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Background
Air-launched weapons are an essential military technology that can provide strategic and tactical
supremacy. Emphasis on safe, high-accuracy, reliable store separation will be critical for weapon
system upgrades to cost-effectively meet threats in a financially austere environment for new
aircraft development for the foreseeable future. Although the problem of weapons release from
an aircraft platform has received much attention as exemplified by Refs. rl-r3, more effort is
needed to understand the underlying basic physics and essential parameters.

In a larger sense, this technology is a subset of the problem of the interactions between moving
bodies in all speed ranges. Multi-body interaction applications include separation and carriage of
various staged vehicles for space missions and flight-testing as well as crew escape. For this
group, hypersonic multistage vehicle concepts of interest to the U.S. Air Force frequently utilize
the launch of a small rocket-powered stage from a large subsonic or transonic aircraft such as the
B-52. Other examples are the PEGASUS series and the Shuttle. Currently, multistage launch
scenarios are envisioned for future hypersonic and space applications. A new thrust involves the
use of air breathing (scramijet or turbo-scramjet) rather than rocket-powered stages. These can be
associated with recoverable launch vehicles such as the RLV series (second and third generation)
being studied in the Boeing CRI program. Other applications include the Boeing Delta IV series.

Recent experience with unsuccessful staging such as with the X-43 (Hyper-X) vehicle before the
successful mission indicates the criticality of the problem. In a larger sense, the payload mass
fraction can be drastically affected by sizing of the separation motors. Overly conservative
estimates requiring extra thrust will give a larger weight penalty associated with more motor
thrust for stage separation. A smaller (optimistic) separation motor design solution will increase
payload with the risk of re-contact and reduced safety. The correctness of these decisions
depends on our understanding of the interaction of the fluid dynamics with the dynamics of the
motion. The effort described in this report is a continuation of a program emphasizing this
understanding. Rather than emphasizing speed, efficiency and accuracy of production CFD
codes, numerics and algorithms such as for electromagnetic scattering for application for
complex geometries, we stress computationally non-intense PC application to understand and
harness (through new flow control concepts) the important physical mechanisms that pervade a
wide class of store and stage separation phenomena. This emphasis applies to the other research
effort besides store and stage separation discussed herein. Emphasis is on the first order physics
and representative unit problems from dissection of more complicated situations that combine
these. Another emphasis is to identify new interesting mathematical techniques to solve the unit
problems and combine with them current large-scale numerical techniques to improve them. On
the other hand, more realism is being introduced as our effort progresses. For example, as
compared to previous phases of the effort, increasing emphasis is being placed on high speeds
and nonlinear phenomena.

In this report, results from of our program over the last three years will be summarized in which
mathematical techniques were further developed to provide desktop models to quickly illuminate
the physics of store and stage separation and provide useful tools for conceptual and preliminary
design of flight vehicles that use stores and staged components.

Besides the new research thrust of stage separation embodied in the effort discussed herein,
another tie-in has been made with current efforts regarding optimizing weapons-bay acoustic
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mitigation measures with stage trajectory characteristics, (see r4). Current control measures
include jet blowing and actuators to reduce the amplitudes of the noise power from weapons-bay
cavities. Flight and ground tests are underway to investigate the effects on store trajectories. The
physics and time scales of the mitigation measures and their possible coupling with the dynamic
characteristics of the separation bodies needs to be better understood. Our models will be further
developed to provide useful insight into this interaction. Examples of our work are in r5-r12 and
our publications in the Appendix.

Physics and Modeling Issues for Multibody Flows

In this phase of the research, we have continued our effort in both formulating and solving unit
problems to improve our understanding of the physics of multi-body interactions associated with
store and stage separation especially at supersonic speeds. Along with solving the unit problems,
we are developing a PC-oriented capability for prediction of store and stage separation
characteristics with an ultimate relationship to control. There is a strong need for ground tests
that will help us to understand cavity flows and the relationship to weapons-bay store separation
leading ultimately to control of this process. The PI is participating with Boeing in such tests.
The problems selected for study are central to building our models to account for unsteady
effects, interaction with acoustic mitigation measures, supersonic separation dynamics,
interaction of the body with the cavity flow and an assessment of the time averaging used in our
models for characterizing the interaction of the body with the weapons-bay shear layer. The role
of time scales is important in justifying the applicability of pseudo-steady approximations
assumed in Captive Trajectory System (CTS) testing and understanding of measures to reduce
acoustic radiation, vibration in weapons bay cavities and doors while insuring safe escape.

Modeling of Hypersonic Flow Control Processes

Porous materials of fine structure (such as fiber ceramics and felt metals) are widely used for
absorption of acoustic disturbances such as what we have developed for hypersonic laminar flow
control and reported in rl2-rl5. State-of-the-art theoretical models rl6-r19 predicting acoustic
characteristics of these materials ignore effects associated with gas rarefaction. In these models,
the linearized Navier-Stokes equations with no slip and no temperature jump conditions on pore
walls govern the problem, which is analyzed using combinations of analytical solutions for
isolated pore and statistical methods to treat random structures. However, the continuum
approximation is not valid in many practical applications. The following issues can arise:

"* Gas filling pores may be of low density. This occurs in high altitude flight.

"* The porous material may have ultra-fine structure. This is typical for fiber-ceramic
materials and micro-fluid systems.

In both cases, the Knudsen layers formed on the pore walls may have a thickness of the order of
the pore size; i.e., gas rarefaction may significantly affect acoustic characteristics of porous
materials. As just indicated, our interest to this problem is motivated by our current theoretical
and experimental studies of ultrasonically absorptive coatings (UAC) for hypersonic laminar
flow control. We have discovered that UAC can stabilize the dominant unstable mode by
extracting the disturbance energy and thereby increasing the laminar run as theoretically
demonstrated in r12, r13. This concept was confirmed by experiments r14 in the Caltech high
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enthalpy Mach=5-6 T5 shock tunnel. It was shown that a thin porous coating, which comprises
equally spaced blind micro holes (regular porosity), doubles the transition Reynolds number and
completely laminarized the tested cone! Furthermore, our stability experiments rl5 in the ITAM
(Novosibirsk) Mach 6 wind tunnel showed that a random porosity microstructure (felt metalTM)
coating dramatically reduces the second-mode growth rate. Performing parametric studies of
UAC performance, we recognized that the flow density relevant to hypersonic, high-altitude
flight is so small that gas rarefaction becomes significant.

Objectives
To address the foregoing needs, the part of our research dealing with multi-body interactions we
performed research to study store interaction with cavity bay shear layers relevant to separation
and delivery with emphasis on the following tasks:
1. Continue combined asymptotic and numerical modeling of store separation and multibody

flow processes

2. Investigate shock interactions relevant to stage separation

3. Develop combined dynamics and aerodynamic models for analysis of store and stage
separation

4. Calculate examples of a slender body separation from a wing into a supersonic freestream

Added to this scope of effort our objective was to develop the ultrasonic absorption coating
technology so that ultimately it can be deployed on hypersonic flight vehicles for passive laminar
flow control. A major objective was to mathematically simulate the energetics related to
admittance of typical thermal protection system microstructures to tailor them to absorb energy
of second mode instabilities leading to delay of laminar turbulent boundary layer transition.

Major Technical Accomplishments
Multi-body Store and Stage Separation Effort

In FY 1999, the phases of store separation above, below and crossing cavity shear layers
bounding subsonic streams were treated with our combined asymptotic and numerical methods.
Good agreement of our predictions with lIT experiments was demonstrated. (cfr5 -rl0).

A major thrust in FY 2000 was extension of the model and its coupling with 3-DOF dynamics
from subsonic to transonic flow. This involved a multitude of subtasks, including a study of the
asymptotic matching of the near and far field flows. External separation from a solid flat wall
boundary was modeled as a forerunner of treatment of interaction with the shear layer over a
cavity. It was shown that our theoretical model is able to capture such complex phenomena as
store re-contact with the parent body. A tremendous sensitivity of the initial launch conditions
was discovered, a property later verified by the PI's experimental work with Boeing. Our results
for this model problem are also directly applicable to stage separation of space vehicles.

In FY 2001, the FY 2000 transonic theoretical and computer models were generalized for
treatment of transonic store separation from a flat body surface simulating external carriage as
well as launch from a rectangular cavity of finite span (cf. r2 1 -r22).

3
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In FY 2002-2005, our major effort has been focused on external store separations into a
supersonic outer flow (cfr23) with emphasis on:

"* Analysis of store interaction with a stratified external flow field induced by the parent
body

"* Scattering of a plane shock wave by a slender body within the framework of geometric
acoustics

"* Parametric studies of 3-DOF trajectories of a slender body of revolution separating from
a thin wing in a supersonic free stream

Modeling of store interaction with external non-uniform flows is discussed in r23. As previously
indicated, parent body elements such as a wing and fuselage induce external interference flow
fields around the store. The external flow field contributes to the forces acting on the body. Our
effort has been to assess the importance of this effect in relation to the flow modifications
analyzed in our previous studies for store separation in a uniform stream. We used slender body
theory with an assumption that the store is small and does not affect the external field, i.e., the
external flow field is a passive scalar. Considering the leading terms in the expansions, we
identified different cases, defined lumped parameters for the external-field effect and indicated
regimes when this approximation captures the primary physics.

In subsonic (elliptic) flows, the external flow perturbations are distributed in space. Their
contributions to forces and moments acting on the store are reduced to a superimposed, induced
angle of attack due to the external flow inclination as well an external pressure field representing
the effect of the background airplane flow. In supersonic (hyperbolic) flows, new effects are due
to scattering and reflection of weak shocks. At the initial stage of separation, these phenomena
lead to formation of the shock-wave system (called a wave train) between the parent body and
the store. Unit problems associated with the wave train formation are shown in Figure 1.

Problem 1: Plane Problem 2:

shock-parasite body Parasite body- Problem 3: Parasite body-induced
interaction induced wave-train including expansion waves

wave train

R Problem 4: Two body
interaction

281

Problem 5: Wave train between two
H wedges

Figure 1. Unit problems associated with scattering/scattering of body-induced shocks.
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Since the shock waves are weakly attenuated, their diffraction and re-reflection needs to be
analyzed in accord with the previous discussion. Moreover, the shock-body interaction leads to
important changes of the pressure distribution on the store surface that, in turn, causes
appreciable changes of aerodynamic forces and moments acting on the store.

Starting in FY 2003, we have performed first-cut modeling of the plane shock wave scattering by
a slender body of revolution (Problem 1 in Figure 1.) The problem was analyzed within the
framework of geometric acoustics. Figure 2 shows an incident ray containing the unit vector 1,
and the reflected ray containing the unit vector R. These vectors and the normal vector N to the
body surface lie in the same plane. The vector S is tangent to the body surface in this plane. The
vectors I, R are inclined to N at the reflection angle -y that is expressed in terms of the polar

angle 0 and the Mach number as ^y=cos-'(sin0 / M)). With these findings, the pressure on the
body surface behind the shock reflection is expressed as a function of the incident ray angle in a
simple analytical form

[1 +A + sinO(s)], (1)

where /3 -- --I. In the shadow region 0 < 0, the pressure is assumed constant, i.e.
p" 1/,3.

Incident ray Intersection of

boysufc shock
"tthe body

Normal heo sinO(x)
body surface M

Reflected ray.

Shadow behind

the body

Figure 2. Geometric acoustics of the plane shock-body interaction.
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The aforementioned solution is valid for Mach numbers M > 42-. This restriction results from
the condition of supersonic flow in the scattering direction S. The solution has been incorporated
into our computational code predicting store trajectories. Numerical examples, one of which is
shown in Figure 3, indicate that the parasite body-shock interaction crucially affects the parasite
body trajectory: compare the red line (the shock interaction is included in the trajectory
calculations) with the black line (the shock interaction is not taken into account). This example
clearly indicates that accurate modeling of the parasite body-shock interaction is very important.
This motivates us to perform further theoretical, CFD and experimental studies of this
phenomenon.

Wing Y.= 0.5D., X.= 20Do, V,= -12m/s, aO=w0= 0

Shock Shock diffraction of

- Shock diffractiononl
-2 F

0 -4

-6

-8

-10
20 40 60 80 100 120 140

XIDo

Figure 3. Parent body induced shock substantially affects parasite body trajectory.

In early FY 2004, the near field diffraction effect on the forces on two interfering slender bodies
of revolution was studied. A key unit problem for multi-body separation at supersonic speeds
(see Problem 5 in Figure 1) was treated. The far field flow was analyzed by linearized supersonic
slender body theory based on the Prandtl-Glauert Equation (PGE) equation for the perturbation
velocity potential. This led to a solution that was used to obtain the interference flow between
two arbitrary bodies. This interference occurs because of the reflected waves necessary to
maintain inviscid tangency boundary conditions on each body of the pair. The transient PGE
initial boundary value problem is solved using the transform calculus. The wave train structure
consisting of sequence of conical wave fronts has been obtained by term-by-term inversion of the
expansion in exponentials of the transforms for large values of the transform parameter,
according to a Tauberian theorem. Conical fronts as compared to the two-dimensional case of
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plane waves were obtained. Space damping of the disturbances in the three-dimensional case
considered here is related to energy spreading implying three-dimensional "disturbance relief."
and in accord with Huygens' principle. Although significant interference pressure
(Figure 4 and drag (Figure 5) are obtained to dominant order, lift and moment are higher order
(Figure 6) that we are discovering are controlled by the intricate and subtle details of the wave
diffraction near field and its matching to the far field.

Y

10

12 p"0U i
2

Referenced sfreamnwse wmordinate, x/h

Figure 4. Pressure on the surface of one cone induced by another cone.
88

366

> ~ ~ ~ ~ ~ O 2 • ®•;h

0)0

2 4 6 8 10

Referenced cone length, 1/ph

Figure 5. Wave drag of one cone induced by another cone.

The higher order pressure integrals for the lift and moment include Heaviside functions with
azimuthal angular dependence that appear to roughly model the scattering/diffraction of the
conical fronts from the wave systems of one body on the other. The scattering scheme and
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analytical expressions for the lift and pitching moment are shown in Figure 7. These solutions
indicate rapid increase of aerodynamic loads with the number N of wave-front reflections.

z (x) = A2 (x) = ;rx'

Yx
y0

h

In <<I In xnregions x12 ->> x.r (far
the lift force Is due to from the wave fronts),
scattering of the conical thlIj~pjFeeWpOup to the
wave by the body surface third-order approximation

wrt small parameter

ýX2- = X.1 <
2 1

Figure 6. Lift force is generated in the local regions of conical shock-wave scattering.

Front ofincident wave Front of reflected wave

21

_x
2 

-I
r --) 0, local coordinate u. = - 0(1)

2r~x.

Lft force

Pitch moment

M=--p uh'P28 [ 9 R -1 Vp N 2(N+1) 2

Figure 7. Approximate scheme of local scattering and corresponding analytical solutions for the
lift force and pitching moment.
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In summary, the aforementioned analysis provides for the first time an approximate but coherent
picture of the wave train structure occurring in multi-body interference problems such as
supersonic stage separation and flight crew escape. This is particularly important for internal
carriage and cocoon release where shear layers bounding cavities exist. Moreover, this work
provides a launching pad for future effort to obtain more understanding of the near field as well
as increased prediction accuracy. This will strongly impact ejection system design and safe
separation flow control.

Our complementary effort under Boeing sponsorship to obtain databases for this research phase
is in progress. This involves highly cost-effective testing in high Mach number facilities of
ITAM in Siberia as well as CFD studies (see Figure 8). Stage separation is a critically important
aspect of high-speed flight vehicles such as that the Hyper-X (X-43), the FALCON DARPA
program. FALCON includes trans-atmospheric vehicle concepts that will skip outside and inside
the earth's atmospheric layers to obtain global cross-range capability. Besides L / D ,fuel weight

fraction is a metric that needs to be optimized to meet this requirement. Overly conservative
sizing of stage separation rocket motors adversely influences this weight fraction and can reduce
payload. Accurate and rapid estimation of stage dynamics and aerodynamic interference tools
such as those emerging from our research are important in a satisfying these needs.

S• Shock wave

"RSC fTAM onork.t,

Drivr Provides

Mach-4, the rang. of the angles Special rig will provide data on

of attack from 3 to 20 degrees aerodynamic loads induced by quasi -
steady and unsteady crossing of the
shock by parasite body

Figure 8. ITAM experiments from r31 on steady and unsteady shock-body interactions are
complemented by CFD studies.
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A unit problem occurring in supersonic and hypersonic store and stage separation is the
impingement of shock waves on escaping bodies. Strong evidence exists that such waves can
drastically affect store and stage separation trajectories. This however can be exploited for
trajectory control schemes that avoid re-contact. Our experiments at ITAM in Novosibirsk and
our current supersonic store and stage separation analyses that we developed under previous
phases of this program have shown that the proper control laws are needed. These are required to
design a system to avoid end-over-end tumbling or flat spins that can result with over control. At
high speeds, complex shock interference heating results from high-speed jet shear layers. These
convect downstream from shock limbs as well as lead to interactions such as those of Edney IV
type and Mach reflections. An exciting innovation for which we have just made a patent
disclosure is to use lightweight, simple, low current plasma discharges that do not have the
fluidic jet on-board stored air requirements or the drag penalties of spoilers for control of cavity
flows. At low supersonic speeds, the problem has some features in common with classical
electromagnetic scattering (EMS). One of these is that its Prandtl-Glauert perturbation potential
Laplace transform obeys the Helmholtz equation, as does the EMS field space factor. It however
has many critically different aspects, especially for strong shocks, for which nonlinearities are
decisive. Even the linear supersonic problem is different since the flow tangency boundary
conditions are on the nearfield wedge shock wave generator as contrasted tofarfield asymptotic
compatibility with an incident wave coming from infinity in the electromagnetic problem. In the
shock diffraction/scattering problem, the wave is an oblique front rather than one that is normal
or parallel to the scatterer for which eigenfunction expansion solutions are documented in the
classical texts. For the nonlinear case, Rankine-Hugoniot shock relations have to be satisfied on
the shock and shock-shocks as well as caustics that form from secondary wavelet envelopes as in
Huygens' construction. Early literature on this topic is mainly inductive (using wave geometry
ideas) and needs to be made part of a deductive scheme from first principles to be applicable to
more complex stage and store separation physics. As contrasted to the development of fast,
accurate high-order EMS solvers such as numerical schemes based on short wavelength
expansion solutions of the EM integral equation for three-dimensional airplane geometries, our
main focus is to model the connection of the near field scattering process with far field wave
trains for weapons emerging from cavities. These decisively affect lift, drag, and moment as
well as pressure distributions. We intend to make this connection by matched asymptotics. This
new approach will provide considerable physical insight. Another differentiator of our shock
interaction work from EMS algorithm development is the role of shock refraction in transonic,
thick shear layers that separate the cavity flow from the external flow. This issue emerges
continually in our discussions with Boeing, WPAFB-VA and AFSEO who are concerned with
acoustic mitigation and safe separation.

Figure 9 shows key features of the aforementioned linear problem which we have formulated in
the effort under this contract. This unit problem models interaction of a wing-like surface with an
ogive cylinder body in a supersonic flow. An incident Mach wave from a wedge generator is
reflected by the cylinder surface to satisfy the boundary conditions of flow tangency. The trace
of intersection is an ellipse in the plane of the incident wave. The reflected wave is the envelope
of ray cones a typical one of which is shown in Figure 9. In accord with the previous remarks,
this interaction is quite different from the scattering of a plane wave over a cylinder in the sense
that the plane wave is in the near field rather than the far field in the classical problem, i.e.,

10
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h < oo. As indicated previously, this problem leads to a boundary value one for the Helmholtz
equation. Techniques to solve such problems but with different boundary conditions are
discussed in r24- r29. However, in significant contrast to our application, r29 uses the 3-D
Helmholtz fundamental solution as contrasted to a Green's function for the kernel for the
Fredholm integral equation of the second kind that we plan to treat. We intend to exploit the
advantage that this Green's function satisfies the boundary conditions on the scatterer for our
specific problem. Moreover, and as previously indicated, we stress that the Helmholtz operator
applies to the Laplace transform of the perturbation potential rather than the space part of the
electromagnetic field as in much of the just-cited EMS work. Because of this and the near field
boundary conditions, the interpretation of the short wavelength approximation will be different
than that for the EMS problem. In addition, we will be considering other approximations besides
the short wavelength asymptotic series that is very useful in obtaining accurate numerical
solutions as described in recent EMS literature. Strong indications are that they will have limited
relevance to our goal of obtaining forces and moments controlling weapons separation from
weapons bays. Returning to our formulation, a side view of the wedge scatterer in relation to
cylinder is shown in Figure 10.

