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Abstract

The goal of this work is to build a cognitive system for the humanoid robot, Cog, that
exploits human caregivers as catalysts to perceive and learn about actions, objects,
scenes, people, and the robot itself. This thesis addresses a broad spectrum of machine
learning problems across several categorization levels. Actions by embodied agents
are used to automatically generate training data for the learning mechanisms, so that
the robot develops categorization autonomously.

Taking inspiration from the human brain, a framework of algorithms and method-
ologies was implemented to emulate different cognitive capabilities on the humanoid
robot Cog. This framework is effectively applied to a collection of Al, computer vi-
sion, and signal processing problems. Cognitive capabilities of the humanoid robot are
developmentally created, starting from infant-like abilities for detecting, segmenting,
and recognizing percepts over multiple sensing modalities. Human caregivers provide
a helping hand for communicating such information to the robot. This is done by
actions that create meaningful events (by changing the world in which the robot is sit-
uated) thus inducing the ”compliant perception” of objects from these human-robot
interactions. Self-exploration of the world extends the robot’s knowledge concerning
object properties.

This thesis argues for enculturating humanoid robots using infant development as
a metaphor for building a humanoid robot’s cognitive abilities. A human caregiver
redesigns a humanoid’s brain by teaching the humanoid robot as she would teach a
child, using children’s learning aids such as books, drawing boards, or other cognitive
artifacts. Multi-modal object properties are learned using these tools and inserted
into several recognition schemes, which are then applied to developmentally acquire
new object representations. The humanoid robot therefore sees the world through
the caregiver’s eyes.

Building an artificial humanoid robot’s brain, even at an infant’s cognitive level,
has been a long quest which still lies only in the realm of our imagination. Our efforts
towards such a dimly imaginable task are developed according to two alternate and
complementary views: cognitive and developmental.

Thesis Supervisor: Rodney A. Brooks
Title: Fujitsu Professor of Computer Science and Engineering
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Chapter

Introduction

A learning machine must be programmed by experience.
(Wiener, 1948)

Intelligence is in the eye of the observer.
(Brooks et al., 1998)

The goal of this thesis is to build a cognitive system for a humanoid robot ex-
ploiting developmental learning: human caregivers are used as a catalyst to help a
robot perceive and learn meaningful information. This strategy is shown to solve a
broad spectrum of machine learning problems along a large categorical scope: actions,
objects, scenes, people and the robot itself. This work is motivated by cognitive de-
velopment of human infants, which is bootstrapped by the helping hand that human
caregivers (and especially the infant’s mother) provide to the infant.

Cognitive capabilities of the humanoid robot will be created developmentally,
starting from an infant-like early ability to detect low-level features over multiple
sensing modalities, such as skin-color or repetitive or abruptly varying world events
from human-robot interactions, and moving developmentally towards robust percep-
tion and learning.

We argue for enculturated humanoid robots — introducing robots into our society
and treating them as us — using child development as a metaphor for developmental
learning of a humanoid robot. We exploit extensively childhood learning elements
such as books (a child’s learning aid) and other cognitive artifacts such as drawing
boards. Multi-modal object properties are learned using these tools and inserted into
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several recognition schemes, which are then applied to developmentally acquire new
object representations. Throughout this thesis, the humanoid robot therefore sees
the world through the caregiver’s eyes.

1.1 Motivation

The working of the human mind has long puzzled and amazed the human kind, draw-
ing theorists of every persuasion, and from many disciplines, to the barely imaginable
task of trying to fill in the details of such scientific challenge:

Questions about the origins and development of human knowledge have
been posed for millenia. What do newborn infants know about their sur-
roundings, and what do they learn as they observe events, play with objects,
or interact with people? Behind these questions are deeper ones: By what
processes does knowledge grow, how does it change, and how variable are
its developmental paths and endpoints?

(Wilson and Keil, 1999)

Classical artificial intelligence (AI) researchers adopted as an implicit and dom-
inant hypothesis the claim of (Newell and Simon, 1961) that humans use symbolic
systems to “think” (for a critic review see (Brooks, 1991a)). Al systems following
such theory create explicit, internal representations and need to fully store the state
of the outside world. Search strategies are used for problem-solving, applied mostly
to narrow domains, such as playing chess (DeCoste, 1997).

Similarly to early Al robotics has been applied mostly to narrow, goal-oriented
specific applications. In addition, task execution often requires artificial, off-line
engineering of the robot’s physical environment, creating idealized working conditions.
But moving towards intelligent robots will require general purpose robots capable of
learning in any real-world environment.

Fundamental problems remain to be solved in several fields, such as

> Computer Vision: object segmentation and recognition; event /goal /action iden-
tification; scene recognition

> Robotics: robot tasking involving differentiated actions; learning and executing
tasks without initial manual setups

> Cognitive Sciences and Al: understanding and creation of grounded knowledge
structures, situated in the world

> Neurosciences: a more profound understanding of biological brains and their
macro and micro structures,

just to name a few. Furthermore, these problems are mostly studied independently of
each other, since they lie in different research domains. In this thesis I will concentrate
on the problems in the first three fields, and in doing so I expect to better understand
the last field.
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1.1.1 Brains are Complex and Highly Interconnected

Although humans have specific brain processing areas, such as Broca’s language area
or the visual cortex, these areas are highly interconnected in complex patterns.

Classical Al has a tendency to overpass these complex aspects of human intel-
ligence (Minsky and Papert, 1970). Throughout this thesis, I argue that several
problems in different fields are closely tied. For instance, let us consider the com-
puter vision problem of object recognition. In the summer of 1966, a vision project
at the now extinct MIT AILab aimed at the implementation of object categoriza-
tion — a problem which requires complex structures in the human brain — in two
months (Papert, 1966). They were not successful, being the object recognition prob-
lem still under intensive research. A common definition for this problem, as presented
in (Zhang and Faugeras, 1992), is:

Definition We are given a database of object models and a view of the real world.
For each object in the model database, the object recognition and localization problem
consists in answering the following two questions:
> Is the object present in the observed scene?
> If present, what are the 3D pose parameters (translation and rotation parame-
ters) with respect to the sensor coordinate system?

If possible, the system should learn unknown objects from the observed data.

This definition relies on a very strong assumption: Objects are recognized by their
appearance solely. I argue that this is not enough. All of the following are sometimes
true:

Objects can be recognized by their appearance - color, luminance, shape, texture.
Objects have other physical features, such as mass, of a dynamic nature.
The dynamic behavior of an object varies depending on its actuation.

Temporal information is necessary for identifying functional constraints. The
object motion structure - the kinematics - should be taken into account.

Objects are situated in the world, which may change an object’s meaning de-
pending on context.

Objects have an underlying hierarchic tree structure - which contains informa-
tion concerning objects that are reducible to other objects, i.e., that originated
by assembling several objects.

There is a set of actions that can be exerted on an object, and another set of
actions that an object can be used for (e.g., a nail can be hammered, while a
hammer is used for hammering). Therefore, a set of affordances (Adolph et al.,
1993) also intrinsically define (albeit not uniquely) an object.
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Figure 1-1: A caregiver as a child/humanoid robot’s catalyst for learning.

The set of issues just stated requires the solution of problems in several fields. This
thesis puts special emphasis in three specific problems: learning from demonstration,
object recognition and the problem of robot tasking. Although I will not seek perfect
solutions for these problems, I will have indeed to deal with them, due to the highly
interconnected nature of this thesis work.

1.1.2 The Helping Hand — Humans as Caregivers

Teaching a visual system information concerning the surrounding world is a difficult
task, which takes several years for a child, equipped with evolutionary mechanisms
stored in its genes, to accomplish. Caregivers give a helping hand to facilitate infants’
learning, changing interaction patterns according to the infants’ performance. Hence,
infants functional development occurs in simultaneous with the development of the
caregivers’ skills for socially interacting with infants (Newport, 1990).

However, developmental disorders such as autism (DSM-IV, 1994) severely dam-
ages the infants’ social skills. Although autistic children often seem to have normal
perceptual abilities, they do not recognize or respond to normal social cues (Baron-
Cohen, 1995). This asocial behavior puts serious constrains on, and severely limits,
the learning process in autistic children.

Our approach exploits therefore help from a human caregiver in a robot’s learning
loop to extract meaningful percepts from the world (see figures 1-1 and 1-2). Through
social interactions of a robot with a caregiver, the latter facilitates the robot’s percep-
tion and learning, in the same way as human caregivers facilitate a child’s perception
and learning during child development phases. Minsky seems to agree with such
notion:

Isnt it curious that infants find social goals easier to accomplish than phys-
ical goals, while adults find the social goals more difficult? One way to
explain this is to say that the presence of helpful people simplifies the in-
fants social world — since because of them, simpler actions solve harder
problems. (Minsky, 1985)
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Figure 1-2: Infant and caregiver social interactions in art.

1.1.3 Developmental Learning — Humanoids as Children

Infants develop both functionally and physically as they grow. Such development
is very important for infants’ learning (Newport, 1990; Elman, 1993; Elman et al.,
1996). Turing, the creator of the famous Turing test to evaluate artificial intelligence
of computers, suggested that, instead of producing programmes to simulate the adult
mind, we should rather develop one which simulates the childs mind (Turing, 1950).
He also suggested that an appropriate course of education would lead to the adult
brain (Turing, 1950). Although teaching humanoid robots like children is not a new
idea (Metta, 2000; Kozima and Yano, 2001; Lungarella and Berthouze, 2003), we
apply such philosophy to solve a broad spectrum of research problems. In addition,
this thesis approach also follows Turing’s advice of giving educational courses to an
artificial system, by utilizing in innovative ways a child’s arsenal of educational tools
and toys to boost learning capabilities.

Evidence suggests that infants have several preferences and capabilities shortly
after birth (Bremner, 1994). Such predispositions may be innate or pre-acquired
at the mother’s womb. Inspired by infants’ innate or pre-acquired capabilities, the
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robot is assumed to be initially pre-programmed for the detection of real-world events
both in time and frequency, and correlations among these events, no matter the
sensing device from which they are perceived. In addition, the robot prefers salient
visual stimuli (as do newborns (Banks and Ginsburg, 1985; Banks and Dannemiller,
1987)). These preferences correspond to the initial robot’s capabilities (similar to the
information stored on human genes — the genotype) programmed into the robot to
process these events.

Starting from this set of premises, the robot should be able to incrementally build
a knowledge database and extrapolate this knowledge to different problem domains
(the social, emotional, cultural, developmental learning will set the basis for the
phenotype). For instance, the robot learns the representation of a geometric shape
from a book, and is thereafter able to identify animate gestures or world structures
with such a shape. Or the robot learns from a human how to poke an object, and
uses afterwards such knowledge to poke objects to extract their visual appearance.

1.1.4 Embodied Perception/Action: Putting Bodies Into Use

One approach to Al is the development of robots embodied and situated in the
world (Brooks, 1999). Embodied and situated perception (Arsenio, 2002, 2003a;
Brooks, 1999; Pfeifer and Scheier, 1926) consists of boosting the perceptual capabil-
ities of an artificial creature by fully exploiting the concepts of an embodied agent
situated in the world (Anderson, 2003). Active vision (Aloimonos et al., 1987; Bajcsy,
1988), contrary to passive vision, argues for the active control of the visual percep-
tion mechanism so that perception is facilitated. Percepts can indeed be acquired
in a purposive way by the active control of a camera (Aloimonos et al., 1987). This
approach has been successfully applied to several computer vision problems, such as
stereo vision - by dynamically changing the baseline distance between the cameras or
by active focus selection (Krotkov et al., 1990).

This thesis proposes embodiment and situatedness as a means to constrain com-
plex problems. I argue, together with other researchers at the MIT CSAIL, for the
control of not only the perception apparatus, but also for the manipulator control to
achieve the same objective (Arsenio, 2003a; Fitzpatrick and Metta, 2002). We argue
for solving a visual problem by not only actively controlling the perceptual mech-
anism, but also and foremost crucially changing the environment actively through
experimental manipulation. We focus on a particular aspect of embodiment: em-
bodied creatures act as a source of energy. They are able to actuate, to exert forces
and cause motion over objects in the surrounding environment, in a meaningful way.
However, this work intends to go further than embodied robots; humans are also em-
bodied, and the robot can exploit others’ bodies to constrain perceptual information.
In addition, humans better and more easily execute general purpose tasks (Kemp,
1997).

