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Abstract- Neural oscillators offer a natural tool for exploiting neural oscillator follows the equations presented in Figure 1.
and adapting to the dynamics of the controlled system. The Each neuron have two states variables, c is a positive tonic
capability of entraining the frequency of the input signal or input, r, and -r2 are positive time constants, 3, y (usually
resonance modes of dynamical systems have been increasingly
used in robotics' mechanisms, to accomplish complex tasks. both positives) and ki > 0 are weights, and gi is an external
However, the application of Matsuoka neural oscillators as input to the oscillator. There are two types of nonlinearities:
controllers requires the knowledge of the range of values for the n(u) = n+(u) = max(u; 0), and n-(u) = -min(u,O) =
parameters for which the system oscillates, and the warranty of max(-u,O), with u being the nonlinearity input.
stability. Thus, this paper studies in depth the stability and tuning
of Matsuoka neural oscillators, and presents a careful analysis Tom /',
of its behavior on the time-domain. The method is applied on a W r
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Humanoid Robot for playing musical instruments. -

I. INTRODUCTION OLyIt

The stability analysis of Matsuoka neural oscillators for a YY2  yj+
determined range of values will be carried out using tools _Q y,=n(xr) =mau(x,,O),i= 1,2
from contraction analysis, [71, and invariant set theory (La "- W t 2 Y2 = Y- Y2
Salle Theorem, [9]). To this end, the oscillator analysis in the
time domain is performed separately for each of the regions M '*v r - - 'i[]input 

O -- •V2

in which the dynamics is linear. c r•,t = Y2 - It

Certain reflexes, such as some spinal reflexes, also consist
of Rhythmic movements. For example, rhythmic scratching Fig. 1. Matsuoka neural oscillator, composed by two inhibiting neurons.

occurs after the animal having moved his limb to the starting
posture. Even in animals with the cervical cord damaged at Previous work provided an extensive analysis of these
the cervical level, the reflexes still occur, [6]. Although these neural oscillators on the frequency domain [2], [1]. This
reflexes do not require input from higher-order cortical centers, paper presents a detailed analysis on the time-domain using
they depend on feedback from sensors, since properties of the several appropriate mathematical tools. It will then describe an
reflex depend both on duration and intensity of the stimu- experiment on the Humanoid robot Cog showing the benefits
lus, [6]. Another important activity generated by innate spinal of such analysis.
circuits is walking. Indeed, Central Pattern Generators located
in the spinal cord, generate coordinated rhythmic patterns for II. TIME-DOMAIN PARAMETER ANALYSIS

the contraction of the several muscle groups involved in the Matsuoka neural oscillators nonlinearities are all linear by
movement. parts, [13]. For example, the max(x,O) nonlinearity has a

These neural circuits are often modelled using a half-center unity gain when the input is non-negative and zero otherwise.
model, consisting of motor neurons having mutually inhibitory All the nonlinearities of this oscillator may thus be decom-
synapses. Networks of Matsuoka neural oscillator may be used posed into regions of operation, and analyzed with linear
to model complex neural circuits, [11]. Furthermore, there is tools in that regions. Since the oscillator nonlinearities are
also biological evidence that humans exploit the dynamics of all continuous, the system is well defined at the boundary
their body (e.g., arms) to accomplish a desired task, and this of these regions (although the derivatives are not). In this
property is also fully exploited by such networks, paper, it is presented a time domain analysis for a piece-

The Matsuoka neural oscillator consists of two neurons linear model of the dynamical system, which will bring more
inhibiting each other mutually. The nonlinear dynamics of the insight to variation of oscillator's oscillations with parameters,
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and to stability issues. The time-domain description allows a
better comprehension of the neural oscillator, being possible The first two eigenvalues are in the left half of the complex
the determination of the range of values for which the neural plane if i3 > -1 and -y < 1 + 1L, and the other two if 0 >
oscillator converges: to a stable equilibrium point, to a stable -y-/- and -> -1- 11. Therefore, this point is asymptotically
limit cycle or to a stable limit set. A similar time-domain stable if 13 > max(-'y - 1,-y - 1) and -1 - LL < -y <
analysis for the study of the parameters was presented by + 1 + ZL. The point would have all manifolds unstale if /3 K
Matsuoka, [8], using a mathematical formalism, instead of min(--Y -1, 'y- 1) and +1 +zl <,y < -1- ". Since the
considering the neural oscillator as a piece-wise linear system, time constants Ti and Tr2 are both positive, this last condition
as proposed in [13]. When converging to a limit set, some is impossible. Therefore the system' stability depends only on
of the internal state variables may diverge along some eigen- the values of -y and /3, and may correspond to a stable or a
directions, but the others converge to zero, implying a volume saddle equilibrium point. A saddle point with two unstable
contraction in the state-space, as described in Section 3.1 using and two stable manifolds (one of the essential conditions for
Volume Contraction Analysis. free oscillations for this oscillator) if:

