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ABSTRACT

Sociable humanoid robots are natural and intuitive for people to communicate with
and to teach. We present recent advances in building an autonomous humanoid robot,
Kismet, that can engage humans in expressive social interaction. We outline a set
of design issues and a framework that we have found to be of particular importance
for sociable robots. Having a human-in-the-loop places significant social constraints
on how the robot aesthetically appears, how its sensors are configured, its quality of
movement, and its behavior.

Inspired by infant social development, psychology, ethology, and evolutionary per-
spectives, this work integrates theories and concepts from these diverse viewpoints
to enable Kismet to enter into natural and intuitive social interaction with a human
caregiver, reminiscent of parent-infant exchanges. Kismet perceives a variety of natu-
ral social cues from visual and auditory channels, and delivers social signals to people
through gaze direction, facial expression, body posture, and vocalizations.

We present the implementation of Kismet’s social competencies and evaluate each
with respect to: 1) the ability of naive subjects to read and interpret the robot’s
social cues, 2) the robot’s ability to perceive and appropriately respond to naturally
offered social cues, 3) the robot’s ability to elicit interaction scenarios that afford rich
learning potential, and 4) how this produces a rich, flexible, dynamic interaction that
is physical, affective, and social. Numerous studies with naive human subjects are
described that provide the data upon which we base our evaluations.

Thesis supervisor: Prof. Rodney A. Brooks
Title: Fujitsu Professor of Computer Science and Engineering
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Some would argue that because you could see the wires in C3P0’s abdomen that it
must be a real robot. Alas, however, the truth was known. They weren’t real at all.
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two didn’t communicate at all. The arm would perform a reach and grasp maneuver,
again, and again, and again. In the meantime the active vision system would orient
Cog’s eyes and head towards a moving stimulus. I intuitively played a simple little
“grab-the-eraser” game with Cog. I would wiggle an eraser on the table top, the eyes
and head would look at it, and the arm would perform the reach and grasp. Cog
would of course miss because there was no visual feedback to the reaching code. But
it didn’t really matter. To an outside observer, it looked like Cog was engaged in a
game of trying to pick up the eraser, and I was helping it to do so.

I realized at that point that social interaction and playing in a human-like way
with these autonomous robots was “lower hanging fruit” than I had thought. But



Cog was big and intimidating. I wanted a robot that I could treat as a very young
child, that I could play with, and in doing so could teach it about its world and about
people. I wanted to build a robot that could learn and develop like an infant. A robot
raised in human culture. A robot grounded in social interaction. Pretty radical, even
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on a social level, and on an emotional level. For this reason, I do not see Kismet as
being a purely scientific or engineering endeavor. It is an artistic endeavor as well. It
is my masterpiece. I do not think anyone can get a full appreciation of what Kismet
is by reading this dissertation. Video helps. But I think you have to experience it
first hand to understand the connection this robot makes with so many people.
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Chapter 1

Introduction

As robots take on an increasingly ubiquitous role in society, they must be easy for the
average citizen to use and interact with. They must also appeal to persons of different
age, gender, income, education, and so forth. This raises the important question of
how to properly interface untrained humans with these sophisticated technologies in a

manner that is intuitive, efficient, and enjoyable to use. What might such an interface
look like?

1.1 A Universal Interface?

In the field of human computer interaction (HCI), researchers are already examining
how people interact with one form of interactive technology - computers. Recent
research by Reeves and Nass (1996) has shown that humans generally treat com-
puters as they might treat other people, and it does not matter whether the people
are computer experts, lay-people, or computer critics. They treat computers with
politeness usually reserved for humans. They are careful to not hurt the computer’s
“feelings”’ by criticizing it. They feel good if the computer compliments them. In
team play they are even are willing to side with a computer against another human
if the human belongs to a different team. If asked before the respective experiment
if they could imagine treating a computer like a person, they strongly deny it. Even
after the experiment, they insist that they treated the computer as a machine. They
do not realize that they treated it as peer.

In these experiments, why do people unconsciously treat the computers in a social
manner? To explain this behavior, Reeves and Nass appeal to evolution. Their main
thesis is that the “human brain evolved in a world in which only humans exhibited
rich social behaviors, and a world in which all perceived objects were real physical
objects. Anything that seemed to be a real person or place was real.” (Reeves & Nass
1996), p.12. Evolution has hardwired the human brain with innate mechanisms that
enable people to interact in a social manner with others that also behave socially. In
short, we have evolved to be experts in social interaction. Our brains have changed
very little over thousands of years, yet our brains have to deal with twentieth-century
technology. As a result, if a technology behaves in a socially competent manner, we
evoke our evolved social machinery to interact with it. Reeves and Nass argue that it
actually takes more effort for people to consciously inhibit their social machinery in
order to not treat the machine in this way. From their numerous studies, they argue
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that a social interface may be a truly universal interface (Reeves & Nass 1996).

1.1.1 An Argument for Sociable Humanoids

From these findings, we take as a working assumption that technological attempts
to foster human-technology relationships will be accepted by a majority of people if
the technological gadget displays rich social behavior. Similarity of morphology and
sensing modalities makes humanoid robots one form of technology particularly well
suited to this.

If the findings of Reeves and Nass hold true for humanoid robots, then those that
participate in rich human-style social exchange with their users offer a number of
advantages. First, people would find working with them more enjoyable and they
would feel more competent. Second, communicating with them would not require
any additional training since humans are already experts in social interaction. Third,
if the robot could engage in various forms of social learning (imitation, emulation,
tutelage, etc.), then it would be easier for the user to teach new tasks. Ideally, the
user could teach the robot just as they would another person. Sociable machines offer
an intriguing alternative to the way humans interact with robots today.

1.2 Owur Robot, Kismet

An important and challenging aspect of building a sociable machine is to support
natural human communication. Another critical aspect is socially situated learning.
Any robot that co-exists with people as part of their daily lives must be able to learn
and adapt to new experiences. As designers, we simply cannot predict all the possible
scenarios that such a robot will encounter. The challenge is not only to build a robot
that is an effective learner, but to build a robot that can learn in a way that is natural
and intuitive for people to teach.

We are particularly interested in this human form of socially situated learning, and
we have argued for the many advantages social cues and skills could offer robots that
learn from people (Breazeal & Scassellati 2000). The human learning environment is
a dramatically different learning environment from that of typical autonomous robots.
It is an environment that affords a uniquely rich learning potential. However, social
interaction is required to tap into that potential.

Humans are the most socially advanced of all species. As one might imagine,
a humanoid robot that could interact with people in a human-like way — one that
could interpret, respond, and deliver human-style social cues even at the level of a
human infant - is quite a sophisticated machine. As a starting point, we are exploring
the simplest kind of human-style social interaction and learning— that which occurs
between a human infant with its caregiver. Our primary interest in building this kind
of robot is to explore the challenge of building a socially intelligent machine that can
communicate with and learn from people.

Over the past three years, we have constructed an autonomous humanoid robot,
called Kismet, and have been implementing a wide variety of infant-level social com-
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petencies into it. It is a very ambitious and highly integrated system, running on
fifteen networked computers. The design and implementation of Kismet has drawn
significant inspiration from models, theories, and concepts from the fields of psy-
chology, social development, ethology, and evolutionary theory. We present much
of this inspiration throughout the thesis. From Kismet’s inception, the design has
been driven by the desire to explore the kind of socially situated learning that occurs
between a (robot) infant and its (human) caregiver. Much of this thesis is concerned
with supplying the infrastructure to support this style of learning. However, the
learning itself is the topic of future work.

This thesis presents the design issues, the framework, and the implementation
of an autonomous humanoid robot that can engage humans in natural and intuitive
interaction. Following the infant-caregiver metaphor, Kismet’s interaction with a
human is dynamic, physical, expressive, and social. We emphasize how designing for a
human-in-the-loop introduces a new level of social constraints that profoundly impact
the robot control problem — far beyond those issues of traditional autonomous robot
control. A number of studies with naive human subjects are presented throughout
the thesis. Using the data from these studies, we evaluate the work with respect to
the performance of the human-robot system as a whole, not just the performance of
the robot. In the next section, we explore this issue of socially situated learning in
greater detail.

1.3 Socially Situated Learning

Humans (and other animals) acquire new skills socially through direct tutelage, ob-
servational conditioning, goal emulation, imitation, and other methods (Galef 1988),
(Hauser 1996). These social learning skills provide a powerful mechanism for an ob-
server (the learner) to acquire behaviors and knowledge from a skilled individual (the
instructor). In particular, imitation is an extremely powerful mechanism for social
learning which has received a great deal of interest from researchers in the fields of
animal behavior and child development.

Similarly, social interaction can be a powerful way for transferring important skills,
tasks, and information to a robot. A socially competent robot could take advantage
of the same sorts of social learning and teaching scenarios that humans readily use.
From an engineering perspective, a robot that could imitate the actions of a human
would provide a simple and effective means for the human to specify a task and
for the robot to acquire new skills without any additional programming. From a
computer science perspective, imitation and other forms of social learning provide a
means for biasing interaction and constraining the search space for learning. From
a developmental psychology perspective, building systems that learn from humans
allows us to investigate a minimal set of competencies necessary for social learning.

By positing the presence of a human that is motivated to help the robot learn the
task at hand, a powerful set of constraints can be introduced to the learning prob-
lem. A good teacher is very perceptive to the limitations of the learner and scales
the instruction accordingly. As the learner’s performance improves, the instructor
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incrementally increases the complexity of the task. In this way, the learner is compe-
tent but slightly challenged - a condition amenable to successful learning. This type
of learning environment captures key aspects of the learning environment of human
infants, who constantly benefit from the help and encouragement of their caregivers.
An analogous approach could facilitate a robot’s ability to acquire more complex
tasks in more complex environments. Keeping this goal in mind, we outline three key
challenges of robot learning, and how social interaction can be used to address them
in interesting ways.

Knowing what matters

Faced with an incoming stream of sensory data, a robot (the learner) must figure out
which of its myriad of perceptions are relevant to learning the task. As the perceptual
abilities of a robot increases, the search space becomes enormous. If the robot had
a way of narrowing in on those few perceptions that mattered, the learning problem
can become significantly more manageable.

Knowing what matters when learning a task is fundamentally a problem of de-
termining saliency. Objects can gain saliency (that is, they become the target of
attention) through a variety of means. At times, objects are salient because of their
inherent properties; objects that move quickly, objects that have bright colors, and
objects that are shaped like faces are all likely to attract attention. (We call these
properties inherent rather than intrinsic because they are perceptual properties, and
thus are observer-dependent and not strictly a quality of an external object.)

Objects can also become salient through contextual effects. The current motiva-
tional state, emotional state, and knowledge of the learner can impact saliency. For
example, when the learner is hungry, images of food will have higher saliency than
they otherwise would.

Objects can also become salient if they are the focus of the instructor’s attention.
For example, if the human is staring intently at a specific object, that object may
become a salient part of the scene even if it is otherwise uninteresting. People nat-
urally attend to the key aspects of a task while performing that task. By directing
the robot’s own attention to the object of the instructor’s attention, the robot would
automatically attend to the critical aspects of the task.

Hence, a human instructor could play a helpful role by indicating to the robot
what features it should attend to as it learns how to perform the task. The instructor
can take action to bring the robot’s attention to those aspects. Also, in the case of
social instruction, the robot’s gaze direction could also serve as an important feedback
signal for the instructor.

Knowing what action to try

Once the robot has identified salient aspects of the scene, how does it determine what
actions it should take? As robots become more complex, their repertoire of possible
actions increases. This also contributes to a large search space. If the robot had a
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way of focusing on those actions that are likely to be successful, the learning problem
would be simplified.

In this case, a human instructor, sharing a similar morphology with the robot,
could provide considerable assistance by demonstrating the appropriate actions to
try. The body mapping problem is challenging, but could provide the robot with
a good first attempt. The similarity in morphology between human and humanoid
robot could also make it easier and more intuitive for the instructor to correct the
robot’s errors.

Evaluating actions, correcting errors, and recognizing success

Once a robot can observe an action and attempt to perform it, how can the robot
determine whether or not it has been successful? The robot must be able to identify
the desired outcome and to judge how its performance compares to that outcome.
In many of these situations this evaluation depends upon an understanding of the
goals and intentions of the instructor as well as the robot’s own internal motivations.
Further, if the robot has been unsuccessful, how does it determine which parts of its
performance were inadequate? The robot must be able to diagnose its own errors in
order to incrementally improve performance.

However, the human instructor has a good understanding of the task and knows
how to evaluate the robot’s success and progress. If the instructor could communicate
this information to the robot, in a way that the robot could use, the robot could
bootstrap from the instructor’s evaluation in order to shape its behavior. One way
a human instructor could facilitate the robot’s evaluation process is by providing
the robot with expressive feedback. The robot could use this feedback to recognize
success and to correct failures. In the case of social instruction, the difficulty of
obtaining success criteria can be simplified by exploiting the natural structure of
social interactions. As the learner acts, the facial expressions (smiles or frowns),
vocalizations, gestures (nodding or shaking of the head), and other actions of the
instructor all provide feedback that could allow the learner to determine whether or
not it has achieved the desired goal.

In addition, as the instructor takes a turn, the instructor often looks to the
learner’s face to determine whether the learner appears confused or understands what
is being demonstrated. The expressive displays of a robot could be used by the in-
structor to control the rate of information exchange — to either speed it up, to slow
it down, or to elaborate as appropriate. If the learner appears confused, the instruc-
tor slows down the training scenario until the learner is ready to proceed. Facial
expressions could be an important cue for the instructor as well as the robot. Moni-
toring the structure of the social interaction can assist the instructor in maintaining
an appropriate environment for learning. This improves the quality of instruction.

Finally, the structure of instructional situations is iterative; the instructor demon-
strates, the student performs, and then the instructor demonstrates again, often ex-
aggerating or focusing on aspects of the task that were not performed successfully.
The ability to take turns lends significant structure to the learning episode. The
instructor continually modifies the way he/she performs the task, perhaps exagger-
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ating those aspects that the student performed inadequately, in an effort to refine
the student’s subsequent performance. By repeatedly responding to the same social
cues that initially allowed the learner to understand and identify the salient aspects
of the scene, the learner can incrementally refine its approximation of the actions of
the instructor.

In the above discussion, we introduced several challenges in robot learning, and
how social interaction and social cues could be used to address these challenges in
new and interesting ways. For these reasons, we have implemented a number of
these abilities on Kismet. These include the ability to direct the robot’s attention to
establish shared reference, the ability for the robot to recognize expressive feedback
such as praise and prohibition, the ability to give expressive feedback to the human,
and the ability to take turns to structure the learning episodes. In chapter 2, we will
see strong parallels in how human caregivers assist their infant’s learning through
similar social interactions.

1.4 Embodied Systems that Interact with Humans

Before we launch into the presentation of our work with Kismet, we summarize some
related work. These diverse implementations overlap a variety of issues and challenges
that we have had to overcome in building Kismet.

There are a number of systems from different fields of research that are designed to
interact with people. Many of these systems target different application domains such
as computer interfaces, web agents, synthetic characters for entertainment, or robots
for physical labor. In general, these systems can be either embodied (the human
interacts with a robot or an animated avatar) or disembodied (the human interacts
through speech or text entered at a keyboard). The embodied systems have the ad-
vantage of sending para-linguistic communication signals to a person, such as gesture,
facial expression, intonation, gaze direction, or body posture. These embodied and
expressive cues can be used to complement or enhance the agent’s message. At times,
para-linguistic cues carry the message on their own, such as emotive facial expres-
sions or gestures. Cassell (1999b) presents a good overview of how embodiment can
be used by avatars to enhance conversational discourse (however, there are a number
of systems that interact with people without using natural language). Further, these
embodied systems must also address the issue of sensing the human, often focusing
on perceiving the human’s embodied social cues. Hence, the perceptual problem for
these systems is more challenging than that of disembodied systems. In this section
we summarize a few of the embodied efforts, as they are the most closely related to
Kismet.

1.4.1 Embodied Conversation Agents

There are a number of graphics-based systems that combine natural language with
an embodied avatar. The focus is on natural, conversational discourse accompanied
by gesture, facial expression, and so forth. The human uses these systems to perform
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a task, or even to learn how to perform a task.

Fully Embodied Agents

There are several fully embodied conversation agents under development at various
institutions. One of the most advanced systems is Rea from the Media Lab at MIT
(Cassell, Bickmore, Campbell, Vilhjalmsson & Yan 2000). Rea is a synthetic real-
estate agent, situated in a virtual world, that people can query about buying property.
The system communicates through speech, intonation, gaze direction, gesture, and
facial expression. It senses the location of people in the room and recognizes a few sim-
ple gestures. Another advanced system is Steve, under development at USC (Rickel
& Johnson 2000). Steve is a tutoring system, where the human is immersed in virtual
reality to interact with the avatar. It supports domain-independent capabilities to
support task-oriented dialogs in 3D virtual worlds. For instance, Steve trains people
how to operate a variety of equipment on a virtual ship, and guides them through
the ship to show them where the equipment is located. Another interesting system
is Cosmo, under development at North Carolina State University (Lester, Towns,
Callaway, Voerman & FitzGerald 2000). Cosmo is an animated pedagogical agent
for children that operates on the web. The character inhabits the Internet Advi-
sor, a learning environment for the domain of Internet packet routing. Because the
character interacts with children, particular attention is paid to the issues of life-like
behavior and engaging the students at an affective level.

Agents with Faces

There are a number of graphical systems where the avatar predominantly consists of
a face with minimal to no body. A good example is Gandalf, a precurser system of
Rea. The graphical component of the agent consisted of a face and a hand. It could
answer a variety of questions about the Solar system, but required the user to wear
a substantial amount of equipment in order to sense the user’s gestures and head
orientation (Thorisson 1998). In Takeuchi & Nagao (1993), the use of an expressive
graphical face to accompany dialog is explored. They found that the facial component
was good for initiating new users to the system, but its benefit was not as pronounced
over time.

1.4.2 Interactive Characters

There are a variety of interactive characters under development for the entertainment
domain. Some systems use natural language whereas others do not. Instead, the
emphasis for each system is compelling, life-like behavior and characters with per-
sonality. Expressive, readable behavior is of extreme importance for the human to
understand the interactive story line. Instead of passively viewing a scripted story,
the user creates the story interactively with the characters.
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Sympathetic Interfaces

A number of systems have been developed by at the MIT Media Lab. One of the
earliest systems was the ALIVE project (Maes, Darrell, Blumberg & Pentland 1996).
The best known character of this project is Silus, an animated dog that the user could
interact with using gesture within a virtual space (Blumberg 1996). Several other
systems have since been developed at the Media Lab by the Synthetic Characters
Group, such as Swamped!, (void*), and Syndy k-9.0. In Swamped! and (void*), the
human interacts with the characters using a sympathetic interface. For Swamped!, for
instance, this was a sensor laden plush chicken (Johnson, Wilson, Blumberg, Kline &
Bobick 1999). By interacting with the plush toy, the user could control the behavior
of an animated chicken in the virtual world, which would then interact with other
characters.

Believable Agents

There are several synthetic character systems that support the use of natural lan-
guage. The Oz project at CMU is a good example (Bates 1994). The system stressed
broad and shallow architectures, stressing the preference for characters with a broad
repertoire of behaviors over those that are narrow experts. Some of the characters
were graphics oriented (such as woggles), whereas others were text based (such as
Leotard the cat). Using a text based interface, Bates, Loyall & Reilly (1992) explored
the development of social and emotional agents. At Microsoft Research Labs, Peedy
was an animated parrot that users could interact with in the domain of music (Ball,
Ling, Kurlander, Miller, Pugh, Skelley, Stankosky, Thiel, Dantzich & Wax 1997). In
later work at Microsoft Research, Ball & Breese (2000) explore incorporating emotion
and personality into conversation agents using a Baysian network technique.

1.4.3 Human Friendly Humanoids

In the robotics community, there is a growing interest in building personal robots, or
in building robots that share the same workspace with humans. Some projects focus
on more advanced forms of tele-operation. Since our emphasis is on autonomous
robots, we will not dwell on these systems. Instead, we concentrate on those efforts
in building robots that interact with people.

Robotic Faces

There are several projects that focus on the development of expressive robot faces.
Researchers at the Tokyo Institute of Technology have developed the most human-like
robotic faces (typically resembling a Japanese woman) that incorporate hair, teeth,
silicone skin, and a large number of control points (Hara 1998). Each control point
maps to a facial action unit of a human face. The facial action units characterize
how each facial muscle (or combination of facial muscles) adjust the skin and facial
features to produce human expressions and facial movements (Ekman & Friesen 1982).
Using a camera mounted in the left eyeball, the robot can recognize and produce a
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predefined set of emotive facial expressions (corresponding to anger, fear, disgust,
happiness, sorrow, and surprise). A number of simpler expressive faces have been
developed at Waseda University, one of which can adjust its amount of eye-opening
and neck posture in response to light intensity (Takanobu, Takanishi, Hirano, Kato,
Sato & Umetsu 1998).

Full Bodied Humanoids

There are a growing number of humanoid robotic projects underway, with a partic-
ularly strong program in Japan. Some humanoid efforts focus on more traditional
challenges of robot control. Honda’s P37 is a bipedal walker with an impressive human-
like gait (Hirai 1998). Another full bodied (but non-locomotory) humanoid is at ATR
(Schaal 1999). Here, the focus has been on arm control and in integrating arm control
with vision to mimic the gestures and tasks demonstrated by a human. There are
several upper torso humanoid robots. There are two relatively new efforts: one at
NASA, called robonaut (Ambrose, Aldridge & Askew 1999), and another at Vander-
bilt University (Kawamura, Wilkes, Pack, Bishay & Barile 1996). One of the most
well known humanoid robots is Cog, under development at the MIT Artificial Intel-
ligence Lab (Brooks, Breazeal, Marjanovic, Scassellati & Williamson 1999). Cog is a
general purpose humanoid platform used to explore theories and models of intelligent
behavior and learning, both physical and social.

1.4.4 Personal Robots

There are a number of robotic projects that focus on operating within human en-
vironments. Typically these robots are not humanoid in form, but are designed to
support natural communication channels such as gesture or speech.