Therefore, I intend to improve robot cognitive capabilities through interactions
with a human “robotsitter” (or robot teacher), an embodied creature whose objective
is teaching the robot. This active role of embodied creatures will also be exploited as
a means to change scene context, facilitating perception.
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1.1.5 Situatedness — Information Stored in the World

In classical Al, sensory perceptions are converted into representational states used
within an internal model of the external world (which is often a computationally
expensive three-dimensional representation of the external environment).

However, there is experimental evidence from psychology and the neurosciences
that humans try to minimize their internal representations of the world. In one
experiment, (Ballard et al., 1995) shows that humans do not maintain an internal
model of the entire visible scene for the execution of a complex task (like building a
copy of a display of blocks). Other experiments in the the area of change blindness
corroborate such results (Rensink et al., 1997).

Hence, we will opt by a statistical approach which minimizes internal representa-
tions, by exploiting the availability of contextual information stored in the real world.
Indeed, there are strong correlations between the environment and objects within it.
There is increasing evidence from experiments in scene perception and visual search
that the human visual system extensively applies these correlations for facilitating
both object detection and recognition (Palmer, 1975; Biederman et al., 1982; Chun
and Jiang, 1998). This suggests an early use of contextual information in human
perception. Indeed, it seems that extensive visual processing of objects might occur
only after a scene has been identified (Potter, 1975; Biederman, 1987; Rensink et al.,
1997).

Therefore, objects in the world are situated (Brooks, 1999), in the sense that they
usually appear in specific places under a determined context. Because of the strong
dependence between scenes and objects found in it, knowledge of probable spatial
locations for an object helps to find the same object in the scene, even if the object
is not visible (e.g., if located inside a box). There is also evidence from experimental
psychology that the attentional processes used to check the presence of a target object
in a familiar scene may be similar to those involved in searching for a target object
in a novel scene (Wolfe et al., 2002). But for an embodied creature, it is equally
important to know where an object should be placed in an environment, so that it
can be easily found later - if you place a book in the fridge, you will hardly find it
later!

Object categorization may also change depending on the world context. Change
the context, and the function, name or other attributes of an object may change
(e.g., arod is categorized as a pendulum when oscillating around a fixed point). This
leads to scene-dependent object recognition, and scene recognition reframed as the
detection of the probable configuration of objects. But most important, this means
humans can transmit the right categorization for an object to an infant (or a humanoid
robot) by controlling the world context. Such control of contextual information will
be extensively applied to facilitate robot’s perception.

1.1.6 Real World vs Virtual Worlds

The real world in which a robot operates is full of entropy. Indeed, it is not possible
to just impose an upper bound on the complexity level of a scene. To make things
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worse, sensors often perceive only poorly characterized or ambiguous information.

However, as demonstrated by several artistic movements such as the Impression-
ists, humans are particularly good at processing even very deteriorated signals to
extract meaningful information. It seems humans apply stored knowledge to recon-
struct low resolution images into higher resolution ones (Baker and Kanade, 2000) (see
also (Torralba and Sinha, 2001) for another computational approach to the problem
of recovering faces from noisy, very low resolution images). Therefore, this thesis will
not put emphasis on improving or maximizing sensor resolution or quality. Instead,
high resolution information from sensors will be discarded to decrease processing
times. Sensors are intended therefore for filtering world data, and hence reducing
complexity.

For infants, the caregiver biases the learning process by carefully structuring and
controlling the surrounding environment. Similarly, help from a human actor will be
applied to constrain the robot’s environment complexity, facilitating both object and
scene recognition. However, it should be emphasized that such help does not include
constraining the world structure (for instance by removing environment cluttering or
careful lighting). The focus will be placed on communicating information to a robot
which boosts its perceptual skills, helping the visual system to filter out irrelevant
information. Indeed, while teaching a toddler, parents do not remove the room'’s
furniture or buy extra lights to just show the child a book! Help instead is given
by facilitating the child’s task of stimulus selection (for example, by pointing to or
tapping an image in a book (Arsenio, 2004h)).

1.2 The Humanoid Form

Some countries like Japan, facing an aging population, are feeling the pressure for
autonomous robotic devices able to ameliorate and assist the elderly. Besides the
sector of service robots, industries are also investing in more autonomy, as exemplified
by robotic prototypes for cleaning autonomously floors in manufacturing facilities, for
automatic parts or oil pipe inspections. Security applications for robots are also in the
rise, namely for surveillance and mine clearing. And robots are increasingly appearing
at consumer homes through the toy market. Several biologically inspired robots (for
now mainly at the aesthetical level) have been recently placed on the toy market, as
is the case of Sony’s “Aibo” or iRobot’s “My Real Baby” robots.

The urban world is nowadays shaped to human-scale operation. And people are
already used to interact socially with things that look familiar, such as people or
animal like appearances. Advances in developmental psychology and the cognitive
sciences has inspired roboticists to build intelligent systems having therefore a human-
like appearance (Brooks et al., 1998; Brooks and Stein, 1994; Asada et al., 2001).
The humanoid form (as shown in figure 1-3) is important for human-robot social
interactions in a natural way. Two thorough reviews on socially interactive and
developmental robots are presented in (Fong et al., 2003) and (Lungarella and Metta,
2003), respectively.

A sample of several humanoid research projects are shown in figure 1-3. A compar-
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Figure 1-3: Several humanoid robot projects. Robots at the MIT CSAIL humanoid
robotics group 1) The humanoid robot Cog; 2) Robot Kismet; and 3) The M2-
M4 macaco robot, designed and built by the author. Other robots with the hu-
manoid form: 4) Humanoid robot at Osaka University Asada’s lab; 5) Robovie is an
interaction-oriented robot developed at Intelligent Robotics and Communication Lab-
oratories at ATR (Advanced Telecommunications Research Institute International);
6) Babybot, a humanoid robot developed at the LIRA-Lab: 7) Infanoid, an infant-like
robot which has been developed at Communications Research Laboratory in Japan;
8) Humanoid Jack, at ETL in Japan; 9) Honda’s Asimo robot; 10) and 11) Other hu-
manoid platforms (see (Hashimoto, 1998) for a description of more humanoid robotics
projects at Waseda University).



ative study of some of these robots over social-developmental capabilities is presented
by (Nagai, 2004).

Cog, Kismet and Macaco Robots

The humanoid robot Cog (Brooks et al., 1998), developed at the MIT AI/CSAIL
laboratory, is the experimental platform for this thesis work (see Appendix A). Past
research works in Cog includes: robot arm control exploiting natural dynamics using
neural oscillators (Williamson, 1999); creation of the basic structures required to give
a “theory of mind” for the humanoid robot Cog, using mechanisms of shared atten-
tion (Scassellati, 2001); development of a deep perceptual system for Cog, grounding
the acquisition of visual percepts in experimental manipulation (Fitzpatrick, 2003b);
and sensorimotor learning via interaction with people and objects (Marjanovié, 2003),
which takes cognitive inspiration on the works in (Lakoff and Johnson, 1980; Lakoff,
1987; Johnson, 1987).

Kismet is a complex active vision robotic head capable of expressing several types
of facial emotions for modulation of social interactions with caregivers. Kismet’s com-
putational system was designed by several elements of our group at the MIT AlLab,
and includes an attentional system (Breazeal and Scassellati, 1999) inspired from stud-
ies in experimental psychology (Wolfe, 1994); structures for turn taking (Breazeal and
Fitzpatrick, 2000) between the robot and a caregiver, a motivational system (Ferrell,
1998); a babbling language (Varchavskaia et al., 2001); and recognition of affective
communicative intent (Breazeal and Aryananda, 2000).

M2-M4 Macaco (Arsenio, 2003b,d) is a flexible active robotic head which can
resemble aesthetically different robotic creatures, such as a chimpazee or a dog (see
Appendix A). Macaco’s brain includes processing modules for: object analysis, robot
day and night navigation, and social interactions.

Other Humanoid Robotics Projects

A developmental model of joint attention, based on social interactions with a human
caregiver, is described in (Nagai et al., 2003). Their model includes not only the
development of the robot’s sensing structures from an immature to a mature state, but
also the simultaneous development of the caregiver’s task evaluation criteria. They
argue that the proposed developmental model can accelerate learning and improve
the final task performance (Nagai, 2004).

Robovie is an interaction-oriented upper-torso humanoid robot assembled to a
mobile platform. The robot head includes various sensorial modalities (includes vi-
sual, auditory and tactile sensors). The goal of this project is to develop a robot that
communicates with humans and participates collaboratively in human society (Kanda
et al., 2004; Ono et al., 2000).

Babybot is an eighteen degrees of freedom humanoid robot which includes an
active vision head, a torso, one arm with one hand at its extremity. Babybot’s sensors
include a pair of cameras with space-variant resolution, two microphones and tactile
sensors. The project’s main goal is to investigate the functioning of the brain by
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building physical models of the neural control and cognitive structures (Metta et al.,
2000). They follow a developmental approach for building a sensorimotor system
for a humanoid robot (Sandini et al., 1997; Metta et al., 2001). They also propose
a biologically inspired functional model for the acquisition of visual, acoustic and
multi-modal motor responses (Natale et al., 2002).

The Infanoid robot is an upper torso humanoid having roughly the same size and
kinematic structure as a three-years-old child. This project aims at studying the
mechanisms of social intelligence that enable a robot to communicate and socialize
with humans (Kozima and Yano, 2001). The epigenetic principle is followed as a
means to achieve social intelligence of robots (Kozima and Zlatev, 2000). Special
emphasis is placed in investigating an early type of joint visual attention with a
human caregiver.

The Humanoid robot Jack at the Electrotechnical Lab at Tsukuba/Japan got his
name from Robin Williams’s character in the movie “Jack”. The character is the result
of merging a 5-year-old boy’s brain in the body of 40-year-old man (curiously, the same
applies to Cog, since its body form is too big to be confounded for a child-like robot).
This humanoid robot is applied as a research vehicle into complex human interactions,
being user-friendly and design for safety interactions (part of the machinery is covered
in thick padding). The humanoid robot DB, at ATR/Japan, is another platform built
by SARCOS. This project is focused mainly on learning from imitation (Schaal, 1999;
Nakanishi et al., 2003) and on-line learning of sensorimotor maps (Nakanishi et al.,
2003; Gaskett and Cheng, 2003) for complex task execution (Schaal and Atkeson,
1994).

The Asimo robot is a very well designed mechanical platform built by Honda.
However, up to now it has only very limited cognitive capabilities.

1.3 Road(Brain)Map

This thesis is organized according to functional structures of a biological human brain
— the brainmap,

Chapter 2 || A Humanoid Brain

Chapter 3 | Low-Level Visual Processing
Chapter 4 || Primary Visual Association Area
Chapter 5 Visual Pathway — What

Chapter 6 Visual Pathway — Where

Chapter 7 || Cross-Modal Data Association
Chapter 8 || Memory and Acoustic Perception
Chapter 9 | Sensory-Motor Area and Cerebellum
Chapter 10 || Frontal Lobe

Chapter 11 || Cognitive Development

Chapter 12 || Toward Infant-like Humanoid Robots

which corresponds to the following roadmap for the computational algorithms.
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Chapter 2 | Cognitive and developmental basis for the thesis framework
Chapter 3 | Computational algorithms for low-level visual processing

Chapter 4 || Learning structures for perceptual stimulis selection and grouping
Chapter 5 | Visual object/face Recognition and the visual binding problem
Chapter 6 | Learning about scenes, objects and people from contextual cues

Chapter 7 | Cross-modal data processing from multiple senses

Chapter 8 | Tracking and statistical storage of objects; sound recognition
Chapter 9 | Sensory-motor structures for robot control

Chapter 10 || Robot tasking grounded on perceived functional information
Chapter 11 || Developmental learning for human-robot skill transfer
Chapter 12 || Discussion, conclusions and future work

This thesis organization, according to the road(brain) map, is explained in greater
depth in the following chapter.
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Chapter

A Humanoid Brain

...many of the details of Cog’s “neural” organization will parallel what is
known about their counterparts in the human brain.
(Dennet, 1998)

A long term goal of Artificial Intelligence has been the understanding of the brain
mechanisms of thought, and the emulation of such processes in an artificial manmade
creature, such as a humanoid robot. This work presents our efforts at tackling this
complex and challenging endeavor.