A. Free Vibrations /3> rnax(--y - 1,-y - 1
The piece-linear dynamic equations of one oscillator for free -Y < -1- or -Y> +1 + ZL-

vibrations, i.e., without an applied input, are For Tj = 0.1, -r2 =0.2, y=/3 = 2, the equilibrium
UX! 0~

0 point is a four dimensional saddle point, with two directions
172 0 -2 1 converging and the other two diverging, as shown in Figure 2-[I 1=[ V2 b.____

o2 0 uT A ±

0.5

where ux, for i-I1,2, is the unit input function relative to xr,,
i.e., it cancels for negative values and is equal to unity for
positive values. To check for stability of the equilibrium points,
results:

I-3 1-5 0 3 04 0
.U1  A+- 1  0 0

02 = 0 (2)a)b
- 0 A 4- a)J b)

Lets consider the four possible cases:
ut =1 andu~'= 1

From (1), the equilibrium point is, '

* * C
X 2=V=V2 T1(3)[ /

AS 3 32 3

For c > 0 and /3 + -y Ž 1 the equilibrium point belongs
to the region of the state space considered, and therefore C) d)
this is an equilibrium point for all the system. If c and Fig. 2. Plot of the neural oscillator by linear pans: a) x 1 < 0, x 2 0 b)
0 +-y + 1 have opposite signs, then the equilibrium is located Xi,X2 >:0 C) X1,X2 < 0 d) X1 Ž!0, Xt2 < 0. The paramneters; used were
in the third quadrant and it is not an equilibrium point of the 7" 01, r2 0.2ý /=,-y= 2.and c=

overall system (these points will be thereafter called virtual
equilibrium points). The stability of the equilibrium point is u* = 1 and t4 = 0
determined by (2), being the cigenvalucs given by (4), The equilibrium point in this case is:

A1 , 2 Y~ r-rl± =~-4~ v, x2* = 2ý v* =0(6
A12 i,.V72 4 " ,-1ýj (4) (6)

A3,4  f2 , C2  4 2
1-~ 1-2'Te stability of the equilibrium point is determined by the

where2 +=~ -L The corresponding eigenvalues:
eigenvectors are, A ' A2

V1,2 = [al,2 I (1133 I]T ali,2 = 72)3I.2 + I T14 4 7

V3,4 = I-(73,4 1 I(a3,4 aj 73,4 = 72A33,4 + I 5 A3,4 = (F )
2

-$.()



and the corresponding eigenvectors, However, for -y < 0, x, = X2, i.e., the states oscillate on
[0 0 -• 1], phase, and therefore the output is zero. Thus, (12) is simplified

v1  tI - -1 J to (13), which is the same result obtained by Matsuoka, [8],
[0 0 1 o]T (8) using a different methodology.

V3,4 1A3,, 1 03,4 0
01 J3> -1, - > ilI 1/k (13)

1 2 V(_. -- 2)2-- 41-"2)3
a3,4 (-71 1\3 ,4 - + - + 10)

73ý2 2 2
B. Forced Vibrations

This equilibrium is stable unless 13 < -1, value for which Generally, the oscillator has a non-zero input g. The main
it is unstable. However, only if 3 and -y are within a certain changes on the previous analysis is that now there are two
range of values the eq. is on the fourth quadrant. For other more conditions to be tested, g > 0 and g < 0, which implies
values, this becomes a virtual equilibrium point, since it is that the system becomes piece-wise linear in eight regions. A
not an equilibrium point for the overall system. For 71 = 0.1, constant input g = D> 0 (if D <0, the analysis is the same,

2 = 0.2, -y = 1 = 2, the equilibrium point is stable and interchanging indices 1 and 2) is going to change the location
coincident with the equilibrium point for x0 > 0 and X2 >Ž 0, of the equilibrium point as follows:
as illustrated in Figure 2-d.

