index))).^(1/4).*(cos(2/3*(-(x(index))).^1.5+pi/4)); 
%-1/(4*sqrt(pi).*(abs(x(index))).^(-5/4)).*sin(2/3*(abs(x(index))).^1.5+pi/4); 
 
bd(index)=(pi)^(-1/2)*(-(x(index))).^(1/4).*(sin(2/3*(-(x(index))).^1.5+pi/4)); 
%-1/(4*sqrt(pi).*(abs(x(index))).^(-5/4)).*cos(2/3*(abs(x(index))).^1.5+pi/4); 
end 
end 
[ai; bi;ad ;bd]; 
y=eval('[ai; bi;ad ;bd]'); 
% ai=[];bi=[];ad=[];bd=[]; 

 
%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
%LT Psarakis Eftychios Hellenic Navy 
function t=asymptoticAiry(n,x) 
%this function aproximates the airy's functions and their 
%dirivatives. it is used like the matlab airy(x) 
%Author: © E.Psarakis, § 31-Aug-2004  
%Ai(x)-->ans(1,1)           
%Bi(x)-->ans(1,2)           
%Ai'(x)-->ans(1,3) 
%Bi'(x)-->ans(1,4) 
if n==0 
    aproxAiry(x); 
    t=ans(1,:); 
end 
if n==1 
    aproxAiry(x); 
    t=ans(3,:); 
end 
if n==2 
    aproxAiry(x); 
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    t=ans(2,:); 
end 
if n==3 
    aproxAiry(x); 
    t=ans(4,:); 
end 
 
%****************************NPS****************************** 
%**Simulation Of Performance Of Infrared Photodetectors******* 
%ZETA 
%LT Psarakis Eftychios Hellenic Navy 
warning off 
deltaz = 10^-11; 
 
if F > 0 
    X = -300e-10:deltaz:0; 
    Y = 0:deltaz:L(1,2); 
    Z = L(1,2):deltaz:L(1,3); 
    T = L(1,3):deltaz:(L(1,3)+300e-10); 
    dim=max(T)-min(X); 
else   
    X = L(1,3):deltaz:(L(1,3)+300e-10); 
    Y = L(1,2):deltaz:L(1,3); 
    Z = 0:deltaz:L(1,2); 
    T = -300e-10:deltaz:0; 
   dim=max(X)-min(T);  
end 
for kk=1:ac-1 
Zita1(kk,:)=conj(Psi1_bound(1,:)).*X.*Psi1_cont(kk,:).*deltaz; 
Zita2(kk,:)=conj(Psi2_bound(1,:)).*Y.*Psi2_cont(kk,:).*deltaz; 
Zita3(kk,:)=conj(Psi3_bound(1,:)).*Z.*Psi3_cont(kk,:).*deltaz; 
Zita4(kk,:)=conj(Psi4_bound(1,:)).*T.*Psi4_cont(kk,:).*deltaz; 
OSC_integral1(kk,:) = sum(Zita1(kk,:)); 
OSC_integral2(kk,:) = sum(Zita2(kk,:)); 
OSC_integral3(kk,:) = sum(Zita3(kk,:)); 
OSC_integral4(kk,:) = sum(Zita4(kk,:)); 
OSC_finali(kk,:)=(OSC_integral1(kk,:)+ OSC_integral2(kk,:)+ 

OSC_integral3(kk,:)+OSC_integral4(kk,:)); 
Zeta_final(kk,:)=(OSC_finali(kk,:)).*conj(OSC_finali(kk,:)); 
 
% DOS(kk)=dim./(hbar*pi)*sqrt(m_eff(1)./(2*q*(Eout_cont(kk)-

min(V(1),V(2))))); 
DOS(kk)=dim./(hbar*pi)*sqrt(m_eff(1)./(2*q*(Eout_cont(kk)-

Eout_cont(1)+.001))); 
 
end 
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APPENDIX B: EKF INITIALIZATION AND TRACKING 

In the present Appendix we present the BOT initialization and tracking algorithm. 

The core of the algorithm is BOT.m. Once this program is executed, the loop INITIALI-

ZATION.m is called, and the user must define the initialization bearings.    