Domestic Robots

There are a few robots that are being designed for domestic use. For systems such
as these, safety, and minimizing their impact on human living spaces are important
issues as well as performance and ease of use. Many applications of this kind focus
on providing assistance to the elderly or to the disabled. The MOVAID system as
described in Dario & Susani (1996), and a similar project at Vanderbilt University
presented in Kawamura et al. (1996) are examples. In a somewhat related effort
Dautenhahn (1999) has employed autonomous robots to assist in social therapy of
fairly high-functioning autistic children.

Synthetic Pets

In the entertainment market, there are a growing number of synthetic pets (both
robotic and digital). Sony’s robot dog Aibo is the most sophisticated (and expensive).
It can perceive a few simple visual and auditory features that allow it to interact with
a pink ball and objects that appear skin-toned. It is mechanically quite sophisticated,
able to locomote, to get up if it falls down, and performs an assortment of tricks. There
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are simpler, less expensive robotic toys such as Tiger Electronic’s Furby. Successful
digital pets include Tomogotchis which the child can carry with them, or animated
pets that live on the computer screen such as PF Magic’s Petz. The toys are designed
to encourage people to establish a long term relationship with their toys.

1.5 Summary

In this chapter, we have motivated the construction of sociable machines from the
viewpoint of building robots that are natural and intuitive to communicate with and
to teach. We summarized a variety of related efforts in building embodied technologies
that interact with people. We introduced Kismet, the subject of this thesis. Our work
with Kismet is concerned both with supporting human-style communication as well
as providing the infrastructure to support socially situated learning. We discussed
how social interaction and social cues can address some of the key challenges in
robot learning in new and interesting ways. These are the capabilities we have taken
particular interest in building into Kismet.

Below, we outline the remainder of the thesis. We take care in each chapter to
emphasize the constraints that interacting with a human imposes on the design of each
system. We tie these issues back to supporting socially situated learning. Evaluation
studies with naive subjects are presented at the end of many of the chapters to tie
Kismet’s behavior back to interacting with people. We have found that designing
for a human-in-the-loop has placed profound constraints on how we think about the
physical design of autonomous robots as well as their socially situated behavior. The
outline of the remaining chapters is as follows:

e Chapter 2: We highlight some key insights from developmental psychology.
These concepts have had a profound impact on the types of capabilities and
interactions we have tried to achieve with Kismet.

Chapter 3: We present an overview of the key design issues for sociable ma-
chines, an overview of Kismet’s system architecture, and a set of the evaluation
criteria.

Chapter 4: We present the system hardware including the physical robot, its
sensory configuration, and the computational platform.

Chapter 5: We present an overview of Kismet’s low level visual and auditory
perceptions. A detailed presentation of the visual and auditory systems follows
in later chapters.

Chapter 6: We offer a detailed presentation of Kismet’s visual attention system.

Chapter 7. We present an in-depth description of Kismet’s ability to recognize
affective intent from the human caregiver’s voice.




Chapter 8: We give a detailed presentation of Kismet’s motivation system, con-
sisting of both homeostatic regulatory mechanisms as well as models of emo-
tions. This system serves to motivate Kismet’s behavior to maintain Kismet’s
internal state of “well being”.

Chapter 9: Kismet has several time-varying motivations and a broad repertoire
of behavioral strategies to satiate them. This chapter presents Kismet’s behav-
ior system that arbitrates among these competing behaviors to establish the
current goal of the robot.

Chapter 10: Given the goal of the robot, the motor systems are responsible for
controlling Kismet’s output modalities (body, face, and voice) to carry out the
task. This chapter presents an overview of Kismet’s diverse motor systems and
the different levels of control that produce Kismet’s observable behavior.

Chapter 11: We present an in-depth look at the motor system that controls
Kismet’s face. It must accommodate various functions such as emotive facial
expression, communicative facial displays, and facial animation to accommodate
speech.

Chapter 12: We present Kismet’s expressive vocalization system and lip syn-
chronization abilities.

Chapter 13: We present a multi-level view of Kismet’s visual behavior, from
low level oculo-motor control to using gaze direction as a powerful social cue.

Chapter 14: We summarize our results, present future work for Kismet, and
offer a set of grand challenges for building sociable machines.
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Chapter 2

Insights from Developmental
Psychology

Human babies become human beings because they are treated as if they
already were human beings. (Newson 1979).

In this chapter, we discuss the role social interaction plays in learning during
infant-caregiver exchanges. First, we illustrate how the human newborn is primed
for social interaction immediately after birth. This fact alone suggests how critically
important it is for the infant to establish a social bond with his caregiver, both
for survival purposes as well as to ensure normal development. Next, we focus on
the caregiver and discuss how she employs various social acts to foster her infant’s
development. We discuss how infants acquire meaningful communication acts through
ongoing interaction with adults. We conclude this chapter by relating these lessons
to Kismet’s design.

We have taken strong inspiration from developmental psychology in the design
of Kismet’s synthetic nervous system. In this chapter we see strong parallels to the
previous chapter in how social interaction with a benevolent caregiver can foster robot
learning. By implementing similar capabilities as the initial perceptual and behavioral
repertoire of human infants, we hope to prime Kismet for natural social exchanges
with humans and for socially situated learning,.

2.1 Development of Communication and Meaning

Most of what a human infant learns is acquired within an ongoing, dynamic, and
social process. This process begins immediately after birth with his caregiver, whom
the infant depends upon for survival. Hence the social experience to which all infants
are naturally exposed is one in which one member of the interaction pair is highly
sophisticated and culturally competent, whereas the other is culturally naive.

2.1.1 Infant Preference for Social Stimuli

From birth, human infants are primed for social interaction with their caregivers. In
general, infants exhibit a strong preference for humans over other forms of stimuli.
Certain types of spontaneously occurring events may momentarily dominate their
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attention, or cause them to react in a quasi-reflex manner. However, the classes
of events which dominate and hold their sustained attention leads one to conclude
that they are biologically tuned to react to person-mediated events. They show a
particular responsiveness to human caregivers, who very often react specifically to
their immediately preceding actions. Hence, a caregiver’s behavior is by no means
random with respect to her infant’s actions. This simple contingent reactivity makes
her an object of absolute, compelling interest to her baby.

2.1.2 Innate Social Responses

Soon after birth, babies respond to their caregivers in a well coordinated manner.
They seem to be born with a set of “pre-programmed” proto-social responses, which
are specific to human infants. Their adaptive advantage seems to be their power to
attract the attention of adults and to engage them in social interaction, the richness
of which appears to be unique to the human species.

For instance, Bateson (1979) argues that the infant’s inability to distinguish sep-
arate words in his caregiver’s vocalizations may allow him to treat her clauses as
unitary utterances analogous to his own coos and murmurs. This allows the infant
to participate in “dialogues” with her. From these early dialogues, he can learn the
cadence, rhythm, intonation, and emotional content of language long before speak-
ing and understanding his first words (Fernald 1984). As another example, Johnson
(1993) argues that the combination of having a limited depth of field! with early
fixation patterns forces the infant to look predominantly at his caregiver’s face. This
brings the infant into face-to-face contact with his caregiver, which encourages her to
try to engage him socially.

Kaye (1979) discusses a scenario where the burst-pause-burst pattern in suckling
behavior, coupled with the caregiver’s tendency to jiggle the infant during the pauses,
lays the foundation of the earliest forms of turn-taking. Over time, the baby’s ability
to take turns becomes more flexible and regular; it is a critical skill for social learning.
Turn-taking leads to dynamic exchanges between caregiver and infant.

Trevarthen (1979) discusses how the wide variety of facial expressions displayed
by infants are interpreted by the caregiver as indications of the infant’s motivational
state. The caregiver views these as responses to her efforts to engage him, and they
encourage her to treat him as an intentional being. These expressive responses provide
the caregiver with feedback, which she uses to carry the dialog along.

2.1.3 Regulating Social Interaction

Given that the caregiver and infant engage in social interactions, there are a number of
ways in which an infant limits the complexity of his interactions with the world. This
is a critical skill for social learning because it allows the infant to keep himself from
being overwhelmed or under stimulated for prolonged periods of time. For instance,

1A newborn’s resolution is restricted to objects about 20 cm away, about the distance to his
caregiver’s face when she holds him.

29




the infant’s own physically immature state serves to limit his perceptual and motor
abilities, which simplifies his interaction with the world. In addition, the infant
is born with a number of innate behavioral responses which constrain the sorts of
stimulation that can impinge upon him. Various reflexes such as quickly withdrawing
his hand from a painful stimulus, evoking the looming reflex in response to a quickly
approaching object, closing his eyelids in response to a bright light, etc. all serve
to protect the infant from stimuli that are potentially dangerous or too intense. In
addition, whenever the infant is in a situation where his environment contains too
much commotion and confusing stimuli, he either cries or tightly shuts his eyes. By
doing so, he shuts out the disturbing stimulation.

To assist the caregiver in regulating the intensity of interaction, the infant pro-
vides her with cues as to whether he is being under stimulated or overwhelmed. For
instance, when the infant feels comfortable in his surroundings, he generally appears
content and alert. Too much commotion results in an appearance of anxiety, or cry-
ing, if the caregiver does not act to “correct” the environment. On the other hand,
many experiments with infants exploit their tendency to show habituation or bore-
dom (looking away from the stimulus) when a stimulus scenario is repeated often
enough.

For the caregiver, her ability to present an appropriately complex view of the
world to her infant strongly depends on how good she is at reading her infant’s
expressive and behavioral cues. It is interesting how adults naturally engage infants in
appropriate interactions without realizing it, and caregivers seem to be instinctually
biased to do so. For instance, motherese is a well known example of how adults
simplify and exaggerate important aspects of language (Bateson 1979). By doing so,
adults may draw the infant’s attention to salient features of the adult’s vocalizations
(Fernald 1984). Exaggerated facial expressions to show extreme happiness or surprise
during face-to-face exchanges with infants is another example.

2.1.4 Attributing Precocious Social Abilities to Infants

The early proto-social responses exhibited by infants are a close enough approxima-
tion to the adult forms that the caregiver immediately interprets her infant’s reactions
by a process of adultomorphism. Simply stated, she assumes her infant is fully socially
responsive; with wishes, intentions, and feelings which can be communicated to others
and which must be respected within certain limits. Events which may at first be the
result of automatic action patterns, or may even be spontaneous or accidental, are
endowed with social significance by the caregiver. By assuming that her infant is at-
tempting some form of meaningful dialog, and by crediting him with having thoughts,
feelings, and intentions like all other members of society, she imputes meaning to the
exchange in a consistent and reliable manner. By doing so, she establishes a dialog
with her infant, from which the communication of shared meanings gradually begins
to take place.

By six weeks, human infants and their caregivers are communicating extensively
face-to-face. The baby’s expressions have become much more varied — they include
coos, murmurs, smiles, frowns, waving and kicking. The caregiver interprets these
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activities as indications of the infant’s emotional state, of his “beliefs” and “desires”,
and of his responses to her own acts of mothering. At such an early age, Kaye (1979)
and Newson (1979) point out that it is the caregiver who supplies the meaning to the
exchange, and it is the mechanism of flexible turn-taking that allows her to maintain
the illusion that a meaningful exchange is taking place. For instance, whenever her
infant does anything that can be interpreted as a turn in the “conversation”, she will
treat it as such. She fills in the gaps, and pauses to allow her infant to respond. She
allows herself to be paced by him, but also subtly leads him on. She could not do
this without the conviction that an actual dialog is taking place.

Although the caregiver-infant dialog still has no specific content, the pragmatics
of conversation are being established. This is an important element for how meaning
emerges for the infant. Schaffer (1977) writes that turn-taking of the non-specific,
flexible, human variety is eminently suited to a number of important developments
that occur over the next few months. It allows the infant to discover what sorts of
activity on his part will get responses from his caregiver. It allows routine sequences of
a predictable nature to be built up. And it provides a context of mutual expectations.
It is the predictable and consistent behavior of the caregiver when interacting with
her infant that makes this possible. She behaves in this consistent manner because
she assumes the infant shares the same meanings that she applies to the interaction.
Eventually, the infant picks up on these consistencies to the point where he also
shares the same meanings. That is, he learns the significance that his actions and
expressions have for other people.

In a similar way, caregivers bootstrap their infants to performing intentional acts
(i.e., acts about something) arguably long before the infant is capable of intentional
thought (Siegel 1999). Around the age of four months (after the caregiver has enjoyed
extensive face-to-face interactions with her infant), the infant displays a new species
typical activity pattern. Now the infant is able to break his caregiver’s gaze to look at
other things in the world. The caregiver interprets this break of gaze as an intentional
act where the infant is now directing his gaze at some other object. In fact Collis
(1979) points out that the infant’s gaze does not seem to be directed at anything in
particular. Furthermore, the infant does not seem to be trying to inform his caregiver
of a newly found interest in objects. However, it is the caregiver who then converts a
particular object into the object of attention. For instance, if an infant makes a reach
and grasping motion in the direction of a given object, the she will assume that the
infant is interested in that object and is trying to hold it. She inevitably intervenes
by giving the object to the infant, thereby “completing” the infant’s action. In this
way, she has converted an arbitrary activity pattern into an action about something.
The caregiver provides the supporting action in which the activity pattern acquires
intentional significance. With this assistance supplied by the caregiver, the infant is
performing intentional acts long before he is capable of intentional thought.

Hence, it is essential for the infant’s psychological development that adults treat
their infants as intentional beings. Both the infants’ responses and their own maternal
responses have been selected for because they foster this kind of interaction. It is by
treating infants as intentional beings that the caregivers can bootstrap them into a
cultural world. The infant’s conception of himself and his actions, his beliefs, desires,
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and goals take shape from the situated interactive processes that his proto-social
response patterns enable him to engage in with his caregiver.

Learning to Mean

Halliday (1975) explores the acquisition of meaningful communication acts from the
viewpoint of how children use language to serve themselves in the course of daily
life. From this perspective, a very young child may already have a linguistic system
long before he has any words or grammar. Prior to uttering his first words, a baby is
capable of expressing a considerable range of meanings which bear little resemblance
to adult language, but which can be readily interpreted from a functional perspective,
i.e. “what has the baby learned to do by means of language?”. At a very young age,
he is able to use his voice for doing something; it is a form of action that influences
the behavior of the external world (such as the caregiver), and these meaningful vocal
acts soon develop their own patterns and are used in their own significant contexts.
To paraphrase Halliday: He uses his voice to order people about, to get them to do
things for him; he uses it to demand certain objects or services; he uses it to make
contact with people, to feel close to them; and so on. All these things are meaningful
actions.

Halliday, refers to the child’s first language as the “child’s tongue” or proto-
language. It comes into being around the middle of the first year of life. Hence,
the child has already been meaning long before he ever utters his first words (which
typically doesn’t occur until about a year later). The infant arrives at meanings, i.e. a
proto-language, through constant interaction with his caregivers. They unconsciously
track his language, understanding what he meant, and respond with meanings of their
own. They talk to him in a way that he can interpret with his own functional re-
sources of meaning, while stretching his understanding without going beyond it. By
doing so, they share in the child’s language and its development at every stage.

2.2 Scaffolding for Social Learning

It is commonplace to say that caregiver-infant interaction is bi-directional, where each
partner adapts to the other over time. However, each has a distinctive role in the
dyad - they are not equal partners. The kinds of effects that infants have upon their
caregivers are very different from those which go the other way. This is not surprising
given that the caregiver is socially sophisticated, but the infant is not. Indeed, the
caregiver’s role is targeted towards developing the social sophistication of her infant.
She does this by providing her infant with various forms of scaffolding.

Traditional Scaffolding

As viewed by the field of developmental psychology, scaffolding is traditionally con-
ceptualized as a supportive structure provided by an adult (Wood, Bruner & Ross
1976). It is thought of in social terms where a more able adult manipulates the
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infant’s interactions with the environment to foster novel abilities. Commonly it in-
volves reducing distractions, marking the task’s critical attributes, giving the infant
affective forms of feedback, reducing the number of degrees of freedom in the target
task, enabling the infant to experience the desired outcome before he is cognitively
or physically able of seeking and attaining it for himself, and so forth. This view of
scaffolding emphasizes the intentional contribution of the adult in providing conscious
and deliberate support and guidance to enable the infant to learn new skills. It is
used as a pedagogical device where the adult pushes the infant a little beyond his
current abilities, and in the direction the adult wishes him to go. For instance, by
exploiting the infant’s instinct to perform a walking motion when supported upright,
parents encourage their infant to learn how to walk before he is physically able.

Emergent Scaffolding

Another notion of scaffolding stresses the importance of early infant action patterns
and their ability to attract the attention of adults and engage them in social inter-
action. This form of scaffolding is referred to as emergent scaffolding by (Hendriks-
Jansen 1996). It relies on the caregiver-infant dyad being seen as two tightly coupled
dynamic systems. In contrast to the previous case where the adult guides the infant’s
behavior to a desired outcome, here the response patterns arise from the continu-
ous mutual adjustments between the two participants. For instance, the interaction
between a suckling infant and the caregiver who jiggles him whenever he pauses in
feeding creates a recognizable interactive pattern that emerges from low-level actions.
This pattern of behavior encourages the habit of turn-taking upon which face-to-face
exchanges will later be built. Many of these early action patterns that newborns
exhibit have no place in adult behavior. They simply serve a bootstrapping role
to launch the infant into an environment of adults who think in intentional terms,
communicate through language, and manipulate objects. Within this socio-cultural
context, these same skills are transferred from adult to child.

Internal Scaffolding

Looking within the infant, there is a third form of scaffolding. We call it internal
scaffolding. This internal aspect refers to the incremental construction of the cognitive
structures themselves that underlie observable behavior. Here, the form of the more
mature cognitive structures are bootstrapped from earlier forms. Because these earlier
forms provide the infant with some level of competence in the world, they are a good
jumping off point for the later competencies to improve upon. In this way, the earlier
structures foster and facilitate the learning of more sophisticated capabilities.
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2.3 Specific Forms of Scaffolding for Social Learn-
ing

Above we presented three forms of scaffolding. The last (internal scaffolding) has to
do with learning mechanisms. For the remainder of this section, we are concerned with
the other two types of scaffolding, the specific forms they take during social exchange,
and how this promotes the infant’s continued learning and development. The way
the caregiver provides this scaffolding reflects her superior level of sophistication over
her infant, and the way she uses her expertise to coax and guide her infant down a
viable developmental path.

Tronick, Als & Adamson (1979) likens the interaction between caregiver and infant
to a duet played by a maestro and inept pupil. The maestro continually makes
adjustments to add variety and richness to the interplay, while allowing the pupil
to participate in, experience, and learn from a higher level of performance than the
pupil could accomplish on his own. Similarly, within each session with her infant,
the caregiver makes constant micro-adjustments to changes in her infant’s behavior.
To make these adjustments, she takes into account her infant’s current abilities, his
attention span, and his level of arousal. Based on these considerations, she adjusts
the timing of her responses, introduces variations about a common theme to the
interaction, and tries to balance his agenda with her own agenda for him (Kaye
1979).

Allowing Infants to Lead

During social interactions, the caregiver actually plays a subservient role to her infant.
For instance, when talking with him she fills his pauses with her own utterances
or gestures, and immediately pauses in anticipation when he is about to respond.
However, she is the one actually in charge. She will purposely leave spaces between
her own repetitious utterances and gestures for the infant to fill. In the meantime,
she is constantly watching and listening for new initiatives from him. She imitates
vocalizations, smiles, funny faces, tongue protrusions, and flurries of limb movement.
If she can produce or prolong a run of alternations between herself and her infant, she
will do so. All the while, she tries to prolong the duration of her infant’s attention
and activity cycles, and specifically tries to get him to respond to her. When he stops
performing his part of the dialog, she may continue hers for a while to re-establish
the dialog. Sometimes she will try to initiate a game. All the while, she tries to pull
the infant along an intuitive curriculum of socialization.

Adjusting Behavior to Suit the Infant Limitations

The caregiver’s performance exhibits tremendous implicit knowledge of her infant’s
physiological and psychological capabilities and limitations. Aware of her infant’s
limited attention span, her responses are aimed toward establishing and maintaining
his interest. Often she tries to re-orient his eyes and face towards her so that they
hold each other in mutual gaze. Once in mutual regard, she exaggerates, slows down,
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and simplifies her behavioral displays to fit within her infant’s information processing
abilities, which are slower and more limited than her own.

Directing the Infant’s Attention

The ability of infants to direct their attention to salient stimuli is present at the
earliest stages of development. It plays a critical role in social interactions with adults
as well as learning during these exchanges. The caregiver initiates social exchange
with her infant by first getting his attention so that they can establish mutual regard.
During the exchange she may direct his attention to other objects and events, such
as directing the interaction to be about a particular toy. If his attention wanes, she
will try to re-engage him by making either herself or the toy more salient. She may
shake the toy, she may assume a staccato manner of speech, etc. By directing the
infant’s attention to the most salient aspects of a task she would like him to learn, she
facilitates the learning problem presented to him. By directing the infant’s attention
to a desired stimulus, the caregiver can establish shared reference which is a key
component of social modeling theory (Pepperberg 1988). It is argued by Bateson
(1979) that the infant’s learning rate is accelerated when in social exchange because
the caregiver focuses his attention on what is important.

Adjusting Timing of Responses

In general, the caregiver exhibits superior flexibility with respect to her own timing
and anticipation of her infant’s fairly regular cycling of his needs and level of arousal.
She is aware that her windows for interaction are limited, and carefully times her
responses to fit within them. For instance, she quickly learns to read his signals for
sleep, food, emotional discharge, and arousal, and she detects the periodicity of these
events so that she can fit face-to-face communication in at the appropriate time.

Entraining to the Infant

On a smaller time scale, during each session with her infant, she continually looks
for pauses in the interaction and fills them with her responses. Because his attention
span is short and intermittent, she times her responses so that they occur immediately
after his gaze shifts back to her. She observes her infant’s behavioral and affective
cues and adapts her behavior in response. By doing so, his responses appear to be
contingent upon hers. The interaction becomes smoother, more synchronized over
time.

Regulating Infant Arousal to Promote Learning

The caregiver is also careful to maintain her infant’s arousal at an appropriate level.
Her maternal responses can be classified along a continuum from “turning on” to
“turning off” her infant. She serves as a buffer to keep him at a moderate level of
arousal, neither too high or too low. Of course, she partly does this for her own
convenience and pleasure. However, according to (Kaye 1979), she also does this
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for the same reason an animal trainer maintains the animal at a moderate level of
hunger. Performance and learning depend upon the infant’s state, and caregivers
devote a great deal of energy and vigilance to the maintenance of an optimal state.