The thesis framework will be described from two different perspectives: cognitive
and developmental. Each chapter will contain therefore an introduction documenting
cognitive and developmental issues. This document is organized according to a cog-
nitive mapping of the computational structures developed. On the other hand, the
humanoid robot Cog will learn throughout this thesis as a child, and therefore is only
able initially to perceive simple world events (such as a newborn during the autistic
developmental phase (Arsenio, 2004a; Mahler, 1979)). Through the teachings of a
human caregiver, the robot will then be able to learn developmentally about itself,
objects, people with which it interacts and its surrounding world. Knowledge from
the outside, unreachable world will also be learned by having a human caregiver teach
the robot from books and other learning aids (Arsenio, 2004d).
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Figure 2-1: Cognitive modelling of a very simple brain.

2.1 Cognition

Several Al algorithms were implemented aiming at the emulation of different percep-
tual cognitive capabilities on the humanoid robot Cog (see figure 2-1). It is worthwhile
stressing that this simple artificial humanoid brain is intended to emulate a real brain
only at a higher level of abstraction. Furthermore, it is only a very simplistic approach
to something as complex as the real brain of even simple creatures. Most function-
alities still remain to be implemented, such as: language acquisition and synthesis;
complex reasoning and planning; tactile perception and control; hand manipulation
and high-level interpretation of human gestures, just to name a few.

Another point worth stressing is that although certain human brain areas are most
responsible for specific cognitive processing, the brain is highly interconnected and a
particular cognitive modality most often involves several brain structures. This com-
plexity is reflected in the neural organization of the brain - it is estimated (Nieuwen-
huys et al., 1980) that the human brain contains roughly 100 billion (10'!) neurons,
with 1000-10000 synaptic connections for a “typical” neuron, which puts the num-
ber of synapses at the human brain in the order of quadrillions (10'*-10'%). On the
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humanoid robot, an example of such complexity results for building a description
of a scene, which requires spatial information (the “where” pathway), recognition of
specific world structures (the “what” pathway) and visual memory. Although most
chapters will concentrate on a specific area of the humanoid robot’s brain, function-
alities often include other areas, and therefore it will be helpful to keep in mind a
global perspective of the cognitive system. Hence, this work will consist on a large
collection of distinct, but highly interconnected processes.

This thesis investigates therefore how to transfer some of the workings of such
a complex system as the human brain to the humanoid robot Cog. The thesis will
start by introducing a sensory modality important for human survival — vision — in
chapter 3. Several low-level visual processing modules will be described for extracting
a set of low level features: spectral, chrominance, luminance, and oriented lines. In
addition, this chapter will describe a multi-scale approach for event detection from
motion created by an agent’s actions. Low-level features such as skin-color and optical
flow are integrated by a logpolar attentional system for inferring stimulus saliency in
the visual association area (chapter 4). Perceptual grouping of color and spectral
regions also occurs chiefly in this area, together with depth inference.

Two parallel visual pathways in the human brain have been found to process
information relative to objects/people identity (the “what” pathway, for which object
and people recognition algorithms are described in chapter 5) and to objects/people
location (the “where” pathway, for which map building and localization of objects,
people and the robot itself are described in chapter 6).

The sensory information reaching the human brain is not processed solely based
on data from the individual sensorial modalities, but it is also cross-correlated with
data from other sensory modalities for extracting richer meanings. This processing in
the human brain inspired the development of an approach for a humanoid robot to
detect cross-correlations among data from different sensors, as described in chapter 7.

The effects of a visual experience are stored in the human brain for a posteriori use.
Visual memory is considered to be divided into three differentiated systems (Palmer,
1999): Iconic Memory, Short Term Memory, and Long Term Memory (chapter 8).
The algorithms developed in chapter 8 will have strong connections from and to the
visual pathways (this strong connectivity is also pervasive in the human brain). But
perception in the brain involves several sensory modalities. Processing of audio signals
is one such modality which is also described in this chapter (sound recognition is often
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a very important survival element on the animal kingdom).

Another perceptual modality is proprioception - position/velocity sensory data
from the robot’s joints (or from human bone articulations and muscles). These sen-
sory messages terminate in the Parietal Lobe (on the somato-sensory cortex). This
area has direct connections to the neighbor motor area, responsible for the high-level
control of motor movements. Building sensory-motor maps (chapter 9) occurs early
in childhood to enable reaching movements. In addition, networks for the generation
of oscillatory motor rhythmics (networks of central pattern generators are also found
in the human the spinal cord) are modelled by Matsuoka neural oscillators in chap-
ter 9. The cerebellum plays a crucial role in the control of eye movements and gaze
stabilization, also described in that chapter.

The frontal lobe is responsible for very complex functions in the human brain,
and it has been shown that inputs from the limbic system play an essential role in
modulating learning. Chapter 10 will only deal with the problem of task identification.
Emotion systems implemented by our research group will also be reviewed.

Cognition in humans occurs developmentally. Inspired by human developmental
mechanisms, chapter 11 presents cognitive enhancers and developmental learning of
simple cognitive capabilities (although developmental learning was also exploited for
cognitive elements from other chapters).

2.2 Developmental Perception and Learning

Robust perception and learning will follow the Epigenetic Principle (Zlatev and Balke-
nius, 2001) — as each stage progresses, it establishes the foundation for the next stages.

2.2.1 From Behaviorism to Scaffolding

Watson, the father of behaviorism, advocated that the frequency of occurrence of
stimulus-response pairings, and not reinforcement signals, act directly to cause their
learning (Watson, 1913). He rejected the idea that some mental representations of
stimuli and responses needed to be stored in an animal mind until a reinforcement
signal strengths an association between them.

Skinner argued against stimulus-response learning, which led him to develop the
basic concept of operant conditioning. For Skinner the basic association in oper-
ant conditioning was instead between the operant response and the reinforcer. His
Skinner-Box experimental apparatus improved considerably the individual learning
trials of Watson.

Piaget gives equal roles to both nature (biological innate factors) and nurture
(environmental factors) in child development (Piaget, 1952). In Piaget’s theory, genes
are the building blocks for development. He puts special emphasis on children’s active
participation in their own cognitive development.

Social-cultural-historical aspects are instead stressed by (Vygotsky, 1962, 1978:
Bruner et al., 1966). They concentrate more on how adults help a child to develop
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coherent knowledge concerning such aspects of the environment. Vygotsky’s social-
cultural-historical theory of cognitive development is typically described as learning
by “scaffolding” (Vygotsky, 1978).

Learning by Scaffolding

New skills are usually socially transferred from caregivers to an infant through mimicry
or imitation and contingency learning (Galef, 1988).

For a review of imitation in the fields of animal behavior and child development
see (Dautenhahn and Nehaniv, 2001). Imitation in the field of robotics has also
received considerable attention (Scassellati, 1998, 2001; Schaal, 1999).

In contingency learning, the simple contingent presence of the caregiver and the
objects involved in the action provide the necessary cues for an infant to learn (Galef,
1988; Hauser, 1996; Dickinson, 2001). Whenever actions cause a change of state in
the environment, infants detect a contingency — a relation between actions and the
changes they produce in an environment — if they learn the relationship between the
action and the environmental change (Leslie, 1982; Leslie and Keeble, 1987; Nadel
et al., 1999). This way, infants can obtain positive or negative feedback rewards
from their environments (and therefore they are able to prevent actions by which
they receive a punishment). Contingency learning is also an essential ability for
animals adaptation and survival. In the field of robot learning, it is often equated to
reinforcement learning (Sutton and Barto, 1998) — for a review see (Kaelbling et al.,
1996).

But mostly important to this thesis’ work, caregivers also socially transfer abilities
to an infant by means of scaffolding (Vygotsky, 1978). The term scaffolding refers
to guidance provided by adults that helps a child to meet the demands of a complex
task (Wood et al., 1976). The goal is to increase the chance of the child succeeding
by making the task a little easier in some way. Examples of scaffolding includes the
reduction of distractions and the description of a task’s most important attributes,
before the infant (or in our case, the robot) is cognitively apt to do it by himself
(Wood et al., 1976).

This is the idea behind having a human caregiver facilitating a bit the chance of
the robot to succeed, by:

> introducing repetitive patterns to the robot, as in chapter 3

> showing the features which compose the object, as shown in chapter 4 for per-
ceptual grouping from human demonstration and further 3D reconstruction

moving Cog’s arm in front of a mirror to enable Cog’s visual and acoustic
perception of its own body (chapter 7)

presenting toys that make repetitive noise, as in chapter &
presenting the robot objects from books, or from educational activities (chap-

ter 11)
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and by guiding in general all the learning tasks. As a matter of fact, all algorithms
presented in this thesis make use within some degree of a “helping hand” provided
by a human caregiver.

2.2.2 Mabhler’s Developmental Theory

This work draws inspiration not only from Vygotsky’s learning by scaffolding de-
velopmental theory, but also and chiefly from Mahler’s theory of child develop-
ment (Mahler, 1979). Special emphasis is put on the child’s Separation and Indi-
viduation developmental phase (Mahler, 1979) — during which the child eventually
breaks the bound with his mother and embraces the external world. Mahler’s autistic
and Symbiotic developmental phases — characterized by the infant’s simple learning
mechanisms — antecede the Separation and Individuation phase (chapter 3). Mahler’s
theory has influences from movements such as the Ego’s Developmental Psychology
and Experimental Psychology, from psychologists such as Sigmund Freud, Piaget and
others. According to her theory, the normal development of a child during the Separa-
tion and Individuation phase is divided into four sub-phases, following the epigenetic
principle:

Differentiation (5-9 months) The first sub-phase, marked by a decrease of the in-
fant’s total dependency on his mother as the former crawls further away. The
infant starts to realize his own individuality and separateness due to the devel-
opment of the entire sensory apparatus and therefore a growing awareness.

Practicing (9,10-18 months) Sub-phase characterized by the child’s active locomo-
tion and exploration of his surroundings, together with the narcissist exploration
of his own functions and body.

Re-approximation (15-24 months) Child has an egocentric view of the world during
this phase, in which he also approximates again to his mother. World expands
as new viewing angles are available from the child’s erect walking.

Individuality and Object Constancy (24-36 months) Defined by the consolida-
tion of individuality, and a clear separation between objects and itself. Towards
the end, the child becomes aware of object constancy.

The child’s Separation and Individuation phase (Mahler, 1979) is marked by the
separation of the child from his mother as a different individual. However, the child
still relies heavily on help provided by his mother to understand the world and even
himself through this developmental phase (Gonzalez-mena and Widmeyer, 1997). In-
deed, the child is part of a structured world that includes the immediate emotional,
social and physical surroundings (Michel and Moore, 1995).

During this phase, the child learns to recognize itself as an individual, and its mir-
ror image as belonging to itself. He learns also about the surrounding world structure
- about probable places to find familiar objects (such as toys) or furniture items. In
addition, he starts to identify scenes - such as his own bedroom and living-room. And

36




Figure 2-2: Developmental learning during the child’s Separation and Individuation
phase will be described along three different topological spaces: 1) the robot’s personal
space, consisting of itself and familiar, manipulable objects; 2) its living space, such
as a bedroom or living room; and 3) its outside, unreachable world, such as the image
of a bear in a forest.

children become increasingly aware (and curious) about the outside world (Lacerda
et al., 2000). The implementation on the humanoid robot Cog of these cognitive
milestones will be described throughout this document, placing special emphasis on
developmental object perception (Johnson, 2002) during the Separation and Individ-
uation stage.