In a supersonic flow with a freestream of Mach number M,,, the plane wave emanating from a

wedge apex A experiences multiple scattering. The primary wave is ABD and the first reflected
wave of the downstream wave train is BC. If the wedge angle is small, 6 <<1, supersonic small
perturbation (Prandtl-Glauert) theory applies. Denoting the perturbation potential as 4, the
initial boundary-value problem is

Ray cone
Reflected Mach wave

Air"

Incident Mach wave

Figure 9.Shock diffraction geometry.
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020 02 + 09• 2 a - r a 1+ (1+ + 49(09Y] +0 (2a)

(x 0 -- (2b)
or

0 =1(2c)
1 y=h

The multiple reflection shock train is a basic feature of the problem. It has been analyzed for the
supersonic interaction of two bodies of revolution in r30, assuming their spacing is large
compared to their thicknesses. The purpose to treat more closely spaced bodies where such an
approximation may be invalid This is relevant to critical aerodynamic loads occurring in the
initial phases of stage and store separation. This can be evaluated by matched asymptotics for
which an outer limit of the solution of the problem to be now discussed will be used Note that for

h
narrow spacing h = o(1), there may be a special one-dimensional regime in which the cross flow

h
derivatives are small providing that the - = o(l) as well, where p is the minimum characteristic

p
radius of curvature between both bodies in the cross flow plane. This contrasts with the usual

h
slender body theory approximations used for- = 0(1), where the dominant orders in the slender

body near field expansions where the cross flow derivatives are more important than the
streamwise ones. Our preliminary assessment indicates that this will be applicable to the case to

where h will be assumed to be 0(1).

Returning to the diffraction problem, we use the Laplace transform of the perturbation potential

f = e P'dx.

Applying this to the problem defined by (2) we obtain the subsidiary boundary value problem
(P 1) for the reduced wave (Helmholtz) equation (see also Figure 11).

L[0] = 0, L-=AT -A,

12
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A T + - +

rr k -9r r2 002 Oy2  Oz2 ,
A 2 _ 32f
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ayY =h P

Or
-gr=o=°

Using separation of variables, and a generic notation for u - , accordingly u= R(r)T(O) is
assumed. Equation (4.1 a) implies

2ýd? 2 l d 2 A2= T"(O)
r'RA2 +--(A R= A (3)

rd r dr I T

where A is the eigenvalue. Since T(O) is to be continuous at 0 = 2n~r, it must be a periodic
function and n is an integer 0,1, 2,.... Thus R satisfies the modified Bessel equation

A
Y E

h I

BA
a

x

D

x + (y -h) = 0

Figure 10 Side view of Mach wave interaction.

13



SC71193.RFRFTV

-J SaMUMIwC

d2R 1ldR A2  2
+r +-A2  R R=O (4)

r dr

The eigensolutions of (3) and (4) are

[cos nO
T.(O) = [sinnO, (5)

[K.(Ar)
R,,(r) = i(Ar) (6)

a),

AB

r

.2 ........ ---- ---- ----- ---
IZ

ao 0

Br j ,8
2
=_ -1 p

Figure 11 Laplace transform reduced Helmholtz boundary value problem (Problem P 1).

The method of variation of parameters or projection in space of the homogeneous problem

eigenfunctions (5), (6) solving the usual Sturm-Liouville problems for T(O) in (3) and R(r) in

(5) is used to obtain the Green's function G(r, 0; r', 0') which is governed by
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L[G] - (7a)

2 =0, (7b)

G(ooz, 0) < oc• (7c)

where 6(x) signifies the delta function of x. Further analysis will be focused on an integral
equation resulting from Green's formula to solve the boundary value (multiple scattering)
problem defined by Eqs. (2). As previously indicated our approach has very limited commonality
with EMS analyses illustrated by r29. Yet, we believe that this may permit application of some
of the tools developed in our applications to impact the EMS procedures. Since the integral
equation will be for the Laplace transform and we are interested in many questions that involve
parametric and spatial dependencies, we will be focusing on low order analytical asymptotic
closed form representations in contrast to the important quest for high fidelity numerical
solutions that pervades much current EMS effort.

With asymptotic methods, we will analyze different limits such as short and long wavelength
approximations as well as small and large spacing between interacting bodies, in order to clarify
basic features of multiple scattering. Our approach will be to emphasize alternating procedures
such as continued fractions and recursive methods such as Schwarz alternating sequences and
obtaining functional analysis-based-fixed-point maps to insure convergence of the iterative
sequences. For problems involving boundary data on two disconnected arcs, the alternating
sequence is a form of imaging such as that used in potential theory in which the sequence
involves an added correction iterate to repair the spoiling of the boundary conditions on one arc
by a previous iterate that was designed to satisfy those on the other arc. A major hurdle is to
make the developments analytically tractable and un-messy to facilitate the inversion of the
transforms. We envision that this can be addressed with "elastic" low-order asymptotics,
particularly of the large and small h spacing parameter variety. Our preliminary studies indicate
that by concentrating on the trajectory-determining aerodynamic forces, rather than pressure
fields, it is feasible to obtain compact analytical solutions for the shock-induced lift force and
pitching moment. We will study integral theorems in this connection. These solutions will be
compared with experimental data and CFD of ITAM (Novosibirsk). This allows us to evaluate
elasticity of the first-order asymptotic approximations. As in previous phases of the effort, the
theoretical results will be incorporated into our codes predicting store or stage escape
trajectories.
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Cavity Flows Relevant to Store Separation

At present, qualitative studies are underway regarding the flow physics of normal injection of
jets ahead and behind supersonic cavities. The PI is collaborating with Caltech's Professor Hans
Hornung in this connection through the former's faculty position at Caltech. Figure 12 shows
snapshots taken from computational schlieren movies developed by Hornung. The left panel
shows cavity flow without normal injection in front of it. An unsteady Euler code, Amrita,
developed by James Quirk was used for these simulations. The free-stream Mach number of the
two flows is 1.5, and the jet Mach number is 1.1. Pressure and density in the free-stream and the
jet are the same. The graphs give pressure, temperature (normalized by free-stream values) and
x-Mach number (blue, red and green respectively) along the top of the cavity. The scale for
pressure and temperature is the one given on the left, and Mach number range is from 0 to 2. The
right panel shows the effect of the injection. In connection with the previous remarks, the jet
alleviates the strong disturbances and quenches the Kelvin-Helmholtz instability near the cavity
lip. We are starting to look at the time-average flow pattern, which is vitally significant on the
Froude or ejection time scale. The latter is at least an order of magnitude longer than the
convection times for acoustic disturbances. This is why temporal averaging is important in
understanding the mechanisms to be exploited by weapons-bay cavity flow control.

3.53.
33

2.525
2 2

0.5

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Stroomwise distance Streamwise distance

Figure 12 Computational schlieren snapshots of instantaneous cavity flow fields with and
without jet control,

Physics and Modeling for Passive Hypersonic Boundary Layer Flow Control

A semi-empirical first-cut model of gas rarefaction effects on acoustic disturbances in porous
media was given in r15. Exact solutions describing propagation of acoustic disturbances in
cylindrical long pores of various cross-sectional shapes were obtained in r20 with the assumption
that the Knudsen number Kn is small. In this case, the gas rarefaction leads to slip and
temperature jump conditions on the pore walls whereas the disturbance fluid dynamics is
governed by the linearized Navier-Stokes equations for a continuum. It was shown that these
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solutions agree well with experimental data in the low frequency band, which is of most practical
interest. In a wide range of Knudsen number (0 < Kn<5 ); i.e., the small Kn approximation is
quite elastic. This leads to the hypothesis that the isolated-pore solutions r20 may be used as key
elements for theoretical analyses of acoustics in porous materials at low ambient densities as well
as in materials of ultra-fine microstructures. Examples of our analyses are given in the Appendix.

However, the solutions r20 for straight cylindrical pores do not account for effects associated
with tortuousity and cross-sectional non-uniformity of actual pores. To fill this gap, we will
generalize solutions for tortuous and non-uniform isolated pores and incorporate them into our
methodology providing acoustic characteristics of porous materials. This will allow us to replace
empirical parameters such as a shape factor and turtuousity coefficient by relations based on self-
consistent analyses.

For materials of high porosity and anisotropy, the aforementioned concept of equivalent
cylindrical pore is not valid. These practically important configurations will be treated using
kinetic theory. We believe that this is a novel approach to the problem and should provide
important new insights.
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Theoretical Aerodynamics in Today's Real World,
Opportunities and Challenges

Norman D. Malmuth*
Rockwell Scientific Company, Thousand Oaks, California, 91360
California Institute of Technology, Pasadena, California 91125

In spite of the CFD revolution, significant challenges still face aerodynamicists in
predicting and controlling various classes of flows. These include three-dimensional
separation, boundary layer transition, interaction of separation and transition such as on re-
entry capsules, multi-element airfoils and wings, UAV low Reynolds number flows and high
angle of attack applications. Others include multi-body flows such as those occurring in
store and stage separation, "stiff" combustion reacting and unsteady flows as well as plasma
aerodynamics and turbulence, to name a few. In many cases, diverse multiple scales are
involved and the proper identification and treatment of associated disparate length and time
scales is critical in obtaining accurate prediction and effective control. The solution of such
multi-scale problems can be a hurdle to effective domain decomposition, even overset,
unstructured adaptive gridding and ultimately, solution accuracy. Theoretical insights can
help make proper decisions on numerical pre-processing, solution, post-processing and
interpretation. Opportunities for a combined theoretical, computational and experimental
approach will be discussed. These will be illustrated by examples from the author's
experience. As compared to the limited "pen and paper" theoretical methods of the 50's,
illustrations will be given of the effectiveness of combined asymptotics, similitude, group
invariance, approximate physics-based modeling and numerical methods for conceptual
vehicle design, flow control innovation, identification of key parameters, leveraging of
computational solutions, reducing the parameter space as well as providing added insight
into the basic physical processes. These will be related to tradeoffs between accuracy and
response speed in typical aerospace environments.

Nomenclature

AR = aspect ratio
A = admittance coefficient
a = angle of attack, freestream to jet momentum flux or dynamic pressure ratio, wave number
b = wing semispan
B(x,y,z) = body surface

c = wing root chord, phase speed

C.. = wave drag coefficient

C, = pressure coefficient

d* = jet exit width
6 = characteristic flow deflection parameter, or body thickness ratio
Dw = wave drag

E = wave drag first approximation

e,(6) = gauge function

f(x) = wing shape function in constant span plane, jet shape function
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A = ith approximation to perturbation potential

(D = velocity potential
G, (x) = second term in inner expansion for perturbation potential

Y = specific heat ratio

h = jet penetration ratio
H = Hypersonic Similarity Parameter
H0  = total enthalpy

K = Transonic Similarity Parameter
J = a = freestream to jet momentum flux or dynamic pressure ratio

A. = (Y-l)/(Y+l)
L = characteristic length scale
11(x) = cumulative lift up to the station x

M• - M =freestream Mach number

m(x) = wing camber function

P, r = coordinate stretching factors
p = leading edge shape exponent

N = Newtonian Similarity Parameter
P. = freestream density

p = pressure, pressure disturbance

q - dynamic pressure
r,0,x = polar coordinates
r = stretched inner radius
S, (x) = effective source strength

Re, = transition Reynolds number

t = time
r = reflection coefficient
T = temperature
01 = jet inclination angle

01 = local shock angle
U = freestream speed
U, V, ow = horizontal, vertical and pitch displacements
0) = complex disturbance frequency (Imw =growth rate)

x, y, z = Cartesian coordinates, (overbars imply dimensional quantities)

X,Y,Z = Cartesian coordinates
z,. (x) = leading edge shape function

Subscripts
ad = adiabatic wall
C = jet cavity
0o = freestream quantity
j = jet

S = quantity at shock
w = wall
Superscripts
i = iteration counter
Special Symbols
O = large order of magnitude
o = small order of magnitude
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I. Introduction - Technical Landscape

N the 1970's, a revolution occurred in computing nonlinear transonic and other high-speed flows with
computational algorithms and computers. From this pioneering effort, computational fluid dynamics (CFD) has

been an asset and workhorse for the aerospace engineer and designer in obtaining aerodynamic characteristics of
complex realistic shapes in nonlinear transonic, hypersonic regimes when the flow is essentially attached to the
vehicle. Yet, in spite of CFD's power, challenges still exist to predict drag and other quantities such as pitching and
hinge moments rapidly enough for the initial phase of aircraft development known as conceptual design. Typical
CFD calculations require significant amounts of pre-processing, a large portion of which involves grid generation.
Conceptual design optimization also requires the study of hundreds to thousands of airplane geometry and related
parametric variations as well as the interplay of physical intuition and compromises based on aerodynamic reasoning
and systems impacts. Conflicting demands exist between quick response and pre-processing. Because the latter
cannot yet be universally adapted to quickly restructure the grid for rapidly changing large parameter sets and
moderate reshaping, CFD's role is emphasized in later phases of preliminary and advanced design more than the
conceptual one. Alternatively, it is used to anchor a selected small subset of the conceptual (basepoint) design
aerodynamic predictions using other methods.

Recent reviews, assessments and surveys of CFD approaches currently used in industry to estimate drag as well
as other forces and moments are typified by Refs. 1 and 2 and other papers in this conference. As a rapid response
alternate to CFD, empirical methods have been employed in conceptual design. One such application is the use of
algebraic fairings to estimate zero-lift transonic drag rise of fighters or near the fuel consumption pinch point of
hypersonic airbreathers, a salient performance obstacle. Such fairings are of limited value because their validity is
restricted to the supporting datasets and they do not apply physical ideas in a self-consistent way based on first
principles. At the other extreme, large scale Reynolds averaged closure Navier Stokes (RANS) CFD and other
closures such as DES, with careful application and study are capable of providing excellent, high-accuracy results
for nearly attached flows over a family of shapes for which there are wind tunnel and flight tests to benchmark and
even in some cases, calibrate them. However, they provide limited design direction based on gasdynamic ideas for
rapid-response, optimal aerodynamic shaping. Mathematical shaping guidance is possible from modem optimization
techniques such as adjoint methods, stimulated annealing and control theory but is implicitly restricted to small
perturbations around an initial iterate. Such methods currently require high-end workstations, which with the
exception of computer-aided design platforms are atypical in today's conceptual design environment but perhaps not
in the future. Accordingly, the question of global optimality is a challenge to such techniques. New approaches such
as continuation may be a possibility in this connection.

Other nonlinear regimes that pose challenges are high angle attack and hypersonic flows. Although continuing
outstanding success occurs in CFD modeling of attached steady flows, three-dimensional separation can be a
considerable challenge. Even greater stumbling blocks are environments in which boundary layer transition strongly
interacts with separation. Examples are multi-element airfoils such as those occurring on flapped and slatted wings
and spoilers. Others are hypersonic elevons, scramjet inlet ramps, weapons bay, flame holder, aero-optic cavities,
turbine blades and flows over the lee side of reentry body/capsules, to mention only a few. These are a challenge to
common turbulence closures, even those intended to empirically and numerically characterize transition in highly
non-parallel separation bubbles such as in trapped vortex applications and wing leading edges at high angle of attack
or in low Reynolds number UAV or UCAV high altitude, long endurance applications.

To assess the current state of the art in the prediction and control of transitional separated flows, the author
organized a NATO Specialist Meeting in Prague in October 2004 that was sponsored by six NATO nations under
the Research and Technology Organization Air Vehicle Technology panel (RTO/AVT). A general theme was that a
unified triad of theory, computation and experiment is needed to deal with challenges of this class of commonly
occurring flows. It was clear from the papers presented that Direct Numerical Simulation (DNS) is now emerging as
a fertile opportunity for characterizing the complex physics of transitional separation. Notwithstanding Moore's
Law and nanotechnology, it is evident that substantial advancements in the next five to twenty years will be required
in computer power and algorithms to make DNS a practical tool for the accurate prediction and control of flow over
flight vehicles. Formidable obstacles exist even in DNS such as the need to specify physically meaningful and
accurate boundary conditions on the computational boundaries.

Limitations of theory and experiment are well known and were a strong motivation of the CFD revolution.
Accordingly, they will not be emphasized here. What is important is that new opportunities exist to have both
disciplines couple with numerical modeling to predict and control the first order flow physics. On the experimental
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side, although test facilities are rapidly and sadly vanishing, new instrumentation techniques including non-invasive
optical diagnostics such as PLIF and PIV are attractive tools to allow us to understand flow physics in many
applications.

II. Theoretical Approaches

A major drawback of theoretical tools that stimulated CFD development was the latter's inability to model the
flow over complex, realistic, three-dimensional practical airplane shapes as well as other bodies. At the same time, a
popular misconception is that theory is strictly limited to linear flows. Counterexamples are its ability to model and
give useful information regarding transonic and hypersonic flows. When aligned, asymptotics and similarity/group
invariance are powerful tools to treat situations that can be difficult to treat purely computationally.

In this paper, a few examples will be discussed that illustrate application of theory in the CFD age. These
provide varying interplays of theory computation and experiment. Because of space restrictions, other potent
illustrations of the triad idea will be relegated to the references. It has been the author's continuing belief that the
combination of elements of the aforementioned triad can provide substantial insight not possible by any single
element of the trio alone. Other benefits of a combined asymptotic4 and numerical (CAN) approach is the
identification of high gradient regions such as boundary layer and shear layer zones that provide insight and even
requirements for the gridding and zonal decompositions. Frequently, reduced order equations (besides Euler and
other approximations) are identified with the CAN approach that when solved numerically give the first order
physics such as nonlinear effects. Similitude arising from theoretical considerations, e.g., Reynolds number, blast
wave scaling, often reduces the dimensionality of the independent variable and parameter space to describe the flow
field and economize the design of experiments or even make them possible. Some have proposed that theory can
facilitate interpolation between computational solutions. For three-dimensional separation such as those determining
cavity flows, theory gives guidance on expected flow topologies, e.g., saddle points, higher order nodes and other
singularities as well as vortical "lift-off' singularities on bodies at angles of attack. The latter play a decisive role in
vortical fractals, bifurcations and interaction of feeding sheets with large-scale vortex dynamics. These determine
how lee-side separations on slender bodies evolve. In fact, understanding the role of these singularities in
determining the global flow pattern can augment our grasp of three-dimensional separation and help us properly
interpret CFD solutions. Another benefit of theory is that it identifies the relevant time and space scales. This is
especially valuable in multi-scale problems. Examples are numerically "stiff', singular perturbation reacting flow
problems such as in combustion where diverse disparate ranges of chemical rate constants occur.

Identification of the various scales allows us to naturally decompose and downwardly cascade the problem at
hand into much simpler "unit" sub problem building blocks that besides helping to understand component physical
mechanisms that can be upwardly integrated to give the solution of the original problem. This is the basis of all
analysis. Classical examples of this approach are Prandtl's wing and boundary layer theories. Others are transonic
and hypersonic small disturbance approximations and Newtonian theory for slender bodies developed by Julian Cole
as well as thin shock layer, snowplow and thin shock layer theories by the same author.