Providing Affective Assessments

Human infants engage in a process of social referencing with their caregivers. In
social referencing, the infant uses the caregiver’s affective assessment of a novel sit-
uation to organize his own behavior. This assessment can occur via visual channels
whereby the infant looks to the caregiver’s face to see her own affective reaction to
an unfamiliar situation (Siegel 1999). The assessment can also be communicated
via auditory channels. Developmental psycholinguists have found that the prosodic
exaggerations typical of infant-directed speech are particularly well matched to the
innate affective responses of human infants. This allows caregivers to readily use their
voice to directly influence the infant’s emotive state, causing the infant to relax or
become more vigilant in certain situations, and to either avoid or approach objects
that may be unfamiliar (Fernald 1993). The caregiver’s affective responses serve as
socially communicated reinforcers for the infant. Given the number of important and
novel situations that the human infant encounters (which do not result in immediate
pain or some other innate reinforcer) social referencing plays an important role in the
infant’s social and behavioral development.

Using Repetition for Teaching

When interacting with her infant, the caregiver’s movements and vocalizations are
repetitive in nature, but she demonstrates ample creativity in introducing variations
in her own repetitions. This sort of variation on a theme for stimulating the infant
is optimal for holding the infant’s attention and establishes a good learning environ-
ment for the infant (Stern 1975). According to Stern, these repetitive presentations
dominate the kinds of stimulation the infant receives from his caregiver. She presents
her responses in the form of content runs where an act or utterance re-occurs in nearly
identical form multiple times, separated by short pauses. She may also present her
responses in the form of temporal runs in which different acts or utterances occur,
occupying nearly identical slots of time.

Shaping Infant’s Agenda

During instructional interaction, the caregiver allows her infant to take the lead,
but shapes his agenda to meet her own. She tries to meet him where he is, and
accommodates quickly to his behavior changes. However, her behavior has a direction
with respect to his. For instance, caregivers will tend to look and point in the direction
the infant is already looking. At an early age (before 6 months), it is not the case
that infants look where their caregivers tell them to look; yet caregivers behave as
if that is the case. They fit their own behavior into that of the infant’s, so that the
infant’s subsequent behavior will seem to be a contingent response. Gradually the
infant does seem to fit his behavior into his caregiver’s dialogue.
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Imitating the Infant

This agenda-shaping process can also be seen when a caregiver imitates her infant.
This is much more than a simple mirroring of her baby. Specifically, she pulls him
from where he is into the direction she wants him to go. To do so, she uses several
imitative strategies. For instance, she may employ mazimizing imitation — if the baby
opens his mouth, she will open her mouth in an exaggerated manner. Alternatively,
she may employ minimizing imitation. For example, if the baby begins to make a cry
face, she responds with a quick cry face that immediately flows back into a bright
expression. Here, the caregiver flashes to where her infant is, and attempts to draw
him back to where she wants him to be. She may also employ modulating imitation.
For instance, when a baby whines “waaah”, the caregiver responds with the same
pitch intonation and duration, but mellows it to a sympathetic “awwwwww”. There
is an important characteristic here to imitation, it is not a perfect match. There is
variation, in the direction of an individual’s personal style, a learner’s incompetence,
or an instructor’s agenda.

Playing Games with Infants

Another important observation is that each caregiver and infant develop a set of
games of their own. These conventional games are the foundation of later commu-
nication and language-learning skills. What seems to be important is the process
of conventionalization, the mutual topic-comment, the modularization of dyadic rou-
tines of some kind, and learning to anticipate when and how a partner’s behavior will
change (Kaye 1979).

Summary

The social programming an infant is subjected to is continuous and cumulative. The
infant begins life with the capacity to elicit certain instructive kinds of behavior
from adults. The caregiver constantly engages her infant using attention-creating
and interest holding strategies. She acts to alleviate the baby’s frustrations and
discomforts, and tries to entertain and stimulate him. The infant will respond initially
with various pre-programmed proto-social gestures like smiling, intent and interested
looking, crying, or satisfied sucking or snuggling.

Soon, the infant will take more of the initiative, demanding and using attention-
seeking patterns in attempts to attract or solicit caregiver attention. These initiatives
rapidly become unmistakenly deliberate and intentional. Somehow he gradually takes
upon himself some of the aspects of the adult’s role in interaction: imitation, adjust-
ment of timing, etc. This in turn gives him even finer control over the adult’s behavior,
so that he gains further information and more and more models of motor skills, of
communication, and eventually of language. Indeed, he very soon learns to operate
as powerful social manipulator of those who care about and care for him. By the time
his representational and phonemic systems are ready to begin learning language, he
is already able to make his intentions understood most of the time, to orient himself
in order to read and interpret other’s responses, to elicit repetitions and variations.
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2.4 Lessons from Infants

Human caregivers program social shared meanings and intentions into ba-
bies.(Newson 1979).

There are several key insights we have gleaned from the discussion in this chapter.
The first is that human infants are born ready for social interaction with the care-
giver. The initial perceptual and behavioral responses bias the infant to interact with
adults, and encourage adults to interact with and care for him. Specifically, many
of these responses enable the caregiver to carry on a “dialog” with him. Second, the
caregiver uses scaffolding to establish a consistent and appropriately complicated so-
cial environment for the infant that he can predict, steer, and learn from. She allows
him to act as if he is in charge of leading the dialog, but she is actually the one in
charge. By doing so, she allows the infant to experiment and learn how his responses
influence her. Third, the development of the baby’s acts of meaning is inherently a
social process, and it is grounded in having the infant learn how he can use his voice
to serve himself. It is important to consider the infant’s motivations — why he is
motivated to use language and for what reasons. These motivations drive what he
learns and why.

2.5 Proto-social Responses for Kismet

For people to treat Kismet as a socially aware being, it needs to convey subjective
internal states: intents, beliefs, desires, and feelings. The robot can be designed to
exploit our natural human tendencies to respond socially to certain behaviors. To
accomplish this, we have implemented several infant-like social cues and responses
that human infants exhibit.

Acts that make subjective processes overt include focusing attention on objects,
orienting to external events, handling or exploring objects with interest, and so forth.
Summarizing the discussions of this chapter, we divide these responses into four cat-
egories. These are listed below. By implementing these four classes of responses
(affective, exploratory, protective, and regulatory) we aim to encourage the human to
treat Kismet as an social creature and to establish meaningful communication with
it.

o Affective responses allow the human to attribute feelings to the robot.

e Eaxploratory responses allow the human to attribute curiosity, interest, and de-
sires to the robot, and can be used to direct the interaction toward objects and
events in the world.

e Protective responses keep the robot away from damaging stimuli and elicit con-
cerned and caring responses from the human.

e Regulatory responses maintain a suitable environment that is neither too over-
whelming nor under-stimulating, and tunes the human’s behavior in a natural
and intuitive way to the competency of the robot.
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Of course, once Kismet can partake in social interactions with people, it is also
important that the dynamics of the interaction be natural and intuitive. For this,
we take the work of Tronick et al. (1979) as a guide. They identify five phases that
characterize social exchanges between three-month old infants and their caregivers:
initiation, mutual-orientation, greeting, play-dialog, and disengagement. Each phase
represents a collection of behaviors which mark the state of the communication. Not
every phase is present in every interaction. For example, a greeting does not ensue
if mutual orientation is not established. Furthermore, a sequence of phases may
appear multiple times within a given exchange, such as repeated greetings before the
play-dialog phase begins. This is discussed in depth in chapter 9.

Acquiring a genuine proto-language is beyond the scope of this dissertation, but
learning how to mean and how to communicate those meanings to another (through
voice face, body, etc.) is a fundamental capacity of a socially intelligent being. These
capacities have profoundly motivated the creation of Kismet. Hence what is concep-
tualized and implemented in this dissertation is heavily inspired and motivated by
the processes highlighted in this chapter. We endeavor to develop a framework that
could ultimately be extended to support the acquisition of a proto-language and these
characteristically human social learning process. This is the topic of the next chapter.
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Chapter 3

Designing Sociable Machines

3.1 Design Issues for Sociable Machines

Our challenge is to build a robot that is capable of engaging humans in natural social
exchanges that adhere to the infant-caregiver metaphor. Our motivation for this kind
of interaction highlights our interest in social development and in socially situated
learning for humanoid robots. Consequently, this thesis focuses on the problem of
building the physical and computational infrastructure needed to support these sorts
of interactions and learning scenarios. The social learning, however, is beyond the
scope of this thesis.

Inspired by infant social development, psychology, ethology, and evolutionary per-
spectives, this work integrates theories and concepts from these diverse viewpoints
to enable Kismet to enter into natural and intuitive social interaction with a hu-
man caregiver. For lack of a better metaphor, we refer to this infrastructure as the
robot’s synthetic nervous system (SNS). Kismet is designed to perceive a variety of
natural social cues from visual and auditory channels, and to deliver social signals
to the human caregiver through gaze direction, facial expression, body posture, and
vocalizations. Every aspect of its design is directed toward making the robot profi-
cient at interpreting and sending readable social cues to the human caregiver, as well
as employing a variety of social skills, to foster its behavioral and communication
performance (and ultimately its learning performance). This requires that the robot
have a rich enough perceptual repertoire to interpret these interactions, and a rich
enough behavioral repertoire to act upon them. As such, the design must address the
following issues:

Situated in a Social Environment

Kismet must be situated in a social and benevolent learning environment that provides
scaffolding interactions. For our purposes, this means that the environment contains
a benevolent human caregiver.

Real-Time Performance

Fundamentally, Kismet’s world is a social world containing a keenly interesting stimu-
lus: an interested human (sometimes more than one) who is actively trying to engage
the robot in a dynamic social manner, to play with it, and to teach it about its world.
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It is difficult to imagine a more dynamic and complex environment. We have found
that it demands a relatively broad and well integrated perceptual system that must
run at natural interactive rates. The same holds true for the robot’s behavioral reper-
toire and expressive abilities. Rich perceptual, behavioral, and expressive repertoires
and real-time performance are a must for the nature and quality of interaction we are
trying to achieve.

Establish Appropriate Social Expectations

Kismet should have an appealing appearance and a natural interface that encourages
humans to interact with Kismet as if it were a young, socially aware creature. If
successful, humans will naturally provide scaffolding interactions without consciously
thinking about it. Furthermore, they will expect the robot to behave at a competency-
level of an infant-like creature. In particular, at a level that is achievable given the
robot’s perceptual, mechanical, and computational limitations.

Self-Motivated Interaction

Kismet’s synthetic nervous system must motivate the robot to pro-actively engage
in social exchanges with the caregiver and to take an interest in things in the envi-
ronment. Each social exchange can be viewed as an episode where the robot tries
to manipulate the caregiver into addressing its “needs” and “wants”. This serves as
the basic impetus for social interaction, upon which richer forms of communication
could be built. This internal motivation frees the robot from being a slave to its en-
vironment, responding only in a reflexive manner to incoming stimuli. Given its own
motivations, the robot can internally influence the kinds of interactions it pursues.

Regulate Interactions

Kismet must be capable of regulating the complexity of its interactions with the world
and its caregiver. To do this, Kismet should provide the caregiver with social cues
(through facial expressions, body posture, or voice) as to whether the interaction is
appropriate for it or not — i.e., the robot should communicate whether the interaction
is overwhelming or under stimulating. For instance, it should signal to the caregiver
when the interaction is overtaxing its perceptual or motor abilities. Further, it should
provide readable cues as to what the appropriate level of interaction is. Kismet should
exhibit interest in its surroundings, interest in the humans that engage it, and behave
in a way to bring itself closer to desirable aspects and to shield itself from undesirable
aspects. By doing so, the robot behaves to promote an environment for which its
capabilities are well matched. Ideally, an environment where it is slightly challenged
but largely competent, in order to foster its social development.

Readable Social Cues

Kismet should send social signals to the human caregiver that provide the human
with feedback of its internal state. If designed properly, humans should intuitively
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and naturally use this feedback to tune their performance in the exchange. Through a
process of entraining to the robot, both the human and robot benefit. The resulting
interaction should be natural, intuitive, and enjoyable for the person. It should
allow the robot to perform effectively and be commensurate with its perceptual,
computational, and behavioral limits. Ultimately, these cues will allow humans to
improve the quality of their instruction.

Read the Human’s Social Cues

During social exchanges, the person sends social cues to Kismet to shape its behavior.
Hence, Kismet must be able to perceive and respond to these cues appropriately. By
doing so, the quality of the interaction improves. Furthermore, many of these social
cues will eventually be offered in the context of teaching the robot. To be able to
take advantage of this scaffolding, the robot must be able to correctly interpret and
react to these social cues.

Competent Behavior in a Complex World

Any convincing robotic creature must address similar behavioral issues as living,
breathing creatures. The robot must exhibit robust, flexible, and appropriate behav-
ior in a complex dynamic environment to maintain its “well being”. This often entails
having the robot apply its limited resources (finite number of sensors, actuators and
limbs, energy, etc.) to perform various tasks. Given a specific task, the robot should
exhibit a reasonable amount of persistence. It should work to accomplish a goal, but
not at the risk of ignoring other important tasks if the current task is taking too long.
Frequently the robot must address multiple goals at the same time. Sometimes these
goals are not at cross-purposes and can be satisfied concurrently. Sometimes these
goals conflict and the robot must figure out how to allocate its resources to address
both adequately. Which goals the robot pursues, and how it does so, depends both on
external influences coming from the environment as well as internal influences from
the creature’s motivations, perceptions, and so forth.

Believable Behavior

The above issue targets the challenges that an artificial creature must solve to op-
erate well in a complex dynamic environment. However, they do not address the
issue of portraying convincing, life-like behavior. For Kismet, it is critical that the
caregiver perceive the robot as an intentional creature that responds in meaningful
ways to his/her attempts at communication. As previously discussed in section 2,
the scaffolding the human provides through these interactions is based upon this as-
sumption. Hence, the synthetic nervous system must address a variety of issues to
promote the illusion of a socially aware robotic creature. Blumberg (1996) provides
such a list, slightly modified as shown here: convey intentionality, promote empathy,
expressiveness, and variability.

These are the high-level design issues of the overall human-robot system. The
system encompasses the robot, its environment, the human, and the nature of inter-
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actions between them. The human’s behavior is governed by many internal factors
that arise from evolution, physiological and psychological processes, development,
learning, and cultural norms (and more). Hence the human brings a complex set of
well-established social machinery to the interaction. Hence, our aim is not a matter
of re-engineering the human side of the equation. Instead we need to engineer for the
human side of the equation. We need to design Kismet’s synthetic nervous system
so that it supports what comes naturally to people. Humans are already experts at
social communication and of social forms of learning and instruction.

If we are clever, we can design Kismet so that people intuitively engage in appro-
priate interactions with the robot. This can be accomplished in a variety of ways,
such as physically designing the robot to establish the correct set of social expecta-
tions for humans, or having Kismet send social cues to humans that they intuitively
use to fine tune their performance.

The following sections present a high level overview of the synthetic nervous sys-
tem. It encompasses the robot’s perceptual, motor, attention, motivation, and behav-
ior systems. Eventually, it should include learning mechanisms so that robot becomes
better adapted to its environment over time.

3.2 Design Hints from Animals, Humans, and In-
fants

In this section, we briefly present ideas for how natural systems address similar issues
as those outlined above. Many of these ideas have shaped the design of Kismet’s
synthetic nervous system. Accordingly, we motivate the high level design of each
component system, how each interfaces with the other, and the responsibility each
carries out for the overall synthetic nervous system. The following chapters of this
thesis present each component system in more detail.

The design of the underlying architecture of the SNS is heavily inspired by mod-
els, mechanisms, and theories from the scientific study of intelligent behavior in living
creatures. For many years, these fields have sought explanatory models for how natu-
ral systems address the aforementioned issues. However, it is important to distinguish
the psychological theory/hypothesis from its underlying implementation in Kismet.

The particular models used to design Kismet’s synthetic nervous system are not
necessarily the most recent nor popular in their respective fields. They were chosen
based on how easily they could be applied to this application, how compatible they are
with other aspects of the system, and how well they could address the aforementioned
issues within synthetic creatures. Our focus has been to engineer a system that
exhibits the desired behavior, and we have found scientific findings from the study of
natural systems to be useful in this endeavor. Our aim has not been to explicitly test
or verify the validity of these models or theories. Limitations of Kismet’s performance
could be ascribed to limitations in the mechanics of the implementation (dynamic
response of the actuators, processing power, latencies in communication), as well as
to the limitations of the models used.
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Hence, we do not claim explanatory power for understanding human behavior
with our implementation. We do not claim equivalence with psychological aspects of
human behavior such as emotions, attention, affect, motivation, etc.. However, we
have implemented synthetic analogs of proposed models, we have integrated them
within the same robot, and we have situated Kismet in a social environment. The
emergent behavior between Kismet’s synthetic nervous system and its social envi-
ronment is quite compelling. When we evaluate Kismet, we do so with an engineer’s
eye. We are testing the adequacy of Kismet’s performance, not that of the underlying
psychological models.

Below, we highlight special considerations from natural systems that have inspired
the design of the robot’s synthetic nervous system. Infants do not come into this world
as mindless, flailing skin bags. Instead, they are born as a coherent system, albeit
immature, with the ability to respond to and act within their environment in a manner
that promotes their survival and continued growth. It is the designer’s challenge to
endow the robot with the “innate” endowments (i.e., the initial set of software and
hardware) that implements similar abilities to that of a newborn. This forms the
foundation upon which learning can take place.

Ethology

Models from ethology have a strong influence in addressing the behavioral issues of
the system (i.e. relevance, coherence, concurrency, persistence, and opportunism). As
such, they have shaped the manner in which behaviors are organized, expressed, and
arbitrated among. Ethology also provides important insights as to how other systems
influence behavior (i.e. motivation, perception, attention, and motor expression).

Social Development and Evolutionary Perspectives

These ethology-based models of behavior are supplemented with models, theories,
and behavioral observations from developmental psychology and evolutionary per-
spectives. In particular, these ideas have had a strong influence in the specification of
the “innate endowments” of the synthetic nervous system, such as early perceptual
skills (visual and auditory) and proto-social responses. The field has also provided
many insights into the nature of social interaction and learning with a caregiver, and
the importance of motivations and emotional responses for this process.

Psychology

Models from psychology have influenced the design details of several systems. In par-
ticular, psychological models of the attention system, facial expressions, the emotion
system, and various perceptual abilities have been adapted for the Kismet’s synthetic
nervous system.
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3.3 A Framework for the Synthetic Nervous Sys-
tem

The design details of each system and how they have incorporated concepts from
these scientific perspectives are presented in depth in later chapters. Here, we simply
present a bird’s eye view of the overall synthetic nervous system to give the reader
a sense of how the global system fits together. The overall architecture is shown in
figure 3-1.

The system architecture consists of six subsystems: the low-level feature extraction
system, the high-level perception system, the attention system, the motivation system,
the behavior system, and the motor system. The low-level feature extraction system
extracts sensor-based features from the world, and the high-level perceptual system
encapsulates these features into percepts that can influence behavior, motivation,
and motor processes. The attention system determines what the most salient and
relevant stimulus of the environment is at any time so that the robot can organize its
behavior about it. The motivation system regulates and maintains the robot’s state
of “well being” in the form of homeostatic regulation processes and emotive responses.
The behavior system implements and arbitrates between competing behaviors. The
winning behavior defines the current task (i.e., the goal) of the robot. The robot
has many behaviors in its repertoire, and several motivations to satiate, so its goals
vary over time. The motor system carries out these goals by orchestrating the output
modalities (actuator or vocal) to achieve them. For Kismet, these actions are realized
as motor skills that accomplish the task physically, or expressive motor acts that
accomplish the task via social signals.

Learning mechanisms will eventually be incorporated into this framework. Most
likely, they will be distributed through out the synthetic nervous system to foster
change within various subsystems as well as between them. It is known that natural
systems possess many different kinds of interacting learning mechanisms (Gallistel
1990). Such will be the case with the synthetic nervous system described here. How-
ever, this is the topic of future work. Below, we summarize the systems that comprise
the synthetic nervous system.

The Low-Level Feature Extraction System

The low-level feature extraction system is responsible for processing the raw sensory
information into quantities that have behavioral significance for the robot. The rou-
tines are designed to be cheap, fast, and just adequate. Of particular interest are
those perceptual cues that infants seem to rely on. For instance, visnal and auditory
cues such as detecting eyes and the recognition of vocal affect are important for in-
fants. The low level perceptual features incorporated into this system are presented
in chapter 5 and 6. More specific auditory percepts are presented in chapter 7.
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Figure 3-1: A framework for designing synthetic nervous systems. Six sub-systems
interact to enable the robot to behave coherently and effectively. See text.

The Attention System

The low-level visual percepts are sent to the attention system. The purpose of the
attention system is to pick out low-level perceptual stimuli that are particularly salient
or relevant at that time, and to direct the robot’s attention and gaze toward them.
This provides the robot with a locus of attention that it can use to organize its
behavior. A perceptual stimulus may be salient for several reasons. It may capture
the robot’s attention because of its sudden appearance, or perhaps due to its sudden
change. It may stand out because of its inherent saliency such as a red ball may stand
out from the background. Or perhaps its quality has special behavioral significance
for the robot such as being a typical indication of danger. See chapter 6 for more
details.

The Perceptual System

The low-level features corresponding to the target stimuli of the attention system are
fed into the perceptual system. Here they are encapsulated into behaviorally rele-
vant percepts. To environmentally elicit processes in these systems, each behavior
and emotive response has an associated releaser. As conceptualized by Tinbergen
(1951) and Lorenz (1973), a releaser can be viewed as a collection of feature detectors
that are minimally necessary to identify a particular object or event of behavioral
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significance. Their function of the releasers is to ascertain if all environmental (per-
ceptual) conditions are right for the response to become active. High level perceptions
that influence emotive responses are presented in chapter 8, and those that influence
task-based behavior are presented in chapter 9.