The child’s mother (or primary caretaker) plays an essential role (Gonzalez-mena
and Widmeyer, 1997) in guiding the child through this learning process. With the
goal of teaching a humanoid robot like a child, the child’s mother role will be at-
tributed to a human tutor/caregiver. Hence, a human-centered approach is presented
to facilitate the robot’s perception and learning, while showing the benefits that result
from introducing humans in the robot’s learning loop. Help from a human tutor will
therefore be used to guide the robot through learning about its physical surroundings.
In particular, this "helping hand" will assist the robot to correlate data among its
own senses (chapter 7); to control and integrate situational cues from its surrounding
world (chapters 6 and 8); and to learn about out-of-reach objects and the different
representations in which they might appear (chapter 11). Special emphasis will there-
fore be placed on social learning across a child’s physical topological spaces, as shown
in figure 2-2.
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2.2.3 Human-Robot Skill Transfer

This thesis will place a special emphasis on incremental learning. To accomplish this
goal, a human tutor performs actions over objects while the robot learns from the
demonstration the underlying object structure as well as the actions’ goals.

This leads us to the object/scene recognition problem. Knowledge concerning an
object will be organized according to multiple sensorial percepts. Objects will also
be categorized according to their functional role (if any) and their situatedness in the
world.

Learning per se is of diminished value without mechanisms to apply the learned
knowledge. Hence, robot tasking will deal with mapping learned knowledge to per-
ceived information (see figure 2-3).

Learning from Demonstration

We want the robot to learn autonomously learning information about unknown ob-
Jects. With this in mind, our strategies will include simple actions such as grabbing
or poking the object to learn its underlying structure. To support a mechanism for
learning from human demonstration, we work on learning the actions that are applied
to an object, or even between two actuators (such as clapping). Learning aids, such
as books, will also be used as another source of information that can be transmitted
to a robot through a human.

Object/Scene Segmentation and Recognition

Objects have complex uses, come in various colors, sound differently and appear in
the world in ways constrained by the surrounding scene structure. Since these ob-
Ject properties are multi-modal, multiple sensorial input have to be processed. Each
individual object property is important for recognition, but if more than one commu-
nication channel is available, such as the visual and auditory channels, both sources
of information can be correlated for extracting richer pieces of information. For in-
stance, cross-modal information can disambiguate object identity in cases where one
perceptual modality alone could fail. This thesis demonstrates how to take advantage
of multiple perceptual information.

Object and scene recognition constitutes a very important piece of the thesis
framework core. Our approach is to cast the object recognition problem as an em-
bodied and situated one. Through the action of an embodied agent on an object, it
is possible to infer what pieces of an object move, how do they move, how to make
them move, and why do they move. Therefore, the object recognition problem is the
result of several highly interconnected problems.

An important concept in object recognition is object appearance. We humans
often classify objects by their aesthetics. The visual appearance of an object is em-
bedded in object templates (by templates we mean images with black background and
the visual appearance of the object), which are segmented from an image. Embodied
object segmentation may work in cases where disembodied approaches typically often
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fail. For instance, objects with a similar appearance as the background are distin-
guished. In addition, objects with multiple moving links can be segmented as such
using the embodied approach, each link being assigned to a different template. Ob-
ject templates constitute an important input for the object recognition scheme. The
recognition mechanism should handle defective templates and classify them correctly
as an object in the database, for which more robust templates are available.

The physical properties of a material are also put to test by embodied action on
the object. Indeed, a strong strike may break an object (such as two Lego bricks
assembled together) into individual parts, which are also objects themselves. In
addition, a human teacher may demonstrate some tasks to the robot such as the
assembling of objects. Hierarchal relations among objects result from such actions.
Therefore, a hierarchical structure will be adopted for organizing the objects in a
database. such a structure differs from the object-files — memory representations of
objects used to keep track of basic perceptual information — approach suggested by
Treisman (Treisman, 1988).

Another important component of my approach is object situatedness — objects are
situated in the world — which is not orthogonal to the concept of embodiment. For
instance, different objects in the real-world may have the same appearance. However,
information concerning the scene surrounding an object (the context) often solves such
ambiguous cases. As another example, an empty box is usually used to store smaller
objects, while a closed box cannot contain objects. Disambiguation between the two
cases is possible by the action of an embodied agent. Therefore, the categorization of
an object depends both on the scene in which the object is inserted and its relations
with other objects in that scene. This dependency should be embedded on an object
recognition scheme.

Functional object recognition - the classification of objects by their function -
although adding an extra dimension to the recognition problem, also adds new con-
straints that narrow the domain of search.

Robot Tasking

The learning from demonstration strategy should enable the detection and recognition
of a large array of complex dynamic systems, as well as the identification of several
tasks. The range of applications for robot tasking were narrowed to very simple
domains, because of mechanical constraints on Cog,.

A Dynamic System Estimator will be used to estimate the desired accelerations of
the robotic arm end-effector, while Robot Control is executed through an Adaptive
Sliding Mode controller (Slotine and Weiping, 1991). A learning strategy will also be
implemented to estimate the robotic arm nonlinear dynamics, which is modelled by
a collection of locally linear models.

Finally, T will build a hybrid state machine for identifying goals. Actions are
mapped to discrete states of this machine, while the kinematic/dynamic model is
mapped to continuous states. Goals will correspond to stationary or oscillatory sig-
nals emitted by the discrete or continuous states. Figure 2-4 illustrates a goal corre-
sponding to a stationary signal from a continuous state.
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Figure 2-4: a) The motion segmentation consists of segmenting the image optical flow
into segments of coherent motion, which enables b) the estimation of the kinematic
constraints among the several segments, which may vary for non-linear systems, as
illustrated - the ball moves as a pendulum with three translational constraints in a
region of the state-space, and as a free-moving object in another region. c) Task goal
given by stationary state.
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2.3 The Movie in a Robot’s Brain

One important feature of this thesis work lies on the integration of several complex
cognitive modules in a humanoid robot. The temporal collection and integration of
all cognitive percepts in the human brain is often denoted the movie in the brain
(Damasio, 1994, 1999). It is worth introducing here several snapshots of what is
going on at Cog’s brain at a given moment. Namely, how are memories stored? what
information is interchanged between processing modules? In the following we try to
answer these two questions’.

2.3.1 What gets into the Robot’s Neurons?

This thesis framework assumes no single, central control structure. Such assumption is
supported by evidence from the cognitive sciences (mainly from brain-split patients at
the level of the corpus callosum (Gazzaniga and LeDoux, 1978)). Cog’s computational
system comprises several dozens of processes running in parallel in 32 processors (see
Appendix A) and interchanging messages continuously”.

Storage at Low-level Visual Structures

Low level visual processing modules (chapter 3) do not really store any information
relevant for learning. Processing outputs of low level features are basically sent to
other processing units for further processing (see figure 2-5), as follows. Color, geo-
metric features (oriented lines fitting contours), spectral components and motion are

ntegration of all the algorithms presented throughout this thesis will be described in full detail
in this section.The reader should consult it whenever a need for better understanding of the global
picture arises, i.e., how a given algorithm integrates within all the framework.

2Throughout this thesis, experiments are presented for different large groups of algorithms run-
ning together. This happens because the computational power, although big, was not enough to get
all modules running together in real-time.
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Figure 2-5: Processing at low-level visual structures. Each algorithm processes data
independently. Output from these structures are the input for higher-level computa-
tions at the visual association area, visual pathways and other brain structures.

Storage in the Visual Association Area

The algorithms implemented to associate visual information do not perform any sig-
nificant high-level learning. Instead, they act as filters, processing the information
received and sending it to other modules (see figure 2-6). These algorithms corre-
spond to active segmentation strategies, perceptual grouping from human cues and
inference of 3D information for objects, as described in chapter 4. Some low-level
storage is necessary, since individual points in the image tracked over a temporal se-
quence are stored for very short periods of time (~ 2 —4 seconds). But this storage is
not relevant for learning percepts for future use. The perceptual grouping algorithm
also keeps in storage the last stationary image detected by the robot.

Storage at the “What”-Visual Pathway

A very important percentage of the machine learning component is performed by these
structures (see figure 2-7). Indeed, visual information is processed along the human
brain’s “what” visual pathway for categorical identification. Similarly, computational
algorithms, as presented by chapter 5, process visual information to categorize world
elements and for a posteriori recognition in incoming images. But in order to accom-
plish such identification, these algorithms need to store some sort of representation
to a given object category, as follows.
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Figure 2-6: Processing at visual association structures includes mostly grouping of
perceptual information and object segmentation. Since the perceptual grouping al-
gorithm is applied both to detect heavy objects in a scene as well as to segment
objects from books, both classes of categories are differentiated using the robot per-
sonal working space, as follows. Whenever the robot is gazing at his workbench upon
stimuli receival and detection, it processes the segmentation as not coming from real
objects (and therefore no depth measure is extracted). Otherwise, it is assumed that
the robot is looking at a real object in a scene, and therefore the object shape is
reconstructed. Although we tried to avoid human designed rules whenever possible,
such a constraint was useful for this particular case.

Object recognition based on matching object templates needs to store percept repre-
sentations extracted from several image templates of a given object category. Hence,
the algorithm stores and updates 20 average color histograms (the aforementioned per-
cept representations), which represent different object views. A new color histogram
of an object template correctly matched to an average color histogram updates the
later through an average process.

Face recognition based on matching face templates (from a face detector) stores
a set of n face templates for each object category (whereas n maximum was set to
800). Therefore, a face database will consist of a collection of sets of faces. This
modules stores as well the average face and the eigenfaces for each face category.
For each face in the storage database, the coefficients originated by projecting such
faces into the eigenfaces subspace are also saved. Whenever a batch of templates
arrives for recognition, it is saved into the computer disk (if n < 800). The category
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matched to the batch (or the new category if none is matched) is then updated
by computing again the eigenvalue decomposition to update the average face and
eigenfaces, together with the mentioned projection coefficients. Head pose inference
stores exactly the same type of elements. The only difference lies on the type of
images saved for each category — for face recognition, face templates from the same
person are labelled to the same category, while for head face inference, templates from
similar head poses are assigned the same category.

The more general geometric-hashing based object recognition algorithm, which de-
tects and recognizes objects in any image of a scene, processes three independent
inputs, and therefore stores different representations according to the input.
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Figure 2-7: Computational processing at the “what” visual pathway. It includes
computational structures for recognizing objects (both from templates and arbitrary
scenes), faces and head poses. Training data for the machine learning algorithms is
generated semi-autonomously (in case a person is generating percepts by acting on
objects) or autonomously (if it is the robot acting by itself).

Storage at the “Where”-Visual Pathway

Algorithms for the visual localization of people, objects and the robot itself (robot
localization by recognition of scenes) in the “where” pathway (chapter 6) have ex-
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tensive connections with the computational structures in the “what” pathway (see
figure 2-7).

Map Building from Human Contextual Cues builds an appearance mosaic image
of all objects in a scene, together with a mosaic image of the scene depth. Hence,
it needs to store the appearance image template of the last template acquired for a
scene object (from visual association structures), together with the associated depth
image template (computed from a low level visual processing module). In addition,
these templates need to be related to each other. This is done by saving the egocentric
coordinates of each template centroid (obtained by mapping retinal coordinates into
2D head gazing angles in the sensory-motor area).

This algorithm also stores, for each scene, links to all objects in such a scene. And
for each object, links to all scenes where it might appear. Each link consists of an
identifier code which uniquely indexes the object (or the scene) in the corresponding
recognizer. This is done every time the algorithm assigns an object to a scene.

Scene recognition stores coefficients of principal component analysis (PCA) ap-
plied to the wavelet decomposition of input images from a scene. For each scene
category, the algorithm stores a set of ID-dimensional coefficients vector, each vector
corresponding to an image of the scene. In addition, a set of n images (n <= 800) are
also saved for each scene category. Each of such images result from wavelet decompo-
sition, being the grouping of the wavelet coefficient images. Therefore, a database of
scenes consists of a collection of sets. Each set contains n wavelet transform coefficient
images and n vectors of coefficients from the PCA.