An underlying concept in the decomposition idea is the use of parameter limits in which various speed ranges
can be accurately approximated in a self-consistent way using asymptotic series or expansions that become
increasingly more accurate as the limits are approached. As compared to classical Taylor and other series, these
"limit-process expansions" frequently diverge and there is an optimum number of terms to retain to get the best
approximation to the flow for a fixed value of the relevant parameter(s). In many cases, the optimum number of
terms is one! Examples of limits are freestream Mach number M. tending to zero (such as the Janzen-Rayleigh,

Karman-Tsien approximations discussed in Ref. 5), unity or infinity. Freestream Reynolds Re. number tending to

zero (Stokes and Oseen flows) and infinity (boundary layer theory), aspect ratio ( AR ) - oo (lifting line theory),
characteristic flow deflection (. ) -> 0 (small disturbance theory) are other examples. Many of the aforementioned
pure Mach number limits do not lead to systematic approximations (capable of successive accuracy refinements.)
Ones that do are called "distinguished limits" (DL).4 Frequently these are obtained by more subtle "double" limits
involving two or possibly even more parameters. Common examples are M. fixed as 5 -* 0 (Prandtl-Glauert

Theory (PGT) 5, linearized theory5, and acoustics), K- (I - M2 )/"2/- Transonic Similarity Parameter, fixed as

5 -+ 0, (2-D Transonic Small Disturbance Theory5 7 (TSDT), H = l/(M.2 ) - Hypersonic Similarity Parameter

fixed as 5 -*- 0 (Hypersonic Small Disturbance Theory (HSDT)5 '8 ), if y =- specific heat ratio, 2 =- (y -l)/(y+ I),

N - HI/ =-Newtonian Similarity Parameter fixed as 2 -+ 0 , (Newtonian thin body theory8), AR --*O, S -+ 0
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slender wing or body theory9). Actually, Newtonian and slender body theories are respectively within HSDT and
PGT respectively.

Once these limits are defined, approximate limit-process series/sequence/asymptotic expansions using "gauge"
functions to measure the size of the various terms in the series can be determined. These gauge functions depend on
the small or large limiting parameter. As an example, the velocity potential in TSDT for flow over symmetric zero
incidence 2-D airfoils, the expansion in the generic form

O (-, j7; M•, t5) = Ux + e, (,5)0 (x, y; K) + c, (6)0k2 (x, y; K) + ...

x = :/(p(6)L), y = W/(r(6)L), K fixed as 6 -+ 0

is valid, where, 7, 7 are coordinates aligned and normal to the freestream velocity U , L = a characteristic length

scale such as the airfoil chord, the O, i = 1,2,3,... are O(1), (i.e., bounded) in the TSDT limit and the semicolon

represents parametric rather than functional dependence. Here the g,(6),u(
6 ),r(6) are the gauge functions.

Reference 6 details the procedures to determine these functions. These will not be repeated here. Suffice to say that
the coordinate scaling gauge functions p((6) and r(5) are determined by a physical feature of the flow. For

transonic flows, the wave system gets steeper for M. -* 1 or equivalently, the TSDT limit in (1). In order to keep
the flow structures scaled to these waves in view in the transonic limit (such as the supersonic bubble', for slightly
subsonic freestreams), the coordinate system is stretched by that steepened scale4 . The latter is related to the
increasing Mach angle (tending to 90' in the TSDT limit). A similar idea holds for boundary layer theory where a
stretching is introduced for points in the boundary layer based on the boundary layer thickness, which scales with
the Reynolds number Re. .'o At the same time, the scaling keeps the relative position of a selected observation point

to the flow features invariant in the limit. Returning to TSDT, in contrast to 2-D flows, axisymmetric flows and 3-D
flows in TSDT represent "singular" perturbation problems of boundary layer type rather than "regular" perturbation
ones. (For example, see Refs. 4 and 10 for more details.)t Namely, expansions such as (1) are not uniformly valid
over the entire space of the flow considered. Accordingly, local expansions are needed for various zones in singular
perturbation approximations to various flows. For slender asymmetric transonic bodies, the axis of symmetry is
singular and the asymmetric generalization of(1) (the outer expansion based on the outer limit in (1)) breaks down.
Therein, a different (inner expansion) is needed that is based on an inner limit and suitable coordinate rescalings
(changes in the gauge functions p(5) and r(6) are required). This scale is related to the body transverse dimension

rather the Mach wave scale. Both inner and outer expansions are mutually valid in an "overlap" domain. An
intermediate expansion and limit is developed and both inner and outer representations are equated in this overlap
intermediate region. This "matching" procedure plays a pivotal role in determining the gauge functions and other
unknown elements of both inner and outer expansions. The boundary conditions including far field behaviors
determine others. Often, additional terms have to be added to initial trial representations to achieve this matching.
These are called switchbacks.

There are some "theory" appellations such as Shock Expansion Theory' (SET) that are not systematic
approximation schemes of the foregoing type. Although these are useful engineering methods they do not belong to
the class of distinguished limits or can be embedded in limit process asymptotic expansions based on DL's such as
those in the previous paragraph. What is important is that these approaches are not capable of systematic refinement.
Frequently, ad hoc approximations are attempted based on parameters that are not really parameters, namely those
that are unknown in advance and are based on the solution being sought.

Paco Lagerstrom'°, Saul Kaplun and Julian Cole's 4 limit-process. matched asymptotics methodology uses
deductive schemes as contrasted to inductive schemes. For the former, a given asymptotic framework is set up and a
deterministic "drill" ("turn the crank" procedure) is executed to obtain the solution. Inductive methods such as local

" Actually, special features such as the freezing of the flow pattern occur as the Mach number approaches unity and
the bubble opens up into a bow and tail shock. This is called the "Stabilization Law". Besides Ref. 6, detailed
analyses of the flow field have been carried out. See for example, V. Diesperov, Y. Lifshitz and 0. Ryzhov,
Archives of Mechanics, Vol. 26, No.3, Warsaw 1974, pp. 511-521, and Symposium Transsonicum, 1976.
t Another interesting problem is the breakdown of transonic small disturbance theory near a blunt nose. For an
excellent treatment of the singular perturbation problem and correction of TSDT near the nose see Z. Rusak in J. Fl.
Mech. Vol. 248, pp.1-26, 1993 and Europ. J. ofAppL Mech. Vol. 5, pp. 283-311, 1994.
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similarity (widely used in nevertheless valuable engineering predictive schemes based on physical intuition and
reasoning) belong to less systematic approximation methods since the bookkeeping in assessing the size of the
approximations is frequently not clear. Local similarity for boundary layers subject to pressure gradients exemplifies
one such inductive method. Nevertheless, many of these approaches still have our respect as responsible for
remarkable innovations. Often, the inductive schemes provide the groundwork for the deductive ones.

Although previous workers such as Lax", Magnus and Yoshihara1 2 and others had laid much of the groundwork,
the "Wright Flyer" of modem nonlinear CFD was the seminal paper by Murman and Cole.13 in the author's opinion.
This is an excellent example of a combination of theory and modem computational methods. Although, the latter
have progressed considerably since the SLOR scheme used, Ref. 13 illustrates CAN. Up to this achievement,
theoretical solutions of the nonlinear transonic problem were limited to hodograph solutions such as those using
hypergeometric functions. Many theoretical studies evolved for mixed unit problems for the Tricomi equation that is
hodograph map of the transonic small disturbance Karman Guderley equation. 7 Transonic problems that could be
solved by intricate analytical "pen and pencil" methods include transonic wedge dividers and jets as well as sonic
flows.5 A non-asymptotic approximate approach was the local linearization and other related integral equation
methods by John Spreiter.14 With the CAN approach of Ref 13, arbitrarily shaped symmetric thin 2-D airfoils could
be computed to obtain a systematic approximation of the first order physics from the asymptotically derived
transonic small disturbance Karman-Guderley (KG) equation

(= -(0+l)0,)• +0, =O. (2)

where 0 is a perturbation potential related to terms shown in (1). A critical feature was that the realistic curved

shocks formed by the envelope building process in the recompression part of the supersonic bubble could be
captured as part of the numerical scheme rather than assumed ones iteratively fitted into the solution as in Spreiter's
methods. Application of the latter was challenging for all but the simplest shapes. Of course, a continuing issue is
capturing these as sharp discontinuities with the proper Rankine-Hugoniot jumps. Much progress has been made in
this direction and will not be cited or documented here since it is well known. Still, wave trains that interact with
boundary layers and shear layers that occur in inlets, ducts, supersonic weapons bay store separation as well as
Edney 1V structures in shock interference heating can provide a challenge, even for current RANS methods,
especially for non-expert code users.

In addition to inductive and other work preceding Refs. 6 and 13, the derivation of (2) is accomplished by
substituting (1) into the Euler equations and retaining like order terms. Asymptotics were used to derive the far field
computational boundary conditions for (2) and the formulation provided a close to asymptotically consistent
approximation. Of course, application of the far field boundary conditions on a finite boundary still requires some
discussion of its effect on solution accuracy. This element has received only limited theoretical analysis in spite of
the preference of some to map the point at infinity into a finite boundary as a workaround. The author is not clear
how this can be done in general as a practical workable procedure for three dimensions with even single bodies to
say nothing of multiple bodies and boundaries. As previously indicated, the question of how to apply asymptotic far
fields on finite computational boundaries is of renewed importance in connection with DNS simulations. Current
RANS approaches use Riemann conditions and non-reflecting boundaries. This interface between near and far field
approximations and its effect on solution accuracy also arises in current sonic boom simulations that patch rather
than asymptotically match ray-traced acoustics far fields with CFD mid and near fields.

To illustrate the continuing power of theoretical methods in the CFD age in relation to the foregoing remarks, a
formal matched asymptotic example is given in what follows as well as others that although are not purely formal
asymptotic procedures that are approximate physics-based models created from asymptotic ideas. One of the latter
provides and engineering method for understanding jets in hypersonic cross flows and another is the basis for a new
passive laminar flow control scheme at hypersonic speeds. The first example is provided in considerably greater
mathematical detail than the others to show how the CAN approach can be applied. Space limitations relegate
details of the analyses for the others to be given in the references.

EIl. Transonic Wave Drag Due to Lift

A. Background
An important issue in high-speed vehicle performance is transonic wave drag rise. Wing-body blending and area

ruling are well-known tools that have been applied to deal with this issue. Before modem computational
optimization methods, the widely publicized area ruling philosophy was mostly based on the linear supersonic area
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rule specialized to M, =1. This approach usually neglects drag due to lift as well as nonlinear effects. As previously
indicated, computational optimization usually addresses small perturbations about some baseline configuration. A
more global approach is needed to account for the nonlinearities, and develop a design philosophy from first
physical principles. The nonlinear area and Oswatitisch15 equivalence rules from TSDT and nonlinear slender body
theory provide valuable tools to approach these goals. As an illustration of CAN and the concepts, optimum wing
planform shaping to minimize transonic wave drag due to lift will be discussed. Full details are given in Ref. 16.

Figure 1 indicates a typical configuration that we have studied in connection with wing planforms that minimize
transonic wave drag due to lift. This quantity can significantly affect range and other vehicle performance metrics.
We consider the lift-dominated DL in which A- a/l- -- o in the TSDT body limit 5 -+ 0. To make the
approximations more transparent, two-dimensionally cambered, untwisted lifting wings of zero thickness with
aspect ratio of order unity were treated in this study. An inner expansion, which starts as Jones' theory, was matched
to a nonlinear outer transonic theory as in Cheng, Bamwell and Cramer's excellent earlier work in Refs. 17-19.

To clarify issues, minimize ad hoc assumptions existing in earlier studies, as well as provide a systematic expansion
scheme, the aforementioned deductive approach was used with the aid of intermediate limits and matching not
documented for this problem in previous literature. A new expression for the dominant approximation of the wave
drag due to lift was derived. The main result is that although wave drag due to lift integral has the same form as that
due to thickness, the source strength of the equivalent body depends on streamwise derivatives of the lift up to a
streamwise station rather than the streamwise derivative of cross sectional area. Some examples of numerical
calculations and optimization studies for different configurations are given that provide new insight on how to carry
the lift with planform shaping (as one option) so that wave drag can be minimized.

V

a X

Fig. 1 Wing planform for drag rise studies.

B. Theoretical Analysis
As in (1) we allow the velocity potential D that satisfies the full potential equation, to be expanded into the

asymptotic expansion:

'1(xyz;M ,a) = U {x + E,(a)o (x, Y;K)+ e, (a)O2 (x, -ý,;K)+ 6 (a)q, (x, ý, ;K)...} (3a)

in the TSDT limit

K =-IlM, 2 fixed as e, --+0 (3b)
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where K is the Transonic Small Disturbance parameter and -, (a) --. 0 as the angle of attack a -- 0, (x, y, z) are a

nondimensionalized Cartesian frame with respect to c, the body length, and the tilded coordinates are strained in

accord with the previous discussion, i.e., f]"7(y,z) -

The steady inviscid boundary condition of flow tangency to the surface can be written

VO. VB =0 (4)

which holds on B(x, y, z) = 0 which defines the surface. We consider an untwisted wing of zero thickness specified

by the angle of attack a and the camber function m(x)*. The maximum chord of c = 1 and the maximum span

2b is 0(1). Thus

B(x,y,z)=0=y-af(x)+O(a3 ) 0<x< < (5)
( --ZL < Z < ZLj

where f(x) = m(x) - x and m(l) = 1 . For a straight trailing edge at y = 0, the trailing vortex sheet lies in the plane Y

= 0, x > 1. The planform is specified by ±ZLE (x) where z, (1) = b.

Substituting (3a) into the full potential or Euler equations and carrying out the analysis outlined in the previous
discussion, the dominant approximation for the perturbation potential is governed by the axisymmetric form of the
Karman-Guderley (KG) transonic small disturbance equation (1). Namely,

(K=-(Y+1)) + ,+ =0. (6)

where P2  + i2 .This constitutes a deductive proof of the nonlinear transonic area rule and in accord with the
previous discussion, is an important reduction from three to two dimensions of the original problem. It therefore
provides a drastic simplification of the gridding pre-processing problem. Matching reveals that the e, are subject to
the following recursive relations

6... g2 = a•

63 = a2 (7)

£•310 1

In addition to far field boundary conditions, (6) is subject to the singular boundary condition

lim •-, = S'(x) (8)
F-+0

which is a consequence of the inner expansion that is

0 (xF) = S, (x)logF +G, (x)+O(F2 log2 F) as i --+ 0 (9)

"A body is added to the wing in the parametric studies to be discussed later.
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Part of this result is from the solution of the cross flow harmonic inner problem that drives the whole matching
procedure. In contrast to a body of revolution in which the source strength S, (x) is proportional to the x rate of

change of cross sectional area, the source strength depends on the streamwise lift distribution 1 (x) . Namely,

(x= + .(+) X(Z2 (10)2 (2W2 )2  8

where

11(x) = -Irf'(X) (Z1)

The main result is the wave drag due to lift is given by

1 -21r JS,(x) G,'(x)dxt-2;S,(x)G,(x) d (12)

where G1(x) and S,(x) are given by (9) and (10) respectively.

C. Computational Approach and Results
The solution of the TSDT boundary value problem for the axisymmetric KG equation subject to the far field

boundary conditions and the singular axis condition, (8) would have been impossible to carry out in the pre-CFD
age. Empowered by this reduced formulation and even dated SLOR numerics, the TSD boundary value problem is
solved by lagging G, (x) in an iterative numerical procedure. It is updated from (9) after each SLOR sweep for the

solution 0 (x, F) on a small cylinder F = or, or << 1. Namely,

G1''(x) = ' (x) - S, (x) logF (13)

where i signifies the old global iterate over the computational domain, i + 1 the new one and 0 (x) -- (x, or).
Converged results with even the old SLOR method could be obtained on a typical Windows modem PC in less than
a minute. Results from the executing code NLWAVE are plotted as C,, vs. M. for two different angles of attack
in Fig. 2. Substantial drag due to lift is evident. The planform shape and the distribution of 11(x) which is typical
appears in Fig. 3.

0.25 1

0.210

tip fairing

C0

CD0.10 
-i 

arn

0.05 - I = 1145'
5 .=5730 /- /" "

0.
0.6 0.7 0.8 0.9 1.0 1.1 1.2

Fig. 2 Transonic wave drag rise due to lift for typical planform
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Another set of calculations incorporates a parabolic body of revolution (thickness ratio 0.057) and adds the
source strength of this body to S, (x) . A series of planforms with semispan z,, (x) given by

Wx= a 1x (13)/LI-I

and shown in Fig. 4 was considered for various /u, M. =.995, a =0.2 rad. The idea is to optimize the L D figure of

merit C,, / AR, ( AR =aspect ratio) by a choice of planform. Here,

C•w = D... , ARb
____S

2

0.8
sine tip fairing 0)

0.6-
lift loading

0.4 -
Y0 (N0. 10o

0.2-

tan-I- X0

0 0.2 0.4 0.6 0.8 1.0 1.2
"x/'T

Fig. 3. Lift loading of model wing with sine tip fairing

(i) Y- Yo = (2A(x-xo))/fr)sin(ir(x-xo)))/2(xT -xo)) ;(ii)vY1 /x1  = A

where S is the planform area and b is the semispan.
A minimum drag occurs for p =2.5. The planform shape and curve of CD.vs. p appears in Fig. 5. Also shown in

Figs. (6a - 6c) for/p =1.2,2.0,10.0 are isobars which make evident the shock wave which occurs. As a qualitative

substantiation of the minimum, the isobars and shock envelope forming process appear more intense for (6a) and
(6c) compared to (6b). The wave drag for small p is large because of the small sweep and for large p because of

rapid changes of l,(x) near the wing tip. These studies show the relative effectiveness of various planforms and the

utility of CAN to select them in a computationally non-intense, rapid-response, desktop PC environment. This
approach can be readily extended to study more realistic wing-bodies as well as twist and thickness effects.

10
American Institute of Aeronautics and Astronautics



LOO=( I n I)

t = 1 .05

0.75

S0.5 i)

= 10

- = - limit. ,S'=
0.25

0 0. 25 0.50 0.75 1.00
X

Fig. 4. /u family of wing bodies in which semi-span equals x(!u - x'-•' 1(u - I).
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Fig. 5. Wave drag/aspect ratio figure of merit for u wing-body family, MAl =0.995 1, a =.2 rad
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Fig. 6. Isomachs of(a) u 1.2 (b) u = 2.0 and p = 10.0 wing-body M. = 0.995, a =0.2 rad, AM = 0.1.

IV. Multi-body Problems

A. Background
A challenging area for modem computational methods, theory and experiment is the treatment of multi-body

problems such as store and stage separation. Typical applications are illustrated in Fig. 7, which shows transonic
bomb release from the B-1, weapons bay arrangements on the F-22 and stage arrangements on an early Boeing
Space Launch Initiative vehicle concept. For the latter there is an important design trade between separation rocket
motor weight and safety that is impacted by accurate prediction of stage separation aerodynamics.

(a) (b) (c)

Fig. 7. Typical multi-body problems. (a) B- 1 internal transonic store carriage and release, (b) F-22 supersonic
internal bay configuration, (c) Hypersonic Space Launch Initiative (SLI) stages.
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Impressive progress is being made with new supercomputers and algorithms, particularly for biological flows
and other applications. Major centers such as AEDC, NASA, AFSEO and the PET project are performing research
to apply evolving techniques to store and stage separation problems. Experimentally, the CTS approach in which the
fluid dynamics is used as an input to a six-degree of freedom dynamics code to advance the body position in a two
sting wind tunnel support system has been extensively applied to treat a class of motions where pseudo-steady
assumptions hold and sting interference can be accurately estimated. There are others where the validity of the
pseudo-steady assumptions needs to be carefully investigated. The major issue is the possibility of a difference
between the time it takes for the flow to fully evolve or relax and the body motion time scale. Vortex and vorticity
diffusion and convective shocks are good examples in which flow transients are disparate relative to the body
motion time scales such as Froude and ejection times. Alternates to this approach are the grid method and the free
drop and ejection methods with sacrificial test articles. Each of these test methods has its advantages and
disadvantages. For the free drop and ejection method, a problem is the ability to relate the subscale test results to the
full scale, because of the lack of affordable, non-toxic (not gold, lead or uranium!) high-density materials for correct
scaling of the sacrificial subscale models. Another problem is not destroying the wind tunnel components or the cars
or people in the parking lot outside of a blow-down facility! Some of this is achieved by the use of sometimes
"conservative" "light scaling" rather than realistic heavy scaling in connection with the choice of Froude of
convective times in building the scaling parameters and the use of rigid sacrificial but not structurally tough models.
An advantage is that it avoids sting interference and gives insight into unsteady effects, especially for internal
weapons bay separations. In the author's opinion, a combination of all three approaches is needed as a crosscheck of
any one of them. This is similar to the situation with the analytical methods.

In spite of the considerable CFD and experimental progress, major gaps exist in our ability to simulate a variety
of situations. Although the trajectory of a moving body (e.g. submarine) in a fluid has received much classical
attention in incompressible perfect fluid hydrodynamics (see for example Ref. 20 using apparent mass, flow kinetic
energy, Hamilton's theorem and generalized coordinates) with emphasis on coupling of the dynamics and
aerodynamics, our understanding of the basic coupling physics in compressible gasdynamics, especially involving
shocks, is limited, in spite of current CFD modeling capabilities.