% *****************INITIALIZATION.m**************************** 
%******Writen by LT Eftychios Psarakis Hellenic Navy******************* 
%***Thesis Project: Simulation of Performance of Infrared Photodetectors***** 
%*************************************************************** 
% clc 
% clear 
S1p=[0;0];     % Sensor 1 at origin 
S1p=[10000;0];  % Sensor 2 at (10000,0) 
% b1=input('give mesured bearing 1 from sensor 1 in degrees:   ');%33 
% b2=input('give mesured bearing 1 from sensor 2 in degrees:   ');%173 
b1_1=b1*2*pi/360; %convert to rad 
b1_2=b2*2*pi/360; %convert to rad 
sigma1b=1*pi/180;  % 1 deg std dev in bearing 
miss=abs(randn*sigma1b); 
 
b1_S1_plus =b1_1+miss; % bearing 1 from sensor 1 (+) 
b1_S1_minus=b1_1-miss; % bearing 1 from sensor 1 (-) 
 
b1_S2_plus =b1_2+miss; % bearing 1 from sensor 2 (+) 
b1_S2_minus=b1_2-miss; % bearing 1 from sensor 2 (-)  
 
% b_1=input('give mesured bearing 2 from sensor 1 in degrees:   ');%33.46 
% b_2=input('give mesured bearing 2 from sensor 2 in degrees:   ');%173.18 
% dt=input('give time interval between the two measurements :   '); 
dt=.1; 
b2_1=b_1*2*pi/360; %convert to rad 
b2_2=b_2*2*pi/360; %convert to rad 
 
b2_S1_plus=b2_1+miss; % bearing 2 from sensor 1 (+) 
b2_S1_minus=b2_1-miss; % bearing 2 from sensor 1 (-) 
 
b2_S2_plus=b2_2+miss; % bearing 2 from sensor 2 (+) 
b2_S2_minus=b2_2-miss; % bearing 2 from sensor 2 (-) 
% ************************************************************** 
 
%Triangle 1: Bearing 1 Sensor 1(+), Bearing 1 Sensor 2(+) using sine law 
theta3_1=pi-b1_S1_plus-(pi-b1_S2_plus); 
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D1=((sin(theta3_1)/10000)^-1)*sin(pi-b1_S2_plus); %distance from (0,0) 
 
x1=D1*cos(b1_S1_plus); 
y1=D1*sin(b1_S1_plus); 
 
%Triangle 1: Bearing 1 Sensor 1(+), Bearing 1 Sensor 2(-) using sine law 
theta3_2=pi-b1_S1_plus-(pi-b1_S2_minus); 
D2=((sin(theta3_2)/10000)^-1)*sin(pi-b1_S2_minus); %distance from (0,0) 
x2=D2*cos(b1_S1_plus); 
y2=D2*sin(b1_S1_plus); 
 
%Triangle 1: Bearing 1 Sensor 1(-), Bearing 1 Sensor 2(+) using sine law 
theta3_3=pi-b1_S1_minus-(pi-b1_S2_plus); 
D3=((sin(theta3_3)/10000)^-1)*sin(pi-b1_S2_plus); %distance from (0,0) 
x3=D3*cos(b1_S1_minus); 
y3=D3*sin(b1_S1_minus); 
 
%Triangle 1: Bearing 1 Sensor 1(-), Bearing 1 Sensor 2(-) using sine law 
theta3_4=pi-b1_S1_minus-(pi-b1_S2_minus); 
D4=((sin(theta3_4)/10000)^-1)*sin(pi-b1_S2_minus); %distance from (0,0) 
x4=D4*cos(b1_S1_minus); 
y4=D4*sin(b1_S1_minus); 
 
% disp('*********first parallelogram***************'); 
pos1=[x1;y1]; 
pos2=[x2;y2]; 
pos3=[x3;y3]; 
pos4=[x4;y4]; 
% disp('*******************************************'); 
POS1=[(x1+x2+x3+x4)/4; 
      (y1+y2+y3+y4)/4]; % middle of the rectungular shape 
 
   
d=max(abs((x2-x3)/(atan((y2-y3)/(x2-x3)))),abs((x4-x1)/(atan((y4-y1)/(x4-

x1))))); 
 
xx=linspace(1,10000,100); 
 
yy1=tan(b1_S1_plus)*xx; 
yy2=tan(b1_S1_minus)*xx; 
 
 
a3=y3/(x3-10000); 
b3=-10000*a3; 
yy3=a3*xx+b3; 
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a4=y4/(x4-10000); 
b4=-10000*a4; 
yy4=a4*xx+b4; 
% figure 
% plot(xx,yy1,'r') 
% hold on 
% plot(xx,yy2,'b') 
% hold on 
% plot(xx,yy3,'r') 
% hold on 
% plot(xx,yy4,'b') 
 
%Triangle 2: Bearing 1 Sensor 1(+), Bearing 1 Sensor 2(+) using sine law 
theta3_1_2=pi-b2_S1_plus-(pi-b2_S2_plus); 
D1_2=((sin(theta3_1_2)/10000)^-1)*sin(pi-b2_S2_plus); %distance from (0,0) 
x1_2=D1_2*cos(b2_S1_plus); 
y1_2=D1_2*sin(b2_S1_plus); 
 