Whenever an image from a wide field view of the scene arrives, the output of the
wavelet transform applied to it is saved into the computer disk (if n < 800). The
category which is matched to (or the new category if not matched) is then updated
by computing again the PCA, and hence estimating a new covariance matrix for the
D-dimensional vectors of coefficients for such scene. Finally, the mixture of gaussians
which models the scene distribution is optimized by running again the £ M algorithm.
Hence, the scene database also contains, for each scene category, the parameters of
the mixture of gaussians: the number of gaussian clusters, and for each gaussian the
average and covariance of the cluster, together with the gaussian’s weight.

Object and people recognition from contextual features and scene recognition pro-
cessing structures store similar data. The main differences is that categories corre-
spond now to people or objects, instead of scenes. Hence, the algorithm stores for
each category a set of PCA coefficients applied to the wavelet decomposition of in-
put images of objects or people, and a set of n wavelet decomposition output images
(n <= 800). The database also contains, for each category, the parameters of a
mixture of gaussians, being each category cluster modelled by a product of gaussians.

Storage at Memory areas

The operational boundary between the memory algorithms (chapter 8) and the “where”
visual pathway computational structures is not well defined (see figure 2-8). But the
memory algorithms do not rely on visual contextual cues. These algorithms instead
keep tracking of where objects are according to short or long term past experiences.
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Figure 2-8: Computational processing at the “where” visual pathway and memory
structures. Training data for the learning algorithms is generated semi-autonomously
from human introduced cues and from data arriving from the “what” visual pathway.

The multiple object tracker algorithm plays a very important role in the process
of automatic annotation of data for the machine learning algorithms. This algorithm
stores solely short-term information, in the form of object/people trajectory tracking,
to maintain information about objects and people identity as they move from place
to place. Therefore, it keeps on short-term memory, for each object/people being
tracked, the centroid position for the last 2 seconds, together with the current position
of tracked object points.

Long term memory information concerning people and objects and relations among
them is stored in egocentric coordinates, as follows. Probable object/people egocentric
locations are modelled using a mixture of gaussians for each object/people category.
Data from all previous locations of a category element, given as the robot’s head
gazing angles, the object/people size template, orientation and depth are stored, to-
gether with the parameters of the group of gaussians that model such distribution.
This gives the robot a memory of where usually objects or people are expected to be
found.

Since such memories are often influenced by contextual information given by the
presence of other objects or people, inter-objects/people interference is accounted
by modelling probabilities for finding elements of a category given the presence of
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elements from other category. This requires the storage, for each pair of relations
(for n categories of people and objects, there are n> — n such possible pairs), of the
parameters of the mixture of gaussians that model such interrelations. However,
in order to place an upper bound on the necessary storage, such interrelations are
determined solely for elements belonging to the same scene. One element of each
scene from a special category (a fixed or heavy object) is selected as a gate, and for
m scenes 2m interrelation links between these gates are also stored.

Storage at the Auditory Processing Area

Segmentation of periodic sounds (chapter 7) requires solely low-level, short-term mem-
ories of signal samples over a time window. The sound recognition algorithm (chap-
ter 8) stores exactly the same type of percepts as the visual face recognition module.
The only difference lies on the type of images saved for each category. For face recog-
nition, face templates from the same person are labelled to the same category, while
for sound recognition, image templates built from sound segmentations are assigned
to the same category (see figure 2-9).
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Figure 2-9: Auditory and cross-modal processing.

47




Storage at Cross-Modal Processing Structures

Information from multiple perceptual modalities (chapter 7) is integrated together as
shown in figure 2-9.

The Cross-modal association algorithm stores the links between the cross-modal
perceptual modalities, as follows. For a visual-sound binding, it stores the pair of
identifier codes which uniquely indexes the object and sound categories in the corre-
sponding recognizers. This is done every time the algorithm assigns the visual repre-
sentation of an object to a sound. For a visual-proprioception or sound-proprioception
binding, it stores the visual or sound identifier and a code which uniquely defines the
body part matched.

Cross-modal object recognition requires the storage of the algorithm training data.
Hence, n < 800 cross-modal features are stored for each object category, together
with the parameters of a mixture of gaussians which models the data distribution. In
addition, the identifier of the object category in the object recognizer is also stored
for each cross-modal category, if available.

Storage in Sensory-Motor Areas and Cerebellum

A large amount of data is stored for learning kinematic and dynamic maps which
are necessary to control the humanoid robot (chapter 9). Sensory-motor mappings
include the head and arm forward/inverse kinematics maps, the visuo-motor maps
and the Jacobians (see figure 2-10). Hence, these maps are built from the storage of
thousands of training samples. Each sample includes the head/arm joints position
and velocity, as well as the head/arm cartesian position and orientation, and the
corresponding velocities, respectively.

A short history of errors is required by motor controllers (PD for eye control and
sliding mode for arm control) for tracking error compensation. Periodic proprioceptive
data is segmented and stored in disk, together with identifiers which uniquely define
the joints which generated such data.

Storage in the Frontal Lobe

Markov chains for each task category (chapter 10)are stored by the task identification
algorithm.

2.3.2 What goes through the Robot’s Sinapses?

Perhaps the most challenging problem in the integration of complex systems is the
interconnection of multiple modules — which messages need to be transmitted between
the computational structures — so that the all system produces coherent behaviors.

Inputs from Low-level Visual Processing — Chapter 3 —

Signals to the Visual Association Area — Chapter / —: The attentional system in-
tegrates a set of low-level, pre-attentional features, arriving from low-level visual
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Figure 2-10: Computational algorithms corresponding to the Sensory-Motor areas,
Cerebellum and Frontal lobe.

processing modules, into a saliency map.

Information concerning the image frequency spectrum, as computed by the wavelets
transform, is the texture segmentation algorithm’s input.

Events created by human actions (or by the robot itself) on objects at the low level
visual processing modules trigger the transmission of these objects’” moving points.
Such data is received by active segmentation structures for object segmentation.

Signals to the “What”-Visual Pathway — Chapter 5 —: Topological connected color
regions are sent into a general geometric hashing object recognition scheme for clas-
sification. These connected regions are represented by a template image, being each
color region masked by an individual code, and by a binary table which stores which
regions are connected to each other. A set of oriented lines in an image, which is
represented by a multidimensional array of line center and end-points foveal reti-
nal coordinates, and the line orientation angle, is also the classification input of the
geometric hashing object recognition scheme based on geometric features.

Signals to the “Where”-Visual Pathway — Chapter 6 —: An holistic representation
of a scene (also called the “image sketch”) is computed from contextual cues. These
cues are determined from the image’s wavelets decomposition. They are then applied
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to recognize and locate objects and people, and for scene recognition.

Signals to the Frontal Lobe — Chapter 10 —: Events created from periodic or discon-
tinuous motions are the transitions of a markov chain which models the correspondent
task being executed.

The image regions given by the intersection of Skin-tone and moving regions over
a sequence of images are the input of the hand gestures algorithm, which segments
arm/hand periodic trajectories, creating a contour image with such data.

Inputs from the Visual Association Area — Chapter 4 —

Signals to Low-level Visual Processing — Chapter 3 —: The detector of spatial events
receives feedback information concerning object template masks, used to initialize the
kalman-filtering based approach for updating the object’s mask.

Feedback Signals to the Visual Association Area — Chapter / —: Some visual asso-
ciation computational algorithms send or receive inputs to/from other algorithms in
the same area, respectively.

The boundaries of object templates as determined by the figure/ground segrega-
tion modules can be optimized by attracting a deformable contour, initialized to these
initial boundaries and let converge to contours within the object template. The final
boundaries are then filled to correct the object mask creating a new object template.

Perceptual grouping works by grouping colors of a stationary image. Such infor-
mation is transmitted by a standard color segmentation algorithm (Comaniciu and
Meer, 1997). Perceptual grouping also operates on textures computed for the sta-
tionary image. These textures are processed by the texture segmentation algorithm,
which sends an image labelled by textures for the a posteriori perceptual grouping of
these textures.

Signals to the “What”-Visual Pathway — Chapter 5 —: Object segmentations from
both active segmentation and perceptual grouping algorithms are good perceptual
elements to generate training data for visual object recognition algorithms. Color
quantization of image templates (three channels image partitioned into 8% groups of
colors) is both the classification and training input to the object recognition algo-
rithm from object templates. Face recognition receives instead, after detection, face
templates cropped from a scene image.

Training data for the general geometric hashing based object recognition scheme
receives segmented object templates. It extracts chrominance, luminance and geo-
metric features from such templates to train three recognition algorithms based on
these three independent features.

Signals to the “Where”-Visual Pathway — Chapter 6 —:  Images of objects and people
segregated from the background are processed to extract the 2-dimensional retinal size
of the template and its orientation. The object average depth is also receive from the
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visual association area, computed from human introduced cues. These features are
required to annotate training data for object and face localization from contextual
features.

Object segmentations from both active segmentation and perceptual grouping al-
gorithms are required for building descriptions of scenes (in the form of an appearance
mosaic). Depth measures, in the form of depth templates (similar to disparity maps)
are necessary as well to build both depth scene maps and 3D scene representations.

Signals to Memory Structures — Chapter 8 —:  'The multiple object tracker algorithm
receives image templates from both object and face segmentation algorithms. If a
new template matches the location of an object being tracked, such object template
is updated and tracker points inside it are re-initialized. Otherwise, a new tracker
identifier is also assigned to it.

Long-term memory structures, which store properties of objects and people, re-
ceive data as well from these segmentation algorithms, namely the template 2-dimensional
retinal size and orientation, and the object depth.

Signals to the Cerebellum and Sensory-Motor Area — Chapter 9 —: The attentional
system outputs a saliency map. The spatial coordinates corresponding to the max-
imum activation of this map follows to the eye control algorithms for the control of
eye movements, if not inhibited by signals from other modules.

Signals to the Frontal Lobe — Chapter 10 —: Moving points initialized inside object
templates are tracked, to extract functional constraints from their trajectories. This
is used for identifying function from motion.

Inputs from the “What”-Visual Pathway — Chapter 5 —

Once the robot learns about object and people categories, their identification is used
for further processing by other modules.

Signals to the Visual Association Area — Chapter / —: Image features detected from
a scene by low-level visual processing structures (namely chrominance, luminance and
geometric features), are matched to internal object representations of the geometric
hashing based object recognition algorithms. After recognition, the matched scene
features are grouped together. This additional grouping provides extra segmentation
templates for the recognized object (for one example see figure 11-15). This closes
one segmentation-recognition learning loop.

Feedback Signals to the “What”-Visual Pathway — Chapter 5 —: Feedback loops
within the some processing areas, especially those responsible for machine learning,
are pervasive, even if not explicitly. Indeed, upon receival of a new percept, recog-
nition algorithms update the learning parameters for the category to which the new
percept is matched.
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Signals to the “Where”-Visual Pathway — Chapter 6 —: Both object and face recog-
nition identifiers are required for annotation of training data of the object /face recog-
nition algorithm from contextual features. Head pose information, estimated along
the “what” visual pathway, would be extremely useful as an additional property for
this “where” pathway algorithm. Although the extension is of trivial implementation
— just increasing the dimension of the vector of object properties with this new input
— this remains however relegated for future work.
Object identification is also requested to build scene descriptions.

Signals to Memory Structures — Chapter 8 —:  The identity of both objects and faces
is required to annotate training data for the object-based object/face recognition,
which stores long-term information about object properties.

Signals to the Frontal Lobe — Chapter 10 —: Object identification codes are sent to
the task identification algorithm.

Inputs from the “Where”-Visual Pathway — Chapter 6 —

Stgnals to the Visual Association Area — Chapter 4 —: Probable places in an image
whether to find an object have a lot of potential to constrain the search space where
to find an object, especially if estimations of its size and orientation are available, as
is the case. This can be used to extract a very rough segmentation of the object, as
shown by figure 6-8.

The algorithm that builds description of scenes sends wide-field-of-view images of
a scene, annotated by the scene identifier, for low-level structures (wavelet decompo-
sition module) for spectral analysis in order to build an holistic representation of the
scene.