The store separation problem has important practical applications and its different aspects were investigated
extensively using experimental and computational methods such as in Refs. 21-31. Substantial advances are being
made with overset, solution-adaptive, unstructured and moving grid approaches as indicated in these citations. Most
of the studies have been concerned with external separation at subsonic or supersonic speeds. Relatively less
attention has been given to internal separation from weapons bay cavities, especially at transonic speeds and the
challenging supersonic and hypersonic speed ranges. A major focus at high speed is acoustic properties of the
cavity. High amplitude noise arises due to feedback loops associated with stagnation of the shear layer (bounding
the cavity and external flow) on the downstream cavity bulkhead. These excite structural vibrations that can cause
catastrophic flight interruption from damage to the airplane. It can also destroy weapon components, including
delicate guidance electronics, affecting targeting and pilot safety. This problem is very complicated due to the large
number of parameters governing the flow structure and a broad variety of physical phenomena involved in the
separation process. Much fundamental research has been done on empty cavities with a major focus on
understanding and controlling coupling of the shear layer with the acoustic processes. Cavities filled with bodies
have received only limited basic study. Computationally intense modeling RANS, DES and even DNS to
understand the acoustic excitation and the basic physics is exemplified by Refs. 32-34, among many others. A
notable worthwhile exception to the empty cavity experimental emphasis is Ref. 35, which necessarily uses an
invasive sting in the cavity to study the cavity shear layer interaction in the presence of a body. Nevertheless, the
results are quite illuminating, particularly when the body crosses the shear layer.

Besides the flow-induced noise and vibration problem, the cavity shear layer is an obstacle to safe separation,
particularly at supersonic speeds. Our objectives are to identify first-order physical effects, simplify the key
aerodynamic problems, and develop fast and reliable models for predicting store trajectories. These are intended to
favorably interact with large-scale computational approaches and provide additional tools for conceptual design. An
important perspective that the singular perturbation method brings to the problem is to deal with its multi-scale
aspects. Such a viewpoint needs to be exploited in the large-scale numerics as well. An obvious decomposition is to
regard the cavity flow as a near field coupled to the global airplane midfield. Since they are over a much shorter
length scale, gradients near the cavity are expected to be large compared to those over the complete airplane. In fact,
the latter can be regarded as a passive scalar. We have formalized this idea with inner and outer expansions and
regarded the global airplane flow field as a weak stratification of the cavity flow that is on a much longer length
scale. Both in CFD and theory, the iteration process can be envisioned in which the flow over the airplane without
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the cavity provides an initial iterate of boundary conditions for the local cavity inner flow field on some
computational boundary. The cavity flow is solved and then used to update the airplane flow field. The iteration is
continued until convergence. In accord with this idea and the same motivations of all the empty cavity research, we
focus on this inner problem in what follows. Understanding it is critical to studies that we are conducting with
Boeing on simultaneously suppressing cavity noise and achieving safe separation.36

Another idea that needs exploitation is the fact that with all the uncertainities prediction of the translational
trajectories can be reasonably accurate in validations with experiment. A conjecture that would support this outcome
is that for "heavy" bodies in which the aerodynamic forces are small compared to inertial or ejection ones, the flow
is controlled by the latter. This is another opportunity for large-scale computational modeling in which an iteration
process could be developed in which the trajectory is obtained with a sequence of iterations starting with vacuum
dynamics and introducing subsequent small aerodynamic corrections in which even coarse grid CFD details of the
near field cavity flow are emphasized. Asymptotic methods may be able to provide specific elements of such an
iteration process or sequence although the execution will be dominantly computational. Here, the emphasis would
not be high fidelity of the fluid dynamics, but accurate prediction of the trajectory, since the fluid dynamics is only a
small part of the answer for heavy bodies. "Heaviness" in this context needs to be specified in terms of the non-
dimensional ballistic parameters that compare aerodynamic forces and moments with analogous inertial quantities.

Cavity waits

Y

Slip surface

.64/2 1X, Y

U.

Fig. 8. Inner cavity problem.

B. Summary of Theoretical Approach
Figure 8 represents the framework we used to study the near field cavity problem. We generalized many of the ideas
in the first example discussed to treat this flow. Shown in the figure is a slender body escaping from the cavity. This
problem itself can be decomposed into another singular perturbation problem. Near the slender body, it is still
dominated by its cross flow. Away from the body, it looks like a line source except that the latter interacts with the
walls. We neglect the finite span effects and focus on the interaction of the body with the shear layer. Since the near
field is cross flow dominated, various cross flow problems occur along the body. Essentially there are three cases I)
the body is on the cavity side of the shear layer, 2) it is crossing the shear layer, and 3) it is above it. Figure 9
outlines the formulation of the problem. If (X, Y,Z) denote the normalized Cartesian wind axes, the problem obeys

Laplace equation (1) in the crossflow plane (Y,Z)(1). Here, the velocity potential is denoted by(D(X,Y,Z,t).

Boundary conditions are specified on the slip surface or shear layer, Y1' = F(X,Z,t). Since the flow is unsteady in

the crossflow plane, the unsteady from of the Bernoulli equation (2) is used for the pressure p This is needed

because the boundary conditions are time-dependent due the body motion and in spite of time not appearing
explicitly in the cross flow equation of motion (1). Therefore, time is a parameter rather than an independent
variable in the solution of the cross flow Laplace equation of motion. This situation is related to an assumed limit
involving an unsteadiness parameter related to body motion speed in units of the flow convection speed that is
characterized by a Strouhal number. In addition, the slip surface or vortex sheet boundary conditions, the tangency
boundary conditions (4) and (5) respectively, on the body and cavity walls apply. Typical boundary value problems
associated with these conditions are shown in Fig. 10. for Cases 2) and 3). Note that in the near field (inner flow),
streamwise stations are independent of each other. In addition, it is possible to have different cross sections of the
body that represent Cases 1)-3).

The upper right hand panel of Fig. 9 shows the coupled set of aerodynamic and three-degree of freedom (3-DOF)
equations. Here, (U,V,co) respectively represent the horizontal, vertical and pitch displacements;

(D, L, M) respectively represent drag, lift and pitching moment. Initial conditions for the displacements are shown.
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Coupling of the aerodynamics with the dynamics is evident in these equations since the D,L,wo are computed from
the pressure field as shown in the panel. For transonic freestreams, the drag D has a wave drag portion in addition
to friction. The former is obtained by solving boundary value problem for the far field axisymmetric KG equation
shown in the bottom left hand panel in Fig. 9. This equation was discussed in the previous example. As in the

c3Aez
previous example, the singular boundary condition involving the source strength S(x) = -- f--, where Aff (x) is the

effective cross sectional area and x is an alternate notation for X. Aff (x) is determined from the outer expansion

for solutions of the cross flow boundary value problems shown in Fig. 10. Determining this quantity is more
involved than in the previous example because of the more complicated near field boundary value problem. These
solutions were worked out as generalizations of the more simple flow over a log discussed in Ref. 20. It involves the
use of conformal mapping, elliptic functions and singular integral equations in the complex plane for Riemann-
Hilbert problems. The main point is that the crossing of the shear layer physics is systematically included in the
problem and it influences the shock dynamics in the far field. Details of the analyses for subsonic, transonic and
supersonic freestreams are given in Refs. 37-39.

C. Physical Mechanisms Relative to the Noise Reduction and Safe Separation of Supersonic Stores from
Weapons Bay Cavities

For supersonic store separation, the formation of a bow shock over the nose of the body as it crosses the
supersonic part of the shear layer is responsible for the loadings shown in Ref. 35. It can be a major reason why
supersonic store ejection is so difficult, as compared to subsonic ejections. The nose loading creates a nose-toward-
cavity pitching moment attracting the body to the cavity. This moment is unstable for the nose; namely, a pitch
towards the cavity increases that tendency since the compression on the upper part of the body (that first crossed the
shear layer) will be increased and that on the lower side (that subsequently crosses the shear layer) will be
decreased.

As indicated in Ref. 36, jets upstream of supersonic weapons cavities helped safe separation in tests at the
Boeing Polysonic Wind Tunnel. One mechanism that enters into this method of flow control is that a jet upstream of
the cavity lip creates its own shear layer that air-curtain-wise shields/screens the high velocity shear layer interface
from the supersonic freestream that was there before the jet was. It produces an upwash-induced, increased, angle-
of-attack, favorable flow turning induced normal force and moment away from the cavity on the weapon like that
from the "ski slope" turning vane or spoiler that the author developed with Boeing personnel that counteracts the
download from the shock that is present without the jet. It even might create a subsonic flow behind itself that could
avoid the shock in the supersonic part of the shear layer or above it. Another possible bonus, besides the upwash that
produces a normal force away from the cavity on the weapon is the "fire hose" effect that gives a pressure footprint
on the forward part of the weapon further forcing it away from the cavity. To determine the relative effectiveness of
the fire hose effect, loads on the store from shock pressures need to be compared to loads from those from the jet
momentum flux. This comparison could give appropriate non-dimensional scaling parameters to size the jets and
design their pneumatic supply systems. Anecdotal evidence is that although this mechanism would act for stores
near the rear of the cavity, safe separation is usually obtained. It is conjectured that this might be explained by the
flow toward the fins into the cavity produced by the cavity eddy circulation for deep cavities, e.g. 5:1. This load
could favorably compete with the unfavorable shock loads.

An additional mechanism of course comes from the jet bow shocks that can compound the favorable flow
turning upwash. The jet shear layer in some sense replaces the cavity shear layer, (there will still be a small vestigial
remnant of this layer as can be seen by the PLIF and schlierens of Hanson and Ben Yakar conducted at Stanford and
described in more detail later in this paper). Euler calculations with adaptive mesh refinement run by Hans Homung
of Caltech under collaboration with the author using James Quirk's Amrita software system described in Ref. 40
also show this behavior.

The new jet shear layer is an interface with the freestream and its loft will avoid the noise spectra feedback loop
(and its effects on the weapon) produced by stagnation of the uncontrolled shear layer on the downstream cavity
bulkhead. This is because the new jet shear layer is elevated enough to reattach on the downstream horizontal
surface behind and not on the cavity downstream bulkhead. This is critical in avoiding the associated feedback loop
and weapon flow induced structural vibrations from shear layer cavity downstream bulkhead stagnation. This is
offset by a static stability contribution of any tail fins. In addition, the lumped parameters shown in the right upper
panel of Fig. 9 collapse the test matrix and are helpful for implementing control for safe internal bay separation.

The loft of the shear layers under jet control is important in controlling the broadband and discrete fluctuations
that act on the weapon when the doors open or even without doors during release. Even though the impulse time is
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short, fatigue can occur on an s-n curve because of the amplitude of these pressure load cycles. These are transmitted
to the weapon as pressure oscillations. They are probably on too short a time scale to influence the trajectory in the
later stages of launch but certainly affect the electronics, fins, arming mechanisms etc. They may also affect the
initial launch conditions depending on the time of release and what is going on in the cavity at that instant.

D. Parametric Studies
Figure 11 exemplifies some parametric studies that we have conducted with the theory just outlined. In these

figures and to avoid clutter and illuminate the trajectory details in the motion sequences, only the centerline of the
body is shown, in contrast to its actual cone-cylinder shape. The top two panels show incredibly marked difference
between vertical initial translation Vo imparted to the body for nearly Mach 1 freestream conditions. An
approximately 30% difference in velocities makes the difference between safe escape and re-contact in this example
with a nose toward cavity initial pitch angle ao = 6". Even for transonic as contrast to supersonic ejection the nose-

toward cavity initial pitch provides a greater pressure on the lower than upper side of the nose for a conical forebody
with the greater compressive flow turning tending to push the store toward the cavity. For V, = 20 fps, the pitch

induced lift is not sufficiently countered by the plunge imparted to the body. Whereas for V, = 30 fps there is
enough plunge momentum to allow it to escape the normal suction force toward the cavity due to the fluid
mechanics. As previously mentioned, other factors that enter this equation are the phase lag between pitch and
plunge as well as static stability afforded by fins.

Fluid dynamics problem 3-DOF body dynamics problem

Inner asymptotic region -=cL-c,,L =- x,2,tN(x)ua~Jd

Laplace equation for cross-flow potential 0
ZZ + 0, =0 (1) 4*,

Bernoulli equation P=---{0, +u+l[wi + VZ]} (2) c.MM -P(x,Otxa(x)sindxdi

B.c. on slip surface y. = F(X,Z,:) dU cD(t), +D+D+D,

Vfý- 4sF,+Fx+wfFz V+= -= ,+wF
Yt f v, .d[+÷ p (3) v(o)=v., m (o)-e,, u(o).U,

0,+U+ 1(Wz+Vz)= V++1.+i. 1 '00131F2(3) p+, Y. > FC r•, c i ., !

B.c. on body surface r=a(x) M p, Y, < F

,- -=a+V,slnG, V =V-mX-a

B.c. on cavity walls: v- = 8D. =0 (5)

* Outer asymptotic region

Karman-Gudedey equation: [K -(y+I), ]p. + (Rpi) 0
R ' ~ " yAi4 :1 b4A " a

Linear Cauchy equation: P = -sx C

Matched condition: lim(RqpR) = aAff/iaX

Fig. 9. Coupled dynamics and aerodynamics problem of store separation from cavity.
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projected downstream because of the significant transonic drag, which is augmented by a base drag component. In
this streamwise motion, the boundary conditions change from those from the slip surface to the solid wall. The right
upper panel shows a dramatic influence of body thickness ratio in which the thicker bodies tend to re-contact the
wall for the same release conditions as the thinner ones. This is most likely due to greater nose loading due to
increased slope of the forebody with increasing thickness ratio. Evidence however exists that the effect of this
change may damp out quite quickly above the parent body.

The bottom two panels show the effect of an initial angle of attack on store plunge and pitch trajectory. In the
left upper panel for "external" ejection without a cavity, with pitch into the surface (positive a, represents pitch to

the parent body of parasite store body.) It is evident that a, > 0 with zero initial pitch velocity w0, leads to re-contact

for external carriage. In contrast, a, < 0 gives safe escape. The trends shown for external release carry over the

thicker body in the presence of the cavity shown in the bottom left of Fig. 11.

V. Jets in Hypersonic Cross Flows

A. Background
Performance of hypersonic air breathing propulsion systems strongly depends on efficiencies of fuel injection

and mixing in the supersonic combustion chamber. Mixing and flame stabilization may be achieved in recirculation
regions and coherent structures containing unmixed fuel and air. Transverse injection, which is commonly used in
the design of supersonic combustors, involves these mechanisms. This example that is discussed in more detail in
Ref. 42 shows how some of the ideas of asymptotics can be used to create a practical engineering method to estimate
jet penetration in hypersonic crossflows.

Fig. 12. Upper panel: Schlieren image of the normal under-expanded hydrogen injection into supersonic cross-flow
from Ref. 43; Lower panel: schematic of the flow pattern (from Ref. 44): 1 - separation bubble upstream
the jet exit; 2 - shock due to upstream separation at the point S; 3 - bow shock induced by the jet; 5 - Mach
disc; 6 - separation bubble downstream from the slot; 7 - expansion waves; 8 - shock induced by the jet
reattachment R; M1 - freestream Mach number; MJ - Mach number of the out-flowing jet.

These ideas and analysis are extremely relevant to store separation from weapons bay cavities discussed in the
previous section and by use controlling it by blowing upstream of the cavity as discussed in Ref. 36. They provide

18
American Institute of Aeronautics and Astronautics



actual quantitative measures for jet penetration and scaling useful for the design of jet control of weapons bay
cavities and the design of relevant experiments. Although the application to store separation is in the low supersonic
regime, the elasticity of Newtonian theory to lower Mach numbers than hypersonic provides a useful tool for the
assessment of the jet effects on the cavity flow, specifically those related to jet penetration.

As shown in Fig. 12, the flow pattern induced by under-expanded transverse injection is rather complicated as
further indicated in Ref. 45. Referring again to the lower panel of Fig. 12, the fuel jet displaces the supersonic
crossflow as if a bluff body was inserted into the flow. A bow shock (3) upstream of the injector exit is formed
causing the upstream boundary layer to separate at the point S. In the separation region (1), the boundary layer and
jet mix subsonically. The jet turns to the freestream direction and reattaches to the wall at the point R forming
another recirculation region (6) downstream from the jet exit. This process is accompanied by formation of shocks
(2, 8) and expansion waves (7). Nevertheless, in the near-field region, the time-averaged jet-penetration profile
mimics the bow shock shape and looks smooth. In the far-field region (downstream from the point A), the jet
thickness continues to grow. However, this growth, which is due to the turbulent mixing rather than the pressure
gradient, is much slower than that in the near-field region.

The near-field mixing is driven by large-scale jet-shear layer vortices generated by the jet-freestream interaction
as shown in Refs. 43 and 45. These vortices are formed along the jet-freestream interface starting near the injector
exit. They periodically entrain large quantities of free-stream air and draw them into the jet shear layer. In the far
field, the eddies travel with velocities close to the freestrearn velocity. These coherent structures, where the fuel and
air are mixed by slow molecular diffusion, also travel at high speeds. Consequently the combustion process is
mixing (vorticity diffusion)-controlled.

Experiments discussed in Refs. 43, 45-49 show that ignition is likely to occur in the recirculation region ahead of
the jet exit. The flame is convected downstream along with the large eddies and observed near the outer edge of the
jet plume. To estimate flame-holding capability of the transverse injection and stagnation pressure losses due to the
jet-induced shock, it is necessary to predict the bow-shock shape and the average penetration profile of the jet
plume. This could be done empirically using correlations of experimental data."4 The average penetration profile is
commonly approximated by a power law fit as in Refs. 43,44,46,48 that couples the jet outer edge with the
downstream distance from the jet exit. However, this correlation varies widely between experimental studies.

Although CFD approaches such as RANS and DES are nominally capable of handling jets in a crossflow,
depending on turbulence modeling and use of implicit algorithms, they are time-consuming in engineering practice.
Quicker response, analytical models are required to shed light on the physics of jet penetration and interpolate
between large-scale CFD solutions. These are also useful for conceptual and preliminary design phases associated
with turn-around parametric studies. This motivated us to analyze the transverse injection into supersonic cross flow
using asymptotics-related methods. We believe that such a model can shed light on previous experiments and recent
large simulations. An excellent example of the latter is Ref. 50.

Here, the cross-flow jet problem is formulated for a hypersonic freestream in the Newtonian limit8 of the Euler
equations in natural streamline coordinates51 . Although, some sort of blast wave theory' 2 -5 4 seems appropriate
associated with hypersonic blunt bodies, basic ideas of the thin layer Newtonian theory8 are also appropriate. It is
shown that a shape of the thin shock-jet filament is governed by an ordinary differential equation, which is solved
analytically here. In addition, the analytical solution is compared with the experiments in Refs. 43, 45 and 49 on
combustion and mixing of the transverse hydrogen jet injected into supersonic cross flows.

B. Basic Formulation
Consider normal injection of a fuel jet into a supersonic cross-flow shown in Fig. 12. The jet displaces the

supersonic flow, qualitatively as if a blunt body was inserted into the flow. In this situation, the characteristic flow
deflection slope is 6 = U* / Uý = 0(1), where U' is speed at the jet exit, U, is the freestream speed, and asterisks

denote dimensional quantities. Assuming that the freestream Mach number M - oc and the specific heat ratio
"y - 1, consider the Newtonian limit 8 of the Euler equations: H = (M6)-' - 0 and A = ('y - 1)/(y + 1) -- 0 so

that N = H / A is fixed. Neglecting viscous shear-layer processes, we assume that U is constant along the jet, and

the jet thickness approximately equals to the jet exit width d*. With these assumptions, the flow pattern is
schematically shown in Fig. 13. The bow shock and the outer edge of the fuel jet form a thin shock-jet filament,
which is approximated by a single line y = f() with x = r* / d* and y = y* / d*.