 
%Triangle 2: Bearing 1 Sensor 1(+), Bearing 1 Sensor 2(-) using sine law 
theta3_2_2=pi-b2_S1_plus-(pi-b2_S2_minus); 
D2_2=((sin(theta3_2_2)/10000)^-1)*sin(pi-b2_S2_minus); %distance from (0,0) 
x2_2=D2_2*cos(b2_S1_plus); 
y2_2=D2_2*sin(b2_S1_plus); 
 
%Triangle 2: Bearing 1 Sensor 1(-), Bearing 1 Sensor 2(+) using sine law 
theta3_3_2=pi-b2_S1_minus-(pi-b2_S2_plus); 
D3_2=((sin(theta3_3_2)/10000)^-1)*sin(pi-b2_S2_plus); %distance from (0,0) 
x3_2=D3_2*cos(b2_S1_minus); 
y3_2=D3_2*sin(b2_S1_minus); 
 
%Triangle 2: Bearing 1 Sensor 1(-), Bearing 1 Sensor 2(-) using sine law 
theta3_4_2=pi-b2_S1_minus-(pi-b2_S2_minus); 
D4_2=((sin(theta3_4_2)/10000)^-1)*sin(pi-b2_S2_minus); %distance from (0,0) 
x4_2=D4_2*cos(b2_S1_minus); 
y4_2=D4_2*sin(b2_S1_minus); 
 
 
% disp('*********second parallelogram***************'); 
pos1_2=[x1_2;y1_2]; 
pos2_2=[x2_2;y2_2]; 
pos3_2=[x3_2;y3_2]; 
pos4_2=[x4_2;y4_2]; 
% disp('*******************************************'); 
 
POS2=[(x1_2+x2_2+x3_2+x4_2)/4; 
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      (y1_2+y2_2+y3_2+y4_2)/4]; % middle of the rectungular shape 
d1=max(abs((x2_2-x3_2)/(atan((y2_2-y3_2)/(x2_2-x3_2)))),abs((x4_2-

x1_2)/(atan((y4_2-y1_2)/(x4_2-x1_2))))); 
 
 
sigma1r=max(d,d1); 
 
xx=linspace(1,10000,100); 
 
yy1_2=tan(b2_S1_plus)*xx; 
yy2_2=tan(b2_S1_minus)*xx; 
 
 
a3_2=y3_2/(x3_2-10000); 
b3_2=-10000*a3_2; 
yy3_2=a3_2*xx+b3_2; 
 
a4_2=y4_2/(x4_2-10000); 
b4_2=-10000*a4_2; 
yy4_2=a4_2*xx+b4_2; 
% figure 
% plot(xx,yy1_2,'r') 
% hold on 
% plot(xx,yy2_2,'b') 
% hold on 
% plot(xx,yy3_2,'r') 
% hold on 
% plot(xx,yy4_2,'b') 
 
xi=[POS2(1,1);POS2(2,1);POS1(1,1);POS1(2,1)]; 
%  
% figure 
% plot(xx,yy1,'r') 
% hold on 
% plot(xx,yy2,'r') 
% hold on 
% plot(xx,yy3,'r') 
% hold on 
% plot(xx,yy4,'r') 
% hold on 
% plot(xx,yy1_2,'b') 
% hold on 
% plot(xx,yy2_2,'b') 
% hold on 
% plot(xx,yy3_2,'b') 
% hold on 
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% plot(xx,yy4_2,'b') 
%  
% text(POS1(1,1),POS1(2,1),'POS1') 
% text(POS2(1,1),POS2(2,1),'POS2') 
 
 
% ********************BOT.m********************************** 
%*************Writen by LT Eftychios Psarakis Hellenic Navy********** 
%***Thesis Project: Simulation of Performance of Infrared Photodetectors*** 
%************************************************************* 
clear,clc 
disp('for no mesurement noise select 0') 
disp('for mesurement noise select 1') 
mnoiseflag=input('SELECT NOISE OR NO NOISE CASE:'); 
 
disp('for single sensor tracking select 0') 
disp('for two sensor tracking select 1') 
twosensorflag=input('SELECT ONE OR TWO SENSORS CASE:'); 
 
s2p = [10000;0];      % Sensor 2 position (Sensor 1 is at (0/0) 
%rand('seed',0);          , 
de1ta = 0.1; %Time 
nsamp1es = 1000; 
initialization; 
x = xi; 
q = 1000; 
Q= [de1ta^3/3, de1ta^2/2; de1ta^2/2, de1ta]; 
Qi = [Q, zeros(2); zeros(2),Q]; 
Q = q*Qi;                 
sb = 1*pi/180; 
D=[1,        0,   0,                           0; 
  1/dt,                  0,              -1/dt,                       0; 
   0,       1,  0,        0; 
   0,     1/dt,     0,    -1/dt]; 
x_sp=D*xi; 
speed=sqrt((x_sp(2,1))^2+(x_sp(4,1))^2)*2000/3600 
w1=input('SELECT THE DESIRED ACCELERATION IN G')  
w = w1*10/speed;  
 