The Motivation System

The motivation system consists of the robot’s basic. “drives” and “emotions” (see
chapter 8). The drives represent the basic “needs” of the robot and are modeled
as simple homeostatic regulation mechanisms (Carver & Scheier 1998). When the
needs of the robot are being adequately met, the intensity level of each “drive” is
within a desired regime. However, as the intensity level moves farther away from
the homeostatic regime, the robot becomes more strongly motivated to engage in
behaviors that restore that “drive”. Hence the “drives” largely establish the robot’s
own agenda, and play a significant role in determining which behavior(s) the robot
activates at any one time.

The “emotions” are modeled from a functional perspective. Based on simple ap-
praisals of the benefit or detriment of a given stimulus, the robot evokes positive
emotive responses that serve to bring itself closer to it, or negative emotive responses
in order to withdraw from it. There is a distinct emotive response for each class of
eliciting conditions. Currently, six basic emotions are modeled that give the robot syn-
thetic analogs of anger, disgust, fear, joy, sorrow, and surprise (Ekman 1992). There
are also arousal-based responses that correspond to interest, calm, and boredom that
are modeled in a similar way. The expression of emotive responses promotes empathy
from the caregiver and plays an important role in regulating social interaction with
the human.

The Behavior System

The behavior system organizes the robot’s task-based behaviors into a coherent struc-
ture. Each behavior is viewed as a self-interested, goal-directed entity that competes
with other behaviors to establish the current task. An arbitration mechanism is re-
quired to determine which behavior(s) to activate and for how long, given that the
robot has several motivations that it must tend to and different behaviors that it
can use to achieve them. The main responsibility of the behavior system is to carry
out this arbitration. In particular, it addresses the issues of relevancy, coherency,
persistence, and opportunism. By doing so, the robot is able to behave in a sensible
manner in a complex and dynamic environment. The behavior system is described
in depth in section 9.

The Motor System

The motor system arbitrates the robot’s motor skills and expressions. It consists of
four subsystems: the motor skills system, the facial animation system, the expressive
vocalization system , and the oculo-motor system. Given that a particular goal and
behavioral strategy have been selected, the motor system determines how to move the
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robot so as to carry out that course of action. Overall, the motor skills system coor-
dinates body posture, gaze direction, vocalizations, and facial expressions to address
issues of blending and sequencing the action primitives from the specialized motor
systems.

3.4 Mechanics of the Synthetic Nervous System

The overall architecture is agent-based as conceptualized by Minsky (1988), Maes
(1990), Brooks (1986), and bears strongest resemblance to that of Blumberg (1996).
As such, the synthetic nervous system is implemented as a highly distributed network
of interacting elements. Each computational element (or node) receives messages from
those elements connected to its inputs, performs some sort of specific computation
based on these messages, and then sends the results to those connected to its outputs.
The elements connect to form networks, and networks are connected to form the
component systems of the SNS.

inputs— gains

threshold, T

0 Amax

Activation level, A
A = (Zinputs * gains) + bias

Figure 3-2: A schematic of a basic computational process. The process is active when
the activation level A exceeds threshold 7'

The Basic Computational Unit

For this implementation, the basic computational process is modeled as shown in
figure 3-2. Its activation level A is computed by the equation: A = (37" w; -i;) +b
for integer values of inputs i;, weights w;, and bias b over the number of inputs, n.
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The weights can be either positive or negative; a positive weight corresponds to an
excitatory connection and a negative weight corresponds to an inhibitory connection.
Each process is responsible for computing its own activation level to determine when
it should become active. The process is active when its activation level exceeds an
activation threshold. When active, the process can send activation energy to other
nodes to favor their activation. It may also perform some special computation, send
output messages to connected processes, and/or express itself through motor acts by
sending outputs to actuators. Each drive, emotion, behavior, perceptual releaser, and
motor process is modeled as a different type that is specifically tailored for its role
in the overall system architecture. Hence, although they differ in function, they all
follow the basic activation scheme.

Networks of Units

Units are connected together to form networks of interacting processes that allows
for more complex computation. This involves connecting the output(s) of one unit
to the input(s) of other unit(s). When a unit is active, besides passing messages
to the units connected to it, it can also pass some of its activation energy. This
is called spreading activation and is a mechanism by which units can influence the
activation or suppression of other units (Maes 1990). This mechanism was originally
conceptualized by Lorenz (1973) in his Hydraulic Model. Minsky (1988) uses a similar
scheme in his ideas of memory formation using K-lines.

Subsystems of Networks

Groups of connected networks form subsystems. Within each subsystem the active
nodes perform special computations to carry out tasks for that subsystem. To do this,
the messages that are passed among and within these networks must share a common
currency so that the information contained in the messages can be processed and
combined in a principled manner (McFarland & Bosser 1993). Furthermore, as the
subsystem becomes more complex, it is possible that some agents may conflict with
others (such as when competing for shared resources). In this case, the agents must
have some means for competing for expression. If each agent computes its relevance
in terms of a shared currency, conflicting agents can compete based on this value.

Common Currency

This raises an important issue with respect to communication within and between
different subsystems. Observable behavior is a product of many interacting processes.
For instance, ethology, comparative psychology, and neuroscience have shown that
observable behavior is influenced by internal factors (motivations, past experience,
etc.) as well as by external factors (perception). This demands that the subsystems
be able to communicate and influence each other despite their different functions
and modes of computation. This has led ethologists such as McFarland & Bosser
(1993) and Lorenz (1973) to propose that there must be a common currency that is
shared between perceptual, motivational, and behavioral subsystems. In this scheme,
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the perceptual subsystem generates values based on environmental stimuli, and the
motivational subsystem generates values based on internal factors. Both sets of values
are passed to the behavioral subsystem, where competing behaviors use them to
compute their relevance and then compete for expression based on this value. Within
different subsystems, each can operate on their own currencies. This is the case of
Kismet’s behavior system (chapter 9) and emotion system (chapter 8). However, the
currency that is passed between different systems must be shared.

Value Based

Based upon this idea, the robot’s synthetic nervous system is implemented as a value
based system. This simply means that each process computes numeric values (in a
common currency) from its inputs. These values are passed as messages (or activation
energy) throughout the network, either within a subsystem or between subsystems.
Conceptually, the magnitude of the value represents the strength of the contribution
in influencing other processes. Using a value-based approach has the nice effect of
allowing influences to be graded in intensity, instead of simply being “on” or “off”.
Other processes compute their relevance based on the incoming activation energies or
messages, and use their computed activation level to compete with others for exerting
influence upon the synthetic nervous system.

3.5 Criteria for Evaluation

Thus far in this chapter, we have presented the key design issues for Kismet. To
address them, we have outlined the framework for the synthetic nervous system. We
now turn to the question of evaluation criteria.

Kismet is neither designed to be a tool nor an interface. One does not use Kismet
to perform a task. Kismet is designed to be a robotic creature that can interact
socially with humans and ultimately learn from them. As a result, it is difficult or
inappropriate to apply standard Human Computer Interface (HCI) evaluation cri-
teria to Kismet. Many of these relate to the ability for the system to use natural
language, which Kismet is not designed to handle. Some evaluation criteria for em-
bodied conversation agents are somewhat related, such as the use of embodied social
cues to regulate turn taking during dialogs. However, many of these are also closely
related to conversational discourse (Sanders & Scholtz 2000). Currently, Kismet only
babbles, it does not speak any natural language.

Instead, Kismet’s interactions with humans are fundamentally physical, affective,
and social. The robot is designed to elicit interactions with the caregiver that afford
rich learning potential. We have endowed the robot with a substantial amount of
infrastructure that we believe will enable the robot to leverage from these interactions
to foster its social development. As a result, we evaluate Kismet with respect to
interact-ability criteria. These are inherently subjective, yet quantifiable, measures
that evaluate the quality and ease of interaction between robot and human. They
address the behavior of both partners, not just the performance of the robot. The
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evaluation criteria for interact-ability are as follows:

e Can people intuitively read and do they naturally respond to Kismet’s social
cues?

e Can Kismet perceive and appropriately respond to these naturally offered cues?

e Does the human adapt to the robot, and the robot adapt to the human, in a
way that benefits the interaction? Specifically, we want to determine whether
the resulting interaction is natural, intuitive, and enjoyable for the human, and
if Kismet can perform well despite its perceptual, mechanical, behavioral, and
computational limitations.

e Does Kismet readily elicit scaffolding interactions from the human that could
be used to benefit learning?

3.6 Summary

In this chapter, we have outlined our approach for the design of a robot that can
engage humans in a natural, intuitive, social manner. We have carefully considered
a set of design issues that are of particular importance when interacting with people.
Humans will perceive and interpret the robot’s actions as socially significant and
possessing communicative value. They will respond to them accordingly. This defines
a very different set of constraints and challenges for autonomous robot control that
lie along a social dimension.

We are interested in giving Kismet the ability to enter into social interactions
reminiscent of those that occur between infant and caregiver. These include inter-
active games, having the human treat Kismet’s babbles and expressions as though
they are meaningful, and to treat Kismet as a socially aware creature whose behavior
is governed by perceived mental states such as intents, beliefs, desires, and feelings.
As discussed in chapter 2, these interactions are critical for the social development
of infants. Continuing with the infant-caregiver metaphor for Kismet, these interac-
tions could also prove important for Kismet’s social development. In chapter 1 we
outlined several interesting ways in which various forms of scaffolding address several
key challenges of robot learning.

As such, this dissertation is concerned with providing the infrastructure to elicit
and support these future learning scenarios. In this chapter, we have outlined a
framework for this infrastructure that adapts theories, concepts, and models from
psychology, social development, ethology, and evolutionary perspectives. The result
is a synthetic nervous system that is responsible for generating the observable behavior
of the robot and for regulating the robot’s internal state of “well being”. To evaluate
the performance of both the robot and the human, we have introduced a set of
evaluation criteria for interact-ability. Throughout the thesis, we will present a set
of studies with naive human subjects that provide the data for our evaluations. In
the following chapter, we begin our in-depth presentation of Kismet starting with a
description of the physical robot and its computational platform.
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Chapter 4
The Physical Robot

Our design task is to build a physical robot that encourages humans to treat it as if it
were a young socially aware creature. This entails that the robot have an appealing
infant-like appearance so that humans naturally fall into this mode of interaction.
The robot must have a natural and intuitive interface (with respect to its inputs and
outputs) so that a human can interact with it using natural communication channels.
This enables the robot to both read and send human-like social cues. Finally, the
robot must have sufficient sensory, motor, and computational resources for real-time
performance during dynamic social interactions with people.

4.1 Design Issues and Robot Aesthetics

When designing robots that interact socially with people, the aesthetics of the robot
should be carefully considered. The robot’s physical appearance, its manner of move-
ment, and its manner of expression convey personality traits to the person who inter-
acts with it. This fundamentally influences the manner in which people engage the
robot.

Youthful and Appealing

It will be quite a while before we are able to build autonomous humanoids that can
rival the social competence of human adults. For this reason, Kismet is designed to
have an infant-like appearance of a fanciful robotic creature. Note that the human is
a critical part of the environment, so evoking appropriate behaviors from the human
is essential for this project. The key set of features that evoke nurturing responses of
human adults (see figure 4-1) has been studied across many different cultures (Eibl-
Eibesfeldt 1972), and these features have been explicitly incorporated into Kismet’s
design (Breazeal & Foerst 1999). Other issues such as physical size and stature also
matter. For instance, when people are standing they look down to Kismet and when
they are seated they can engage the robot at eye level. As a result, people tend
to intuitively treat Kismet as a very young creature and modify their behavior in
characteristic baby-directed ways. As argued in chapter 2, these same could be used
to benefit the robot by simplifying the perceptual challenges it faces when behaving
in the physical world. It also allows the robot to participate in interesting social
interactions that are well matched to the robot’s level of competence.
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Figure 4-1: Examples of the baby scheme of Eibl-Eibelsfeldt (Eibl-Eibelsfeldt 1970).
He posits that there is a set of facial characteristics that cross-culturally trigger nur-
turing responses from adults. These include a large head with respect to the body,
large eyes with respect to the face, a high forehead, and lips that suggest the ability
to suck. These features are commonly incorporated into dolls and cartoons, as shown
here.

Believability verses Realism

Along a similar vein, the design should minimize factors that could detract from
a natural infant-caretaker interaction. Ironically, humans are particularly sensitive
(in a negative way) to systems that try to imitate humans but inevitably fall short.
Humans have strong implicit assumptions regarding the nature of human-like inter-
actions, and they are disturbed when interacting with a system that violates these
assumptions (Cole 1998). For this reason, we have made a conscious decision to not
make the robot look human. Instead the robot resembles a young fanciful creature
with anthropomorphic expressions that are easily recognizable to a human.

As long argued by animators, a character does not have to be realistic to be
believable, i.e. to convey the illusion of life and to portray a thinking and feeling being
(Thomas & Johnston 1981). We want people to treat Kismet as if it were a socially
aware creature with thoughts, intents, desires, and feelings. Hence, believability is
our goal. Realism is not necessary.

Audience Perception

A deep appreciation of audience perception is a fundamental issue for classical ani-
mation (Thomas & Johnston 1981) and has more recently been argued for by Bates
(1994) in his work on believable agents. For sociable robots, this issue holds as well
(albeit for different reasons), and we have experienced this first hand with Kismet.
How the human perceives the robot establishes a set of expectations that fundamen-
tally shape how the human interacts with it. This is not surprising as Reeves and Nass
(1996) have demonstrated this phenomena for media characters, cartoon characters,
as well as embodied conversation agents.

Being aware of these social factors can be played to advantage by establishing an
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Figure 4-2: Kismet has a large set of expressive features — eyelids, eyebrows, ears,
jaw, lips, neck and eye orientation. The schematic on the right shows the degrees
of freedom (DoF) relevant to visual perception (omitting the eyelids!). The eyes can
turn independently along the horizontal (pan), but turn together along the vertical
(tilt). The neck can turn the whole head horizontally and vertically, and can also
crane forward. Two cameras with narrow “foveal” fields of view rotate with the eyes.
Two central cameras with wide fields of view rotate with the neck. These cameras
are unaffected by the orientation of the eyes. A human wears a microphone to talk
to the robot.

appropriate set of expectations through robotic design. If done properly, people tend
to naturally tune their behavior to the robot’s current level of competence. This leads
to a better quality of interaction for both robot and human.

4.2 The Hardware Design

Kismet is an expressive robotic creature with perceptual and motor modalities tailored
to natural human communication channels. To facilitate a natural infant-caretaker
interaction, the robot is equipped with input and output modalities roughly analogous
to those of an infant (of course, missing many that infants have). For Kismet, the
inputs include visual, auditory, and proprioceptive sensory inputs.

The motor outputs include vocalizations, facial expressions, and motor capabilities
to adjust the gaze direction of the eyes and the orientation of the head. Note that
these motor systems serve to steer the visual and auditory sensors to the source of
the stimulus and can also be used to display communicative cues. The choice of these
input and output modalities is geared to enable the system to participate in social
interactions with a human, as opposed to traditional robot tasks such as manipulating
physical objects or navigating through a cluttered space.
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Figure 4-3: Our hardware and software control architectures have been designed
to meet the challenge of real-time processing of visual signals (approaching 30 Hz)
and auditory signals (8 kHz sample rate and frame windows of 10 ms) with minimal
latencies (less than 500 ms). The high-level perception system, the motivation system,
the behavior system, the motor skill system, and the face motor system execute on
four Motorola 68332 microprocessors running L, a multi-threaded Lisp developed in
our lab. Vision processing, visual attention and eye/neck control is performed by
nine networked 400 MHz PCs running QNX (a real-time Unix operating system).
Expressive speech synthesis and vocal affective intent recognition runs on a dual 450
MHz PC running NT, and the speech recognition system runs on a 500 MHz PC
running Linux.

Vision System

The robot’s vision system consists of four color CCD cameras mounted on a stereo
active vision head. Two wide field of view (fov) cameras are mounted centrally and
move with respect to the head. These are 0.25 inch CCD lipstick cameras with 2.2
mm lenses manufactured by Elmo Corporation. They are used to direct the robot’s
attention toward people or toys and to compute a distance estimate. There is also a
camera mounted within the pupil of each eye. These are 0.5 inch CCD foveal cameras
with an 8 mm focal length lenses, and are used for higher resolution post-attentional
processing, such as eye detection.

Kismet has three degrees of freedom to control gaze direction and three degrees of
freedom to control its neck (see figure 4-2). Each eye has an independent pan DoF,
and both eyes share a common tilt DoF. The degrees of freedom are driven by Maxon

55



DC servo motors with high resolution optical encoders for accurate position control.
This gives the robot the ability to move and orient its eyes like a human, engaging
in a variety of human visual behaviors. This is not only advantageous from a visual
processing perspective (as advocated by the active vision community such as Ballard
(1989)), but humans attribute a communicative value to these eye movements as
well. For instance, humans use gaze direction to infer whether a person is attending
to them, to an object of shared interest, or not. This is important information when
trying to carry out face-to-face interaction.

Kismet’s vision system is implemented on a network of nine 400 MHz commercial
PCs running the QNX real-time operating system. The PCs are connected together
via 100MB Ethernet. There are frame grabbers and video distribution amplifiers to
distribute multiple copies of a given image with minimal latencies. The cameras that
are used to compute stereo measures are externally synchronized.

Auditory System

The caregiver can influence the robot’s behavior through speech by wearing a small
unobtrusive wireless microphone. This auditory signal is fed into a 500 MHz PC
running Linux. The real-time, low-level speech processing and recognition software
was developed at MIT by the Spoken Language Systems Group. These auditory
features are sent to a dual 450 mHz PC running NT. The NT machine processes
these features in real-time to recognize the spoken affective intent of the caregiver.
The Linux and NT machines are connected via 100MB Ethernet to a shared hub and
use CORBA for communication.

Expressive Motor System

Kismet is able to display a wide assortment of facial expressions that mirror its af-
fective state, as well as produce numerous facial displays for other communicative
purposes (Breazeal & Scassellati 1999b). Figure 4-4 illustrates a few examples. Four-
teen of the face actuators are Futaba micro servos, which come in a light weight and
compact package. Each ear has two degrees of freedom that enable each to elevate
and rotate. This allows the robot to perk its ears in an interested fashion, or fold them
back in a manner reminiscent of an angry animal. Each eyebrow has two degrees of
freedom that enable each to elevate and to arc towards and away from the centerline.
This allows the brows to lower and furrow in frustration, or to elevate upwards for
surprise. Each eyelid can open and close independently, allowing the robot to wink
an eye or blink both. The robot has four lip actuators, two for the upper lip corners
and two for the lower lip corners. Each actuator moves a lip corner either up (to form
a smile), or down (to form a frown). There is also a single degree of freedom jaw that
is driven by a high performance DC servo motor from the MEI card. This level of
performance is important for real-time lip synchronization with speech.

The face control software runs on a Motorola 68332 node running L. This proces-
sor is responsible for arbitrating between facial expression, real-time lip synchroniza-
tion, communicative social displays, as well as behavioral responses. It communicates
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Figure 4-4: Some example facial expressions that illustrate the movement of Kismet’s
facial features. Top left is an expression of anger, top right is an expression of dis-
approval, lower left is an expression of happiness, and lower right is an expression of
surprise.

to other 68332 nodes through a 16 KByte dual-ported RAM (DPRAM).

High Level Perception, Behavior, and Motivation, and Motor Skills

The high-level perception system, the behavior system, the motivation system, and
the motor skills system run on the network of Motorola 68332 micro-controllers.
Each of these systems communicate with the others by using threads if they are
implemented on the same processor, or via DPRAM communication if implemented on
different processors. Currently, each 68332 node can hook up to at most 8 DPRAMs.
Another single DPRAM tethers the 68332 network to the network of PC machines
via a QNX node.

Vocalization System

The robot’s vocalization capabilities are generated through an articulatory synthe-
sizer. The software, DECtalk v4.5 sold by Digital Equipment Corporation, is based
on the Klatt articulation synthesizer and it runs on a PC under Windows NT with
a Creative Labs sound card. The parameters of the model are based on the physi-
ological characteristics of the human articulatory tract. Although typically used as
a text-to-speech system, it was chosen over other systems because it gives the user
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low level control over the vocalizations through physiologically based parameter set-
tings. These parameters make it possible to convey affective information through
vocalizations (Cahn 1990), and to convey personality by designing a custom voice
for the robot. As such, Kismet’s voice is that of a young child. The system also
has the ability to play back files in a .wav format, so the robot could in principle
produce infant-like vocalizations (laughter, coos, gurgles, etc.) that the synthesizer
itself cannot generate.

Instead of relying on written text as an interface to the synthesizer, the software
can accept strings of phonemes along with commands to specify the pitch and tim-
ing of the utterance. Hence, Kismet’s vocalization system generates both phoneme
strings and command settings, and says them in near real-time. The synthesizer also
extracts phoneme and pitch information which are used to coordinate real-time lip
synchronization. Ultimately, this capability would permit the robot to play and ex-
periment with its own vocal tract, and to learn the effect these vocalizations have on
human behavior. Kismet’s voice is one of the most versatile instruments it has to
interact with the caregiver.

4.3 Summary

Kismet is an expressive robotic creature with perceptual and motor modalities tailored
to natural human communication channels. To facilitate a natural infant-caretaker
interaction, the robot is equipped with visual, auditory, and proprioceptive sensory
inputs. Its motor modalities consist of a high performance six degree of freedom active
vision head supplemented with expressive facial features. Our hardware and software
control architectures have been designed to meet the challenge of real-time processing
of visual signals (approaching 30 Hz) and auditory signals (frame windows of 10
ms) with minimal latencies (< 500 ms). These fifteen networked computers run the
robot’s synthetic nervous system that integrates perception, attention, motivations,
behaviors, and motor acts.




Chapter 5

Overview of the Perceptual System

Human infants discriminate readily between social stimuli (faces, voices, etc.) and
salient non-social stimuli (brightly colored objects, loud noises, large motion, etc.).
For Kismet, the perceptual system is designed to discriminate a subset of both social
and non-social stimuli from visual images as well as auditory streams. The specific
percepts within each category (social verses non-social) are targeted for social ex-
changes. Specifically, the social stimuli are geared toward detecting the affective state
of the caregiver, whether or not the caregiver is paying attention to the robot, and
other people related percepts that are important during face-to-face exchanges such
as the prosody of the caregiver’s vocalizations. The non-social percepts are selected
for their ability to command the attention of the robot. These are useful during social
exchanges when the caregiver wants to direct the robot’s attention to events outside
pure face-to-face exchange. In this way, the caregiver can maneuver the interaction
to be about things and events in the world, such as centering an interaction around
playing with a specific toy.