Following results of the Newtonian and blunt body theory,8 '55'56 an approximate model is based on the balance of
pressure with centrifugal force inside the jet-shock filament. It is assumed that the pressure pc behind the
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downstream boundary of the jet is of the order of the pressure in the downstream recirculation region (see the dead-
water cavity eddy (6) in Fig. 12). This pressure is small compared to the static pressure p:• inside of the shock-jet

filament shown in Fig. 13. The latter approximately equals the pressure directly behind the shock, which is
determined by the 2-D shock relations for a blunt body Newtonian limit. The pressure coefficient
cps (p; - p*) / qý is estimated as,

C• • 2 sin2  2f = 12 (14)
Ps 1+f,2 ,(4

Shock-jet filament

y with pressure Ps

Bow shock

Free stream with
pressure p O .

Cavity region with
pressure Pc << Ps

Fuel

Fig. 13. Approximate flow pattern in the inviscid Newtonian limit.

where tan = f' specifies the local slope of the shock-jet filament (Fig. 13). This equation leads to the relation

f,
2

p, -= 2qý1 - 2"
q 1 +

Along the jet-shock filament, the centrifugal force is balanced by the pressure gradient across the filament that
gives5"

Op" AP* Ps - P- , 1 (15)an* d" d" -* R(x)

where n signifies the direction normal to the jet-shock filament; p) is jet density, which is approximately constant

along the jet length; d* / R*(x) = If"(i f/2)-3/2 I is the normalized curvature of the shock-jet filament. The

absolute value sign is important since for the normal injection f" < 0, and imaginary limiting solutions for small x
can arise if this is not taken into account.

Using the approximation Ap" 2_ ps and (1) we obtain the nonlinear ordinary differential equation

f12 = CeIfI( + f2)-1/21, (16)
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where a =- qj / q, is the jet-to-freestream momentum flux ratio, q - p*U / 2. The appropriate initial conditions
for (16) are

f(0) = 0, f'(0) -- O.. (17)

C. Solution
The problem (16)-(17) gives a one-parameter family of solutions with a as the parameter. This parameter may

be scaled out of Eq. (16) by the transformations

F(X) = f(x)/o, X = x1a. (18)

Substitution of(18) into (16) and (17) gives the initial-value problem

F" = -F' 2 
12 -+ F'2

F(0) = 0. F'(0) = so' (19)

where the primes signify differentiation with respect to X. An exact solution of (19) is

F(X) = log 1(1 + X)+ ,(1 + X - 1 -cosh I-(1 + X)I (20)

For small X relevant to the near field, the solution (20) is approximated as

F(X)= logI I + FX+X+...I 2X ,X -,0. (21)

Note in contrast to the blast wave theory5 25 4 the exponent in (21) should be 2/3 rather than 1/2 for this 2-D flow.
This appears appropriate since the equations are not embedded in the blast wave similitude. Note that the 1/2
exponent applies for an axisymmetric body in the blast wave theory.

For large X, we obtain

F(X) - logX7 X -- sc (22)

Equation (22) shows that the shock does not become asymptotic to a Mach line, as it should. This is associated
with a breakdown of thin shock layer approximations in the far-field region, where the strong shock and hypersonic
approximations are inappropriate and some form of the Prandtl-Glauert linearized theory approximations is more
valid. In some form of an outer limit and asymptotic matching that has yet to be discovered, (although unified
supersonic-hypersonic similarity has been proposed), the body appears as a supersonic source generating a Mach
wave in the far field. The yet-to-be-determined unified theory would systematically match thin shock layer, blast
wave and linearized regions as well as provide a uniformly valid description of the flow. Nevertheless, the physics-
based "engineering" approximation used here provides a useful estimate for the jet penetration as will be shown in
the next section.

D. Comparison with Experiment

In the empirical model of Ref. 44 the jet penetration depth h* is defined as a distance from the point A to the
wall (see Fig. 12). The experimental data discussed in Ref. 43 are correlated as

h= 1.51

d* (1 + cos 09)
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where 0) is the jet injection angle. For the normal injection, 9J = 900, the relation (23) gives h = 1.51,3F . Using

the near-field asymptotic form (21) and assuming that the point A corresponds to x 1, we obtain

h = 2-, 1.4 14- , which is close to the correlation (23). More importantly, the square-root singularity near the jet
origin x = 0 predicted by the theory agrees with the empirical fit. This indicates that the analytical solution (20)
resulting from the inviscid approximate thin shock layer model captures basic features of the near-field flow. As
previously mentioned, the approximation is not strictly embedded in blast wave similitude and therefore gives a
different singular behavior near the origin than that from the blast wave theory.

Ben-Yakar and Hanson 43' 45' 4 9 performed experimental studies of combustion and mixing in high total enthalpy
supersonic flows. The experiments, conducted in an expansion tube facility of Stanford University, were designed to
investigate the near-field mixing and auto ignition of a three-dimensional under-expanded transverse hydrogen jet
injected through a cylindrical hole. Simultaneous OH-PLIF and schlieren imaging were performed at the jet
centerline to obtain information on the location of shock waves, the jet penetration, and the region of combustion.
These data are used hereinafter for testing our theoretical model.

Figure 14 compares the theoretical solution (20) with the instantaneous schlieren images4 3'4 9 of hydrogen and
OH injection into the cross flow at M ,z 3.5, static temperature T* = 1300 K, static pressure p* = 0.32 psi and
freestream velocity U1 = 2420 m/s. The jet-to-freestream momentum flux ratios are a = 1.4. Large-scale coherent
vortical structures generated by the jet-stream interaction are clearly observed along the jet-freestream interface.
These structures cause local fluctuations of the bow shock as documented in Ref. 42. Nevertheless, the time-
averaged shock position is smooth rather than a bumpy instantaneous shape. In the near-field region x < 3, the jet
outer edge is located close to the bow shock forming a thin shock-jet filament that confirms our theoretical concept.
In this region, the solution (20) agrees well with the average position of the jet outer edge as shown in Fig. 15.

Some of this agreement needs to be explained in view of the two-dimensional nature of the model, which is
applicable to slot injection and the three-dimensional nature of the flow out of a round hole in the experiments. As
shown in Refs. 57 and 58, round jets in cross flows flatten out due to vortical kinematics as soon as one jet exit
diameter along their length. The flattening process can legitimize the approximation that the curvature of the jet axis
is more important than the circumferential one in determining the pressure jump across the jet.

()

(a)

01ý 2 4 6 8 to 12 14

Fig. 14. Comparison of the theoretical solution (20) (red line) with simultaneous schlieren (a) and OH-PLIF (b)
images of hydrogen injection into supersonic cross-flow;8 M = 3.46, T. = 1300 K, p* = 0.32 psi,

Uý = 2420 m/s; the jet-to-freestream momentum flux ratio a = 1.4.

In Fig. 14b and Fig. 16, the theoretical prediction is compared with instantaneous OH-PLIF images, which
indicate the presence of the OH radicals formed by the auto ignition of jet hydrogen. The OH radicals are primarily
produced in the hot separation region upstream of the jet exit (see region (1) in Fig. 12) and directly behind the bow
shock and convected downstream with the shear-layer vortices. The OH-mole fraction decreases as the gases expand
around the jet and the local mixture temperature falls.43 In the near-field region, the solution (20) mimics the shape
of a thin filament along the outer edge of the plume. Additional comparisons with experiment are given in Ref. 42.
The theory breaks down and does not give the jet shock as a Mach line in the far-field region. This is because the jet
interface is no longer close to the shock. In addition, the shock is attenuated and becomes weak. Accordingly, the
thin-layer Newtonian assumptions are no longer applicable and a linearized model involving the jet flow appearing
as a Prandtl-Glauert supersonic source-like singularity in the far field may be applicable. Asymptotic modeling of
this region and its matching with the near-field solution needs attention. Although the present model is not a formal
asymptotic solution, it is a good starting point for such a systematic approximation scheme, using the Newtonian
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distinguished limit. In spite of the aforementioned limitations, comparison of the theory in this paper and experiment
reveals that it gives a good account of the physics important for fuel penetration estimation.

The scaling arising in terms of the jet to freestream momentum ratio parameter a (sometimes denoted as J in
the literature) provides a means of collapsing normalized penetration data in units of jet exit width on to a universal
curve shown by Srnivesan and Bowersox as well as others arises naturally in our analysis. Indications are that the
ideas of the present model with some modification apply to oblique injection. An important aspect of this work is
that it can be used for a good first quantitative, non-empirical estimate of penetration of fuel into a hypersonic
stream. The associated time and distance scales may be decisive in determining the fraction of fuel burned and other
scramjet combustion metrics. This is being used in connection with our plasma jet ignition studies involving plasma
chemistry modules and large-scale parallel computations to study the mixing processes in Ref. 59.

s ) average
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Fig. 15. Comparison of the theoretical solution (7) (red lines) with jet penetration measured from 8 consecutive
schlieren images of hydrogen injection into supersonic cross-flow; Error! Reference source not found.2

MA 3.3, T" = 1300 K, p* = 0.32 psi, U* = 2420 m/s; the jet-to-freestream momentum flux ratio
a=2.

H 2, d=2 mm x/d

Fig. 16. Comparison of the theoretical solution (7) (red line) with simultaneous OH-PLIF image of hydrogen
injection into supersonic cross-flow; 2 M = 3.5, T* = 1300 K, p* = 0.32 psi, Uý = 2420 m/s; the jet-to-

freestream momentum flux ratio a = 2.

VI. Hypersonic Laminar Flow Control

A. Background
The ability to stabilize hypersonic boundary layer and increase its laminar run is of critical importance in hypersonic
vehicle design. 60 Early transition causes significant increases in heat transfer and skin friction. Higher heating
requires a higher-performance thermal protection system (TPS), active cooling, or trajectory modification. This
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translates to higher cost and weight of hypersonic vehicles due to increased TPS weight. Moreover, with the low
payload mass fraction, even a small savings in TPS weight can provide a significant payload increase.

Vehicle maintainability and operability are also affected by transition. Robust metallic TPS have temperature
limits lower than ceramic TPS. Laminar flow control (LFC) can help to meet these more severe constraints. For a
streamlined vehicle with large wetted area, viscous drag becomes important. It can be 10% (fully laminar) to 30%
(fully turbulent) of the overall drag.61 For optimized hypersonic wave-riders, viscous drag may represent up to 50%
of the total drag.62 Vehicle aerodynamics is another area impacted by laminar-turbulent transition. Asymmetry of the
transition locus can produce significant yawing moments. Aerodynamic control surfaces and reaction control
systems are also affected due to sensitivity of boundary-layer separation to the flow state (laminar or turbulent).

Since severe environmental conditions make it difficult to use active and reactive LFC concepts for hypersonic
vehicles, passive LFC techniques are of great interest. As another example of a multi-scale problem that is a
challenge to conventional RANS approaches alone but accessible to a combination of theory, computation and
experiment, Fedorov and Malmuth63 developed a new passive method for stabilization of second and higher modes
(Mack's acoustic modes). Without control and at hypersonic speeds, and although there others such as crossflow,
roughness, G6rtler types, the second mode instability provides a route to laminar-turbulent boundary layer transition
that is important to scramjet inlets and large acreage surfaces on hypersonic airbeathing cruise vehicles such as the
X-43 Hyper-X. Although recent strategy has been to excite turbulence to promote scramjet ignition, it is well known
that range and other performance metrics can benefit from laminarization of the inlets and other surfaces. The author
believes that future vehicles will incorporate such improvements.

B. Control Concept
Fedorov and Malmuth exploited the fact that the hypersonic boundary layer behaves as an acoustic waveguide

schematically shown in Fig. 17. Therein, acoustic rays are reflected by the wall and turn around near the sonic line:
y = y., U(y.) = Re(c) - a(ya), where c is disturbance phase speed, U is mean flow speed and a is local sound
speed. The second, third and higher boundary-layer modes correspond to the waveguide normal modes, Malmuth
and Fedorov63 assumed that the absorption of acoustic energy by an ultrasonically absorptive coating stabilizes these
disturbances. This assumption was examined using stability theory for inviscid disturbances. It was found that an
ultrasonically semi-transparent wall provides substantial reduction of the second-mode growth rate.

y

ya 
sonic fine: U(Ya) c - au.)

S.acoustic rays

Fig. 17. Acoustic mode in a supersonic boundary layer on semi-transparent wall.

To include viscous effects of the boundary layer, a second-mode stability analysis was performed for hypersonic
boundary layers over walls covered by porous coatings with equally spaced blind micro-holes in Ref. 64. A
schematic of the arrangement is shown in Fig. 18. Fourier decomposition was made in a linear stability
characterization of the spatial and temporal parts of velocity, pressure and temperature disturbances as shown in Eq.
(1) of Fig. 19. This leads to the stability equation for the pressure amplitude (2) and (3), subject to Darcy law-like
boundary conditions (4) and (5) on the ultrasonically absorbing wall (UAC). Absorption of the disturbance energy
by porous layers was modeled using the theory of sound wave propagation in thin and long tubes to give the Darcy
constant, admittance or absorption coefficient A as shown in (6). The latter coefficient coupling the pressure
disturbance with the vertical velocity disturbance on the porous surface is expressed as an explicit function of
porosity characteristics. Stability calculations showed that the dissipative absorption of disturbance energy by the
porous coating provides massive reduction of the second mode growth rate in a wide range of disturbance
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frequencies and Reynolds numbers as indicated with the variations with the reflection coefficient r in the plot in Fig.
19. This conclusion is consistent with the results of Malmuth and Fedorov 63 obtained from their inviscid stability
analysis. The most profound effect is observed on a cool wall that is typical for hypersonic vehicle TPS surfaces. A
relatively thin porous coating (of thickness about half of the laminar boundary-layer displacement thickness)
provides a strong stabilization effect. Such porous coatings can be designed for passive laminar flow control in
hypersonic vehicle surfaces. Note that the disturbance absorption should be produced at the initial phase of transition
process where the unstable disturbance amplitude is about 0.01-0.1% of its level in transitional and turbulent
boundary layers. In this phase, additional heating of the porous coating associated with partial absorption of the
disturbance energy is negligibly small compared to the turbulent heating. Rasheed and Homung 65 verified that the
stabilization predicted by the theory actually delayed transition in experiments in the GALCIT T-5 wind tunnel and
in later work by ITAM. Shown in Panel (a) of Fig. 20 is a right circular cone that was tested in the tunnel. One half
of its surface consisted of the fine porous layer. The other half was an ordinary metal finish as shown in Panel (b).
Panel (c) shows that dramatic increase in transition Reynolds number Re,, at different enthalpy levels in the T-5
runs. In fact with the porosity, no transition was noted on the model and the laminar run was doubled. Panels ((d)
and (e) confirm this finding. New work in Ref. 66 shows excellent applicability of this concept for random porosity
providing a symbiotic relationship between natural TPS materials that are engineered to provide the UAC effect and
a magnification of the aeroheating protection by laminarization. We intend to scale up this proof of concept to larger
wind tunnels and ultimately deploy it on flight vehicles as schematically indicated for the X-43 configuration in Fig.
21.

VII. Other Examples
The foregoing four examples illustrate only a small subset of the tremendous benefit in using a triad of theory,

computation and experiment. In this connection, it is hoped that the value of the old pencil and pen analytical
methods can be seen in the modem context described here. In addition to the illustrations given, we have used the
triad on modeling counterflow and crossflow jets to simulate nose-tip plasma-jet aerospike drag reduction and
plasma jet enhanced scramjet ignition in Refs. 59 and 67. In addition, a gridless technique was developed to treat the
problem of shock manipulation by MHD Lorentz forces in Ref. 68 that has been validated by large scale CFD and
experiments with the new MHD rig at ITAM. Additional use of the theoretical modeling showing the potential for
forebody plasma streamers in reducing wave drag was described in Ref. 69. Modeling and experiment for use of
plasma discharges for UAV and UCAV tailless and agile fighter nose-tip symmetry breaking control is given in
Refs. 70 and 71.

Sboundary layer

"", porous layer
2r side view

000
po rous layer
top view

0QO
S

Fig. 18. Schematic of a wall covered by porous layer.
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Velocity and pressure disturbances Absorption coefficient can be expressed as a fumction
In traveling wave form: of the UAC reflection coefficient t

f,(cv) =[nvpag(y)rxp[(wa t) (1) ectad wave amplituday(Indde

Stablity equation for pressure amplitude: [ -,,() < 0 (6)
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Fig. 19. Second mode instability control with ultrasonically absorbing walls.
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Fig. 20. Caltech and ITAM experiments showing that UAC substantially delays transition.

Fig. 2 1. Application of the UAC concept for a realistic airbireather.
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VIII. Conclusion
This paper reviewed the state of theory with the present CFD emphasis in industry. Besides the many roles that

were discussed, it is important that the educational system reinvigorate the concept that theoretical modeling is an
indispensable tool to the engineer and scientist in addition to current emphasis on familiarity and use of legacy codes
as well as development of new ones. It still is a very important skill to know how to set up problems from first
principles and make approximations for theoretical physics-based models as well as combine this capability with
modem computational methods. In the author's opinion, suitable curricula need to be retained and student interest
developed to foster these skills. These are very important even in the CFD environment when interpretation of the
results is critical.
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Vertical and pitching motions (two degrees of freedom) of a thin body of revolution separating from a rectangular
cavity in a subsonic stream are investigated using combined asymptotic and numerical methods. The analysis is
based on explicit analytical solutions for the lift force and pitching moment obtained in our previous studies. Body
trajectory dependencies on initial conditions, body parameters, and freestream velocity are studied. The problem
is divided into three phases of the motion. In phase 1, the body is inside the cavity. In phase 2, the body crosses
the shear layer, and in phase 3, the body is outside the cavity. For phases I and 3, analytical solutions of the body
dynamics are obtained for typical cases. This analysis provides insight into the separation process and identifies
governing lumped nondimensional parameters relevant to the body dynamics as well providing a model that can
provide quick, computationally non-intensive estimates of store separation with a personal computer. The role of
the nondimensional parameters in the dynamic stability elgenvalues is identified and found particularly useful in
this connection. These parameters implicitly contain the effect of the shear layer. Numerical calculations for all
three phases are in good agreement with a major portion of the free.drop experimental data obtained in a subsonic
wind tunnel. However, there are cases when the agreement is only satisfactory. The discrepancy is associated with a
pitching bifurcation when the body crosses the shear layer. It is shown that small variation of the initial conditions
can trigger quick transition from one pitch angle trajectory to another and cause dramatic changes of the body
trajectory outside the cavity.