R = sb; 
xout = []; 
tout = []; 
terr = []; 
chi2err = []; 
% xhat = x + [100*randn;5*randn;100*randn;5*randn]; 
xhat = x + 0.6*[100;5;100;5]; 
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phat = [d1^2   ,0    ,0   ,0; 
           0     ,d1^2 ,0   ,0; 
          0     ,0   ,d^2  ,0; 
         0     ,0    ,0  ,d^2] 
 
 
F=[0,               1,              0,                      0; 
     0,             0,  0            -w; 
     0,  0,  0,             1; 
     0,  w,  0,  0]; 
 
Fturn = expm(F*de1ta) 
 
F     =[1,      de1ta,                  0,                 0; 
       0,  1,      0  0; 
       0,  0,      1,         de1ta; 
       0,  0,      0,  1]; 
    
 
Hp = [1 0 0 0; 0 0 1 0]; 
for ii =1:nsamp1es 
% Take a measurement 
 
b = atan2(x(3),x(1)); 
if mnoiseflag== 1 
z = b + sb*randn; 
else 
z = b; 
end                           
xout = [xout, [x(1) ;x(3) ] ]; 
 
% EKF Update 
r2 =xhat(1)^2 + xhat(3)^2; 
b = atan2(xhat(3),xhat(1)); 
zhat = b; 
H= [-xhat(3)/r2, 0, xhat(1)/r2,0]; 
Pzi=inv(H*phat*H' + R); 
zt = z - zhat; 
chi2 =zt'*Pzi*zt; 
K = phat*H'*Pzi; 
K2 = eye(4)-K*H; 
xhat =xhat + K*zt;     
phat = K2*phat*K2' + K*R*K'; 
 
if twosensorflag ==1       % process measuransnt frcm second sensor 
% Take a Measuronent 
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rp =Hp*x - s2p; 
b = atan2(rp(2),rp(1)); 
if mnoiseflag == 1 
z = b + sb*randn; 
else 
z = b; 
end 
% Measuranent update 
rp = Hp*xhat - s2p; 
r2 = rp'*rp; 
b = atan2(rp(2),rp(1)); 
zhat = b; 
H= [-rp(2)/r2, 0,rp(1)/r2,0] ; 
Pzi = inv(H*phat*H' + R) ; 
zt = z- zhat; 
chi2 = zt'*Pzi*zt; 
K = phat*H'*Pzi; 
K2 = eye(4) - K*H; 
xhat = xhat + K*zt;     
phat = K2*phat*K2' + K*R*K'; 
 
end 
e = [xhat(1);xhat(3)]; 
tout =[tout,e] ; 
e = e - [x(1);x(3)]; 
terr = [terr,sqrt(e'*e)]; 
chi2err = [chi2err,chi2]; 
% Target Motion 
if ((ii > 250) & (ii <= 350)) 
x = Fturn*x; 
else    
x = F*x;  
end 
% Track Prediction 
xhat=F*xhat; 
phat=F*phat*F' + Q; 
end % for ii 
if mnoiseflag==0 && twosensorflag==0 
tlabe1 = ['B0 Tracking single Sensor,no Noise,q^2 = 1000, accel 

=',num2str(w1),'g']; 
elseif mnoiseflag==1 && twosensorflag==0 
tlabe1 = ['B0 Tracking single Sensor,Noise presence,q^2 = 1000, accel 

=',num2str(w1),'g']; 
elseif mnoiseflag==0 && twosensorflag==1 
tlabe1 = ['B0 Tracking two Sensors, no Noise,q^2 = 1000, accel 

=',num2str(w1),'g']; 
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elseif mnoiseflag==1 && twosensorflag==1 
tlabe1 = ['B0 Tracking two Sensors,Noise presence,q^2 = 1000, accel 