Suf =Oandu=1 * x= >Oandx2 >0
Since the equations are symmetric, this case is similar to X2 2s -... ++ -

the previous, and thus the same analysis holds interchanging )3+x1+

xi and X2. The eigenvalues and eigenvectors are the same, * x > Oandx 2 < 0
and the state-space trajectories for this region are illustrated xI = vr = 1, X + 7 1 4v,
in Figure 2-a. xjt1a3d1 2

;0

ux=Oanu'=O x, < 0Oandx,2 > 0
* ut=Oantdu•=O

x1 2.. v*2 = V*-C x*1 =c4---7-•+ - D, v* =0
The equilibrium point of the piece-linear dynamic equations 2  2 TTI 1 0 1

is * x, < Oandx2 < 0
zl =c-D, z2=c, v;=v 0-xx1 =x cc -•= D, (9) c l*=v2

X = X2=C, V = = 0 (9) The system's oscillation depends on having three virtual
attractors in the first quadrant and one real repulsor there.

The stability of this equilibrium point is determined by the For a constant positive input D < c1 , or for a constant
eigenvalues, negative input D < -ci 1! , the stable virtual equilibrium

A1.2  3 (1) point in region xi < 0 andx2 Ž 0 becomes a true one, while
I 34 -r -- 10) the unstable equilibrium changes quadrant and therefore be-

comes virtual. Therefore, the system converges now to the
and the associated eigenvectors are, stable equilibrium and therefore there are no oscillations, as

V, = [1 o 0 0]T, tV2 = o 0 1 0 ]T shown in Figure 3-b. Figure 3-a shows the state-space for free

0 ]T =T (11) vibrations, for an experiment using the same parameters as in
I -L -2 o] [ -72 Figure 2, [131.

This equilibrium is always stable. However, only a negative 06 06
tonic would locate the equilibrium on the third quadrant. 044

Therefore, this is a virtual equilibrium point, as illustrated 02

02in Figure 2-c. x20

From the exposed, for a zero tonic input (which is always o2

non-negative), the equilibrium point is (0, 0, 0, 0), and there- 04 ...02 .
fore all the trajectories will converge to this equilibrium point.
Indeed, even if the initial conditions are in the first quadrant, -02 0 02 04 00 04 02 0 02 04 06

Xj Xl

as soon as x, or X2 changes sign, the trajectory will converge
asymptotically to the equilibrium, and the system does not a) b)

oscillate. Therefore, from the previous conditions, for free Fig. 3. a) Simulation for free vibrations, using the MATLAB Simulink

oscillations k L ', 13 and -y must satisfy (12). Control Box. b) Simulation for a constant input. The neural oscillator does

3> max(-y - 1y- ( not oscillates, and converges to the stable equilibrium point.

< -1 - 1/k or y > - 1/k (12)



C. Transients Applying (14) to (1), for each of the four piece-wise linear

The Matsuoka neural oscillator is very robust to perturba- regions, results that the dynamics do not contract in any of
tions, [13]. The oscillator usually converges very fast, being these regions (indeed, there is at least one positive eigenvalue
often one time period enough for the transient to disappear. of the matrix defined by (14), in each linear region). This is
However, the duration of the transient depends on the eigen- because, for the parameters necessary for oscillations, given
values of the dynamics at each region. By tuning -y, 3, 7-1 and by (13), the dynamics in any of the three quadrants where
72, it is possible to design the system with very fast transients x, < 0 or X2 < 0 (or both), converges to a virtual stable
and with a desired frequency bandwidth. equilibrium. Thus, these regions are not contracting - the

When the amplitude of the input signal decreases, for a virtual equilibrium points are not contained in these regions.
certain range of input amplitude value the oscillator output For both x 1 , X2 > 0, the saddle equilibrium contains two
is oscillating at two frequencies, corresponding to the input unstable manifolds and two stable. Since the states have to
frequency and to the oscillator's free vibration frequency transverse this region in both directions (see Figure 3-a), there
w,o,. If the input amplitude is increased/decreased from these is no trajectory to which all points converge.
range of values, the oscillator spectrum will be concentrated on A. Volume Contraction
only one frequency: input frequency w or w,,.,, respectively.
This may occur after a transient in which the oscillator output The Matsuoka neural oscillator is dissipative, which means
spectrum power is concentrated on two frequencies, as shown that volumes defined by the state space variables contract in
in Figure 4-a. time, although not all the states contract, as just referred.