Nomenclature V0  = body initial vertical speed; see Eq. (2d)

a(x) = local body radius X, Y, Z = Cartesian laboratory frame with origin
a0  = maximum body radius shown in Fig. I a
b, = coefficient defined after Eqs. (4), i = 1, 2 X,, Y,, Z, = Cartesian moving body axes with origin
bij = coefficient defined after Eqs. (4), i. j = 1, 2 at body c.g.
Cg = gravity force coefficient (Froude number); X, y, z = Cartesian moving body axes at general

Eq. (2c) location in body
cl = lift force apparent mass; Eq. (2c) a = pitch angle or angle of attack
Cm = apparent pitch inertia; Eq. (2c) O11, af1 2 , a22 = coefficients defined after Eq. (3)
G1, G 2, G 3  = coefficients defined in Eq. (3d) y = angular velocity stability parameter, Re(A)
g = gravity acceleration A 1, A 2 , A3  = coefficients defined after Eqs.(4)

go, gi, g2 = body shape factors; Eq. (3c) 6 = body half-thickness ratio, aio/io
H (X,t) = vertical distance from body axis to slip surface 0 = azimuth angle
Ho = cavity depth k = eigenvalue
I = moment of inertia p = density
L = lift force = near-field flow potential
10 = body length = angular frequency of body oscillations, -lm(X.)
M = pitch moment (0 = pitch angular velocity
m = body mass Wo = defined in Eq. (2b)
p = pressure
t = time Subscripts
u, v, w = flow velocity components
Va = defined in Eq. (2b) a = body cross section of radius a

Vr = characteristic vertical speed b = body surface
c = c.g.
e = body base
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dynamics. The motivation of the work described herein is the need top cavity wall
for quick methods for certification and assessment of the physics of X/
store separation from cavities. Similar rapid evaluation methods are Y,
needed for stage and cargo separations. A variety of computational I
methods have been developed.' -3 As contrasted to pure computa-
tional modeling, this paperdiscusses a combined asymptotic and nu- 0 X
merical approach. It will be applied to solve aerodynamic problems Us
relevant to separation of a thin body of revolution from rectangular Y S
cavities into subsonic or transonic flows. 4,5 The separation process Li .,
can be divided into three phases. In phase 1, the body is inside the stor
cavity. In phase 2, the body crosses the shear layer that separates the x
cavity flow from the external flow. In phase 3, the body is outside the a) Side view
cavity. In many practical cases, viscous effects can be approximated
with inviscid models. As an example, a vortex sheet representing top cavity wall
an infinitesimally thin slip surface can be used to approximate the
shear layer over a cavity. This approach is consistent with simu- Y
lating the cavity shear layer interaction as a rational outer solution
that is associated with viscous-inviscid interaction theory. This is an
extension of the concept of transpiration velocities (outer limit of in- 0 Z
ner solution for asymptotic matching) that arises in boundary-layer slip surface
viscous-inviscid interactions. It leads to a self-consistent simulation
of the shear layer as an inviscid vortex sheet. Also, we time aver--Z
age the unsteady motions of the shear layer, because these are on store cross section
a timescale that is at least three orders faster than the Froude scale b) Back view
of the dropping body. This is a self-consistent approximation that Fig. I Scheme of store separation.
should be realistic for the practical case of high Reynolds number
of the approaching boundary layer. As shown in Ref. 5, the equations for vertical and pitching body

Also, the flow over the separating body can be modeled using motions can be expressed in the form
slender body theory.6 In Refs. 4 and 5, effects of the side cavity walls d(V, + cl Va) dY,.
were shown to be negligible in all phases of the separation process. -- cl L I (t) - cg, -- V, (t)
In the analysis of this paper, the near-field flow associated with the dt d:
body aerodynamics is governed by a system of nonlinear integro- di(e + c,,,ow) da
differential equations. In Refs. 4 and 5, this problem was analyzed dt d c. M 1 (), - = (I) (2a)
using asymptotic methods giving explicit analytical expressions for
the lift force and pitching moment acting on the body in all three V. (t) D f (x, 0, t)a(x) dO dx
phases of the separation process. In the analysis, the slip-surface f, 1 0
displacement is neglected. A more general case is when the slip 2
surface is a free boundary supporting nonlinear boundary conditions fXf

2
T

and interacting with the solution. For the practically important case &o.(t) =0 // Xl(x, 0, t)a(x)x dO dx (2b)
of small deflections, the boundary conditions can be linearized on *'0 0
the slip surface, on the length scale of the cavity. Local flow scales g l - 2
have larger deflections in which an iterative scheme needs to be c9 = - , c = ', cI =used. The nondeflected slip surface corresponds to the initial iterate m Iin such a small-perturbation scheme. (2c)

Problem Formulation where x0 and x, are coordinates of the body nose and base, re-
spectively, and 0' is the near field with respect to the body (inner)

In this paper, we couple our previous results on the body aerody- flow potential.-We consider the Cauchy initial-value problem for
namics with the body dynamics and analyze two-degree-of-freedom Eqs. (2a) assuming that the body speeds, e.g. coordinate, and angle
(DOF) vertical and pitching motions induced by aerodynamic and of attack are prescribed at the initial time t = 0 as
gravity forces during the separation process. The coordinate sys-
tems XYZ (attached to the cavity) and oxyz (attached to the V,(0) = Vo, aO(O) = wo, YJ(O) = Yo, U(O) = Uo
body center of gravity) are shown in Fig. 1. The oxy frame is in-
clined with respect to the XY frame at an angle of attack a(1). (2d)
This frame can rotate around the oz axis with the angular speed
w (t) = da/dt. The e.g. coordinates are expressed as X, =Z = 0 NotethatdVa/di and dwa/dt in Eq. (2a) represent the time derivative
and Y,(t); H (X, t) = Y, - orX is the vertical coordinate of the body of the crossflow potential (incompressible harmonic inner solution)
axis. Using scaling of the slender body theory,6 we introduce the needed for the pressure in the crossflow plane from the unsteady
nondimensional variables Bernoulli equation. The terms L I and M1 are integrals involving the

square of the crossflow speed that also appear in the Bernoulli law for
the pressure in the crossflow inner problem. These are determinedX/I0, Y = Y/a0, Z = 7/ao, X = i/10 from the square of the crossflow gradient of (D.

In this paper, analytical solutions of the problem (2a-2d) for
Y = i/a 0, z = i/ 0, t U. U / t/ phase I are obtained for small lift forces compared to the weight.

Slip-surface deflections are neglected, and Eqs. (2a-2d) are trans-
at = /,' V, = Vc/V,, w = U~o•/ 0  (1) formed into two decoupled ordinary differential equations with con-

stant coefficients. A stability analysis of their solutions is performed,
and behaviors of the pitch angle a(l) and the vertical coordinatewhere the body half-thickness ratio S is treated as a small parameter. Yc(t) are discussed for typical cases. In addition, the theoretical

Crossflow velocities and coordinates are normalized by 8U, and a0 , model for all three phases [in Eqs. (2) (without the stability lin-
respectively. The streamwise and axial coordinates are scaled using earizations)] is evaluated by comparison of the predicted trajecto-
1o, and the pressure perturbation p is normalized with respect to ries with the experimental data of Ref. 7. The paper concludes with
P.U,,3, l0. some parametric trajectory studies.
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Phase 1: Body Inside Cavity b= (l/A){(l - Cmn7g 2 )[GI(t) - G1(0)] +c.7rg1 [G2(t) - G 2(0)J
The lift force L(t) and the pitching moment M(t) acting

on the body moving inside the cavity are derived in Ref. 5. +c,Jr[Gl(O)G2(t) - G1(t)G 2(0)]1
They are expressed as integrals along the body axis with the
integrands being a power series with respect to the parameters b (1/A){(l + cargo)IG(O) - G1(t)] + carg1 [Go(t) - G0(0)l
q 1(xt)=O.5a/(Ho- H) and q=O.5a/H, where H0 is cavity +ctnr[G (O)Go(t)- G1(t)Go(O)]}
depth shown in Figs. la and lb. If the body is far from the top
cavity wall and the slip surface, then q, and q can be treated as The first term of Eqs. (4a-4b) models the gravity effect, the sec-
small parameters. When terms of the order of O(q 3, q3) are ne- ond term comes from the initial conditions, and the third term arises
glected, the body cross section vertical velocity V, (t) and angular from the boundary and initial conditions. The angular acceleration
velocity wa(t) are expressed in the form is proportional to the product of the pitching moment coefficient

c., the gravity force coefficient c9, and the value gI + G I (t) char-
Vi (t) - 11 (h)lVl(t) - a12(t)o(t) acterizing the displacement of the center of pressure from the e.g.5

Equations (4) can be solved numerically using, for example, the
- =(t) aIOVý(t) - at(t)wo(t) (3a) Runge-Kutta method. Note that the slip-surface effect and the top-

wall effect rapidly decrease as the body moves away from these
(t) 7r[go + Go(t)]. C12(t) = rg + G (t)] boundaries. Neglecting termsof the orderofO(q 2 + q2), which are

Ct22(t) =_ r[g 2 + G2(t)0 (3b) associated with the boundary effects, the solution of Eqs. (4) can be
expressed in explicit analytical form:

go a 2(x)dx, gL a2(x)xdx Y,(0) = Yo + Vot 1 -rcmgz 2

22A0

92 a2(x)x 2 dx (3c) o(t) = ao + coot + 7rrglc2cg t2 (5a)2 a(c 2Ao
Ao = (I + clirgo)(l - cmlrg2) + CCm

2 2
g (5b)

Go(t) =2 [q2(x, t) - q2(x, t)]a2(x) dx (3d) Equations (5) show that the c.g. coordinate Y,(t) and the pitch angle
,Xo ct(t) are parabolic functions of time when the body moves in an

•x. unbounded fluid at rest.
G1 Q) 2 I [q2(x, t) - q 2(x, t)]a 2(x)x dx It is also possible to obtain analytical solutions of Eqs. (4), when

JL0  the lift and moment are small compared to the body weight. This is
typical for many practical cases because the coefficients c, and cm

Gt 2 x)- 2 t 2 2 dx (3e) are proportional to the air density to body density ratio, poo/Pb << 1.
For a body of uniform density, nondimensional ballistic parameters

may be defined as
This transformation helps to express the dynamic equations in a

form convenient for further discussion of the body trajectory fea- c1 P= O P-, CI - g2
tures. When Eqs. (3a-3e) are used, the trajectory equations (2a) can Pb8rgo pPbrg2 C, go
be integrated once and expressed in the form For the experimental conditions, 7 the coefficients cl and cm as

dY_ bz2() A1 (t) well as other basic parameters are shown in Tables I and 2, where
dt - cgt + A Vo + cinrwob1 (t) (4a) the gravity force coefficient is calculated at the freestream speed) A(t) Uo =77.1 m/s.
da b21 (t) A2(t) Ifterms linear inc, and cm are retained in Eqs. (4), the approximate

C-i- A t + - 0•-. + C.r VobA(t) (4b) linear and angular trajectories are
(t) 9 A(t)

where the coefficients are defined as Yc = Yo + Vot - 0.5(1 - 7rclgo)c•t 2

b1I(t) 1 +clot,(t). b12(1)=ctot1 2(t) =ao + "ot +0.57rgic,1c.t2  (7)

b21 (t) Cm.t12(t), b2(t) 1- cm.022(t) The e.g. coordinate and the pitch angle are parabolic functions
of time. In the first-order approximation, the vertical motion corre-

A bil(t)b22(t) + bi2 t)b21 (t) sponds to a pure gravity drop. The lift force gives a small negative
correction of the e.g. acceleration similar to the case of a plunging

A, b11(0)b22(t) + b1 2 (t)b21 (O) cylinder in the presence of a shear layer considered in Ref. 4. As will
be shown, the analytical expressions (7) are consistent with trends

A2  b I (t)b22 (0) + b12 (0)b2 l (t) of numerical solutions and experimental data.

Table 1 Nondimensional parameters of models7

Model 6 Xe go 81 92

BINI 0.31250E-01 0.51333E +00 0.86206E+00 0.68807E-01 0.66707E-01
B4N2 0.31250E-01 0.49500E+00 0.86206E+00 0.53002E-01 0.57596E-01
B5N5 0.32609E-01 0.62261E+00 0.85606E+00 0.16423E+00 0.12753E+00

Table 2 Aerodynamic and gravity acceleration coefficients for models7

Model Ct Cm CSUt,, m2/s2  cg

BIN I 0.29915E-03 0.22204E -02 0.95585E+02 0.16080E -01
B4N2 0.72519E-03 0.38857E-02 0.95585E+02 0.16080E-01
B5N5 0.36773E-02 0.24684E -01 0.87786E+02 0.14768E -01
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Phase 3: Body Outside Cavity c,= r a• 2  c--L + 1rcz(xlgo - 2xkg1 + g2)lIf the body is totally outside the cavity and moves into an external 2A= L Cmfreestream, the lift force and pitching moment are again expressedas integrals along the body axis with the integrands being a power cK r 2Xg _ -Cgra(gOX' _13a)series with respect to the parameter q = 0.5a/H (see Ref. 5). When K = C [go - ce r(2 3a)these analytical solutions are analyzed, the slip-surface effect on thebody trajectory is found to be proportional to the quantity cL (gT x~a•), C2 (go - xa,)SAo A0
qa2ax dx + q2a2 dx _ q- + 2 go + O(qlgo) (8) (13b)

XO A•0 3 
The characteristic (secular) equation for the eigenvalues of ODEwhere the over bars denote averaging along the body axis. For typical system (10a) and its solutions arecases, the body shape factor is given by Eq. (3c), go = 0(l). The 'k2 - 2yk + K = 0, 'k1 = Y + ig2average distance parameter is 4 < 0.5. Its maximum value 4 = 0.5

corresponds to contact of the body surface with the slip surface. Themaximum values of the first and second terms in Eq. (8) are 1 and X2 = y - ip, Q2= 2K (14)4' respectively. As the body drops, both terms decrease quickly, and Various cases significant for the trajectory stability will now bethe slip-surface effect vanishes. Thus, dominant terms are associated discussed.with the body drop in an unbounded uniform stream. In this case,the equations for the lift force and pitch moment can be reduced to Eigenvalues A, and AI Are Complexr dIf 
kI and ) 2 are complex, then the trajectory parameters are ex-

L = -go---- +g I-d. - W, -o0051)a2 + o(go+xeal) (9a) pressed in the form
VA0) = V0 + (d - C2 r)/K + e"(Al cos O2r + A 2 sin O2r)

71 -r 1 (+ 9 d. + - a) (go - xa') + COX2 tao ) = -(C 2/1K) + ey'(B1 cos Or + B2 sin O2r) (1 5a)L t +g - e Y, (t) = Yo + (Vo + d/K)r - (C2/2,c)r 2 + (e'Y/K)
(9b) x f(yAI - QA 2 ) cos O2r + (Q2A1 + yA 2 ) sin O2r] (15b)

where ae =a(xe) is the base radius (a, = I for a cylindrical after- a(t) =a• - (1/K){c 2 r + yB, - - err[(YBi - f2BI)cosf~r
body). These expressions were derived for bodies with a sharp nose,a(xo) = 0. Substitution of Eqs. (9a) and (9b) into the trajectory equa- + (f0B, + Y B2 ) sin O2r} (15c)tions (2a) and integration once give the linear ordinary differential where r = t - to and d = -K(V' - Q) - CI - y B, + QB 2. The co-equation (ODE) system (with constant coefficients) efficients A,, A 2 , B1, and B 2 are determined from the initial condi-dV, 

tions (I1) and Eqs. (10a). They are expressed as-- C= I M( -a ) + C12(0 --CIOd C 
A, d C2 +Vo - yA 1

= ---, A 2 =-+
dco 

K £2K
dt = C21 , -- a) +- C22 + C20 (10a) dV (0)0' = dV(O=ci(V• - o•) + cl 2 t~Co0- (16a)
I -Cmfrg2 CmCg7rgI dtCIO A0 C91 C20 -- B , I+C2 tB2 O - y'BIA ° B • = to00 - - ,B = -

Kc, ' -[cmrgI(go - xea2) - (I - cmzrg2)a2] (10b) dwo(0)C e0 -= - = C21 (V0o-c CO) + C2 2 W0. + C20  (I6b)C2 [(l - Cm"fg 2 )(go + xae) + c,7rglxea2] (10c) Equations (15) indicate that the body motion includes two com-
C12 =A 0  + ponents. The first terms of Eqs. (15a) and (15b) correspond to bodyC m(r 

rotation with the constant angular speed -C 2/K and a vertical trans-C21 = "C0[T(1 + C17rgo)(go - xeae) + Corgla'] (10d) lation with uniform acceleration -C 2 /K. Also present is a drift withco 
constant velocity ar - (cj + 2yB1 - 4vo)/K that depends on the ini-C 1 2 -(1e) tial angle of attack and angular velocity. These terms are associated

( + cAngo)xOae -- C,:rg1 (go + xa) 1 with a nonoscillatory motion, which is called the mean state. The
second component corresponds to periodic modulations of the mean

where A0 is given by Eq. (Sb). 
state. These oscillations are neutral for y = 0, unstable for positiveWe consider the Cauchy problem for Eqs. (10a) assuming that y, and stable for negative y. For zero base radius a, = 0, Eq. (13)the body is totally outside the cavity for t > to, and its initi4l speeds, specializes to

coordinate, and pitch angle are
V = 0, K = Q' - (Co)l=Ao)go. Co = (C=C9,ltAO)gIV ,(bo) V~, co(to) 

c Y,0) = Yo" a(to) C2 = (CmCgrr/Ao)go

(1 1) This case corresponds to neutral oscillations. For heavy bodies
with base radius a, = I and small ballistic coefficients cl << 1 andFrom Eqs. (10a), the angular velocity w and the function cm<1,wcalierzabu ndc.Eatos(3yed

W(t) = Vc(t) - ot(t) are solutions of the decoupled equations Cm 2 1, we can linearize about cj and Cm. Equations (13) yield
d2W dW d2 o Y =lrCm(XY Cl/Cm) K = 02 c7r(g0-x) (17a)

-2y- + KW+CI=0, - 2y- T + Ko+C
2 =0 C 1 =JrCmCggI _ C2)(wher 

Clhe•onat 
c(g, 

- 2) C2 = 7rrcmc g (go - x ()
dt12where the constant coefficients are 

d = nrct(wo + c.) (I17b)
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Equations (17) show that oscillations are unstable for x2 > c/Cm. I
This case fits the experimental conditions of Ref. 7. For x1 <C c/Cm,,
oscillations are stable or neutral. In all cases the increment is small,
y -Cm c. -0 << 1. The expressions for the vertical speed and B2 13 B
angular velocity are I

Vc =V- c, r + A 1(er cos OOr - 1) + A2e'' sin OIr

V = -C 8 + ey'(BI cos fr + B2 sin Or)

The first equation indicates that the c.g. oscillates near its mean
state associated with free drop. If the body dynamics is stable, y < 0,
then the oscillations vanish as r --+ 0. Nevertheless, they induce
the constant vertical velocity - A1 = cjr(wo' + Cg)/0

2. The second 7: .n

equation shows that the angular velocity oscillates near its mean
level, Co = -c, associated with free drop.

Eigenvalues Al and A2 Are Real
If X 1  y + v and )2 = Y - v [V /( 2  ] are real, then the

solution of Eqs. (1Oa) or Eqs. (12) is

V,(t) = V0 + (d - C2r)/K + ey'(A3chvr + A 2shvr)

CO = -(c2/K) + ey'(Bichvr + B2shvr) (18a) Fig. 2 Models for free-drop tests in the lIT wind tunnel.

Yct) = Y ' + (Vd + d/1)r - (c2 /2K)r
2

+ (e'/I)l(yA, - vA 2 )chvr + (yA 2 - vA,)shvrj (18b) 0,40Y

a(t) = at - (l/K){C2 r + yB 1 - vB 2 - e" tf(yB1 -- vB 2 )chvr a eried

+ (yB2 - vB1)shvrI} (18c) 0,0 - /

where d = -K(Vd - a') - c, - yB1 + vB 2 and the coefficients are

AI = -(d/K), A 2 = C2 /1K + (V0 - ya,)/v 0,1

Bi = woo + C2/K, B2 = (4io - yB 3 )/v (19) 0,00 - .. se
a) '0.00 0,05 0,10 0,15 0,20 0,25

Again the body motion has two components. The first compo-
nent is similar to that of the earlier case. It is associated with a pure 4m deg
gravity drop and can be treated as a basic state. The second com-
ponent is relevant to an exponential drift from or toward the basic
state depending on the signs of the eigenvalues. If X . <0 and k2 <0, 2

then the exponents decay as r --+ oo, and the body motion evolves
from the initial conditions to the basic state, which includes rotation 0

with constant angular velocity and translation with constant accel-
eration. If X1 and/or 1 2 are positive, then the exponential terms grow -2

with time, and the body departs from its basic state (aperiodic di-
vergence). If v = 0, then the second component of the body motion -4t see
is governed by the sign of y. b) 0,00 0,05 0.10 0.15 0,2 0

The aforementioned analytical solutions and stability characteris-
tics of the body dynamics can be used for fast qualitative estimations Fig. 3 Model B4N2, U, = 62.3 m/s, Y0 = 1.42 in. (0.0361 m), o = 0 deg,

of the body trajectory outside the cavity. To our knowledge, these V0 = 8 inds (0.2032 m/s), and wo = 9 deg/s.

results are new.
oriented tool will be compared to the subsonic experimental data7

Results and Discussion in what follows.