=',num2str(w1),'g']; 
end 
figure 
subplot(2,1,1) 
plot(xout(1,:),xout(2,:), ':',tout(1, :),tout(2,:),'r'); 
%tit1e( 'Target and Track') ; 
title ([tlabe1]) ; 
xlabel('meters') 
ylabel('meters') 
legend('true position','Track position') 
grid 
subplot(2,1,2) 
plot(xout(1,:),xout(2,:), '',tout(1, :),tout(2,:),'r'); 
%tit1e( 'Target and Track') ; 
title ([tlabe1]) ; 
xlabel('meters') 
ylabel('meters') 
legend('true position','Track position') 
axis([.6*10^4,3.3*10^4,3*10^4,13*10^4]) 
grid 
figure 
tt = [0: (max (size(terr))-1)] *de1ta; 
subplot(2,1,1) 
plot (tt,terr, 'r'); 
title ([ 'Track Position Errors: ',tlabe1]) ; 
xlabel('Sample number') 
ylabel('meters') 
grid 
subplot(2,1,2) 
tt = [0: (max(size (chi2err))-1)] *de1ta; 
plot (tt,chi2err, 'r') ; 
title ('Chi-Squared Values for Measurement Association'); 
xlabel('Sample number') 
ylabel('rad') 
grid 
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APPENDIX C: ASYMPTOTIC EXPRESSIONS  

Appendix C presents the Airy function considerations for the low bias simulation 

of the quantum well. 

A. AIRY FUNCTION ANALYSIS 

1. General 

The differential equation
2

2 0d w z
dz

ω− = , where 3/ 22 3 zζ = and 2 /3ie πω = , can be 

reduced to the differential equation satisfied by Bessel functions of order 1/3 [33, sec. 

6.4]. There are two linearly independent solutions which are called Airy functions of the 

first and the second kind.  

                         ( ) ( ) ( )
1
2

1/3 1/3
1 [ ]3Ai z z I Iζ ζ−= −                                             (C.1) 

                     ( ) ( ) ( )
1/ 2

1/3 1/3[ ]3
zBi z I Iζ ζ−

⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                         (C.2) 

                       ( ) ( ) ( )
1
2

1/3 1/3
1 [ ]3Ai z z J Jζ ζ−− = +                                            (C.3) 

                         ( )1/ 2

1/3 1/3( ) [ ( ) ( )]3
zBi z J Jζ ζ−− = −                                          (C.4) 

 

 

    

 

 

 

 

 

       

Figure C.1: Airy functions of the first kind, ( )Ai z− and ( )Ai z  
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Figure C.2: Airy functions of the second kind, ( )Bi z− and ( )Bi z   
 
2. Asymptotic Expressions of Airy Functions  

There are several problems associated with the direct approach to the solution of 

the Schrödinger equation using Airy’s functions. The main drawback is the asymptotic 

behavior of Airy’s functions and of their derivatives, when the used argument, is either 

very large or very small. In those cases personal computers give numerical overflows 

which significantly reduce the result quality and computational efficiency. These kinds of 

problems appear especially when low biases are applied in symmetric or asymmetric 

quantum wells structures. 

The asymptotic forms of Airy’s functions used for our simulations were taken 

from the handbook of mathematical functions [28, pp. 448-449]. 

                               
3
221 1

32 4( ) (4 ) , 0
z

Ai z z e zπ
−− −

≅ >>                                            (C.5) 

                              
3
221 1

' 32 4( ) (4 ) , 0
z

Ai z z e zπ
−−

≅ − >>                                           (C.6) 

                   
1 1 3
2 4 22( ) ( ) ( ) sin ( ) , 0

3 4
Ai z z z zππ

− − ⎛ ⎞
≅ − − + <<⎜ ⎟

⎝ ⎠
                               (C.7) 
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                             (C.11) 

                   
1 1 3

' 2 4 22( ) ( ) ( ) sin ( ) , 0
3 4
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− ⎛ ⎞

= − − + <<⎜ ⎟
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                             (C.12) 

The expressions above give acceptable results not only when the argument is very 

large or extremely small but also when the argument is a finite number (not around zero) 

as shown in Figures C.3 and C.4. In the simulation code, written in Matlab, we have used 

a specific procedure so that when the built-in Matlab Airy functions give results, we take 

advantage and use them, but when the built-in functions are unable to give results we use 

Equations (C.5) through (C.12).  

 

 

 

 

   

 

 

 

 

 

 

        

Figure C.3: Matlab Airy functions vs. asymptotic expressions of the first kind 
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Figure C.4: Matlab Airy functions vs. asymptotic expressions of the second kind 
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APPENDIX D: BOT COMPLETE CASE SET 

We present the complete results of the BOT simulation for 0 g, 2 g, 4 g, 6 g and 8 

g turns, using one or two sensors, with and without the presence of measurement noise.   
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