Signals to the “What”-Visual Pathway — Chapter 5 —: By constraining the space of
possible locations of an object, the geometric hashing based recognition algorithm
can be made more efficient.

As we have already stated, all the computational structures are highly intercon-
nected. Hence, algorithms operating on contextual features output the identification
of scenes, objects and faces. Hence, the boundary between the two visual pathways
is somewhat blurry.

Feedback Signals to the “Where”-Visual Pathway — Chapter 6 —: Annotated data
for scene recognition is created by the algorithm which builds description of scenes.
Such algorithm attributes a scene identifier to wide-field-of-view images acquired for
such scene.

Signals to the Cerebellum and Sensory-Motor Area — Chapter 9 —: Commands re-
ceived for specifying desired head postures or head gazing configurations have priority
over all the others.
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Places constrained by environment structure to be of high probability for finding
an object are good candidates for a robot to drop or store objects after manipulating
them. Although the theoretical framework required for such physical object stor-
age was developed in this thesis, experiments for testing such conjecture are yet to
implement.

Inputs from Memory Structures — Chapter 8 —

Signals from memory structures — which keep track of object properties (such as loca-
tion or depth) — are widely disseminated as inputs to several computational structures.

Signals to the “What”-Visual Pathway — Chapter 5 —: Both face and object recog-
nition algorithms receive a signal from the multiple object tracker algorithm with a
tracking code identifier, to relate the identity of segmentations arriving over a tempo-
ral window. This way, one is able to group a batch of samples belonging to the same
category. Indeed, the multiple object tracking algorithm plays a very important role
in the on-line creation of annotated data for the machine learning algorithms used
for recognition.

Signals to Auditory Processing — Chapter 8 —: Visual object tracking output is used
to annotate training data for sound recognition. Hence, an object identifier from the
multi-tracker algorithm (immutable while the object is being tracked) is sent to this
processing module for grouping sound segmentations into training data.

Signals to Cross-modal Processing — Chapter 7 — Training data for cross-modal
object recognition is also annotated by the output of visually tracking an object. In
addition, the object tracking identification code is also required to store the various
modal categories upon a successful binding.

Signals to the Cerebellum and Motor Area — Chapter 9 —: Modules which can sup-
press eye commands from the attentional system include the attentional tracker (Fitz-
patrick, 2003a) and the multiple object tracking algorithm (chapter 8). Both send
the position of a tracked object as a control command to the eyes.

Signals to the Frontal Lobe — Chapter 10 —:  Object tracking identification codes are
sent to the functional object recognition algorithm.

Inputs from Auditory Processing — Chapter 8 —

Signals to Cross-modal Processing — Chapter 7 —: Patches of sound signal, if locally
periodic, are segmented and sent for cross-modal data association or recognition. In
addition, the output of the sound recognizer is also sent to the cross-modal processing
modules to keep track of modal categories during data association.
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Feedback Signals to Auditory Processing — Chapter 8 —:  Spectograms of the auditory
signal are built by applying the Fourier transform to windows of the audio signal. This
creates a two dimensional signal (frequency vs. temporal information) which is used
for sound segmentation.

Sound templates, available from the sound segmentation output, are the training
data of the sound recognition algorithm.

Inputs from Cross-Modal Processing — Chapter 7 —

Feedback signals to Cross-modal Processing — Chapter 7 —: Training data for cross-
modal object recognition is created upon a visual-acoustic binding.

Inputs from Sensory-Motor Areas and Cerebellum — Chapter 9 —

Signals important for visual association processing: In order to actively segregate
objects from their background or to group object features, it is necessary to stabilize
the perceptual interface. This is done by the creation of visual stimulus which produce
a saliency in the attentional system towards the desired object. The robot head is then
driven towards such salient point and stabilized. However, this happens implicitly.
No signal is explicitly sent from sensory-motor areas or cerebellum to the visual
association area.

Signals to the “What”-Visual Pathway — Chapter 5 —:  Proprioceptive data is applied
for a very special type of object recognition — self-recognition.

Signals to the “Where”-Visual Pathway — Chapter 6 —: Construction of both scene
appearance and depth image mosaics is implemented by mapping individual object
templates in a scene to a referential frame. Such mapping requires transforming image
pixels (from various head viewing angles) into head gazing coordinates.

Signals to Memory Structures — Chapter 8 —: The visual-retinal map outputs head
gazing coordinates corresponding to foveal retinal coordinates. Such gazing coordi-
nates are used to train long-term memories concerning object localization and iden-
tification.

Signals to Cross-modal Processing — Chapter 7 —:  Proprioceptive data from all body
joints is correlated with other perceptual modalities for self-recognition of visual im-
ages and sounds.

Feedback Signals to the Cerebellum and Motor Area — Chapter 9 —: Head forward /
inverse kinematic maps are required to build arm forward/inverse kinematic maps,
and hence this information has to be transmitted between the two modules for learning
the latter map.
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Inputs from the Frontal Lobe — Chapter 10 —

Signals to the Visual Association Area: The hand gestures recognition algorithm
sends a binary contour image — built from the arm periodic trajectory — to the active
segmentation algorithm, which fills such image, and applies such image to mask the
image regions of a scene covered by such trajectory.

Signals to the “what”-Visual Pathway: Hand gestures are recognized by sending a
contour image of the arm periodic trajectory to the geometric-hashing based object
recognition algorithm. This recognition algorithm then fits the contour with a set of
lines, and classifies such set, by comparing it with lines modelling geometric shapes
previously learned.

Signals to the Cerebellum and Motor Area — Chapter 9 —: Description of periodic
(feedback transition to self-state) and non-periodic transitions (transitions to other
states) in a markov chain is what is need to integrate different control structures into
a unified scheme. That remains to be done on-line. After learning of simple tasks
such as poking and waving, such learning is then applied, off-line, to perform these
simple tasks.

2.3.3 Discussion

Throughout this thesis, computational structures implemented for the humanoid
robot Cog were mapped into the main functional areas of the human cortex and
cerebellum. We did not intend to neglect the extremely important role of both other
brain areas, such as basal ganglia or the limbic system, or the peripheral nervous
system (such as the spinal cord). Indeed, we often refer to functions corresponding
to such areas (for instance, the hippocampus memory functions, the central pattern
generators at the spinal cord, or the thalamus important role for processing sensori-
motor information, just to name a few cases). Our option was driven by the will to
make the exposition clear and easy to understand. Indeed, mapping the functions of
the brain is often inaccurate, since the brain is highly interconnected, being extremely
difficult to map certain computational structures just to one specific brain area, as
discussed in this manuscript. Therefore, such mapping should be viewed as a guiding
element, but not in anyway fixed with strict boundaries.

Even though few signals are sent to visual structures from computational algo-
rithms labelled to the frontal lobe, the feedback loop is strongly closed by robot
actuation on objects which generates visual (and auditory) percepts. Indeed, we have
constrained ourselves to only introduce in this section the most important communi-
cation channels internal to the robot from which transmission of information between
the algorithms is possible. But of paramount importance are also the communica-
tion links established between the computational structures through the environment
where the robot is situated, for which no explicit representation is available.

Although not explicitly indicated, some links are established from a series of links.
For instance, the output of visual object recognition is sent for building descriptions
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of scenes. A sound identifier is not sent. But if a cross-modal binding occurs, then
the sound will be associated to the object which is linked to the scene. For instance,
if the sound “table” is bound to the image of a table, it will make implicitly part of
the scene description, since the sound is linked to a visual description of the object
table in such a scene.

The algorithms are indeed highly interconnected. The cognitive organization is
therefore somewhat fuzzy, and highly distributed.



Chapter

Low-level Visual Processing

The distinguished Gestalt psychologist Kurt Kof-

fka... asked the single deceptively simple question

“Why do things look as they do?”

...Because the world is the way it is. e - ’
...Because we have learned to see them that way.
...Because of the way in which each small piece of
the visual field appears.

A behaviorist might have asked “What does vision

enable us to do”.
(Palmer, 1999)

Vision is perhaps the most important sense in human beings, and it is also a
perceptual modality of crucial importance for building artificial creatures. In the
human brain, visual processing starts early in the eye, and is then roughly organized
according to functional processing areas in the occipital lobe. This chapter presents
algorithms — approximately independent from each other — to model processing ca-
pabilities at low-level visual layers which receive inputs directly from the eye. The
following chapters will then show how this low-level information is integrated by
high-level processing modules.

Cognitive Issues Transformation of visual representations starts at the very ba-
sic input sensor — in the eye — by having light separated into gray-scale tones by

rod receptors, and in the color visible spectrum by cones (Goldstein, 1996). The
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brain’s primary visual cortex receives then the visual input from the eye. These
low-level visual brain structures change the visual input representation yielding more
organized percepts (Goldstein, 1996). Such changes can be modelled through mathe-
matical tools such as the Daubechies-Wavelet (Strang and Nguyen, 1996) or Fourier
transforms (Oppenheim and Schafer, 1989) for spectral analysis. Multi-scale repre-
sentations fine-tune such organization (Palmer, 1999).

Edge detection and spectral analysis are known to occur on the hypercolumns
of V1 occipital brain’s area. Cells at V'1 have the smallest receptive fields (Palmer,
1999). Vision and action are also highly interconnected at low visual processing levels
in the human brain (Iacoboni et al., 1999).

Developmental Issues During Mahler’s autistic developmental phase (Mahler,
1979) (from birth to 4 weeks old), the newborn is most of the time in a sleeping
state, awakening to eat or satisfy other necessities (Mahler, 1979; Muir and Slater,
2000). His motor skills consists mainly of primitive reflexes until the end of this
phase (Michel and Moore, 1995). Towards the Symbiotic phase (until 4-5 months),
the infant’s attention is often drawn to objects under oscillatory motions, or to abrupt
changes of motion, such as throwing an object. These two phases, which precede the
Separation and Individuation phase, build the cognitive foundations for the healthy
and marvellous cognitive growth which occurs thereafter.

3.1 Spectral Features

There is cognitive evidence for the existence of spatial frequency channels in the visual
system (Goldstein, 1996). Spectral coefficients of an image are often used in computer
vision for texture segregation or for coding contextual information of a scene (Gold-
stein, 1996; Palmer, 1999). But the selection of both spatial and frequency resolutions
poses interesting problems, as stated by Heisenberg’s Uncertainty Principle.

3.1.1 Heisenberg’s Uncertainty Principle

A famous mathematical formula, the Heisenberg Principle of Uncertainty states that
no filter can, with arbitrary accuracy, simultaneously locate a feature in terms of
both its period and its time of appearance. We can only know time intervals in which
certain bands of frequencies exist. We cannot know the precise frequencies existing
at given time instants.

In order to gain more temporal precision, frequency information must be sacri-
ficed. According to this principle, the narrower the processing window, the better
the time resolution, but the poorer the frequency resolution. Wide processing win-
dows have good frequency resolution but poor time resolution. On the other hand,
narrow windows become blind to low frequencies, i.e., they imply a drop in frequency
resolution.
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3.1.2 Spectral Analysis: Fourier, Wavelets and Gabor Trans-
forms

Several transforms are available in the literature for processing the spatial distribution
of frequencies in a signal.

Short-Time Fourier Transform

The Fourier transform is one of the techniques often applied to analyze a signal into its
frequency components (Oppenheim and Schafer, 1989). A variant of it is the Short-
Time Fourier transform (STFT). This transform divides the signal into segments. The
signal truncated by each of these segments is convolved by a window (Oppenheim and
Schafer, 1989) — such as a rectangular or Hamming window — and the Fourier Trans-
form is then applied to it. When applied over different window sizes, this transform
obtains spatial information concerning the distribution of the spectral components —
section 3.4 will further elaborate on this method to process 1-dimensional signals.

Wavelets

Another method widely used to extract the spatial distribution of spectral compo-
nents is the Wavelet transform (Strang and Nguyen, 1996), which has been widely
used for texture segmentation, image/video encoding and image reduction of noise,
among other applications. Indeed, a distinct feature of wavelet encoding is that re-
construction of the original image is possible without loosing information (Strang and
Nguyen, 1996).