To calculate the body trajectory including all phases of the sep-
aration process Eqs. (2a) are numerically integrated using a sixth- Experimental Data
order Runge-Kutta scheme (see Ref. 9). Our computational code Drop tests 7 were conducted in the National Diagnostic Wind Tun-
includes a module that calculates the lift force and pitching moment nel of the Illinois Institute of Technology (IlT) Fluid Dynamics
for phases 1-3 using the analytical results of Ref. 5. The accuracy Research Center at the Mach number range 0.12 < M < 0.23. The
of the predictions can be related to the size of the perturbation pa- rectangular cavity of 20 in. (0.508 m) length, 41 in. (1.0414 m)
rameters and uncertainties in the experimental launch conditions. width, and 4 in. (0.1016 m) height was mounted on the top wall of
(Because these data are referenced, their accuracy can be obtained the wind-tunnel test section. The test articles were bodies of revolu-
from the authors.) In the best cases, the accuracy can be as good tion of radius ,do = in. (0.009525 m) and nose length i,, = 3.56 in.
as a few percent when the aerodynamic forces are small compared (0.090424 m) (Fig. 2). Two models (B 1N I and B4N2) were ogive
to the weight and the characteristic pitch inertia with experimental cylinders 12 in. (0.3048 m) length. The third model (B5N5) had
initial conditions that matched those assumed in the theory. Large an elliptic nose and a total length of 11.5 in. (0.2921 m). The
excursions can result if large-scale shear layer motions occur and heaviest model, B INI, had mass m = 111.85 g, moment of inertia
other disturbances evolve in the external flow. 1 = 0.0014 kg- M2 , and e.g. location io = 6.16 in. (0.1565 m). For

The combined asymptotic and numerical method described pro- model B4N2, m = 46.14 g, I = 0.0008 kg. m2 , and i.o = 5.94 in.
vides a means to calculate rapidly body trajectories. One trajec- (0.1509 m). The lightest model, B5N5, had m = 8.72 g and
tory is normally predicted in less than 0.5 min using a personal I =0.000015 kg .m 2 . In these experiments, bodies were dropped
computer Pentium 166. This quick-turnaround personal-computer- from a cavity in the lIT wind tunnel.
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Fig. 4 Model B4N2, Uoo = 41.3 m/s, Yo = 2.4 in. (0.061 m), to = 9.6 deg, Fig. 6 Model BINI, U7, = 40.8 m/s, YO 2.65 in. (0.0673 i), aoV= 2 mins (0.0508 m/s), and 'o = -80 degls. -7.8 deg, Vo = 15 inJs (0.381 m/s), and woo = 80 deg/s.
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Fig. 5 Model BINI, U10 = 62.7 m/s, Yo = 2.72 inJs (0.0691 mi), ,) a5dFig. 7 Model B4N2, U oo = 40.6 m/s, Yo = 2.65 in. (0.0673 mn), ao :
- 11.8 deg, V0 = 9 Ws (0.2286 ms), and "- = 75 deg/s. -9.2 deg, V0 = 15 inJs (0.381 m/s), and wo = 70.8 deg/s.

The models were released by withdrawing pins holding em at Figures 3a-10a show comparisons between predicted (solid lines)their noses and tails. 
and experimental (symbols) c.g. trajectories for all three models.
Dashed lines indicate the free-drop trajectories under the gravityComparison with Experiment force only. As already noted, the lift is small compared to the bodyPreliminary analysis of the experimental data shows that during weight. The free drop in a vacuum is very close to the computationalthe release time t, - 0.03 s, the initial angular and vertical velocities results and the experimental data for moderate angles of attack, es-can be essentially affected by uncontrolled disturbances that may pecially for the heavier model, B INI. However, the vacuum curvebe induced by the release mechanism. During the release time, the diverges from the experimental data if the body enters into the ex-gravity force may increase the pitch rate, if the model ends are not ternal stream at relatively large &. This is clearly seen in Figs. 4a,released simultaneously. This motivated identification of the actual 8a, and 10a. In these cases, the theoretical prediction accountinginitial angular speed to0 and vertical velocity V0 by differentiating for aerodynamic loads is in a good agreement with the experiment.the experimental distributions of the pitch angle &(t) and the c.g. Moreover, the theoretical model is capable of capturing trajectory

vertical coordinate Yi(6). nuances shown in Fig. 8a.
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Fig. 8 Model BDNS, U., = 62.5 m/s, YO = 3.85 in. (0.978 m), ao = 2.4deg,
Ve = 19 in.s (0.4826 m/s), and we = 140 deg/s.
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Fig.9 ModelB4N2,U,,, =62.3mls, Yo =2.33in.(0.592nm),no=9.5deg, YO = 1.42 in. (0.0361 m); ato = 0 deg; " = 8 degls; - , V9 =8 Wis
and Vo = 6 inJs (0.1524 m/s). (0.2032 m/s); --- , V0 = 50 inJs (1.27 m/s).

/

Figures 3b-10b show a comparison between predicted (lines) calculations (parabolic ogive). Unfortunately, calculations were not
and experimental (symbols) histories of the angle of attack &(t). possible for the actual nose because its geometry was not available.
Figures 3b-6b show good agreement between the theory and the Note that the nose shape becomes more important at large pitch
experiment. The agreement is only satisfactory for the cases shown angles. The divergence of the predicted and experimental curves
in Figs. 7b-9b. Rough estimates indicate that the initial growth of in Fig. 9b seems to be due to the flow inside the cavity, which is
& (Fig. 7b) may be associated with an initial pitch impulse gener- presently not included in our modeling. Namely, the nonuniform
ated by the release mechanism under a gravitational couple from upwash field due to the recirculatory flow in the cavity has not been
the pins. In this case, both the initial angle of attack and angular included. Such an upwash field will change the crossflow angle of
speed were estimated from the experimental data. These were used attack from that due solely to the vertical speed of the body, which
as the initial conditions for the calculations. For the lightest model, has been accounted for in the approximate model described here.
B5N5 (Fig. 8b), the discrepancy seems to be due to the difference This can be thought of as a first estimate of the flow physics. The
between the actual nose shape (elliptic) and the shape used in our effect of the upwash field can be considered a refinement of this
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Fig. 12 Effect or freestream velocity on the body trajectory: model .. = 12'
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-, U 62.3 m/s; --- , U. = 200 m/s.

5,00
Y*z.

4,00 -o %=8deg~s.............. c =-160 degs -20

3,00 Q_____=160deg'1s .°

c) ,0 0,2 0,4 0,6 0,8 1',0
Fig. 14 Influenceofthe initial pitch angleon thebody trajectory: model

1,00 .. B4N2, U. = 62.3 m/s, Y0o 1.42 in. (0.0361 m), Vo 8 in./s (0.2032 m/s),
"and wo 8 deg/s.otsec

a) '0,0 0,2 0,4 0.6 0,8 1,0 function of the angular velocity, vertical speed, and their derivatives.
For the case shown in Fig. 10b, the shear layer displacement from

30 % deg its basic state into the cavity may cause a phase jump of the right-
20 ,.hand-side term in Eq. (2a) from 0 to 180 deg. Such a jump affects

the pitch history outside the cavity. This is illustrated in Fig. l0b
10 . , -by the dotted line that was calculated with the opposite sign of the
0' .pitching moment. It is seen that this curve is in a good agreement

with the experimental data. On the other hand, experimental curves,
-10 ,shown in Figs. 5b, 6b, and 7b for approximately the same initial

-0 : .conditions, have a regular behavior, that is, they are in a good agree-
ment with the computations performed without changes of the sign
of pitching moment. These findings suggest that there is a bifurca-

, Lse tion in the pitch history cr(t) when the body enters into the external
b) ~ 002 014 0,6 0,8 1,0 stream. The trajectory equations allow such a bifurcation because

Fig. 13 Influence of the initial angular speed on the body trajectory: the aerodynamic forcing terms of Eqs. (2a) are nonlinear (quadratic)
model B4N2, U. = 62.3 m/s, Yo = 1.42 in. (0.0361 m), ao = 0 deg, and functions of speeds V and co. One of two possible trajectories is se-
Ve = 8 Wis (0.2032 m/s). lected when the body crosses the shear layer. Therefore, phase 2

/ serves as a trigger of the pitch bifurcation. Accurate modeling of
model in which this recirculatory flow can be estimated'from the this mechanism is important for prediction of the pitch history and
empty cavity flow. An inviscid approximation for the latter is given store trajectory in the next phase, when the store is outside the cav-
in Ref. 4 for deep cavities. (Deep cavities are almost bridged at ity. To verify this hypothesis additional theoretical, numerical, and
their top end by the shear layer in contrast to shallow cavities for experimental studies are needed.
which the shear layer will collide with their bottom.) Further refine-
ments would include the interaction of the moving body with this Parametric Studies
nonuniform flow for both deep and shallow cavities. Pitch oscilla- Parametric studies of the body trajectory were conducted for dif-
tions observed in phase 1 (body is totally inside the cavity) clearly ferent initial conditions, body parameters, and freestream speeds.
indicate the presence of this effect, which may also explain the sub- The results are shown in Figs. 11-15. Variations of the initial ver-
stantial difference between the theory and the experiment shown in tical velocity cause not only c.g. acceleration but phase shift of the
Fig. 10b. pitch angle (Fig. 11). In accord with the analytical solution dis-

As indicated earlier, the pitch behavior in phase 3 (body is out- cussed earlier, an increase of the freestream velocity leads to a sub-
side the cavity) strongly depends on the entry condition, which is a stantial increase of the mean pitching angle and the pitch oscillation
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5,00 Y, m agreement with experiment. Moreover, the theory is able to capture
84N2. nuances of the body pitching observed experimentally. These re-

4,00 . ........ BIN1 ,sults confirm our theoretical model. However, there are cases when
13-5145 the agreement is only satisfactory. The body separation is affected

3,00- .by more complex flow phenomena, which are not captured by our
model. One discrepancy seems to be due to the slip-surface dis-
placement induced by the shear layer instability and/or self-excited

1.00O oscillations of the cavity flow. These effects can lead to the pitching
moment phase jump from 0 to 180 deg during phase 2, when the

0,00 _sec body crosses the shear layer. The jump may trigger quick transi-

a) 0,0 0,2 0.4 0,6 018 1'0 tion from one pitch angle trajectory to another for phase 3, when
the body is outside the cavity. Our calculations showed that this in-

deg terpretation is consistent with the experimental data indicating the
existence of two substantially different pitching trajectories for ap-

0proximately the same initial conditions. Because nonlinear dynamic
equations are involved, the body trajectory may have a bifurcation
point associated with phase 2. Although this transitional phase is
relatively short, its aerodynamics may determine the selection be-
tween possible trajectories outside the cavity. Further theoretical

-10 . ........ B1N1 •and experimental studies are needed to establish and clarify the bi-

.. B5N5 furcation mechanism. Our future work will extend this model to
t, sec transonic speeds.

b) 0.0 0,2 0,4 0,6 O,8 1,0 Acknowledgments
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Abstract
Aerodynamic and dynamic problems relevant to separation of a thin body of revolution from
rectangular cavities into subsonic and transonic flows are considered. In the dominant
approximation, the shear layer separating cavity flow from outer flow is approximated by a plane
slip surlace of zero potential and the flow is described by slender body theor. Asymptotic models
for inner (near field) and outer (far field) asymptotic regions are provided. Analytical solutions of
the inner asymptotic problem as a basis for systematic approximation desktop PC prediction
schemes are obtained for all phases of the body motion. This allows extraction of the basic
physical parameters governing the separation process. illumination of the basic physics and
dramatic simplification of the trajectory determination. Simple analytical and empirical models are
presented for cross-flow drag. friction drag and base drag. The theoretical results are used to
analyze 3DOF body dynamics for separation from a cavity into a transonic freestream. Numerical
examples including critical cases of recontact and ricochet for ultimate application of trajectory
control of light and other bodies are discussed. Strong sensitivities and trajectory bifurcations from
small changes in initial conditions are discussed and the role of wave drag in connection with such
applications is discussed.

I 'moment of inertia

Nomenclature 4o ý body length

a0 maximum body radius L = lift force

a local body radius M = pitching moment

A cross-sectional area of actual body - _ p,
A equivalent body area P - P, pressure coefficient

C1) total drag coefficient r = polar radius in the inner region

CIV. friction drag coefficient = r'52. polar radius in the outer region

CP . base drag coefficient t - time
u. v. ii, flow velocity components

C 1)1 : wave drag coefficient W ) - iv. complex conjugate velocity

cross-flow drag coefficient V effective cross-section speed

D,1 dipole intensity '/, speed of center of gravity

d11 = cavity half span X. Y. Z = coordinates attached to cavity

g gravity acceleration x. y. z = coordinates attached to body

H 1 vertical distance 1', vertical coordinate of the center of gravity

I/o cavity depth



x0 body nose coordinate approximation schemes modeling store separation
processes that easily couple with rigid-body

X, body base coordinate dynamics for desktop PC "design" codes that rapidly
predict store trajectories They also improve our

a• understanding of the physics, parametric limits and
S -, pitch angle trends. Another ultimate objective with these

methods is to provide convenient tools to obtain
= angle between the body cross-section and control laws for trajectory manipulation systems. An
OZ-axis additional theme is to assess the impact of noise

control measures such as those with cavity blowing
05 /0 , half of body thickness ratio on separation trajectories.

E -- ratio of the body radius to the cavity half Matched asymptotics suggest that a component of the
span global problem of interaction of the separating with

W = pitch angular speed the entire airplane flow field is the local problem of
H] c(D + iT , complex flow potential separation of a body of revolution from a rectangular

Sflow potential cavity into an external subsonic or transonic flow of
9 polar angle uniform freestream speed. In this physical system we

C -=-Z+iY divide the separation process into three phases, which
will hereinafter be denoted Phases 1-3. In Phase I.

p =density the body moves inside the cavity, whereas in Phase 2

the body crosses the shear layer separating the cavity
Subscripis flow from external stream. In Phase 3 the body is
o0 free stream totally outside the cavity and moves in the external
o = center of gravity flow.
f = slip surface To simplify the problem and obtain analytical

b = body surface solutions it is assumed that the body is slender, the
vertical flow velocity and angles of attack d. the

Superscripis ratio of shear-layer thickness (, to body radius a.A = dimensional values

+ = values above shear-layer and flow velocities inside the empty cavity are small.

S= dimensionless functions in outer region Also, the cavity height R 0  and half-width D0  are

much larger than the body radius. Deep cavities of1. Introduction the length-to-height ratio t0 /11•' < 6 are

Diverse aspects of the store separation problem have 0 0

been intensively investigated. Engineering, semi- considered and this assumes that the outer flow
empirical, computational and experimental weakly penetrates into the cavity. Due to these
approaches are illustrated in Refs. [1-3]. Most studies simplifications viscous effects are neglected and the
have been concerned with external separation at flow over the body can be described by slender body
subsonic or supersonic speeds. Relatively less theory.4 6 The shear layer is treated as a free slip
attention has been given to separation from cavities, vortex sheet surface with a tangential velocity jump
especially at transonic speeds. This is because the and continuous normal velocity, pressure and the
problem is very complicated due to a large number of density across itself; the flow in the empty cavity is
parameters governing the flow structure and the vast neglected the cavity wall effect is considered as a
variety of physical phenomena involved in the small perturbation. From this approximation, it is
separation process. possible to isolate the wall-body and slip surface-

body interactions and treat them as separate
Our objectives are to fill this gap by identifying the component sub-problems whose solutions can be
first-order physics. solve unit problems related to superimposed to provide the complete flow. Intrinsic
modeling the basic mechanisms and develop fast and to this approximation is the assumption that the
robust methods for predicting store trajectories. Key highly active slip surface can be treated as its
thrusts are to divide the separation process into temporal mean since the time fluctuations are short
component phases, formulate unit problems for each on the Froude time scale of dropping of the store.
phase and solve these problems using a combination Even with the temporal average approximation the
of asymptotic and numerical methods. In contrast to coupling of the free boundary shape
ad-hoc approaches, these give systematic

2



with the solution represents a difficult component of the order of 0(S5). The body drops tinder gravity
problem. This is because the shape of the free along the cavity symmetry plane and separates from
boundary is not known a priori and should be the cavity into the external flow. At the initial instant,
determined as a part of the solution since it strongly the flow within the cavity is neglected. The cavity
and nonlinearly interacts with it. This is a challenging interior is separated from external stream by the slip
problem even for current CFD modeling, even with surface bridging the cavity edges. sthe flow scheme

unstructured adaptive grids and many methods are in for Phase 2 and the coordinate systems are shown in

development to solve it. A new approach to slip

surface-body interactions is discussed in Ref. [7]. To Figures 1 and 2. The coordinate system ()XYZ is

develop a transparent model of the physics as well as attached to the unperturbed slip surface, as shown in

rapid turnaround prediction method, the slip surface Fig. I. Therein. the OX -axis is directed along the
is assumed to be a plane of zero potential. This freestream velocity and OY as well as OZ are
simplification of the boundary-valued problem

respectively vertical and spanwise coordinates. Thecorresponds to a first step of a global iteration y
procedure.7 A similar technique was used for coordinate system oxVz is attached to the body
analyses of subsonic store separation and gave center of gravity (CG) that moves vertically with the
satisfactory agreement with experiments. 8  velocity V,(I). The ox'-axis is directed along the

In Section 2, the inner asymptotic problem is body symmetry axis and the ov and o: axes lie in
formulated. In Section 3, analytical expressions for
the flow potential in Phases I and 3 are obtained in in
the form of rapidly converging series. In Section 4. a coincides with the direction of OZ - axis. The axes
conformal mapping is applied to obtain the solution ox and Oy are inclined with respect to the axes
for Phase 2. These solutions differ from known
results such as"1 by new terms related with three- OX and OY at the angle 6e(i): they rotate around

dimensional flow effects. In Section 5, the outer oz -axis with the angular speed (0(i-). Along with
asymptotic problem is analyzed. An equivalence rule

sir 9 is fthe Cartesian coordinates we use the polar
similar to formulated. Matching conditions and
a general form of the outer solution are determined. coordinates. r and 0. specified as

Different drag components including the wave drag. z = r Cos0. y- = r sinG. (I)
cross-flow drag, viscous drag and base drag are
discussed. The analytical results are incorporated into The dimensionless variables for the inner asymptotic
a numerical algorithm solving the 3-DOF trajectory region are determined as
equations. In Sections 6, numerical examples of store
separations from cavities are presented and discussed.
It is demonstrated that the theoretical model can Y Z ..

simulate such complex phenomena as the re-contact X = :" =- Z = x = v - -,

and ricocheting. 10 a,, a. l-

D Do Lt H,,
z - :do . ... :Lo . ..... Ht ...32: 0 =-:I, 0

2. Inner asymptotic problem aC a0  a, ,IO

Consider a slender body of revolution released from U i V '>, 6()U .
the top wall of a rectangular cavity at an initial instant I : a V, - (t (2)

1 0 . The initial angle of attack a'0 . vertical speed

V(0 and angular speed 6o, are assumed to be small,

Neglecting terms O("2 ) and assuming that the where X,(I) and Y,,() are streamwise and

transverse coordinates of the CG are constant, in vertical coordinates of CG.

particular. Z, (t) = 0. we obtain the relations The flow space consists of the cavity region (above

the slip surface) and the external stream region
(below the slip surface). In the cavity region. the

X, (1) + x, Y = Y, () + y- xCa. Z z, (3) potential. V and flow velocities are defined as

3



(D+ =aoý(D+= (52UJoOD, 4)-+ =6V1/v +1 , Y(X,Z,t) = H + asinO. (7a)
- 52, +. - 5 + 4)•+, = g-U•w+, + ct+_v

7. U r=a, Y> >Y," v, = +sinO, (7b)

11+ V, V+ V+ W+ = . 0
SY z (4)

r = a, Yh < Y1 "V, a, + Vsin 0,(7c)

Hereinafter, the superscript "-" denotes flow H(X,t) = (1)- a()X,
quantities inside the cavity. The parameters in the
external stream region are expressed as , H

- -,u ,i ±V.(XO (1 =t) - (t))
[I =ujl 52(A 0 ' + u4$ -D = (5U2,v(D., :ý[ + 6'A. + 141 D,=5, -: V v

(D =6W. w, u = D., v = $D w = (D (5) where v,, is flow velocity normal to the body surface
and H(X,t) is the distance from the body axis to

where the function A0 (X. t) is determined from the plane Y = 0. Equations (7b) and (7c) correspond

matching conditions with outer asymptotic solution. to the body surface inside and outside the cavity,

The pressures/p and P + are determined from the respectively, and V,.+(X,i) and V,.(X,I) are

unsteady form of Bernoulli's equation effective velocities of the body cross-section. The slip
surface is approximated as a plane of zero potential.

In the inner asymptotic region, the side cavity-wall
p P P. -E I , +2 V effect has the order E2 =(do/ [)- and can be

U Lneglected. In the first step, the problem is

decomposed into the following unit problems.

P - _____, - 1. Thin body of revolution drops from a flat rigid
wall: a) to fluid at rest; b) to a stream.