5.1 Perceptual Abilities of Infants

From the earliest stages in development, infants treat people differently from other
sources of stimulation in their environment. In their second month, reactions to
things and people are so different that Trevarthen (1979) concludes that these two
classes of objects must be distinct in the infant’s awareness. They see physical ob-
jects as interesting sources of perceptual information and interact with them through
grasping, chewing, kicking, et cetera. However, people are interacted with by facial
expressions, vocalizations, and gestures. In fact, examinations for assessing normal
infant development specifically characterize how infants interact with social stimuli
and respond to non-social stimulation (Brazelton 1979). Such examinations attest to
the infant’s ability to distinguish people from other sources of stimulation.

5.1.1 Social Stimuli

Infants show a preference for social stimuli over non-social stimuli. They prefer even
simple face-like stimuli over other pleasing stimuli such as a red shiny ball (Brazelton
1979). When encountering a human face, their face often softens, their eyes grow
wide and eager, and they may crane their neck forward or make soft cooing sounds
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(Trevarthen 1979). While gazing upon a face, they seem to explore its configuration
while paying particular interest to the eyes and mouth (Trevarthen 1979). They seem
to recognize when an adult is paying attention to them, and fuss when the adult
fails to respond to their own attempts at engagement (Trevarthen 1979), (Tronick et
al. 1979). During face-to-face exchanges with an adult, infants around five months
of age show imitative accommodation to the pitch and duration of sounds, to facial
expressions, and to various gestures such as tongue protrusion, mouth opening, and
hand opening (Trevarthen 1979), (Meltzoff & Moore 1977). The perception of human
sounds is acute in very young infants, and speech is reacted to with particular interest.
In particular, the pitch characteristics of human voices are preferred to non-voice
sounds (Trevarthen 1979). Even the mother’s individual voice or manner of speaking
is preferred early on (Trevarthen 1979), (Hauser 1996). Infants also seem capable of
perceiving the affective state of the caregiver. The infant’s mood can be affected by
the mother’s as conveyed both by facial expression or her speech (Trevarthen 1979).

5.1.2 Non-Social Stimuli

Much research in infant perception has been directed towards discovering what fea-
tures of an object will make it naturally interesting for an infant. According to
Newson (1979), “the most obviously attention-commanding objects are mobile, self-
deforming, brightly colored, and noise emitting devices”. Infants can discriminate
color, and there seems to be a built in categorization for primary colors (red, green,
blue, and yellow) (Trevarthen 1979). They have a preference for red which may assist
them in finding a face or hand as light reflected onto the skin of all humans is reddish
(Trevarthen 1979). Infants are particularly attentive to motion. It has been observed
that, infants younger than six months will not attend to a brightly colored object in
their visual field unless put into motion so as to appear “lively” (Newson 1979). They
have coarse depth perception which starts developing after the first month (Tronick
et al. 1979). They also demonstrate a strong response to periodic motion of an object
in an otherwise inactive field (Trevarthen 1979). This may contribute to the in-
fant’s perception of people and their communication signals. In general there is close
integration of rhythm between mother and infant during social exchanges, their co-
ordinated action being synchronized about a common beat. This forms a turn-taking
framework upon which the reciprocal exchange of complementary messages is based.
Stern (1975) argues that repetitive acts of the caregiver, or stimulation that can be
characterized as variations on a theme, is optimal for holding the infant’s attention.
It should be noted that infants are also sensitive to the intensity of the impinging
stimulation, and have a variety of mechanisms they employ to regulate their intensity
(Brazelton 1979). The caregiver can use this to advantage, to either arouse or quiet
the infant. For instance, speaking to an upset infant in a soft soothing tone will tend
to quiet him. However, speaking to the infant in a high pitched staccato may build
him up to crying. Sudden, intense stimuli may also cause the infant to shut out the
stimulation, either by crying or clenching the eyes shut (Brazelton 1979).
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5.2 Perceptual Limitations of Infants and their Con-
sequences

The phenomenal world of the infant is quite limited compared to that of an adult.
They have a slower rate of processing information. For instance, an infant may
perceive a sequence of two visual events as only a single event (Tronick et al. 1979).
They also have a narrower and shallower field of view as compared to adults. (Tronick
et al. 1979). Hence, only objects within the infant’s immediate vicinity serve to
capture the attention of the infant. They have low visual acuity, and cannot perceive
the same amount of detail in a visual scene as adults do (Tronick et al. 1979). In
the auditory realm, infants cannot perceive many of the subtle variations of the
adult tongue. Instead, they may very well perceive their mother’s vocalizations as a
single utterance, where prosody is the most salient feature (Fernald 1989), (Trehub
& Trainor 1990). In section 2 we discussed how these limited capacities early in
development actually facilitates the infant’s learning and continued growth. Adult
caregivers are aware of the infant’s limitations, and alter their behavior to cater to
the infant’s current abilities.

During social exchanges with the infant, adults modify their actions to be more
appropriate for the infant. Almost everything they do is exaggerated and slowed
down. They vary the rate, intensity, amplitude, and quality of the action to benefit
the infant (Tronick et al. 1979), (Trevarthen 1979). For instance, facial expressions
become “baby faces” which are far more exaggerated than those used between adults.
Their voice assumes “baby talk” characteristics where prosody and pronunciation are
magnified (Hirsh-Pasek, Jusczyk, Cassidy, Druss & Kennedy 1987). They perform
“baby movements” such as coming very close to the infant, orienting to face the
baby, and moving their body both perpendicularly and parallel to the infant. These
exaggerations seem to increase the information content of the caregiver’s activities
while facilitating the coordination of the infant’s activities with those of the caregiver
(Tronick et al. 1979).

By having the caregiver appropriately match her actions and displays to the in-
fant’s current abilities, the infant is able to function within his limitations. In this
way, the infant can organize his actions based upon what he perceives and can prac-
tice his current capabilities in this context. However, as Tronick et al. (1979) points
out, there is actually no way the caregiver can perfectly match her actions with the
intentions or actions of the infant. Mis-matching during face-to-face interaction is
bound to occur. It is doubtful that the infant can process all of the information the
caregiver presents or is able to react to all of it. Nonetheless, this is a critical aspect
of the environment to assure continued development. Mis-matching provides more
complicated events to learn about. Hence, as the infant’s capabilities develop at one
level, there is an environment to develop into that slightly challenges him. An envi-
ronment that is always perfectly matched to the infant’s abilities would not allow for
continued growth. Communication might be better at that moment, but there would
be no impetus for it to improve and to become more elaborated. Hence, the normal
social environment is the proper environment for both the maintenance and growth
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of the infant’s skills.

This has important implications for how to design Kismet’s perceptual system.
Clearly we do not need to implement the ultimate, most versatile and complete per-
ceptual system. Clearly, we do not need to develop a perceptual system that rivals
the performance and sophistication of the adult. As argued above, this is not ap-
propriate and would actually hinder development by overwhelming the robot with
more perceptual information than the robot’s synthetic nervous system could pos-
sibly handle or learn from. It is also inappropriate to place the robot in an overly
simplified environment where it would ultimately learn and predict everything about
that environment. There would be no impetus for continued growth. Instead, the per-
ceptual system should start out as simple as possible, but rich enough to distinguish
important social cues and interaction scenarios that are typical of caregiver-infant
interactions. In the meantime, the caregiver must do her part to simplify the robot’s
perceptual task by slowing down and exaggerating her behavior in appropriate ways.
She should repeat her behavior until she feels it has been adequately perceived by
the robot. Hence the robot does not need to get the perception exactly right upon
its first appearance. The challenge is to specify a perceptual system that can detect
the right kinds of information at the right resolution.

5.3 Overview of the Perceptual System

As argued above, the robot does not necessarily need a perceptual system that rivals
that of human adults. It can be simpler, more like that of an infant. Furthermore, at
any one time there are often several interesting stimuli that the robot could respond
to. We have found that a relatively broad and well integrated real-time perceptual
system is critical.

The real-time constraint imposes some fairly stringent restrictions in the algo-
rithms we use. As a result, they tend to be simple and of low resolution so that they
can run quickly. One might characterize Kismet’s perceptual system as being broad
and simple where the perceptual abilities are robust enough and detailed enough for
these early human-robot interactions. Deep and complicated perceptual algorithms
certainly exist. However, as we have learned from human infants, there are devel-
opmental advantages to starting out broad and simple and allowing the perceptual,
behavioral, and motor systems to develop in step. Kismet’s initial perceptual system
specification is designed to be roughly analogous to a human infant by implementing
many of the perceptual abilities outlined above (and human infants certainly per-
ceive more things than Kismet). Nonetheless, for an autonomous robot, it is quite a
sophisticated perceptual system.

The perceptual system is decomposed into six subsystems (see figure 5-1). The de-
velopment of Kismet’s overall perceptual system is a large scale engineering endeavor
which includes the efforts of many collaborators. We include citations wherever pos-
sible, although some of the work has yet to be published. Please see the acknowl-
edgement section where we gratefully recognize the efforts of these researchers. We
describe the visual attention system in chapter 6. We cover the affective speech
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Figure 5-1: Schematic of Kismet’s perceptual systems. See text.

recognition system in chapter 7. The behavior-specific and emotion-specific percep-
tions (organized about the social/non-social perceptual categories) are discussed in
chapters 8 and 9. For the remainder of this chapter, we briefly outline the low-level
perceptual abilities for visual and auditory channels.

5.4 Low-Level Visual Perception

Kismet's low-level visual perception system extracts a number of features that human
infants seem to be particularly responsive toward. These low-level features were
selected for their ability to help Kismet distinguish social stimuli (i.e. people, that is
based on skin tone, eye detection, and motion) from non-social stimuli (i.e. toys, that
is based on saturated color and motion), and to interact with each in interesting ways
(often modulated by the distance of the target stimulus to the robot). There are a
few perceptual abilities that serve self-protection responses. These include detecting
looming stimuli as well as potentially dangerous stimuli (characterized by excessive
motion close to the robot). We have previously reported an overview of Kismet’s
visual abilities in (Breazeal, Fitzpatrick, Edsinger & Scassellati 2000), (Breazeal &
Scassellati 1999a), (Breazeal & Scassellati 1999b). Kismet’s low-level visual features
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are as follows:

e Highly saturated color: red, blue, green, yellow. (Brian Scassellati)
e Colors representative of skin tone. (Paul Fitzpatrick)

e Motion detection. (Brian Scasselatti)

e Eye detection. (Aaron Edsinger)

e Distance to target. (Paul Fitzpatrick)

e Looming. (Paul Fitzpatrick)

Threatening, very close, excessive motion. (Paul Fitzpatrick)

5.5 Low-Level Auditory Perception

Kismet’s low-level auditory perception system extracts a number of features that
are also useful for distinguishing people from other sound emitting objects such as
rattles, bells, and so forth. The software runs in real-time and was developed at
MIT by the Spoken Language Systems Group (www.sls.les.mit.edu/sls). Jim Glass
and Lee Hetherington were tremendously helpful in tailoring the code for our specific
needs and in assisting us to port this sophisticated speech recognition system to
Kismet. The software delivers a variety of information that is used to distinguish
speech-like sounds from non-speech sounds, to recognize vocal affect, and to regulate
vocal turn-taking behavior. The phonemic information may ultimately be used to
shape the robot’s own vocalizations during imitative vocal games, and to enable the
robot to acquire a proto-language from long term interactions with human caregivers.
Kismet’s low level auditory features are as follows:

e sound present

e speech present

time stamped pitch tracking

time stamped energy tracking

time stamped phonemes

5.6 Summary

Kismet’s perceptual system is designed to support a variety of important functions.
Many aspects address behavioral and protective responses that evolution has endowed
to living creatures so that they may behave and survive in the physical world. Given
the perceptual richness and complexity of the physical world, we have implemented
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specific systems to explicitly organize this flood of information. By doing so, the
robot can organize its behavior about a locus of attention.

The robot’s perceptual abilities have been explicitly tailored to support social in-
teraction with people and to support social learning/instruction processes. The robot
must share enough of a perceptual world with humans so that communication can
take place. The robot must be able to perceive the social cues that people naturally
and intuitively use to communicate with it. The robot and a human should share
enough commonality in those features of the perceptual world that are of particular
interest, so that both are drawn to attend to similar events and stimuli. Meeting these
criteria enables a human to naturally and intuitively direct the robot’s attention to
interesting things in order to establish shared reference. It also allows a human to
communicate affective assessments to the robot which could make social referencing
possible. Ultimately these abilities will play an important role in the robot’s social
development, as they do for the social development of human infants.
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Chapter 6

The Vision System: Attention and
Low Level Perception

Certain types of spontaneously occurring events may momentarily dom-
inate his attention or cause him to react in a quasi-reflex manner, but
a mere description of the classes of events which dominate and hold the
infants’ sustained attention quickly leads one to the conclusion that the
infant is biologically tuned to react to person-mediated events. These be-
ing the only events he is likely to encounter which will be phased, in their
timing, to coordinate in a non-predictable or non-redundant way with his
own activities and spontaneous reactions. (Newson 1979)

6.1 Human Infant Attention

The ability for infants to direct their attention to salient stimuli is present at the
earliest stages of development. It plays a critical role in social interactions with adults
as well as learning during these exchanges. The caregiver initiates social exchange
with her infant by first getting his attention so that they can establish mutual regard.
During the exchange she may direct his attention to other objects and events, such
as directing the interaction to be about a particular toy. If his attention wanes, she
will try to re-engage him by making either herself or the toy more salient. She may
shake the toy, she may assume a staccato manner of speech, etc. By directing the
infant’s attention to the most salient aspects of a task she would like him to learn,
she facilitates the learning problem presented to him. This is one important form of
scaffolding. By directing the infant’s attention to a desired stimulus, the caregiver
can establish joint reference.

6.2 Design Issues of Attention Systems for Robots
that Interact with People

Above, we discussed a number of stimuli that infants have a bias to attend to. They
can be categorized according to visual versus auditory sensory channels (among oth-

ers), and whether they correspond to social or non-social forms of stimulation. From
these, we can outline those specific percepts that have been implemented on Kismet
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because we deem them important for social interaction (of course, there are other im-
portant features that have yet to be implemented). The attention system is designed
to direct the robot’s attention to those visual sensory stimuli that can be character-
ized by these selected perceptions, Later extensions to the mechanism could include
other perceptual features.

To benefit communication and social learning, it is important that both robot
and human find the same sorts of perceptual features interesting. Otherwise there
will be a mismatch between the sorts of stimuli and cues that humans use to direct
the robot’s attention versus those that attract the robot’s attention. For instance, if
designed improperly it could prove to be very difficult to achieve joint reference with
the robot. Even if the human could learn what attracts the robot’s attention, this
defeats the goal of allowing the person to use natural and intuitive cues. Designing
for the set of perceptual cues that human infants find salient allows us to implement
an initial set that are evolutionary significant for humans.

Kismet’s attention system acts to direct computational and behavioral resources
toward salient stimuli and to organize subsequent behavior around them. In an
environment suitably complex for interesting learning, perceptual processing will in-
variably result in many potential target stimuli. Its critical that this be accomplished
in real-time. In order to determine where to assign resources, the attention system
must incorporate raw sensory saliency with task-driven influences.

6.3 Specification of the Attention system

The attention system is shown in figure 6-1 and is heavily inspired by the Guided
Search v2.0 system of Wolfe (1994). Wolfe proposed this work as a model for human
visual search behavior. We have extended it to account for moving cameras, dynami-
cally changing task-driven influences, and habituation effects (Breazeal & Scassellati
1999a).

The attention system is a two stage system. The first stage is a pre-attentive, mas-
sively parallel stage that processes information about basic visual features (i.e., color,
motion, depth cues, etc.) across the entire visual field (Triesman 1986). For Kismet,
these bottom-up features include highly saturated color, motion, and colors represen-
tative of skin tone. The second stage is a limited capacity stage which performs other
more complex operations, such as facial expression recognition, eye detection, or ob-
ject identification, over a localized region of the visual field. These limited capacity
processes are deployed serially from location to location under attentional control.
This is guided by the properties of the visual stimuli processed by the first stage (an
exogenous contribution), by task-driven influences, and by habituation effects (both
are endogenous contributions). The habituation influence provides Kismet with a
primitive attention span. For Kismet, the second stage includes an eye-detector that
operates over the foveal image, and a target proximity estimator that operates on the
stereo images of the two central wide field of view (FoV) cameras. Figure 6-1 shows
an overview of the attention system which we describe below.

All four factors influence the direction of Kismet’s gaze. This in turn determines
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Figure 6-1: The robot’s attention is determined by a combination of low-level per-
ceptual stimuli. The relative weightings of the stimuli are modulated by high-level
behavior and motivational influences. A sufficiently salient stimulus in any modality
can pre-empt attention, similar to the human response to sudden motion. All else
being equal, larger objects are considered more salient than smaller ones. The design
is intended to keep the robot responsive to unexpected events, while avoiding mak-
ing it a slave to every whim of its environment. With this model, people intuitively
provide the right cues to direct the robot’s attention (shake object, move closer, wave

hand, etc.). Displayed images were captured during a behavioral trial session.
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the robot’s subsequent perception, which ultimately feeds back to behavior. Hence the
robot is in a continuous cycle of behavior influencing what is perceived and perception
influencing subsequent behavior.

6.4 Bottom-up contributions: Computing Feature
Maps

The purpose of the first massively parallel stage is to identity locations that are
worthy of further attention. This is considered to be a bottom-up or stimulus-driven
contribution. Raw sensory saliency cues are equivalent to those “pop-out” effects
studied by Triesman (1986), such as color intensity, motion, and orientation for visual
stimuli. As such, it serves to bias attention toward distinctive items in the visual field,
and will not guide attention if the feature properties of that item are not inherently
salient.

This contribution is computed from a series of feature maps which are updated in
parallel over the entire visual field (of the wide fov camera) for a limited set of basic
visual features. There is a separate feature map for each basic feature (for Kismet
these correspond to color, motion, and skin tone) and each map is topographically
organized and in retinotopic coordinates. The computation of these maps is described
below. The value of each location is called the activation level and represents the
saliency of that location in the visual field with respect to the other locations. In
our implementation, the overall bottom-up contribution comes from combining the
results of these feature maps in a weighted sum.

The video signal from each of Kismet’s cameras is digitized by one of the 400MHz
nodes with frame grabbing hardware. The image is then subsampled and averaged
to an appropriate size. Currently, we use an image size of 128 x 128, which allows us
to complete all of the processing in near real-time. To minimize latency, each feature
map is computed by a separate 400MHz processor (each of which also has additional
computational task load). All of the feature detectors discussed here can operate at
multiple scales.

Color saliency feature map

One of the most basic and widely recognized visual features is color. Our models of
color saliency are drawn from the complementary work on visual search and attention
from Itti, Koch & Niebur (1998). The incoming video stream contains three 8-bit color
channels (r, g, and b) which are transformed into four color-opponency channels (7,
g, b, and y'). Each input color channel is first normalized by the luminance [ (a
weighted average of the three input color channels):

LW T %.g %5 b
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These normalized color channels are then used to produce four opponent-color
channels:

(6.1)

69




=1, — (g +b,)/2 (6.2)
gl =gn— (T + bn)/2 (6.3)
W = by — (T + gn) /2 (6.4)
! T‘n + n
v =0 b~ e — gal (6.5)

The four opponent-color channels are clamped to 8-bit values by thresholding.
While some research seems to indicate that each color channel should be considered
individually (Nothdurft 1993), we choose to maintain all of the color information in a
single feature map to simplify the processing requirements (as does Wolfe (1994) for
more theoretical reasons). The result is a 2-D map where pixels containing a bright,
saturated color component (red, green, blue, and yellow) increases the intensity value
of that pixel. We have found the robot to be particularly sensitive to bright red,
green, yellow, blue, and even orange. Figure 6-1 gives an example of the color feature
map when the robot looks at a brightly colored block.

Motion Saliency Feature Maps

In parallel with the color saliency computations, a second processor receives input
images from the frame grabber and computes temporal differences to detect motion.
Motion detection is performed on the wide field of view, which is often at rest since
it does not move with the eyes. The incoming image is converted to grayscale and
placed into a ring of frame buffers. A raw motion map is computed by passing the
absolute difference between consecutive images through a threshold function 7

A{raw = T(”It T It—1”) (66)

This raw motion map is then smoothed with a uniform 7 x 8 field. The result
is a binary 2-D map where regions corresponding to motion have a high intensity
value. The motion saliency feature map is computed at 25-30 Hz by a single 400MHz
processor node. Figure 6-1 gives an example of the motion feature map when the
robot looks at a toy block that is being shaken.

Skin tone feature map

Colors consistent with skin are also filtered for (see figure 6-1). This is a computa-
tionally inexpensive means to rule out regions which are unlikely to contain faces or
hands. A large fraction of pixels on faces will pass these tests over a wide range of
lighting conditions and skin color. Pixels that pass these tests are weighted accord-
ing to a function learned from instances of skin tone from images taken by Kismet’s
cameras. See figure 6-2. In our implementation, a pixel is not skin-toned if:

e 7 < 1.1-g, the red component fails to dominate green sufficiently

e r < 0.9-b, the red component is excessively dominated by blue
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Figure 6-2: The skin tone filter responds to 4.7% of possible (R, G, B) values. Each
grid element in the figure to the left shows the response of the filter to all values
of red and green for a fixed value of blue. Within a cell, the x-axis corresponds to
red and the y-axis corresponds to green. The image to the right shows the filter in
operation. Typical indoor objects that may also be consistent with skin tone include
wooden doors, cream walls, etc.

e r > 20 -max(g,b), the red component completely dominates both blue and
green

e r < 20, the red component is too low to give good estimates of ratios

e 7 > 250, the red component is too saturated to give a good estimate of ratios

6.5 Top-down contributions: task-based influences

For a goal achieving creature, the behavioral state should also bias what the creature
attends to next. For instance, when performing visual search, humans seem to be
able to preferentially select the output of one broadly tuned channel per feature (e.g.
“red” for color and “shallow” for orientation if searching for red horizontal lines)
(Kandel, Schwartz & Jessell 2000).