Lets select an arbitrary surface S(t) of volume V(t) in phase
o6 space, [10]. Considering f the instantaneous velocity of points

04 on S (the initial conditions for trajectories), and a the outward
Neural

02 Oscdor normal on S, in time dt the volume expands (fndt)dA, and
thus Vl = fS fndA. Using the divergence theorem, results

x2 0  V = fv VfdV. Lets consider first the oscillator uncoupled,
-02 as described by (1):

equatons

-02 0 02 04 06 Z+ff,)Vf I,'TS(c - xit - fr't - -'rmax(x2 , 0) - rj, kini (uis))

1-1/r2(-f3v2 + max(x 2 ,0)) -2/taut - 2itau2 <0

Fig. 4. a) Transients in oscillations. The oscillator initially oscillates at low

frequency, but converges slowly to a higher frequency limit cycle. b) Lorenz
maps for the neural oscillator and Lorenz equations. Therefore, since the divergence is constant, V = -2(1/'r- +

1/r 2)V. Thus, volumes in phase space shrink exponentially
Figure 4-b shows the Lorenz map, [10], for the neural fast to a limiting set of zero volume, [101, and the rate of

oscillator versus Lorenz equations [10]. In the graph, zn is the convergence only depends on the positive time constants 7T

local maximum of z(t) (Lorenz equations) or of the oscillator and 7,2.
output yo,,c. The function z,+±I = f(zn) is called the Lorenz For an oscillator coupled to a 2nd order system, the state
map. If If'(z)l > 1 everywhere, then if any limit cycle exist, space is now six-dimensional, being the two additional states
they are necessarily unstable. Thus, observing Figure 4-b, 01 and 02, such that
contrary to Lorenz equations, the neural oscillator does not 0, = 02, 02 = -k/mOt - b/M0 2 I k/rely, - Y21
present Chaotic behavior during the transients. resulting Vf = - 2 /Ti - 2/r 2 - b/m, which is negative, since

both the mass and the damping are positive. Therefore, volume
III. CONTRACTION ANALYSIS contraction occurs. Since the Poincare-Bendixon theorem does

Contraction analysis, [71, is a method inspired from fluid not applies for systems with more than two dimensions, con-
mechanics and differential theory, that analyzes convergence traction analysis is a useful tool to infer volume convergence,
between two neighboring trajectories by considering the local and therefore contraction to a limit set.
flow at a given point. Following the definition presented in [7], Considering a multivariable input multivariable output
given ± = f(x, t), the region of the state-space where the (MIMO) closed-loop system consisting of two oscillators (with
Jacobian Of/lx is uniformly negative definite, only one input for each oscillator), connected to a stable 4t1h

> 1 order system,
f3 >0, - 2, T -OO <T (14)

r2 = 1' (-C,0 2 - (k, + kT),1 4 k2•, 3 + k, (yj - yl))
is denominated a contraction region. However, partial deriva- ý3 = 04
tives do not exist on regions boundaries. Therefore, contraction •s = 1- (-c•20 4 - (k 2 + kT),b3 + k101 4 k2 (yl - y2))

analysis is applied to each linear region of the neural oscillator.



results Vf = -4/rl -4/-2 -cx/ml -c2/m2 < 0. Therefore, 3' > -1-1/k (which once more demonstrates that oscillations
the volume of the MIMO close-loop system also contracts to a are impossible for -y < 0, or x, = x 2). Thus, '9V is zero
limit set. Since the volume contraction occurs V3, -y, even for only on the invariant set, and thus it is negative semi-definite.
unstable oscillations the volume still contracts. Indeed, there Therefore, applying the local invariant set theorem, [9], results
are eigenvectors in this 4 th dimensional space along which that every solution in Ql, tend to this invariant set as t - cc.
the state converges to zero, and faster than the eigendirections Matsuoka proofed in [8] that the output of the neural oscilla-
along which the state may diverge. tor is bounded without any input. Williamson, in 113], extends

the analysis for bounded inputs, and also demonstrates that forN YSICEM oscillators connected to LTI dynamic systems, the close-loop
SYSTEM

system variables are bounded. The output boundness, the ex-
Lets first investigate the operation of the neural oscillator istence of only unstable fixed points (for a certain range of the