The Continuous Wavelet Transform (CWT) consists in convolving a signal with
a mathematical function (such as the Haar or Daubechies functions) at several scales
(Strang and Nguyen, 1996). However, CWT is not well-suited for discrete computa-
tion, since in theory there are infinitely many scales and infinitely many translations
to compute in order to achieve perfect reconstruction of the signal. In practice both
have to be quantized, which leads to redundancy and errors in reconstruction.

The discrete implementation of the wavelet transform — Discrete Wavelet Trans-
form (DWT) — overcomes the quantization problems and allows fast (linear time
complexity) computation of the transform for digitized signals. Similarly to CW'T, it
also provides perfect signal reconstruction.

DWT produces sparse results, in the sense that its application for processing typ-
ical signals outputs many small or zero detail coefficients, which is a desired property
for image compression. This tool for multi-resolution analysis is closely related to: Fil-
ter banks in signal processing (Strang and Nguyen, 1996); Pyramid algorithms (Burt
and E.H, 1983) in image processing; Quadrature mirror filters in speech processing
(Knutsson, 1982; Knutsson and Andersson, 2003); and Fractal theory (Massopust,
1994).
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Gabor Filters

Gabor filters are yet another technique for spectral analysis. These filters provide the
best possible tradeoff for Heisenberg’s uncertainty principle, since they exactly meet
the Heisenberg Uncertainty Limit. They offer the best compromise between spatial
and frequency resolution. Their use for image analysis is also biologically motivated,
since they model the response of the receptive fields of the orientation-selective cells
in the human visual cortex (Daugman, 1985).

3.1.3 Comparative Analysis and Implementation

The STFT framework has an important pitfall, also known as the windowing dilemma.
It is often difficult to select the width of the processing windows, the number of differ-
ent widths to use, how or whether they should overlap, etc. In addition, and unlike the
classical Fourier transform, the original signal cannot be numerically reconstructed
from its STFT.

Wavelets have some drawbacks when compared to other alternatives, such as
STFTs at multiple scales or Gabor filters. Compared to Gabor filters (Pichler et al.,
1996; Grigorescu et al., 2002), wavelets’ output at higher frequencies are generally not
so smooth and orientation selectivity is poor (the maximum number of orientations is
bounded by a small constant). This difference results from the encoding of redundant
information by Gabor filters.

The Heisenberg’s principle imposes a bound on how well a wavelet can detect a
feature. Indeed, Wavelets are very narrow in their capabilities. They act as bandpass
filters only, a given wavelet responds only to periodic variation in the vicinity of its
center frequency. Gabor filters generalize wavelet filters by including low-pass and
high-pass filtering operations.

However, wavelets are much faster to compute than Gabor filters and provide a
more compact representation for the same number of orientations, which motivated
their selection over Gabor filters in our work. Wavelet components are thus ob-
tained by transforming input monochrome images using a Daubechies-4 (Daubechies,
1990) wavelet tree (other wavelet transforms are available in the research literature,
such as the Haar wavelet transform (Strang and Nguyen, 1996)), along depth scales.
Each time the transform is applied, four smaller (polarized) images are obtained,
corresponding to the lower frequencies and higher vertical, horizontal and diagonal
frequencies. Processing is applied iteratively, as shown by figure 3-1, using Mallat’s
algorithm (Mallat, 1989)

Because of signal polarity, wavelet components correspond to a compact repre-
sentation of six orientations at each level. This somewhat models the visual cortex
organization into orientation columns as observed in monkeys by (Hubel and Wiesel,
1977, 1979), with each column containing cells that respond best to a particular
orientation.
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Horizontal

Figure 3-1: Wavelet decomposition of a scene. Wavelet transform is applied over
three levels along the low-frequency branch of a tree (7" = 3).

3.2 Chrominance/Luminance Attributes

Color is one of the most obvious and pervasive qualities in our surrounding world,
having important functions for perceiving accurately forms, identifying objects and
carrying out tasks important for our survival (Goldstein, 1996).

Two of the main functions of color vision are (Goldstein, 1996):

Creating perceptual segregation This is the process of estimating the boundaries
of objects, which is a crucial ability for survival in many species (for instance,
consider a monkey foraging for bananas on a forest: a color-blind monkey would
have more difficulty in finding the fruit).

Signaling Color also has a signaling function. Signals can result from the detection
of bright colors (e.g., stop at a red traffic light) or from the health index given
by a person’s skin color or a peacock’s plumage.

The signaling function of color will later be exploited in chapter 4 as a pre-
attentional feature for selection of salient stimuli. In addition, skin-color detection,
which is described in detail by (Scassellati, 2001), will be used extensively for face
and arm/hand/finger detection.

Perceptual segregation of color will be later applied for object recognition from
local features (see chapter 5). One possible way of identifying an object in an image is
through the reflectance properties of its surface - its chrominance, and its luminance.
An object might be specified by a single color, or several groups of colors. Color (in
RGB format, 8 bits per pixel) will be first decomposed into its normalized chrominance
(c1 = (r—g+255)/2, co = (r—b+255)/2) and luminance | = (r+b+g)/3 components.

This color decomposition emulates the two distinct classes of photoreceptor cells
in the human retina: rods and cones. Rods are more numerous, very sensitive to light
and widely spread in the retina (except at its very center and at the blind spot where
the the optic nerve gathers). These receptors are mainly used for vision at very low
light levels. Cones, concentrated on the retinal center, are less abundant and much
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less sensitive to light, are responsible for most of the visual experiences of color under
normal lighting conditions (Goldstein, 1996).

Color histograms (Swain and Ballard, 1991) are used to create chrominance or
luminance regions. Each chrominance/luminance region contains a set of similar
colors within a given tolerance (denominated as color buckets). Geometric relation-
ships among these regions are extracted by detecting spatially connected (using a
8-connectivity criterion) chrominance/luminance regions (figure 3-2).

fer

g

Figure 3-2: (left) Original template; (center) Topological Chrominance regions:
(right) Luminance regions.

3.3 Shape - Geometric Features

Another potential description for an object is through its geometric shape. Classes
of objects may be specified along a single eigendirection of object features (e.g. the
class of squares, triangles, etc, independently of their color or luminance). Possible
geometric descriptors are spectral components determined for specific scales and ori-
entations, as described in section 3.1. But a different method for a more accurate
estimation of geometric features from local features is hereby described. This method
consists of estimating oriented lines as geometric features (pairs of these features will
later be used in chapter 5 as the input for an object recognition algorithm based on
local features), as follows:

1. An image of contours is detected using the Canny detector (Canny, 1986)

2. A Hough transform (Hough, 1962; Lim, 1990) is applied to fit lines to the
contour image produced in (1) (see figure 3-3)

3. A Sobel mask (Jain, 1989) is applied at each contour point (contour points

correspond to image pixels lying on the contour) to extract the phase of the
image gradient at that point
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4. All such phase measurements lying on a line are averaged to compute the phase
of the line.

Figure 3-3: Shape features. (left) Lines fitted to the contour image; (center) Phase
information from the Sobel mask; (right) All the phase values along a line are averaged
to give the phase of the line.

3.4 Filtering Periodic Percepts

A human instructor may use different protocols to transmit information to a robot,
as shown by Cog’s algorithmic control structure in figure 3-4. The methodology
developed for human-robot interactions is motivated by an infant’s simple learning
mechanisms in Mahler’s autistic and symbiotic developmental phases (Mahler, 1979).
Indeed, baby toys are often used in a repetitive manner — consider rattles, car/hammer
toys, etc. This repetition can potentially aid a robot in perceiving these objects
robustly. Playing with toys might also involve discontinuous motions. For instance,
grabbing a rattle results in a sharp velocity discontinuity upon contact.

This motivated the design of algorithms which implement the detection of events
with such characteristics. Moving image regions that change velocity either periodi-
cally, or abruptly under contact produce visual event candidates.

The detection of discontinuous motions is the topic of section 3.5, while this section
focuses on the detection of periodic events, as follows: trackers are first initialized to
moving image points, and tracked thereafter over a time interval; their trajectory is
then evaluated using a Short Time Fourier transform (STFT), and tested for a strong
periodicity.

3.4.1 Motion Detection

A motion mask is first derived through image differences over the spatially smoothed
versions of two consecutive images:
| l(()iﬂiff = Jolz. 1) * G(:L’,y) (3.1)
IFT = L(2,y) * G(z,y) — Ig‘_flf(:l;,y), bzl

where Ii.(x,y) represents the image intensity at a point with coordinates (z,y) at time
instant k, and G(x,y) is a two dimensional gaussian (implementation was optimized
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Event Detection
Tracking

Multi-scale time/frequency detection

and and and

manipulator periodic motion object periodic motion object motion discontinuity
no object motion manipulator motion manipulator motion

human is waving :
to introduce a stationary human is showing human slapped a
object to the robot an object by waving it bouncy/wobbling object
Figure 3-4: Images of objects are segmented differently according to scene context.
The selection of the appropriate method is done automatically. After detecting an
event and determining the trajectory of periodic points, the algorithm determines

whether objects or actuators are present, and switches to the appropriate segmenta-
tion method.

for optimal performance). Sparse data often results from this process. Hence, non-
convex polygons are placed around any motion found, as follows. The image is first
partitioned into n overlapping windows. Then, to each of these elementary regions, a
standard convex-hull approximation algorithm is applied if enough points are avail-
able - the convex optimization algorithm applies the standard Quicksort method for
points sorting. The collection of all such polygons result in non-convex polygons that
approximate the sparse data. The image moving region is given by such collection.

3.4.2 Tracking

A grid of points homogeneously sampled from the image are initialized in the mov-
ing region, and thereafter tracked over a time interval of approximately 2 seconds (65
frames). The choice of this time interval is related to the idea of natural kinds (Hendriks-
Jansen, 1996), where perception is based on the range of frequencies which a human
can easily produce and perceive. This was corroborated by an extensive number of
experiments for different window sizes.

At each frame, each tracker’s velocity is computed together with the tracker’s loca-
tion in the next frame. The motion trajectory for each tracker over this time interval
was compared using four different methods. Two were based on the computation of
the image optical flow field - the apparent motion of image brightness - and consisted
of 1) the Horn and Schunk algorithm (Horn, 1986); and 2) Proesmans’s algorithm -
essentially a multiscale, anisotropic diffusion variant of Horn and Schunk’s algorithm.
The other two algorithms rely on discrete point tracking: 1) block matching; and 2)
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the Lucas-Kanade pyramidal algorithm.

The evaluation methodology consisted of running several experiments. In each
experiment, a 1-minute sequence of images of a human waving objects is saved into
a video. The four algorithms are then applied to the sequence of images and the
estimated trajectory of the object’s centroid is evaluated empirically. The methods
based on optical flow field are good for velocity estimation, but not so for position
estimation due to dependence on a smoothing factor. The Lucas-Kanade algorithm
achieved the best results, and was therefore selected for further use.

3.4.3 Multi-scale Periodic Detection

The Fourier transform does not explicitly encode time-varying properties of a signal.
If a signal is locally periodic, i.e., its periodicity changes slowly with time, then
this time-varying property may not be captured by the Fourier transform. But the
encoding of such a property can be accomplished by applying the Short Time Fourier
Transform over successive windows of the signal. Therefore, a STFT is applied to
each tracker’s motion sequence,

I(t, f) = Nf i(t')h(t' —t)e ISt (3.2)
t/'=0

where h is usually a Hamming window, and N the number of frames (Oppenheim and
Schafer, 1989). In this work a rectangular window was used. Although it spreads the
width of the peaks of energy more than the Hamming window, it does not degrade
overall performance (as corroborated from empirical evaluation over a large number
of image sequences), and decreases computational times.

Periodicity is estimated from a periodogram determined for all signals from the
energy of the STFTs over the frequency spectrum. These periodograms are filtered by
a collection of narrow bandwidth band-pass filters. Periodicity is found if, compared
to the maximum filter output, all remaining outputs are negligible. The periodic
detection is applied at multiple time scales. If a strong periodicity is found, the
points implicated are used as seeds for segmentation (this process will be described
in chapter 4).