In our system these top-down, behavior-driven factors modulate the output of the
individual feature maps before they are summed to produce the bottom-up contri-
bution. This process selectively enhances or suppresses the contribution of certain
features, but does not alter the underlying raw saliency of a stimulus (Niedenthal &
Kityama 1994). To implement this, the bottom-up results of each feature map are
each passed through a filter (effectively a gain). The value of each gain is determined
by the active behavior. These modulated feature maps are then summed to compute
the overall attention activation map.
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Figure 6-3: Effect of gain adjustment on looking preference. Circles correspond to
fixation points, sampled at one second intervals. On the left, the gain of the skin tone
filter is higher. The robot spends more time looking at the face in the scene (86%
face, 14% block). This bias occurs despite the fact that the face is dwarfed by the
block in the visual scene. On the right, the gain of the color saliency filter is higher.
The robot now spends more time looking at the brightly colored block (28% face,
72% block).

This serves to bias attention in a way that facilitates achieving the goal of the
active behavior. For example, if the robot is searching for social stimuli, it becomes
sensitive to skin tone and less sensitive to color. Behaviorally, the robot may encounter
toys in its search, but will continue until a skin toned stimulus is found (often a
person’s face). Figure 6-3 illustrates how gain adjustment biases what the robot finds
to be more salient.

As shown in Figure 6-4, the skin tone gain is enhanced when the seek-people
behavior is active and is suppressed when the avoid-people behavior is active. Sim-
ilarly, the color gain is enhanced when the seek-toys behavior is active, and sup-
pressed when the avoid-toys behavior is active. Whenever the engage-people or
engage-toys behaviors are active, the face and color gains are restored to slightly
favor the desired stimulus. Weight adjustments are constrained such that the total
sum of the weights remains constant at all times.

6.6 Computing the Attention Activation Map

The attention activation map can be thought of as an activation “landscape” with
higher hills marking locations receiving substantial bottom-up or top-down activa-
tion. The purpose of the attention activation map (using the terminology of Wolfe)
is to direct attention, where attention is attracted to the highest hill. Hence, the
greater the activation at a location, the more likely it is that the attention will be
directed to that location. Note that by using this approach, the locus of activation
contains no information as to its source (e.g. a high activation for color looks the
same as high activation for motion information). Hence, the activation map makes it
possible to guide attention based on information from more than one feature (such
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Figure 6-4: Schematic of behaviors relevant to attention. The activation of a par-
ticular behavior depends on both perceptual factors and motivation factors. The
perceptual factors come from post attentive processing of the target stimulus into
behaviorally relevant percepts (called releasers as described in chapter 9). The drives
within the motivation system have an indirect influence on attention by influencing
the behavioral context. The behaviors at Level 1 of the behavior system directly ma-
nipulate the gains of the attention system to benefit their goals. Through behavior
arbitration, only one of these behaviors is active at any time. These behaviors are
further elaborated in deeper levels of the behavior system.

as a conjunction of features).

To prevent drawing attention to non-salient regions, the attention activation map
is thresholded to remove noise values, and normalized by the sum of the gains.
Connected object regions are extracted using a grow-and-merge procedure with 4-
connectivity (Horn 1986). To further combine related regions, any regions whose
bounding boxes have a significant overlap are also merged. The attention process
runs at 20 Hz on a single 400 MHz processor.

Statistics on each region are then collected, including the centroid, bounding box,
area, average attention activation score, and average score for each of the feature
maps in that region. The tagged regions that are large enough (having an area of
at least thirty pixels) are sorted based upon their average attention activation score.
The attention process provides the top three regions to both the eye motor control
system and the behavior and motivational systems.

The most salient region is the new visual target. The individual feature map scores
of the target are passed onto higher level perceptual stages where these features are
combined to form behaviorally meaningful percepts. Hence the robot’s subsequent
behavior is organized about this locus of attention.




6.7 Attention Drives Eye Movement

Gaze direction is a powerful social cue that people use to determine what others are
interested in. By directing the robot’s gaze to the visual target, the person interacting
with the robot can accurately use the robot’s gaze as an indicator of what the robot
is indeed attending to. This greatly facilitates the interpretation and readability of
the robot’s behavior, since the robot reacts specifically to the thing that it is looking
at.

The eye motor control system uses the centroid of the most salient region as the
target of interest. The eye motor control process acts on the data from the attention
process to center the eyes on an object within the visual field. Using a data-driven
mapping between image position and eye position, the retinotopic coordinates of the
target’s centroid are used to compute where to look next (Scassellati 1998). Each time
that the neck moves, the eye/neck motor process sends two signals. The first signal
inhibits the motion detection system for approximately 600 msec, which prevents
self-motion from appearing in the motion feature map. The second signal resets the
habituation state, described in the next section. We save a detailed discussion of how
the motor component from the attention system is integrated into the rest of Kismet’s
visual behavior (such as smooth pursuit, looming, etc.) for chapter 13.

6.8 Habituation Effects

To build a believable creature, the attention system must also implement habituation
effects. Infants respond strongly to novel stimuli, but soon habituate and respond less
as familiarity increases (Carey & Gelman 1991). This acts both to keep the infant
from being continually fascinated with any single object and to force the caregiver
to continually engage the infant with slightly new and interesting interactions. For
a robot, a habituation mechanism removes the effects of highly salient background
objects that are not currently involved in direct interactions as well as placing require-
ments on the caregiver to maintain interaction with different kinds of stimulation.

To implement habituation effects, a habituation filter is applied to the activation
map over the location currently being attended to. The habituation filter effectively
decays the activation level of the location currently being attended to, making other
locations of lesser activation bias attention more strongly.

The habituation function can be viewed as a feature map that initially maintains
eye fixation by increasing the saliency of the center of the field of view and slowly
decays the saliency values of central objects until a salient off-center object causes the
neck to move. The habituation function is a Gaussian field G(z,y) centered in the
field of view with peak amplitude of 255 (to remain consistent with the other 8-bit
values) and 6 = 50 pixels. It is combined linearly with the other feature maps using
the weight

w=W - maz(-1,1—- At/T) (6.7)




where w is the weight, At is the time since the last habituation reset, 7 is a time
constant, and W is the maximum habituation gain. Whenever the neck moves, the
habituation function is reset, forcing w to W and amplifying the saliency of central
objects until a time 7 when w = 0 and there is no influence from the habituation
map. As time progresses, w decays to a minimum value of —W which suppresses the
saliency of central objects. In the current implementation, we use a value of W = 10
and a time constant 7 = 5 seconds. When the robot’s neck shifts, the habituation
map is reset, allowing that region to be re-visited after some period of time.

6.9 Second Stage Processing

Once the attention system has selected regions of the visual field that are potentially
behaviorally relevant, more intensive computation can be applied to these regions
than could be applied across the whole field. Searching for eyes is one such task.
Locating eyes is important to us for engaging in eye contact. We search for eyes after
the robot directs its gaze to a locus of attention so that a relatively high resolution
image of the area being searched is available from the narrow field of view cameras
(Figure 6-5).

Once the target of interest has been selected, we also estimate its proximity to
the robot using a stereo match between the two central wide fov cameras. Proximity
is an important factor for interaction. Things closer to the robot should be of greater
interest. It is also useful for interaction at a distance. For instance, a person standing
too far from Kismet for face-to-face interaction may be close enough to be beckoned
closer. Clearly the relevant behavior (beckoning or playing) is dependent on the
proximity of the human to the robot.

6.9.1 Eye Detection

Eye-detection in a real-time robotic domain is computationally expensive and prone
to error due to the large variance in head posture, lighting conditions and feature
scales. Aaron Edsinger developed an approach based on successive feature extraction,
combined with some inherent domain constraints, to achieve a robust and fast eye-
detection system for Kismet (Breazeal et al. 2000). First, a set of feature filters
are applied successively to the image in increasing feature granularity. This serves to
reduce the computational overhead while maintaining a robust system. The successive
filter stages are:

e Detect skin colored patches in the image (abort if this does not pass above a
threshold).

e Scan the image for ovals and characterize its skin tone for a potential face.

e Extract a sub-image of the oval and run a ratio template over it for candidate
eye locations (Sinha 1994), (Scassellati 1998).
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Figure 6-5: Sequence of foveal images with eye detection. The eye detector actually
looks for the region between the eyes. It has decent performance over a limited range
of distances and face orientations. The box indicates a possible face has been detected
(being both skin toned and oval in shape). The small cross locates the region between
the eyes.




e For each candidate eye location, run a pixel based multi-layer perceptron (pre-
viously trained) on the region to recognize shading characteristic of the eyes
and the bridge of the nose.

By doing so, the set of possible eye-locations in the image is reduced from the
previous level based on a feature filter. This allows the eye detector to run in real
time on a 400MHz PC. The methodology assumes that the lighting conditions allow
the eyes to be distinguished as dark regions surrounded by highlights of the temples
and the bridge of the nose, that human eyes are largely surrounded by regions of
skin color, that the head is only moderately rotated, that the eyes are reasonably
horizontal, and that people are within interaction distance from the robot (3 to 7
feet).
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Figure 6-6: This plot illustrates how the target proximity measure varies with dis-
tance. The subject begins by standing approximately two feet away from the robot
(t = 0). He then steps back to a distance of about seven feet (t = 4). This is on
the outer periphery of the robot’s interaction range. Beyond this distance, the robot
does not reliably attend to the person as the target of interest as other things are
often more salient. The subject then approaches the robot to a distance of 3 inches
from its face (t = 8 to t = 10). The loom detector is firing, which is the plateau in
the graph. At ¢t = 10 the subject then backs away and leaves the scene.

6.9.2 Proximity Estimation

Given a target in the visual field, proximity is computed from a stereo match between
the two wide cameras. The target in the central wide camera is located within the
lower wide camera by searching along epipolar lines for a sufficiently similar patch of
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pixels, where similarity is measured using normalized cross-correlation. This matching
process is repeated for a collection of points around the target to confirm that the
correspondences have the right topology. This allows many spurious matches to be
rejected. Figure 6-6 illustrates how this metric changes with distance from the robot.
It is reasonably monotonic, but subject to noise. It is also quite sensitive to the
orientations of the two wide center cameras.

6.9.3 Loom Detection

The loom calculation makes use of the two cameras with wide fields of view. These
cameras are parallel to each other, so when there is nothing in view that is close to
the cameras (relative to the distance between them), their output tends to be very
similar. A close object, on the other hand, projects very differently on to the two
cameras, leading to a large difference between the two views.

By simply summing the pixel-by-pixel differences between the images from the
two cameras, we extract a measure which becomes large in the presence of a close
object. Since Kismet’s wide cameras are quite far from each other, much of the room
and furniture is close enough to introduce a component into the measure which will
change as Kismet looks around. To compensate for this, the measure is subject to
rapid habituation. This has the side-effect that a slowly approaching object will not
be detected - which is perfectly acceptable for a loom response.

6.9.4 Threat Detection

A nearby object (as computed above) along with large but concentrated movement
in the wide fov is treated as a threat by Kismet. The amount of motion corresponds
to the amount of activation of the motion map. Since the motion map may also
become very active during ego-motion, this response is disabled for the brief intervals
during which Kismet’s head is in motion. As an additional filtering stage, the ratio
of activation in the peripheral part of the image versus the central part is computed
to help reduce the number of spurious threat responses due to ego-motion. This
filter thus looks for concentrated activation in a localized region of the motion map,
whereas self induced motion causes activation to smear evenly over the map.

6.10 Results and Evaluation

The overall attention system runs at 20 Hz on several 400 MHz processors. In this
section, we evaluate its behavior with respect to directing Kismet’s attention to task-
relevant stimuli. We also examine how easy it is people to direct the robot’s attention
to a specific target stimulus, and to determine when they have been successful in doing
SO.
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6.10.1 Effect of Gain Adjustment on Saliency

In section 6.5, we described how the active behavior can manipulate the relative
contributions of the bottom-up processes to benefit goal achievement. Figure 6-7
illustrates how the skin tone, motion, and color gains are adjusted as a function of
drive intensity, the active behavior, and the nature and quality of the perceptual
stimulus.
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Figure 6-7: Changes of the skin tone (face), motion, and color gains from top-down
motivational and behavioral influences (top). On the left half of the top figure, the
gains change with respect to person-related behaviors (middle). On the right half of
the top figure, the gains change with respect to toy-related behaviors (bottom).

As shown in figure 6-7, when the social-drive is activated by face stimuli (mid-
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dle), the skin tone gain is influenced by the seek-people and avoid-people behav-
iors. The effects on the gains are shown on the left side of the top plot. When the
stimulation-drive is activated by color stimuli (bottom), the color gain is influ-
enced by the seek-toys and avoid-toys behaviors. This is shown to the right of the
top plot. Seeking people out results in enhancing the face gain and avoiding people
results in suppressing the face gain. The color gain is adjusted in a similar fashion
when toy-oriented behaviors are active (enhancement when seeking out, suppression
during avoidance). The middle plot shows how the social-drive and the quality of
social stimuli determine which people-oriented behavior is activated. The bottom plot
shows how the stimulation-drive and the quality of toy stimuli determine which
toy-oriented behavior is active. All parameters shown in these plots were recorded
during the same 4 minute period.

The relative weighting of the attention gains are empirically set to satisfy behav-
ioral performance as well as to satisfy social interaction dynamics. For instance, when
engaging in visual search, the attention gains are set so that there is a strong prefer-
ence for the target stimulus (skin tone when searching for social stimuli like people,
saturated color when searching for non-social stimuli like toys). As shown in left in
figure 6-3, a distant face has greater overall saliency than a nearby toy if the robot
is actively looking for skin toned stimuli. Similarly, as shown to the right in figure
6-3, a distant toy has greater overall saliency than a near by face when the robot is
actively seeking out stimuli of highly saturated color.

Behaviorally, the robot will continue to search upon encountering a static object
of high raw saliency but of the wrong feature. Upon encountering a static object
possessing the right saliency feature, the robot successfully terminates search and
begins to visually engage the object. However, the search behavior sets the attention
gains to allow Kismet to attend to a stimulus possessing the wrong saliency feature
if it is also supplemented with motion. Hence, if a person really wants to attract the
robot’s attention to a specific target, which the robot is not actively seeking out, then
he/she is still able to do so.

During engagement, the gains are set so that Kismet slightly prefers those stimuli
possessing the favored feature. However, if a stimulus of the favored feature is not
present, a stimulus possessing the unfavored feature is sufficient to attract the robot’s
attention. Hence, while in engagement, the robot can satiate other motivations in
an opportunistic manner when the desired stimulus is not present. However, if the
robot is unable to satiate a specific motivation for a prolonged time, the motive to
engage that stimuli will increase until the robot eventually breaks engagement to
preferentially search for the desired stimulus.

6.10.2 Effect of Gain Adjustment on Looking Preference

Figure 6-8 illustrates how top-down gain adjustments combine with bottom-up ha-
bituation effects to bias the robot’s gaze. When the seek-people behavior is active,
the skin tone gain is enhanced and the robot prefers to look at a face over a colorful
toy. The robot eventually habituates to the face stimulus and switches gaze briefly to
the toy stimulus. Once the robot has moved its gaze away from the face stimulus, the
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Figure 6-8: Preferential looking based on habituation and top-down influences. These
plots illustrate how Kismet’s preference for looking at different types of stimuli (a
person’s face verses a brightly colored toy) varies with top-down behavior and moti-
vational factors. See text.

habituation is reset and the robot rapidly re-acquires the face. In one set of behav-
ioral trials when seek-people was active, the robot spent 80% of the time looking
at the face. A similar affect can be seen when the seek-toy behavior is active — the
robot prefers to look at a toy over a face 83% of the time.

The opposite effect is apparent when the avoid-people behavior is active. In this
case, the skin tone gain is suppressed so that faces become less salient and are more
rapidly affected by habituation. Because the toy is relatively more salient than the
face, it takes longer for the robot to habituate. Overall, the robot looks at faces only
5% of the time when in this behavioral context. A similar scenario holds when the
robot’s avoid-toy behavior is active — the robot looks at toys only 24% of the time.

6.10.3 Socially Manipulating Attention

Figure 6-9 shows an example of the attention system in use, choosing stimuli in a
complex scene that are potentially behaviorally relevant. The attention system runs
all the time, even when it is not controlling gaze direction, since it determines the
perceptual input to which the motivational and behavioral systems respond. Because
the robot attends to a subset of the same cues that humans find interesting, people
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Figure 6-9: Manipulating the robot’s attention. Images on the top row are from
Kismet’s upper wide camera. Images on the bottom summarize the contemporane-
ous state of the robot’s attention system. Brightness in the lower image corresponds
to salience; rectangles correspond to regions of interest. The thickest rectangles cor-
respond to the robot’s locus of attention. The robot’s motivation here is such that
stimuli associated with faces and stimuli associated with toys are equally weighted.
In the first pair of images, the robot is attending to a face and engaging in mutual
regard. By shaking the colored block, its salience increases enough to cause a switch
in the robot’s attention. The third pair shows that the head tracks the toy as it
moves, giving feedback to the human as to the robot’s locus of attention. The eyes
are also continually tracking the target more tightly than the neck does. In the fourth
pair, the robot’s attention switches back to the human’s face, which is tracked as it
moves.
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naturally and intuitively direct the robot’s gaze to a desired target.

We invited three naive subjects to interact with Kismet. The subjects ranged in
age from 25 to 28 years old. All used computers frequently, but were not computer
scientists by training. All interactions were video recorded. The robot’s attention
gains were set to their default values so that there would be no strong preference for
one saliency feature over another.

The subjects were asked to direct the robot’s attention to each of the target
stimuli.. There were seven target stimuli used in the study. Three were saturated
color stimuli, three were skin toned stimuli, and the last was a pure motion stimulus.
Each target stimulus was used more than once per subject We list them below:

e A highly saturated colorful block

e A bright yellow stuffed dinosaur with multi-color spines
A bright green cylinder
A bright pink cup (which is actually detected by the skin tone feature map)
The person’s face

The person’s hand

A black and white plush cow (which is only salient when moving)

The video was later analyzed to determine which cues the subjects used to attract
the robot’s attention, which cues they used to determine when they had been suc-
cessful, and the length of time required to do so. They were also interviewed at the
end of the session about which cues they used, which cues they read, and about how
long they thought it took to direct the robot’s attention. The results are summarized
in figure 6-10.

To attract the robot’s attention, the most frequently used cues include bringing the
target close and in front of the robot’s face, shaking the object of interest, or moving
it slowly across the centerline of the robot’s face. Each cue increases the saliency of a
stimulus by making it appear larger in the visual field, or by supplementing the color
or skin tone cue with motion. Note, that there was an inherent competition between
the saliency of the target and the subject’s own face as both could be visible from
the wide fov camera. If the subject did not try to direct the robot’s attention to the
target, the robot tended to look at the subject’s face.

The subjects also effortlessly determined when they had successfully re-directed
the robot’s gaze. Interestingly, it is not sufficient for the robot to orient to the target.
People look for a change in visual behavior, from ballistic orientation movements to
smooth pursuit movements, before concluding that they had successfully re-directed
the robot’s attention. All subjects reported that eye movement was the most relevant
cue to determine if they had successfully directed the robot’s attention. They all
reported that it was easy to direct the robot’s attention to the desired target. They
estimated the mean time to direct the robot’s attention at 5 to 10 seconds. This turns
out to be the case; the mean time over all trials and all targets is 5.8 seconds.
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stimulus stimulus presentations | average commonly commonly
category time (s) used cues read cues
yellow dinosaur 8 8.5 motion across eye behavior,
center line especially
color & multi-colored 8 6.5 1 ! tracking
shaking motion
Fiewans i facial expression,
green cylinder 8 6.0 bringing target | especially raised
close to robot eyebrows
motion d
2 b/w cow 8 5.0 body posture,
y especially
pink cup 8 6.5 forward lean
skin-toned or withdraw
& hand 8 5.0
movement
face 8 3.5
Total 56 58

Figure 6-10: Summary from attention manipulation interactions. Each subject was
asked to direct the robot’s attention to each of the target stimuli listed in the “stimu-
lus” column of the table. In switching between different test cases, each stimulus was
used more than once. There were a total of eight presentations for each target stimuli.
The time required to direct the robot’s attention to the target was recorded. Each
subject signaled to the experimenter when he/she had been successful in doing so.
The commonly reported cues used to direct the robot’s attention, and to determine
when one had been successful, are also shown. The attention system is well matched

to these cues.
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6.11 Limitations and Extensions

There are a number of ways the current implementation can be improved and ex-
panded upon. Some of these recommendations involve supplementing the existing
framework, others involve integrating this system into a larger framework.

One interesting way this system can be improved is by adding a stereo depth
map. Currently, the system estimates the proximity of the selected target. However
a depth map would be very useful as a bottom-up contribution. For instance, regions
corresponding to closer proximity to the robot should be more salient than those
further away. A stereo map would also be very useful for scene segmentation to
separate stimuli of interest from background. We are currently working towards this
using the two central wide fov cameras.

Another interesting feature map to incorporate would be edge orientation. Wolfe,
Triesman, among others argue in favor of edge orientation as a bottom-up feature map
in humans. Currently, Kismet has no shape metrics to help it distinguish objects from
each other (such as its block from its dino). Adding features to support this is an
important extension to the existing implementation.

There are no auditory bottom-up contributions. A sound localization feature map
would be a nice multi-modal extension (Irie 1995). Currently, Kismet assumes that
the most salient person is the one who is talking to it. Often there are multiple people
talking around and to the robot. It is important that the robot knows who is ad-
dressing it and when. Sound localization would be of great benefit here. Fortunately,
there are stereo microphones on Kismet’s ears that could be used for this purpose.

Another interesting extension would be to separate the color saliency map into
individual color feature maps. Kismet can preferentially direct its attention to satu-
rated color, but not specifically to green, blue, red, or yellow. Humans are capable
of directing search based on a specific color channel. Although Kismet has access
to the average r, g, b, y components of the target stimulus, it would be nice if it
could keep these colors segmented (so that it can distinguish a blue circle on a green
background, for instance). Computing individual color feature maps would be a step
towards these extensions.