in the 11t state-space quadrant. As described by (5), there are parameters), and the uniqueness of the solutions, by checking
two eigenvectors (v1,2) in which the 1 "t and 3,d elements the Lipschitz condition, [13] (since the oscillator is linear by
are equal, as well as the 2nd and the 04 h, and other two parts, it is locally Lipschitz in each linear region, [13]), imply
eigenvectors (v3,4 ) in which the 1Vt and 3 d elements are that the oscillator has oscillatory solutions (not necessarily
symmetric, as well as the 2 nd and the 41h elements. If there periodic), [13]. Furthermore, Williamson, using a method
is an invariant set on this region, it must occur along V3 4 , suggested in [5] based on the linearized Poincart- nmp, [10],
since oscillations do not occur along vL.2, because the states also showed the local stability of a candidate limit cycle, by
along these eigen-directions would oscillate in phase. Indeed, imposing conditions for the Floquet multipliers, [10].
there are no invariant sets along V1,2, which are the stable The Poincar6 map maps the n dimensional system x =
manifolds of the saddle point. Considering directions along f(x,t) into the n - 1 discrete system Xk+I = p(xk), by
v3, 4 , and constrained to the fact that the saddle equilibrium intersecting the flow with a n - 1 dimensional hypersurface
point given by (3) is a solution in the state space, lets consider transverse to the flow, [10]. Thus, it is possible to translate the
the set $s "lS 2, problem of close orbits to one of fixed points of a mapping,

S1 {Xi1OX220:Xi+X 2= 1c as shown in Figure 5.

S2 = Vi>O, :VI+V2O ;q+1- 4 0

I / I From the Invariant Set Theorem

and apply to this set the local invariant set theorem (or La Salle 04 2 , [i.. 2
theorem), [9]. This set is invariant for the dynamic system 02 1* + [y
given by (1), in 01 = {x, _> 0,x 2 > 0}, if every system X2x =X- + 1

trajectory which starts from a point in this set remains in this Z From the piece-wise linearsystem

set for all future time, [9]. For a proof, lets determine 0, fd -02 ynamcsifor the Hand lVquadrantr

i=1,2: -04 A,8 10 toX*- e; =•'(x + A- I B) -a-• B = •

$J= l+" xl + x2 - 2c (v +V2 )
0  

0.2 04 06 + 4,B)_An--rJ ,0 + 1 +- 'y 7ll• 1 + , Xl 'B)•

r2 {XI + x2 - 1 + ( -( + +2 2 Fig. 5. Two surface sections transverse the flow of the neural oscillator at
0x1 =and at x2 0.

Writing the equations in matrix notation, (15), it is easily
concluded that the derivative is zero on the set. Thus, Si fls2 V. APPLICATION TO OSCILLATORY CONTROL OF A
is an invariant set. HUMANOID ROBOT

r 1 [q The work here presented is part of the humanoid robot
Si -" : (15) project Cog, [4]. Under such framework, oscillatory motions[•21 L2+ -~ ] [ s1= S were integrated with a sliding modes controller for position

Is this invariant set attractive? Lets consider a Lyapunov control of the end-effector.
function (which represents a measure of the distance to the On previous work on neural oscillators, the parameters need
invariant set, [9]) and its time derivative, to be inserted off-line, using a trial-and-error approach to

I + estimate their value. An automatic approach operating on theV - (SI + $2) frequency domain for selecting the parameters was proposed

1ý= S191 4-S292 S[ S2 ]Q [ 1  in [2], [1]. However, a time-domain analysis is required to
S[f both provide additional insight into the dynamics of the non-

The matrix Q is negative definite for 3 and - satisfying (13), linear model, and as an alternative, more intuitive method to
since all eigenvalues of Q are negative for j3 > -1 - -y and tune the parameters.



Tools and toys are often used in a manner that is composed VI. DISCUSSION AND CONCLUSIONS
of some repeated motion - consider hammers, bells, saws, Piece-wise linear analysis, Lorenz maps, contraction analy-
rattles, drummers, brushes, files, etc. Therefore, strategies for sis, invariant set theory and Poincarý maps were used to infer
the oscillatory control of movements of a humanoid robot are stability properties of the neural oscillator. These mathematical
imperative, especially if they result on natural movements, tools were also used to bring insight to the oscillator state-
which is the case of Matsuoka neural oscillators, since they space dynamics.
track the natural frequency of the dynamic system to which The oscillator dynamics was characterized in terms of its
they are coupled. As results in Figure 6 show, playing musical parameters. This way, the design of oscillators for control is
instruments is an application where tuning of oscillations plays facilitated, as well as the evaluation of transients and frequency
a rather important role. The wrong set of parameters may result bandwidth. This analysis provides, therefore, theoretical sup-
in no oscillations or else low-amplitude or low-frequency port for the control of robotic arms using Matsuoka neural
oscillations, which is an undesirable behavior. But using the oscillators. In addition, these oscillators are widely applied
tools described in this paper, tuning is fast and effective, on walking robots to generate rhythmic walking patterns [II],

[12], for which this analysis will be an useful design tool.
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