Previous research work in detecting rigid motions by application of a Fourier
transform based approach was presented by (Polana and Nelson, 1997). (Seitz and
Dyer, 1997) and (Cutler and Davis, 2000) propose alternative approaches. These
works, as other approaches to solve this detection problem, are mostly focused on
the classification of “biological motions” (Johansson, 1976) — the periodic motions
performed by humans and animals in their gaits (such as running or walking). This
thesis work is mostly interested in detecting periodic motions of a human arm while
waving, shaking or tapping on objects. Examples of such situations are the use of
tools in tasks (such as having a human sawing or hammering a piece of wood), or
playing with toys (for instance, shaking a rattle or a musical instrument to produce
sound).
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Table 3.1: Categories of discrete, spatial events

Type of
Interaction
Explicit | *overlap of two entities *two moving entities loose contact
elarge a priori velocities *large a priori velocities
: «abrupt grow of the actuator's elarge initial velocity of ensemble
: | motion area *large a posteriori velocities for at
Implicit *large actuator velocity least one of the entities
eabrupt velocity rise for *motion flow of assembled region
previously stationary object separates into two disjoint regions
- v .
Grabbing

3.5 Filtering Discontinuous Motions

Time information is lost by transforming a signal into the frequency domain, and
neglecting the transform’s phase information. It is not possible to detect time events
from the energy of the Fourier transform of a signal. However, signals generated by
most interesting moving objects and actors contain numerous transitory characteris-
tics, which are often the most important part of the signal, and Fourier analysis is
not suited to detect them. Actions that may generate these signals include, among
others, throwing, grabbing, assembling or disassembling objects.

Therefore, it is imperative to detect events localized in time. With this in mind,
the discontinuous motion induced on an object whenever a robot (or a human instruc-
tor) acts on it is used to facilitate the object’s perception and to transmit relevant
information to a robot, such as how to act on objects. We extend the work by (Fitz-
patrick, 2003a) — who developed a framework for detecting a particular kind of events
(implicit contacts) for the robotic task of poking objects — to the detection of more
general events using a different approach. Hence, in order to detect discontinuous
events, an algorithm was developed to identify interactions among multiple objects
in the image:

1. A motion mask is first derived by subtracting gaussian filtered versions of suc-
cessive images from each other and fitting non-convex polygons to any motion
areas found, as presented in the previous section.

2. A region filling algorithm is applied to separate the mask into regions of disjoint
polygons (using an 8-connectivity criterion).
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3. Each of these regions is used to mask a contour image computed by a Canny
edge detector.

4. The contour points are then tracked using the Lucas-Kanade pyramidal algo-
rithm.

5. An affine model is built for each moving region from the 2-dimensional position
p; and velocity v; vectors of the tracked points, as follows. Considering V =
(V1y...,v0), P = (p1,...,pn) and P. = ([pf' 1],...,[pL 1])7, the affine model
is given by

V = AP, (3.3)

where the nx(n+1) matrix  obtained using the standard method of the pseudo-
inverse matrix, equivalent to a minimum least squares errors optimization. The
model uncertainty is given by (3.4).

C = El(vi — By 1")(vi = Blpi 1)) (3.4)

Outliers are removed using the covariance estimate for such model, by impos-
ing an upper bound in the Mahalanobis distance d = (v; — B[p!" 1]7)7C(v; —

Blpi 17).

6. Objects’ contour masks are updated through a Kalman filter (Anderson and
Moore, 1979; Kailath, 1981) based approach.The model dynamics consists of a
constant acceleration model with an associated uncertainty, the state space be-
ing given by the contour mask’s centroid position and velocity. The filter model
innovations are given by object image masks, which are weighted according to
their centroid velocity (therefore, the corresponding uncertainty decreases with
velocity). For slowly moving objects, the model prediction will have a large
weight, and hence this is equivalent to average the innovation mask with pre-
vious masks. For fast moving objects, the innovation dominates the contour
mask update.

Multiple image regions are tracked — a region is tracked if it is moving or it
maps into an object in memory. An object is inserted into memory for a short
period of time (~ 4 seconds) after the detection of actions exerted on it — a spatial
event. Therefore, spatial events are defined according to the type of objects’ motion
discontinuity (Arsenio, 2003a), as presented in Table 3.1:

Implicit Contact This class of events is originated by such actions as grabbing a
stationary object, or assembling it to a moving object. It corresponds also
to the initial event of poking/slapping a stationary object. The velocity of
the stationary object rises abruptly from zero under contact with the actor
actuator (human arm/hand or robotic arm/grip) or moving object. This creates
a sudden expansion of the optical flow (because both the actor and the object
move instantaneously together).
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Fish oscillating on ~ Hand/Fish motion do Hand grabs Hand/Fish
a cable not match fish move together

Figure 3-5: Detection of a spatial event — grabbing an object — corresponding to an
explicit contact. The algorithm detects two moving regions — the fish (already being
tracked due to detection from a previous event), and the human arm - overlapping,
with large a priori velocities. After contact, both stop moving, occurring therefore a
sudden change in velocity for both. The algorithm’s output is the type of event (an
explicit contact) and image templates with the contours of both entities (the actuator
and the object).

Implicit Release An object and the actor’s actuator, or two objects assembled to-
gether, might be moving rigidly attached to each other. But without further
information, the robot perceives them as a single object. The occurrence of a
separation event upon the object (its release by the actuator) removes such am-
biguity, either by throwing or dropping the object. This event may also result
from a disassembling operation between two objects. For such cases, hierarchi-
cal information concerning object structure is available to an object recognition
scheme.

Explicit Contact This event is triggered by two moving entities coming into con-
tact, such as two objects crashing into each other or an actuator slapping or
grabbing a moving object (see figure 3-5).

Explicit Release The detection of this event is similar to the previous one, differing
on the trigger condition: two moving entities losing contact. The algorithmic
conditions require that the entities’ templates become disjoint over two consec-
utive frames, and the velocity of one of the entities change abruptly.
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Figure 3-6: System running on the robot. Whenever a spatial event occurs (signaled
by squares in the images), five images for five time instants in a neighborhood of the
event are shown. Experiments are shown for the detection of a human a) dropping a
ball b) bouncing a ball ¢) catching a flying object d) throwing a cube rattle. It also
shows human performing a cycle of throws/catchs of e) a car and f) a bottle.




Results and Applications

This event detection strategy was used to detect events such as grabbing, dropping,
poking, assembling, disassembling or throwing objects, and to segment objects from
such events by application of an active segmentation algorithm, which will be de-
scribed in chapter 4. Figure 3-6 shows several snapshots of running experiments for
online detection by Cog. A human actor first captures Cog’s attention to the desired
object by creating a salient stimuli with it. This stimuli is then detected by an atten-
tional system (which is described in the next chapter), and both cameras are verged
to the object. The human actor then performs several actions on the object, each
producing a discontinuous movement of the object. Different actions are separated
by stationary states, in which no action occurs.
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Chapter

Visual Association Area

Perception [is] the reception of form without matter.

Thus is it for a man to think whenever he will,
but not so for him to perceive, because for that ‘ ‘
the presence of a sense-object is necessary... the i
sense-objects are among the particular and external
things.

(Aristotle; BC, 350)

As posed by (Aristotle; BC, 350) for the case of human perception, for a robot
to perceive a sense-object requires the presence of it. Ideally, we would like to learn
models for these sense-objects even if we are not able to act on them. However,
limited information is acquired in such situations, since most often objects are not
irreducible, but instead are just the assembled result of simpler objects. An embodied
approach permits disassembling an object, moving the links all together or one at a
time to further identify kinematic constraints, or rotating an object for multi-view
data.

Hence, this thesis follows an embodied approach for extracting objects properties
(such as their visual appearance and form). We have seen in chapter 3 how the robot
gets into physical contact with the sense-object, and in this chapter we will describe
how object properties can be extracted from the world by processing such events.
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Cognitive Issues The shape of an object, its global motion, or its surface bound-
aries can be perceived from information that is both temporally and spatially frag-
mentary (Shipley and Kellman, 1994).

A current issue in research on visual attention is whether the shape or boundaries
of an object are segregated from their background pre-attentively, or else attention is
first drawn to unstructured regions of the image. Evidence for the former is presented
by (Driver et al., 1992), which motivated our development of preattentive segmenta-
tion schemes — attention is however useful to get a desired sense-object visible to the
humanoid robot.

Luminance and color based figure-ground segregation seems to be correlated with
activation in both visual low-level and visual association brain-areas, while motion
based segregation appears mostly on extrastriate (visual association) areas (Spang
et al., 2002). This suggests partly separate mechanisms for figure-ground segregation:
color and luminance segregation may share some common neuronal mechanisms, while
segregation not based on these low-level features takes place mainly on higher-level
processing areas.

Developmental Issues Our approach detects physical interactions between an
embodied creature and a sense-object — following (Aristotle; BC, 350) argument, and
thereafter builds a visual appearance description of the object (as will be described
in detail by sections 4.2 and 4.3) — together with its rough shape (section 4.4) — from
basic visual percepts generated by the creature actions.

This developmental path is motivated by biological evidence that basic spatial
vision and motion perception develops earlier than form perception (Kiorpes and
Movshon, 2003).

We start by describing the integration of low level-features such as color and
motion by a logpolar attentional system (section 4.1), which is used to select salient
stimulus on the retina to which the robot’s attention and computational resources
are drawn.

4.1 A Logpolar Attentional System

Cones are densely packed over the fovea region at the center of the retina, where both
spatial and color vision are most acute (except at the blind spot). The non-uniform
distribution of cones on the retina results in more resources being allocated to process
objects on the foveal view and less resources to process stimuli on the periphery. This
fact led to the implementation of a space-variant attentional system (Scassellati, 2001;
Metta, 2001) .

In order to select and integrate the information perceived from different sensors,
a modified version of the logpolar attentional system proposed by (Metta, 2001) was
developed to select relevant information, and to combine them in a saliency map
(Arsenio, 2003d,c). Finally, this map is segmented to extract the region of stimuli
saliency - the attentional focus (Wolfe, 1994; Wolfe et al., 2000).
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There is cognitive evidence that the human visual system operates at different lev-
els of resolution. Therefore, contextual priming is applied to modulate the attentional
system at fine and coarse levels of resolution.

Logpolar vision - The human visual system has a retina with a non-uniform dis-
tribution of photo-receptors. This same idea is exploited by the log-polar transform,
which maps a Cartesian geometry to a non-uniform geometry. We used space-variant
images so that the central region of the image contains more information than the
periphery, speeding up processing. The following basic feature detectors were used:

Color Processing - it includes (Metta, 2001) i) a general-purpose color segmenta-
tion algorithm based on histograms, and ii) a blob detector, based on region growing.
Areas of uniform color according to hue and saturation are labelled and further pro-
cessed to eliminate spurious results.

Skin Detection - based on the algorithm described in (Scassellati, 2001).

Optical Flow - optical flow is the apparent motion of image brightness (Horn,
1986). The optical flow constraint (Horn, 1986) assumes that i) brightness I(z,y,t)
smoothly depends on coordinates (x,y) on most of the image; ii) brightness at every
point of an object does not change in time, and iii) higher order terms are discarded.

Edge Detection - it includes i) Gaussian filtering ii) Canny edge detector, and iii)
selection of the image regions with stronger edges.

4.2 Active Figure/Ground Segregation

Object segmentation is a fundamental problem in computer vision, which will be
dealt with by detecting and interpreting natural human/robot task behavior such as
waving, shaking, poking, grabbing/dropping or throwing objects (Arsenio, 2004e).
Object segmentation is truly a key ability worth investing effort in so that other
capabilities, such as object/function recognition can be developed.

The number of visual segmentation techniques is vast. An active segmentation
technique developed recently (Fitzpatrick, 2003b) relies on poking objects with a
robot actuator. This strategy operates from first-person perspectives of the world:
the robot watching its own motion. However, it is not suitable for segmenting ob-
jects based on external cues. This active strategy applies a passive segmentation
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