Currently there is nothing that modifies the decay rate of the habituation feature
map. The habituation contribution implements a primitive attention span for the
robot. It would be an interesting extension to have motivational factors, such as
fatigue or arousal, influence the habituation decay rate. Caregivers continually adjust
the arousal level of their infant so that the infant remains alert but not too excited
(Bullowa 1979). For Kismet, it would be interesting if the human could adjust the
robot’s attention span by keeping it at a moderate arousal level. This could benefit
the robot’s learning rate by maintaining a longer attention span when people are
around and the robot is engaged in interactions with high learning potential.

Kismet’s visual perceptual world only consists of what is in view of the cameras.
Ultimately, the robot should be able to construct an ego-centered saliency map of
interaction space. In this representation, the robot could keep track of where inter-
esting things are located, even if they are not currently in view. This will prove to
be a very important representation for social referencing (Siegel 1999). If Kismet
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could engage in social referencing, then it could look to the human for the affective
assessment and then back to the event that it queried the caregiver about. Chances
are, the event in question and the human’s face will not be in view at the same time.
Hence, a representation of where interesting things are, even when out of view, is an
important resource.

6.12 Summary

There are many interesting ways in which Kismet’s attention system can be improved
and extended. This should not overshadow the fact that the existing attention system
is an important contribution to autonomous robotics research.

Other researchers have developed bottom-up attention systems (Itti et al. 1998),
(Wolfe 1994). Many of these systems work in isolation and are not embedded in a
behaving robot. Kismet’s attention system goes beyond raw perceptual saliency to
incorporate top-down task-driven influences that vary dynamically over time with its
goals. By doing so, the attention system is tuned to benefit the task the robot is
currently engaged in.

There are far too many things that the robot could be responding to at any
time. The attention system gives the robot a locus of interest that it can organize
its behavior around. This contributes to perceptual stability since the robot is not
inclined to flit its eyes around randomly from place to place, changing its perceptual
input at a pace too rapid for behavior to keep up. This in turn contributes to
behavioral stability since the robot has a target that it can direct its behavior towards
and respond to. Each target (people, toys) has a physical persistence that is well
matched to the robot’s behavioral time scale. Of course, the robot can respond to
different targets sequentially in time, but this occurs at a slow enough time scale that
the behaviors have time to self organize and stabilize into a coherent goal-directed
pattern before a switch to a new behavior is made.

There is no prior art in incorporating a task-dependent attentional system into
a robot. Some side step the issue by incorporating an implicit attention mechanism
into the perceptual conditions that release behaviors (Blumberg 1994), (Velasquez
1998). Others do so by building systems that are hardwired to perceive one type of
stimulus tailored to the specific task (Schall 1997), (Mataric, Williamson, Demiris
& Mohan 1998), or use very simple sensors (Hayes & Demiris 1994), (Billard &
Dautenhahn 1997). However, the complexity of Kismet’s visual environment, the
richness of its perceptual capabilities, and its time-varying goals required an explicit
implementation.

The social dimension of Kismet’s world adds additional constraints that prior
robotic systems have not had to deal with. As argued earlier, the robot’s attention
system needed to be tuned to the attention system of humans. In this way, both
robot and humans are more likely to find the same sorts of things interesting or
attention grabbing. As a result, people can very naturally and quickly direct the
robot’s attention. The attention system coupled with gaze direction provides people
with a powerful and intuitive social cue. The readability and interpretation of the
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robot’s behavior is greatly enhanced since the person has an accurate measure of what
the robot is responding to.

The ability for humans to easily influence the robot’s attention and to read its
cues has a tremendous benefit to various forms of social learning and is an impor-
tant form of scaffolding. When learning a task, it is difficult for a robotic system to
learn what perceptual aspects matter. This only gets worse as robots are expected
to perform more complex tasks in more complex environments. However, this chal-
lenging learning issue can be addressed in an interesting way if the robot learns the
task with a human instructor who can explicitly direct the robot’s attention to the
salient aspects, and can determine from the robot’s social cues whether or not the
robot is attending to the relevant features. This doesn’t solve the problem, but it
could facilitate a solution in a new and interesting way that is natural and intuitive
for people.

In the big picture, low level feature extraction and visual attention are components
of a larger visual system. We present how the attention system is integrated with
other visual behaviors in chapter 13.

87



Chapter 7

Recognition of Affective Intent in
Robot-Directed Speech

Human speech provides a natural and intuitive interface for both communicating
with humanoid robots as well as for teaching them. In general, the acoustic pattern
of speech contains three kinds of information: who the speaker is, what the speaker
said, and how the speaker said it. This chapter focuses on the problem of recognizing
affective intent in robot-directed speech. The work presented in this chapter was
carried out in collaboration with Lijin Aryananda, and is reported in (Breazeal &
Aryananda 2000).

7.1 Emotion Recognition in Speech

When extracting the affective message of a speech signal, there are two related yet
distinct questions one can ask. The first is: “What is the emotion being expressed?” .
In this case, the answer describes an emotional quality — such as sounding angry, or
frightened, or disgusted, etc.. Each emotional state causes changes in the autonomic
nervous system. This, in turn, influences heart rate, blood pressure, respiratory rate,
sub-glottal pressure, salivation, and so forth. These physiological changes produce
global adjustments to the acoustic correlates of speech — influencing pitch, energy,
timing, and articulation. There have been a number of vocal emotion recognition
systems developed in the past few years that use different variations and combinations
of those acoustic features with different types of learning algorithms (Dellaert, Polzin
& A.1996), (Nakatsu, Nicholson & Tosa 1999). To give a rough sense of performance,
a five-way classifier operating at approximately 80% is considered state of the art.
This is impressive considering that humans are far from perfect in recognizing emotion
from speech alone. Some have attempted to use multi-modal cues (facial expression
with expressive speech) to improve recognition performance (Chen & Huang 1998).
However, for the purposes of training a robot, the raw emotional content of the
speaker’s voice is only part of the message. This leads us to the second, related
question: “What is the affective intent of the message?’. Answers to this question
may be that the speaker was praising, prohibiting, alerting, etc. the recipient of the
message. A few researchers have developed recognition systems that can recognize
speaker approval versus speaker disapproval from child-directed speech (Roy & Pent-
land 1996), or recognize praise, prohibition, and attentional bids from infant-directed
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speech (Slaney & McRoberts 1998). For the remainder of this chapter, we discuss
how this idea could be extended to serve as a useful training signal for Kismet. Note
that Kismet does not learn from humans yet, but this is an important capability that
could support socially situated learning.

7.2 Affective Intent in Speech

Developmental psycholinguists have extensively studied how affective intent is com-
municated to preverbal infants (Fernald 1989), (Grieser & Kuhl 1988). Infant-directed
speech is typically quite exaggerated in pitch and intensity(Snow 1972). From the
results of a series of cross-cultural studies, Fernald suggests that much of this informa-
tion is communicated through the “melody” of infant-directed speech. In particular,
there is evidence for at least four distinctive prosodic contours, each of which commu-
nicates a different affective meaning to the infant (approval, prohibition, comfort, and
attention). Maternal exaggerations in infant-directed speech seem to be particularly
well matched to the innate affective responses of human infants (Mumme, Fernald &
Herrera 1996).

Inspired by this work, we have implemented a recognizer to distinguish the four
affective intents for praise, prohibition, comfort, attentional bids. Of course, not ev-
erything a human says to Kismet will have an affective meaning, so we also distinguish
neutral robot-directed speech. These affective intents are well matched to teaching
a robot since praise (positive reinforcement), prohibition (negative reinforcement),
and directing attention, could be intuitively used by a human instructor to facilitate
the robot’s learning process. Within the Al community, a few researchers have al-
ready demonstrated how affective information can be used to bias learning at both
goal-directed and affective levels for robots (Velasquez 1998) and synthetic characters
(Yoon, Blumberg & Schneider 2000).

For Kismet, output of the vocal classifier is interfaced with the emotion subsystem
(see chapter 8) where the information is appraised at an affective level and then used to
directly modulate the robot’s own affective state'. In this way, the affective meaning
of the utterance is communicated to the robot through a mechanism similar to the one
Fernald suggests. As with human infants, socially manipulating the robot’s affective
system is a powerful way to modulate the robot’s behavior and to elicit an appropriate
response.

In the rest of this chapter we discuss previous work in recognizing emotion and
affective intent in human speech. We discuss Fernald’s work in depth to highlight
the important insights it provides in terms of which cues are the most useful for
recognizing affective intent, as well as how it may be used by human infants to
organize their behavior. We then outline a series of design issues for integrating
this competence into Kismet. We present a detailed description of our approach and
how we have integrated it into Kismet’s affective circuitry. The performance of the

'Typically, “affect” refers to positive and negative qualities. For our work with Kismet, we also
include arousal levels and the robot’s willingness to approach or withdraw, when talking about
Kismet’s affective state
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system is evaluated with naive subjects as well as the robot’s caregivers. We discuss
our results, suggest future work, and summarize our findings.

7.3 Affect and Meaning in Infant-directed Speech

Developmental psycholinguists have studied the acoustic form of adult speech di-
rected to preverbal infants and have discovered an intriguing relation between voice
pitch and affective intent. (Fernald 1989), (Papousek, Papousek & Bornstein 1985),
(Grieser & Kuhl 1988). When mothers speak to their preverbal infant, their prosodic
patterns (the contour of the fundamental frequency and modulations in intensity) are
exaggerated in characteristic ways. Even with newborns, mothers use higher mean
pitch, wider pitch range, longer pauses, shorter phrases, and more prosodic repetition
when addressing infants than when speaking to an adult. This exaggerated manner of
speaking (i.e., motherese) serves to engage infant’s attention and prolong interaction.

Attentional Bids, Approval, Prohibition, and Comfort

Maternal intonation is finely tuned to the behavioral and affective state of the in-
fant. Further, mothers intuitively use selective prosodic contours to express different
affective intentions. Based on a series of cross-linguistic analyses, there appear to
be at least four different pitch contours (approval, prohibition, comfort, and atten-
tional bids), each associated with a different emotional state (Grieser & Kuhl 1988),
(Fernald 1993), (McRoberts, Fernald & Moses 2000). Mothers are more likely to use
falling pitch contours than rising pitch contours when soothing a distressed infant
(Papousek et al. 1985), to use rising contours to elicit attention and to encourage a
response (Ferrier 1985), and to use bell shaped contours to maintain attention once
it has been established (Stern, Spieker & MacKain 1982). Expressions of approval
or praise, such as “Good girl!” are often spoken with an exaggerated rise-fall pitch
contour with sustained intensity at the contour’s peak. Expressions of prohibitions
or warnings such as “Don’t do that!” are spoken with low pitch and high intensity in
staccato pitch contours. Figure 7-1 illustrates these prototypical contours.

Exaggerated Prosodic Cues Convey Meaning

It is interesting that even though preverbal infants do not understand the linguistic
content of the message, they appear to understand the affective content and respond
appropriately. This may comprise some of infants earliest communicated meanings of
maternal vocalizations. The same patterns can be found when communicating these
same intents to adults, but in a significantly less exaggerated manner (Fernald 1989).
By eliminating the linguistic content of infant-directed and adult-directed utterances
for the categories described above (only preserving the “melody” of the message)
Fernald found that adult listeners were more accurate in recognizing these affective
categories in infant-directed speech than in adult-directed speech. This suggests that
the relation of prosodic form to communicative function is made uniquely salient
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Figure 7-1: Fernald’s prototypical contours for approval, prohibition, attention, and
soothing. These affective contours have been found to exist in several cultures. It is
argued that they are well matched to saliency measures hardwired into the infant’s
auditory processing system. Caregivers use these contours intuitively to modulate
the infant’s arousal level.

in the melodies of mother’s speech, and that these intonation contours provide the
listener with reliable acoustic cues to the speaker’s intent.
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Matching Acoustic Structure to Communicative Function

Fernald has used the results of such studies to argue for the adaptive significance of
prosody in child language acquisition, as well as in the development and strength of
the parent-offspring relationship. She suggests that the pitch contours observed have
been designed to directly influence the infant’s emotive state, causing the child to
relax or become more vigilant in certain situations, and to either avoid or approach
objects that may be unfamiliar. Auditory signals with high frequency and rising pitch
have been found to be more alerting to human listeners than those signals lower in
frequency and falling pitch (Ferrier 1985). Hence, the acoustic design of attentional
bids would appear to be appropriate to the goal of eliciting attention. Similarly,
low mean pitch, narrow pitch range, and low intensity (all characteristics of comfort
vocalizations) have been found to be correlated with low arousal (Papousek et al.
1985). Given that the mother’s goal in soothing her infant is to decrease arousal,
comfort vocalizations are well suited to this function. Speech having a sharp, loud,
staccato contour, low pitch mean, and narrow pitch range tend to startle the infant
(tending to halt action or even induce withdraw) and are particularly effective as
warning signals (Fernald 1989). Infants show a listening preference for exaggerated
pitch contours. They respond with more positive affect to wide range pitch contours
than to narrow range pitch contours. Hence the exaggerated bell-shaped prosody
contour for approval is effective for sustaining the infant’s attention and engagement
(Stern et al. 1982).

Development of Meaning

By anchoring the message in the melody, there may be a facilitative effect on “pulling”
the word out of the acoustic stream and causing it to be associated with an object
or event. This development is argued to occur in four stages (Fernald 1989). In
the first stage, certain acoustic features of speech have intrinsic perceptual salience
for the infant. Certain maternal vocalizations function as unconditioned stimuli in
alerting, soothing, pleasing, and alarming the infant. In stage two, the melodies of
maternal speech become increasingly more effective in directing the infant’s attention,
and in modulating the infant’s arousal and affect. The communication of intention
and emotion takes place in the third stage. Vocal and facial expressions give the
infant initial access to the feelings and intentions of others. Stereotyped prosodic
contours occurring in specific affective contexts come to function as the first regular
sound-meaning correspondences for the infant. In the fourth stage, prosodic marking
of focused words helps the infant to identify linguistic units within the stream of
speech. Words begin to emerge from the melody.

7.4 Design Issues
There are several design issues that must be addressed to successfully integrate Fer-

nald’s ideas into a robot like Kismet. As we have argued previously, this could provide
a human caregiver with a natural and intuitive means for communicating with and
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training a robotic creature. The initial communication is at an affective level, where
the caregiver socially manipulates the robot’s affective state. For Kismet, the affective
channel provides a powerful means for modulating the robot’s behavior.

Robot Aesthetics

As discussed above, the perceptual task of recognizing affective intent is significantly
easier in infant-directed speech than in adult-directed speech. Even human adults
have a difficult time recognizing intent from adult-directed speech without the lin-
guistic information. It will be a while before robots have natural language, but we can
extract the affective content of the vocalization from prosody. This places a constraint
on how the robot appears physically (chapter 4), how it moves (chapters 13, 10), and
how it expresses itself (chapters 12, 11). If the robot looks and behaves as a very
young creature, people will be more likely to treat it as such and naturally exagger-
ate their prosody when addressing the robot. This manner of robot-directed speech
would be spontaneous and seem quite appropriate. We have found this typically to
be the case for both men and women when interacting with Kismet.

Real-time Performance

Another design constraint is that the robot be able to interpret the vocalization
and respond to it at natural interactive rates. The human can tolerate small delays
(perhaps a second or so0), but long delays will break the natural flow of the interaction.
Long delays also interfere with the caregiver’s ability to use the vocalization as a
reinforcement signal. Given that the reinforcement should be used to mark a specific
event as good or bad, long delays could cause the wrong action to be reinforced and
confuse the training process.

Voice as Training Signal

People should be able to use their voice as a natural and intuitive training signal
for the robot. The human voice is quite flexible and can be used to convey many
different meanings, affective or otherwise. The robot should be able to recognize
when it is being praised and associate it with positive reinforcement. Similarly, the
robot should recognize scolding and associate it with negative reinforcement. The
caregiver should be able to acquire and direct the robot’s attention with attentional
bids to the relevant aspects of the task. Comforting speech should be soothing for
the robot if it is in a distressed state, and encouraging interaction otherwise.

Voice as Saliency Marker

This raises a related issue, which is the caregiver’s ability to use their affective speech
as a means of marking a particular event as salient. This implies that the robot
should only recognize a vocalization as having affective content in the cases where the
caregiver specifically intends to praise, prohibit, soothe, or get the attention of the
robot. The robot should be able to recognize neutral robot-directed speech, even if
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it is somewhat tender or friendly in nature (as is often the case with motherese). For
this reason, we have designed the recognizer to only categorize sufficiently exaggerated
prosody such as as praise, prohibition, attention, and soothing (i.e., the caregiver has
to say it as if he/she really means it). Vocalizations with insufficient exaggeration are
classified as neutral.

Acceptable vs Unacceptable Misclassification

Given that humans are not perfect at recognizing the affective content in speech,
the robot is sure to make mistakes as well. However, some failure modes are more
acceptable than others. For a teaching task, confusing strongly valenced intent for
neutrally valenced intent is better than confusing oppositely valenced intents. For
instance, confusing approval for an attentional bid, or prohibition for neutral speech,
is better than interpreting a prohibition for praise. Ideally, the recognizer’s failure
modes will minimize these sorts of errors.

Expressive Feedback

Nonetheless, mistakes in communication will be made. This motivates the need for
feedback from the robot back to the caregiver. Fundamentally, the caregiver is trying
to communicate his/her intent to the robot. The caregiver has no idea whether or not
the robot interpreted the intent correctly without some form of feedback. By inter-
facing the output of the recognizer to Kismet’s emotional system, the robot’s ability
to express itself through facial expression, voice quality, and body posture conveys
the robot’s affective interpretation of the message. This allows people to reiterate
themselves until they believe they have been properly understood. It also enables the
caregiver to reiterate the message until the intent is communicated strongly enough
(perhaps what the robot just did was very good, and the robot should be really happy
about it).

Speaker Dependence vs Independence

An interesting question is whether the recognizer should be speaker dependent or
speaker independent. There are obviously advantages and disadvantages to both,
and the appropriate choice depends on the application. Typically, it is easier to
get higher recognition performance from a speaker dependent system than a speaker
independent system. In the case of a personal robot, this is a good alternative since
the robot should be personalized to a particular human over time, and should not
be preferentially tuned to others. If the robot must interact with a wide variety of
people, then the speaker independent system is preferable. The underlying question
in both cases is what level of performance is necessary for people to feel that the
robot is responsive and understands them well enough so that it is not challenging or
frustrating to communicate with it and train it.
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7.5 The Algorithm

As shown in figure 7-2, the affective speech recognizer receives robot-directed speech
as input. The speech signal is analyzed by the low level speech processing system,
producing time-stamped pitch (Hz), percent periodicity (a measure of how likely a
frame is a voiced segment), energy (dB), and phoneme values ? all in real-time. The
next module performs filtering and pre-processing to reduce the amount of noise in
the data. The pitch value of a frame is simply set to zero if the corresponding percent
periodicity indicates that the frame is more likely to correspond to unvoiced speech.
The resulting pitch and energy data are then passed through the feature extractor,
which calculates a set of selected features (F) to F,,). Finally, based on the trained
model, the classifier determines whether the computed features are derived from an
approval, an attentional bid, a prohibition, soothing speech, or a neutral utterance.

—» F1 approval
robot —* pitch Feature [~ attentional bid
directed Extractor 9 Classifier | prohibition
speech - ener > soothing

—* Fn neutral

Figure 7-2: The spoken affective intent recognizer.

7.5.1 Training the System

We made recordings of two female adults who frequently interact with Kismet as
caregivers. The speakers were asked to express all five affective intents (approval,
attentional bid, prohibition, comfort, and, neutral) during the interaction. Recordings
were made using a wireless microphone, and the output signal was sent to the low-level
speech processing system running on Linux. For each utterance, this phase produced
a 16-bit single channel, 8 kHz signal (in a .wav format) as well as its corresponding
real-time pitch, percent periodicity, energy, and phoneme values. All recordings were
performed in Kismet’s usual environment to minimize variability of environment-
specific noise. We then eliminated samples containing extremely loud noises (door
slams, etc.) and labeled the remaining data set according to the speakers’ affective
intents during the interaction. There were a total of 726 utterances in the final data
set — approximately 145 utterances per class.

2This auditory processing code is provided by the Spoken Language Systems Group at MIT. For
now, the phoneme information is not used in the recognizer
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Data Preprocessing

The pitch value of a frame was set to zero if the corresponding percent periodicity
was lower than a threshold value. This indicates that the frame is more likely to cor-
respond to unvoiced speech. Even after this procedure, observation of the resulting
pitch contours still indicated the presence of substantial noise. Specifically, a signifi-
cant number of errors were discovered in the high pitch value region (above 500 Hz).
Therefore, additional preprocessing was performed on all pitch data. For each pitch
contour, a histogram of ten regions was constructed. Using the heuristic that the
pitch contour was relatively smooth, we determined that if only a few pitch values
were located in the high region while the rest were much lower (and none resided in
between), then the high values were likely to be noise. Note that this process did
not eliminate high but smooth pitch contour since pitch values would be distributed
evenly across nearby regions.

Classification Method

In all training phases we modeled each class of data using a Gaussian mixture model,
updated with the EM algorithm and a Kurtosis-based approach for dynamically decid-
ing the appropriate number of kernels (Vlassis & Likas 1999). Due to the limited set
of training data, we performed cross-validation in all classification processes. Specif-
ically, we held out a subset of data and trained a classifier using the remaining data.
We then tested the classifier’s performance on the held out test set. This process
was repeated 100 times per classifier. We calculated the mean and variance of the
percentage of correctly classified test data to estimate the classifier’s performance.

7.5.2 The Single Stage Classifier: First Pass

As shown in figure 7-3, the preprocessed pitch contour of the labeled data resem-
bles Fernald’s prototypical prosodic contours for approval, attention, prohibition, and
comfort/soothing. In the first pass of training, we attempted to recognize these pro-
posed patterns by using a set of global pitch and energy related features (see figure
7-4). All pitch features were measured using only non-zero pitch values. We hypothe-
sized that although none of these features directly encoded any temporal information
about the pitch contour, they would still be useful in distinguishing some classes. For
example, approval and attentional bids were expected to generate high pitch variance
while prohibition should have a lower pitch mean and a high energy level.

Using this feature set, we applied a sequential forward feature selection process to
construct a single stage classifier. The classification performance of each possible pair
of features was measured. The sixty-six feature pairs were then sorted based on their
respective performance, from highest to lowest. Successively, a feature pair from the
sorted list was added into the selected feature set to determine the best n features
for this classifier.
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Figure 7-3: Fernald’s prototypical prosodic contours found in the preprocessed data

set. Notice the similarity to those shown in figure 7-1.
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Feature Description
F1 Pitch mean
F2 Pitch vanance
F3 Maximum pitch
F4 Minimum pitch
F5 Pitch range
Fé Delta pitch mean
F7 Absolute delta pitch mean
F8 Energy mean
F9 Energy variance
F10 Energy range
F11 Mazimum energy
F12 Minimum energy

Figure 7-4: Features extracted in the single stage classifier. These features are mea-
sured over the non-zero values over the entire utterance. Feature Fz measures the
steepness of the slope of the pitch contour.

| F2 | 3 F4 F5 Fé6 F1 F8 Fo F10 F11 F12

Fl 6547 | 5806 |[6122 |6032 |[5677 |5921 [6360 |[7209 |7096 |7003 [6051
F2 4023 |[59.16 |4882 |5131 |[5523 [5286 |6879 [6211 |6328 |[56.27
F3 4766 | 4643 | 4669 | 4672 | 5145 | 6404 (5743 [ 5694 | 5161
F4 3268 | 4854 |5075 (4981 |6342 |[5993 [5523 [534R
F5 4736 | 5186 |4942 |6349 |[5973 | 5874 | 5207
Fé 3733 | 4466 | 5430 | 4941 | 4964 | 4748
F1 4419 | 5956 | 5365 |5541 | 4957
F8 5728 |5031 [4552 |4994
3] 5861 [5988 |6247
F10 5947 | 59.08
Fl11 5935

Figure 7-5: Feature pair performance (%). The feature pair Fj, Fy give the best
classification performance, which corresponds to pitch mean and energy variance,
respectively.
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Single Stage Classifier Results

Figure 7-5 illustrates each feature pair’s classification performance. The combination
of Fy (pitch mean) and Fy (energy variance) produces the best performance of all the
feature pairs (72.1%) while combining Fj (pitch range) and Fj (delta pitch mean)
results in the worst performance (32.7%). These feature pairs were sorted based on
performance. Figure 7-6 shows the classification results as each of the top pairs in
the sorted list are added sequentially into the feature set. Classification performance
increases as more features are added, reaching a maximum (78.8%) with five features
in the set, and then levels off above 60% with six or more features. Table 7-8 provides
a closer look at the classifier constructed using these best eight feature pairs. It is
clear that all seven classifiers perform best in recognizing prohibition, but not as well
in classifying the other classes. Figure 7-9 plots the feature space of the first classifier
(F, and Fy), which explains why a high number of approval, attention, soothing, and
neutral samples were incorrectly classified. There are three clusters in the feature
space. The prohibition class forms the first cluster, which is well separated from the
rest. Approval and attention samples form the second cluster, with some overlap
between the two classes. Soothing and neutral class form the last cluster, also with
some overlap.

100 T
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F1F9 F10,F11
8ok F10,F11 ]
max =78.77%
2 20k F1,F9,F10 F1F2,F3
F1F9 F8,F9
F10,F11
g 60} F1F2F3
o F1,F2F3 F5F8,F9
® F9.F10,F11 F10,F11
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Number of Features

Figure 7-6: Classification performance using sequential forward selection. The best
performance is given by the combination of features Fy, Fy, Fy, Fio, and Fj;. These
correspond to pitch mean, pitch variance, energy variance, energy range, and maxi-
mum energy.
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Feature pair | Performance | Performance Yo exror Yo exroY Yo exroy Yo enror Yo error
rge/:)n variance approval attention prohibition | soothing neutral
Fl1 | F9 72.09 0.08 48.675 24.45 8.7 15.575 42125
F1 | F10 70.96 0.08 41.95 26.625 151 16.15 46.4
F1 | Fll 70.03 0.08 29.525 29275 19.05 14.75 57.275
F2 | F9 68.79 0.096 45675 3375 1375 13.85 49
Fl | F2 65.47 01 41.625 18.275 24.075 25.875 62.8
F3 | F9 64.04 0.2 68.75 37 13775 18.325 41.925
F1 | F8 63.6 0.13 44.55 27.2 21.675 2715 61.425
F5 | F9 63.49 0.1 38.575 57.075 20,625 18.375 47.9
F4 | F9 63.42 0.11 52125 45.275 25675 17.15 42.675
F2 | Fil 63.28 0.09 35.325 39.525 20.05 17.625 71.075

Figure 7-7: Classification results of the ten best feature pairs for the single stage
classifier. We use these findings to design the first stage of our multi-stage classifier.

7.5.3 The Multi-Stage Classifier: Second Pass

Results obtained for the single stage classifier revealed that the global pitch and energy
features were useful for separating some classes from the rest, but not sufficient for
constructing a high performance 5-way classifier. In our second attempt, instead
of having one single stage classifier that simultaneously classifies all five classes, we
implemented several mini-classifiers that classifies the data in stages. In the first
stage, the classifier uses global pitch and energy features to separate some classes
(high arousal versus low arousal) as well as possible. The remaining clustered classes
are then passed to subsequent classification stages. Obviously, we had to consider
new features in order to build these additional classifiers. Utilizing prior information,
we included a new set of features that encoded the shape of the pitch contour. We
found these features to be useful in separating the difficult classes.

Multi-Stage Classifier Results

Figure 7-7 illustrates the classification results of the best ten feature pairs obtained
in the single stage classifier attempt, including the number of incorrectly classified
samples in each class. It is clear that all feature pairs work better in separating
prohibition and soothing than other classes. The F)-Fy pair generates the highest
overall performance and the least number of errors in classifying prohibition. We
then carefully looked at the feature space of this classifier (see figure 7-9) and made
several additional observations. The prohibition samples are clustered in the low
pitch mean and high energy variance region. The approval and attention classes form
a cluster at the high pitch mean and high energy variance region. The soothing
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Feature set Yo error Yo error

attention | prohibition

F1 F9 24.45 8.70

F1 FOF10 2567 9.65
F1FOFI10 27.20 8.80
Fl11

F1F2F9 5 22.24

8.53

F1F2F
FOF10 Fi1
F1F2F3
FEF9 F10
Fl11
F1F2F3
F5F8F9
FI0F11

Figure 7-8: A closer look at classification results for the single stage classifier. The
performance (the percent correctly classified) is shown for the best pair-wise set having
eight features. The pair-wise performance was ranked for the best ten pairs. As each

successive feature was added, we see performance peaks with five features (78.8%),
but then drops off.

Pitch Mean

Figure 7-9: Feature space of all five classes with respect to energy variance, Fy, and

pitch mean, F}. We see three distinguishable clusters for prohibition, soothing and
neutral, and approval and attention.




samples are clustered in the low pitch mean and low energy variance region. The
neutral samples have low pitch mean and are divided into two regions with respect
to their energy variance values. The neutral samples with high-energy variance are
clustered separately from the rest of the classes (in between prohibition and soothing),
while those with lower energy variance are clustered within the soothing class. These
findings are consistent with the proposed prior knowledge. Approval, attention, and
prohibition are associated with high intensity while soothing exhibits much lower
intensity. Neutral samples span from low to medium intensity, which makes sense
because the neutral class includes a wide variety of utterances.

Based on this observation, we concluded that energy-related features should be
used to classify soothing and neutral speech (having low intensity) from the other
higher intensity classes (see figure 7-10). In the second stage, we execute another
classifier to decide if a low intensity utterance corresponds to either soothing or neu-
tral speech. If the utterance exhibits high intensity, then we use the Fy — Fy pair to
distinguish among prohibition, the approval-attention cluster, or high intensity neu-
tral. An additional stage would be required to classify approval versus attention if
the utterance happened to fall within the approval-attention cluster.

Stage 1 Stage 2 Stage 3

Soothing " soothing

/, e
Soothing-Low htensity Neutral Low | Neutral |—# neutral

- Foproval | approwal
Eening Bee o " e
\ " Atention |~ attention

Prohibition " prohibition
w
Hgh Irtensity Neutral j——# neutral

Figure 7-10: The classification stages of the multi-stage classifier.

Stage 1: Soothing-Low Intensity Neutral vs Everything Else

The first two columns in table 7-11 show the classification performance of the top
four feature pairs (sorted according to how well each pair classifies soothing and low
intensity neutral against other classes). The last two columns illustrate the classifica-
tion results as each pair is added sequentially into the feature set. The final classifier
was constructed using the best feature set (energy variance, maximum energy, and
energy range), with an average performance of 93.6%. The resulting feature space is
shown in figure 7-12.
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Feature pair Pair performance rean (%) Feature Set Performance mean (%)
F9 F11 93.00 F9 Fl1 93.00s
F10 Fl1 91.82 F9 F10 Fi1 93.57
F2 F9 91.7 F2F9F10F11 93.28
F7 F9 91.34 F2 F7F9 F10 F11 91.58

Figure 7-11: Classification results in stage 1.

50 100 150 200
Energy Variance

350 20 25

Figure 7-12: Feature space: soothing vs neutral vs rest.
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Stage 2A: Soothing vs Low Intensity Neutral

Since the global and energy features were not sufficient in separating these two classes,
we had to introduce new features into the classifier. Fernald’s prototypical prosodic
patterns for soothing suggest looking for a smooth pitch contour exhibiting a fre-
quency down-sweep. Visual observations of the neutral samples in the data set indi-
cated that neutral speech generated flatter and choppier pitch contours as well as less
modulated energy contours. Based on these postulations, we constructed a classifier
using five features (i.e. number of pitch segments, average length of pitch segments,
minimum length of pitch segments, slope of pitch contour, and energy range). The
slope of the pitch contour indicated whether or not the contour contained a down-
sweep segment. It was calculated by performing a linear fit on the contour segment
starting at the maximum peak. This classifier’s average performance is 80.3%.

Stage 2B: Approval-Attention vs Prohibition vs High Intensity Neutral

We have discovered that a combination of pitch mean and energy variance works
well in this stage. The resulting classifier’s average performance is 90.0%. Based on
Fernald’s prototypical prosodic patterns and the feature space shown in figure 7-13,
we speculated that pitch variance would be a useful feature for distinguishing between
prohibition and approval-attention cluster. Adding pitch variance into the feature set
increases classifier’s average performance to 92.1%.
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Figure 7-13: Feature space: approval-attention vs prohibition.




Stage 3: Approval vs Attention

Since the approval class and attention class span across the same region in the global
pitch vs. energy feature space, we utilized prior knowledge (provided by Fernald’s
prototypical prosodic contours) to introduce a new feature. As mentioned above, ap-
provals are characterized by an exaggerated rise-fall pitch contour. We hypothesized
that the existence of this particular pitch pattern would be a useful feature in dis-
tinguishing between the two classes. We first performed a 3-degree polynomial fit on
each pitch segment. We then analyzed each segment’s slope sequence and looked for
a positive slope followed by a negative slope with magnitudes higher than a threshold
value. We recorded the longest pitch segment that contributed to the rise-fall pattern
(which was zero if the pattern was non-existent). This feature, together with pitch
variance, was used in the final classifier and generated an average performance of
70.5%. This classifier’s feature space is shown in figure 7-14. Approval and attention
are the most difficult to classify because both classes exhibit high pitch and inten-
sity. Although the shape of the pitch contour helped to distinguish between the two
classes, it is very difficult to achieve high classification performance without looking
at the linguistic content of the utterance.
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Figure 7-14: Feature space: approval versus attentional bid.

7.5.4 Overall Performance

The final classifier was evaluated using a new test set generated by the same female
speakers, containing 371 utterances. Because each mini-classifier was trained using
different portions of the original database (for the single stage classifier), we had
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to gather a new data set to ensure that we would not be testing any mini-classifier
stage on data that was used to train it. Figure 7-15 shows the resulting classification
performance and compares it to an instance of the cross-validation results of the best
classifier obtained in the first pass. Both classifiers perform very well on prohibition
utterances. The multi-stage classifier performs significantly better in classifying the
difficult classes, i.e., approval versus attention and soothing versus neutral. This
verifies that the features encoding the shape of the pitch contours (derived from prior
knowledge provided by Fernald’s prototypical prosodic patterns) were very useful.

It is important to note that both classifiers produce acceptable failure modes, i.e.,
strongly valenced intents are incorrectly classified as neutrally valenced intents and
not as oppositely valenced ones. All classes are sometimes incorrectly classified as
neutral. Approval and attentional bids are generally classified as one or the other.
Approval utterances are occasionally confused for soothing and wice versa. Only one
prohibition utterance was incorrectly classified as an attentional bid, which is accept-
able. The single stage classifier made one unacceptable error of confusing a neutral
as prohibition. In the multi-stage classifier, some neutral utterances are classified as
approval, attention, and soothing. This makes sense because the neutral class covers
a wide variety of utterances.

Class Test Size Clagsification Result % Correctly
Approval | Attertion | Prohibition | Soothing | MNeutral | Classified
First Pass | Approval 40 27 9 0 0 4 67.5
Attention 40 11 29 1] 0 0 725
Prohibition 40 0 0 39 0 1 97.5
Soothing 40 1 0 0 30 9 75
Neutral 40 1] 0 4 5 31 7.5
All 200 78
Second | Approval 84 64 15 0 5 0 76.19
Pass Aftention 77 21 55 0 0 1 74.32
Prohibition 80 0 1 78 0 1 97.5
|__Soothing 68 1] 1] 0 55 13 80.88
Neutral 62 3 4 0 3 ¥ 8387
All 371 81.94

Figure 7-15: Overall classification performance.

7.6 Integration with the Emotion System

The output of the recognizer is integrated into the rest of Kismet’s synthetic nervous
system as shown in figure 7-16. Please refer to chapter 8 for a detailed description
of the design of the emotion system. In this chapter, we briefly present only those
aspects of the emotion system as they are related to integrating recognition of vocal
affective intent into Kismet.
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Figure 7-16: System architecture for integrating vocal classifier input to Kismet’s
emotion system. See text.

The entry point for the classifier’s result is at the auditory perceptual system.
Here, it is fed into an associated releaser process. In general, there are many different
kinds of releasers defined for Kismet, each combining different contributions from
a variety of perceptual and motivational systems. For our purposes here, we only
discuss those releasers related to the input from the vocal classifier. The output of
each vocal affect releaser represents its perceptual contribution to the rest of the SNS.
Each releaser combines the incoming recognizer signal with contextual information
(such as the current “emotional” state) and computes its level of activation according
to the magnitude of its inputs. If its activation passes above threshold, it passes its
output on to the emotion system. The emotion system is presented in chapter 8.

Within the emotion system, the output of each releaser must first pass through the
affective assessment subsystem in order to influence emotional behavior. Within this
assessment subsystem, each releaser is evaluated in affective terms by an associated
somatic marker (SM) process. This mechanism is inspired by the Somatic Marker
Hypothesis of Damasio (1994) where incoming perceptual information is “tagged”
with affective information. Table 7-17 summarizes how each vocal affect releaser is
somatically tagged.

There are three classes of tags that the affective assessment phase uses to affec-
tively characterize its perceptual, motivational, and behavioral input. Each tag has
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an associated intensity that scales its contribution to the overall affective state. The
arousal tag, A, specifies how arousing this percept is to the emotional system. Posi-
tive values correspond to a high arousal stimulus whereas negative values correspond
to a low arousal stimulus. The valence tag, V, specifies how good or bad this percept
is to the emotional system. Positive values correspond to a pleasant stimulus whereas
negative values correspond to an unpleasant stimulus. The stance tag, S, specifies
how approachable the percept is. Positive values correspond to advance whereas neg-
ative values correspond to retreat. Because there are potentially many different kinds
of factors that modulate the robot’s affective state (e.g., behaviors, motivations, per-
ceptions), this tagging process converts the myriad of factors into a common currency
that can be combined to determine the net affective state.

typical
TEPressoOn

arousal valence stance

medium high
appraval high pasiiie approach pleased

high
prohibition oy st ethdraw sad
camtont fow medium | ceutral | content
pasitive
attention hégh neutral approach nerest
newtral newtral neutral neutral cam

Figure 7-17: Table mapping [A, V, S] to classified affective intents. Praise biases the
robot to be “happy”, prohibition biases it to be “sad”, comfort evokes a “content,
relaxed” state, and attention is arousing. See text.

For Kismet, the [A, V, S] trio is the currency the emotion system uses to determine
which emotional response should be active. This occurs in two phases: First, all
somatically marked inputs are passed to the emotion elicitor stage. Each emotion
process has an elicitor associated with it that filters each of the incoming [A,V, S|
contributions. Only those contributions that satisfy the [A,V,S] criteria for that
emotion process are allowed to contribute to its activation. This filtering is done
independently for each class of affective tag. For instance, a valence contribution
with a large negative value will not only contribute to the sorrow emotion process,
but to the fear, anger, and distress processes as well. Given all these factors,
each elicitor computes its net [A, V, S| contribution and activation level, and passes
them to the associated emotion process within the emotion arbitration subsystem.
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In the second stage, the emotion processes within the emotion arbitration subsystem
compete for activation based on their activation level. There is an emotion process
for each of Ekman’s six basic emotions (Ekman 1992). Ekman posits that these six
emotions are innate in humans, and all others are acquired through experience. The
“Ekman six” encompass joy, anger, disgust, fear, sorrow, and surprise.

If the activation level of the winning emotion process passes above threshold, it is
allowed to influence the behavior system and the motor expression system. There are
actually two threshold levels, one for expression and one for behavior. The expres-
sion threshold is lower than the behavior threshold; this allows the facial expression to
lead the behavioral response. This enhances the readability and interpretation of the
robot’s behavior for the human observer. For instance, given that the caregiver makes
an attentional bid, the robot’s face will first exhibit an aroused and interested ex-
pression, then the orienting response ensues. By staging the response in this manner,
the caregiver gets immediate expressive feedback that the robot understood his/her
intent. For Kismet, this feedback can come in a combination of facial expression
(chapter 11), tone of voice (chapter 12), or posture (chapter 11). The robot’s facial
expression also sets up the human’s expectation of what behavior will soon follow.
As a result, the human observing the robot can see its behavior, in addition to having
an understanding of why the robot is behaving in that manner. As we have argued
previously, readability is an important issue for social interaction with humans.

7.7 Use of Behavioral Context to improve inter-
pretation

Most affective speech recognizers are not integrated into robots equipped with emotion
systems that are also embedded in a social environment. As a result, they have to
classify each utterance in isolation. However, for Kismet, the surrounding social
context can be exploited to help reduce false categorizations, or at least to reduce the
number of “bad” misclassifications (such as mixing up prohibitions for approvals).

Transition Dynamics of the Emotion System

Some of this contextual filtering is performed by the transition dynamics of the emo-
tion processes. These processes cannot instantaneously become active or inactive.
Decay rates and competition for activation with other emotion processes give the
currently active process a base level of persistence before it becomes inactive. Hence,
for a sequence of approvals where the activation of the robot’s joy process is very
high, an isolated prohibition will not be sufficient to immediately switch the robot to
a negatively valenced state.

However, if the caregiver intended to communicate disapproval to the robot, re-
iteration of the prohibition will continue to increase the contribution of negative
valence to the emotion system. This serves to inhibit the positively valenced emotion
processes and to excite the negatively valenced emotion processes. Expressive feed-
back from the robot is sufficient for the caregiver to recognize when the intent of the
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vocalization has been communicated properly and has been communicated strongly
enough. The smooth transition dynamics of the emotion system enhances the natu-
ralness of the robot’s behavior since a person would expect to have to “build up” to
a dramatic shift in affective state from positive to negative, as opposed to being able
to flip the robot’s emotional state like a switch.

Using Social Context to Disambiguate Intent

The affective state of the robot can also be used to help disambiguate the intent
behind utterances with very similar prosodic contours. A good example of this is
the difference between utterances intended to soothe versus utterances intended to
encourage the robot. The prosodic patterns of these vocalizations are quite similar,
but the intent varies with the social context. The communicative function of soothing
vocalizations is to comfort a distressed robot — there is no point in comforting the
robot if it is not in a distressed state. Hence, the affective assessment phase somati-
cally tags these types of utterances as soothing when the robot is distressed, and as
encouraging otherwise (slightly arousing, slightly positive).

7.8 Experiments

We have shown that the implemented classifier performs well on the primary care-
givers’ utterances. Essentially, the classifier is trained to recognize the caregivers’
different prosodic contours, which are shown to coincide with Fernald’s prototypical
patterns. In order to extend the use of the affective intent recognizer, we would like
to evaluate the following issues:

e Will naive subjects speak to the robot in an exaggerated manner (in the same
way as the caregivers)? Will Kismet'’s infant-like appearance urge the speakers
to use motherese?

o If so, will the classifier be able to recognize their utterances, or will it be hindered
by variations in individual’s style of speaking or language?

e How will the speakers react to Kismet’s expressive feedback, and will the cues
encourage them to adjust their speech in a way they think that Kismet will
understand?

7.8.1 Experimental Setup

Five female subjects, ranging from 23 to 54 years old, were asked to interact with
Kismet in different languages (English, Russian, French, German, and Indonesian).
One of the subjects was a caregiver of Kismet, who spoke to the robot in Indonesian.
Subjects were instructed to express each affective intent (approval, attention, prohi-
bition, and soothing) and signal when they felt that they had communicated it to the
robot. We did not include the neutral class because we expected that many neutral
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utterances would be spoken during the experiment. All sessions were recorded on
video for further evaluations.

7.8.2 Results

A set of 266 utterances were collected from the experiment sessions. Very long and
empty utterances (those containing no voiced segments) were not included. An ob-
jective observer was asked to label these utterances and to rate them based on the
perceived strength of their affective message (except for neutral). As shown in the
classification results (see figure 7-18), compared to the caregiver test set, the classi-
fier performs almost as well on neutral, and performs decently well on all the strong
classes, except for soothing and attentional bids. As expected, the performance re-
duces as the perceived strength of the utterance decreases.

A closer look at the misclassified soothing utterances showed that a high number
of utterances were actually soft approvals. The pitch contours contained a rise-fall
segment, but the energy level was low. A linear fit on these contours generates
a flat slope, resulting in a neutral classification. A few soothing utterances were
confused for neutral despite having the down-sweep frequency characteristic because
they contained too many word<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>