IV2 1722. Thin body of revolution drops: a) in fluid at rest
-(A 0 ± + D), +(A o + q)\ + I + .(6) toward a flat slip surface of zero potential; b)away a flat slip surface of zero potential in the

free stream.

To O(5'2), both potentials are harmonic functions 3. Thin body of revolution crosses a flat slipTo Q3?) bot poentils re hrmoic fnctonssurface of zero potential.

in the cross-sectional planes. Accordingly, we can

introduce the complex variable ý, the complex Problems la and 2a allow us to find solutions forPhases I; Problem 3 corresponds to Phase 2; Problem

potential H(";X,t), and the complex conjugate 2b gives the solution for Phase 3; Problem lb is

velocity W(C;X,i) as relevant to external store separation. Using the
multipole expansion technique,'0 we solve Problems
1, 2 in the form of Laurent series and obtain
coefficients up to the fifth term. This allows for

H(•:X,t)) = $ + "i' explicit calculations of the flow characteristics with
dli appropriate accuracy. To solve Problem 3 we use

W(-;XI) - =w - iV, •= Z + iY conformal mapping."-" '-3 Some terms of the solutions
W ) d7 of Problems 1-3 are known, and we use them for

cross checking. The other terms, relevant to three-

where TP(X. Y. Z,t) is the nondimensional stream dimensional effects have not been determined

function. The boundary conditions on the body elsewhere.

surface Y = Y, are expressed in the form 3. Solutions for Phases 1 and 3

Within the framework of slender body theory, the

complex conjugate velocity W(X,,.1) is harmonic

4



function in the cross-section planes. The body cross- a- C
section profile is a circle of radius a(X) centered at W = + ill)"•-

the point 4' = ilI(X.i). This circle moves with the ,=0 (4'-+ii)"Y'( J
vertical velocity iV (xt) in a uniform stream or with H -M, [In(- iH)± ln(4' + il)]-

the velocity V,*(x,t) within cavity. Let the wall or - al" +--'-'--9

slip surface coincide with the plane Y = 0. For half n , L ( ''f) (n + iW)" I
planes containing the body, we have the following C-,,- = A-,-] + iB_,_•, A_2 n = 0, B,,_1 0.
problem:

Here the upper (lower) sign corresponds to the body
Find an analytical function W(X,&.,) that motion near the wall (slip surface). Functions

satisfies Eqs. (7) for a specified normal velocity C_,_ (X.t) are coefficients in the Laurent series of
on the circle and has zero real (imaginary) part the complex conjugate velocity at the points
on the slip surface (w all). ; = W velocity and B h_, points4' =iH(X,t);:A_,,_, (X.i) and B,, .. (X,i) are

The analytical continuation through the wall and the their real and imaginary parts. They are found from

slip surface gives W(O) W(4') and the boundary condition on the body surface. For a
body dropping into the stream from the wall or slip

W(ý') = -W (47) respectively. Here, the overbar surface, this condition leads to the infinite system of
denotes complex conjugation. From these conditions the linear algebraic equations
we reduce the half plane problem containing the
circle to the problems for full space containing two A, a, B = B_ = V1 +
identical circles located symmetrically with respect to
the plane Y =0. The flow scheme in the cross- ±-qJ(-1)"'q2-(A-,,_, +qB_2m,_). (10a)
section plane is shown in Fig. 3. The method of +

multipole expansionsT° is more appropriate for the
analysis. It allows us to express the solutions in the A =,2 2 -1)" X
form of Laurent series and obtain relatively simple -" (2n-l)! 211!
analytical expressions for aerodynamic forces and ( 2m+2n
moments. As contrasted to the problem analyzed in x q+ 2mn + qB-2n - ' (10b)
Ref. 110]. problems treated herein are three- 21 + I
dimensional. This leads to new effects, which has not 1,10
been previously studied and motivates us to represent ) + (-)' "q2"j (2ni + )
details of our analysis as well as discuss the new (2n)! _ 2rn!
results. x 2m+2n+l )

Using the Cauchy formula we obtain the integral q - 2)n + 1
equation for the function W(X,,',i) "

Here. q(X.I) = 0.5a(X)ilH(X.t)I <_ 0.5. If the

I(X.4'.,) + + body is a cylinder or it drops in fluid at rest (inside

4' -iH-s the cavity), then A,=a, = 0 and the other

+ r W(-iH + )dv coefficients are determined from a system of
+ I (8) algebraic equations similar to (10). In this case, these

2i 4' + ll- -s equations coincide with the system formulated in
Ref. 19]. In a particular case for a store near a wall at

Expanding the kernels into Taylor series, using the zero angle of attack the obtained solution (10)
analytical continuation and flow symmetry we obtain coincides with the explicit solution.22

the solution of this equation and the complex
potential in the form of the series To accuracy O(q8 ) (where q <_ I / 256) the

solution of Problem lb (for the circle dropping into a
stream from a rigid wall) has the coefficients

5



B = V,,11 + q2S,(q)]+ qaoS2(q). (I a)

A_= q2 a., (I+2q2+5q4+14q6)+W, + -W"

+ 2Vq(I + q 2 + 4q4)], 1 lb) where W,"+ is the common part of the both solutions

S,(q) = I + q2 + 3q 4 + 8q 6 , (I lc) corresponding to the circle motion in the unbounded

S2(q) = I + q2 + 2q4 + 5q6 . (lId) flow.

In the coordinate system oxyz attached to the body
For a fluid at rest (Problem Ia), the coefficients are

CG. the potential and pressure on the body surface
given by Eqs. (i1) with a. = 0 and Ij. replaced by relevant to Phases I and 3 are represented as

V,÷. For a circle dropping in a stream from the free

surface (Problem 2b) we obtain C1 = -(2B - V )a sin(O) + •, (14a)

B = V, I-q 2S(q)- qa, S4 (q), (12a) , = -2a,{ A- cos(2n2) +

A 3 =q2[a(I-2q2-q4-4q6)++ B52,sin[(2n l)I} u I do
2 4 - " - i [ 2 + 1) {14b)

+2qV,[l-q2+q4, (12b) 2n+! a (0

B-4 = q:[a.(l-3q2 -3q4)+ p= {a(2B-V), [(2lB-V,,)aj, a-

+ 3qV(I-q 2 - 3q4,jA (12c) -2(B-V)a}sinO+ 2Bu, cos9- u1

A- =-q4[(I-4q2 - 6q4 )+f 2

+4qV,01-q2)], (12d) -0K,-0+ a, -2B 2 cos2 0-

S3 = -q 2 -q 4 -2q6. (12e) 2- Ao, - Ao,,. (14d)

S 4 (q) = I-q2 -3q 6 . (12e) p+ = a(2B- V+), sin0+ 2Bu, cos0-

When the body drops to the slip surface in an u2-V42
immovable fluid (Problem 2a). these expressions -f -b, -2B

2 tI cos2 0. (14e)
reduce to 2

B = V,,+ [i -q 2s(q)1 S,(q) q2 -q 4 The dimensional forms of the local, L, (x,1), and

Al J1,+[l - 3S5() - qq 2  - q43a) total, L(i), lifi forces as well as the pitching

A_3 = -2V,+q3( q - 2q4), (13b) moment, M(1).are

B_4 =31/,+q'4(l-q2 -4q•4). (13c) 2r

L, (x, ) = -a Jpsin OdO, L(t) = fLj(x,t)dx
It is seen that the shear-layer effect is proportional to 0
first power of q for body motion in the stream; i.e.,

it is stronger than for the body motion inside the M(t) = JL,(x.)Oxdr
cavity. This is due to the three-dimensional effect I
associated with the axial variation of the body shape

(a, • 0). In Phase I (body drops in the cavity), the Evaluating the pressure from Eqs. (14) we obtain the

complete solution is expressed as a superposition of following expressions for the cross-sectional lift force

the two solutions: W,'1 (Xf .,i) (corresponding to (in the case of the body dropping inside the stream
and in the cavity)

the body which drops from the top wall) and

(W,.(X,$,t) corresponding to the body which j a[(2B-V,)02 a(29- V)
drops toward the slip surface. This composite L, =-Tr- +a -........

solution is a-C at

6



- 2(B- V )aa + 2BAa - + IS+ Z(A_-,,,-, - A-2,,_:,)B_,,_-, a(x)d~c, (I7b)

- 2aX (A-2,,- - A 2 " -} (15a) n=) I
fl-ii

n a(2B _ - V'+) +2 I M1(t) = VK - 2a(x,)x,[ZB(x.,,t)- -, (x.t)]+

Li=-raa a t 2BA - ,

1 ±27fJ[(B - BA_- +
- 2Z(A-,,,-, ,,,_)B 23,,0- . (15b)

+ Z(A 2,,_ -A-,,,)B_-,, a(x)xdv,(17c)
Integrating these equations along the body axis we 3)B
derive formulas for the lift force and pitching

moment. If the body is inside the cavity, then ,: (t) = t [2B(x.i) - V. (x,t)a2 (x)dy,

dV: (1)
L'( d + L+ (t) t "It o(0) = T J[2B(x,It) - V (xt)Ia- (x)xdx.

tit, (0)1M' O ~ o+ A) + ,
M + -1 1 + M 1+ , (16a)

tit The first terms of (16a) and (17a) for the force and

L'(1 moment are due to the fluid inertia. The first terms of
L7 (i) =-2• [B"A_ - (17b) and (17c) are associated with the pressure

gradient in the stream along the body axis. The
1- integral terms represent the effect of the flow

-Z (A2,, 1 - A-,,, )B2,,_21 a(x)d~c, (16b) boundary, which vanish at great distances from it.
,I Explicit dependencies of the force and moment on the

trajectory parameters are found by substituting into

M,+(/) -2)T f[B+A-31- (16)-(17) the coefficients B(x,t), AD2 ,_ (x,I) and

S.... B_,,, 2 (x, i) given by (I I)-(13). These expressions

- A,- ,)) ,2 a(x)xdx (16c) give the explicit dependencies of the lift force and
pitching moment on the trajectory parameters, CG

speed V,,(I) . angular speed (o(l), angle of attack

V.+ fr[2 B +(xt) -V,(x.t)1() d, (16d) a(t), and CG vertical coordinate Y,,(I) and allow

"I us to develop a fast numerical algorithm for solving

) + + -V tthe trajectory equations.m = ir [2B+(x,t)-V (x.t)Ja(x)xdrc. 16e)

4. Solutions of flow equations for Phase 2
(body crosses the slip surface)

If the body drops inside the stream, then we obtain In Phase 2, the slip surface Y = 0 divides the body

surface into three portions; typical configurations are
dVJ_ shown in Fig. 4. Depending on the angle of attack

+d and the submerging depth, the nose
M +(X 0 < X < X, ) or/and the base portion

M-()= - )+ M (I). (I 7a) (X, < X < X,) is located in the cavity or/and indt
2\r, 1 J\ the stream; the solutions for these portions are

-7(i) = -na(xj)[2B(x,")-V,'(x, ]+ presented in Section 2.2. The third portion
BBA (X'1 < X < XA2 ) is partially submerged into the

+2 J[(B -V)a -A.+stream.

7



The flow schemes in the cross-section planes are to the upper half plane (as well as the upper body
shown in Fig. 2. The body surface intersects the slip portion to the upper side of the interval I-b+, b+] ) is
surface at the line Z = ±c(X.t) = +asin ,/ obtained by replacing = I- n by n in (18).

where f8(X,t)=arccos(H/a) is the angle
between the body and slip-surface cross-section In the transformed space, the explicit solution is
contours. The upper portion of the circle moves with found using Keldysh-Sedov formula." After

the vertical speed V,+(X,t) in the fluid at rest; the integration, the complex conjugate velocity and
potential in the stream region are represented as

normal velocity on its boundary is v,, = 4 sin 0.
The lower portion moves with the vertical speed Wa XI)--V I- a-

V, (X~I) in the stream so that the normal velocity 2 -b 2 ( +)q)

on its boundary is v,, a, + V, sin 0. Thus. in a, 0or h b -sIds

each half plane separately we can formulate the + , f (s _ (19a)

problem: iU a2 -bh2 00( _t

Find the complex conjugate velocity I(00,X.,)=-iV,_(a)- 02b2/

W(X,$,I), which provides a specified 2iaar -b 2  q(s)ds
normal velocity on the corresponding circular -- b2 -s2 (s-) (19b)

arc and has zero real part on Y = 0, 1Z[ > c. 7_

y/s )=arcig (S I 2)
Solutions are obtained separately in the cavity +(sn) Irg " )l
(Y >0) and stream (Y <0) using conformal
mapping of these regions to the flat plate exterior in The first terms of Eqs. (19a). (19b) are due to the
the complex plane a = +iq (see Fig. 5). The body motion and angle of attack. They are a

mapping of the stream region has the form modification for the flow over a log given in Ref.
[13] for slip line boundaries instead of walls obtained

R" (or, X. t) + I by Malmuth2 - for the flow over a portion of a circle.
=f-J(0 X,t)( = c The second terms arise due to the body shapeR" (0, X, t) - I variation in the streamwise direction. For n > 1/2,

n(X,1) = g--t8, R = a +b the flow velocities have a singularity of the type

__ a - b (4-2 _ 
2

)1-l1.I or (cr2 - b2 
)'2'l at the points

c 0 a (a02 - b 2 X-R" - 1)2 where the free surface intersects the body. Since this
n' hif 4c 2R" singularity is integrable, the lift force and pitching

moment are not singular. However, local asymptotic
(b- - •2 )D•G, n) analysis near these points is needed for the next-order

-=0. 4 <h 4c-Q" b) approximations.

p2,, - i On the body surface, q =--0,11 < b, the flow
S=0 potential and pressure are expressed as

Y(-) ,=o =-2c Dsin an , (X, A, n) = (D' + (

D= 2Q" cosnn lO=,Q +b 1), = snn( = n-+' _ 2nQ"(A)
(T 2 b aa1 , I -A' D(An , n)2sn a)e

In the a -plane, the submerged circle portion is = =-2aa (20a)

transformed to the lower side of the interval [-b.b]. p(x- A. t) = -Ao, - Ao, - (D, - (D, +

The mapping f f (or, X,1) of the cavity region

8



2A2( _ and (D' (x,t) ,are expressed as+ 22h !- ~
2 16nI 6 4Q2"(A) I

(Ia A2( 2)D2 (An) 2 2

_a + 1Qn A) (A. n) + (Y, Y( z) dz + b 2z dý

2rQ 2"(2) 7 a- _f
, (I-3. )D2 (A. n) ..

4n, 4.72n.(A.i + (,,; 20)- - n-,) + 2sin 27n -
b'• ~~ v (s)dIsls _]

2 = E(A,n) = , ;,r(2n2 + I)sin 2 rn
S- S-.!6n7 I'

I( )�D~sini1s(s)d _ .) (20c) n - :(c),(n) t-2r(l - n)

where E(A. n)and I(A, n) are the principal values q),(O) -; I- - r . (23b)

of the integrals and the potential (c1)(x.2,i) and

(D,(x.A,t) are induced by the circle vertical *(xt) , - in) + sin 2mn -

motion and axial body radius variation, respectively. 2
The flow potential and pressure on the body portion
inside the cavity are obtain from Eqs. (20) by _r(2nm2 + I)sin 2 Mn]

omitting the terms proportional to a, and replacing 6j"12 (23c)

n by in = I - n. As shown below, the singularities

in (20)-(21) at n -- 0, n -41 and A -4+±1 are i -- l': (I+(x,I) z-2Vkia 2;(I - II)

integrable.

The local lift force L,(x,i) acting on a cross- I O V t (x.i) - ( -Jaz I |-{. (23d)S• 6

section of the partially submerged body portion,

X1 -< X -< X2, is determined as The second term of the mean potential is

L,(xt) = Ip(xz,I)dz-- (x,zt)2 = 4 n

_ (_1P-x).+) 1a x eo(n) - nll + 7r(I - n)ctg7nnj (24a)- P(x,1). (2l1a) 2

P1x) - a I(X. 1) 2p a g(X, ) + (2(l) = 0; (l, (0) = -2(2 In 2 - 1);. (24a)P(x, 1) =aV,2•(.t - aaP (, t)

+ aa, Vf. I2(x,I)- V1 p t (x,t). (21b) The function e(,(n) is analyzed in Appendix B and

shown in Fig. 6; it can be written as
Using results of Appendix A, the mean values of
potentials, = Q"(s)ds

eo(n) = nsinonn) f Qs(
1D(s) I-s2

D(x. ) = JI(x, z,t)dz -

-1

= a [2,, 1 (n) + a, (D)2 (n)] (22)

9



n e 2 (1 - n) is given in Appendix B; its plot is shown in Fig. 6.
n-i" e 8 = 8 The third nonlinear term ofEq. (21 b), P,, (n), is8

-n 0o: eo In 2 -7- 2, n•, 2 ia 2) A )I( , 17 --d_ l.,,(1 D(/,in) 12 naz
12 P12=4n3 I Q((A) a) dA=

The first nonlinear term of(21b), P, (n), is 1
determined by the expression M - [

P, =Jsin 7m I - \ I A(I _ Al )D2 az + 1 + cCOS 2(7rn) (27a)

8' Q 2n a4 6

=sin 7{n I -, (25a) P12 0
6n'

P,(M) I -1 P,(0) -r(T2-6) (25b) PI 2(0)=-3 (41n2+2 - 2 " (27b)

2 18
The function

•..rQ" (s) In Q(s)svds
The second nonlinear term of (21b), P,(n), is e2(n) =nsin(n) 2
expressed as _' D(s) I -s

if ~(i -n)

j A( 2 )D 2 j2 OZ l n --> :e 2 = 12

P2 =sinu lr 2n Q"(A) I £ d [-2"]

"" na--O:e2 12

=2sin 7m 1+ 2 1 e (n) -

n is given in Appendix B; its plot is shown in Fig. 6.

The last term of (21b). P4 (n). which corresponds
n (I n)ctgrnl-4 e26a) to the nonlinear pressure component on the body

- 2 . n•' , (6a surface inside the cavity, has the form

1 7 3 ;(3 -41n2). (26b)
2 2P = sin{ I - +,-,,(l+2 , gmn

The function I T i(iT2 -6)
, ,0) 71- . P, (0) (28)

2 18 (28)

e,o(n) = n' f (. , Due to the first linear terms of Eq. (21a) the local lift
-1-1 D(s)D(t)[I -- s7-"i - -(- s) force is singular at a small submerging depth, when

n :n --> 1,-/'-

48 ' L ,(n - 1)- 0. O- - a l
n~~ 0 o 1[2In 2-1- 7 (3 - 4In2 •21a 2 7r( an + n)-2 V.V,- a,)

= + 4I2) a 2a
n- : 4 6 a/ x r(I - n)

I0



This result is consistent with the two-dimensional Q)
theory. 24 However, there is the additional term, which £Xf A ± a(xk )=Y, (),x, (1) i =
is due to the axial variation of body shape. This dt
singularity leads to impulsive loads at the beginning -
of the body submergence process. Nevertheless, the A , k = 1. 2.

body momentum is continuous; it is proportional to a ± a, (x,)

the potential (I> i- n. Note that this representation of the lift force and

pitching moment allows us to avoid the singularity in
The foregoing relations allow us to evaluate the lift the critical points on the lowest body generator
force and pitching moment acting on the body in the corresponding to n = . On the other hand, this
transitional phase 2, when the body passes through
the slip surface. In this phase, the total lift force and singularity is integrable since I - n - x, -x
pitching moment can be expressed as the three terms
superposition, namely,

The lift force LP(t) is determined by integrating the

L(t) = L (t) + P (t) + L- (t) , local lift force over the body portion totally inside the
M() = M )+ M () + M-(). cavity. This term is similar to that given by (1 6) plus

the additional sum accounting for the critical point

± d motion. The lift force I,-(/) acts on the body portion
the lterms L21) and r Mtespondt inte gralwecaton of being totally in the external stream. Its expression is
the local lift (21) over the interval [xl~x21 . We can similar to (17) plus additional terms due to the critical
express them as point motion.

dlK,Q (t) Extracting the inertia term, we express the total lift
- + L•(t), force and pitching moment acting on the body in

di Phase 2 as

+U d V,,=.. _ ~~()+ M•(t), dV•(t)
diL(t) di + L(/)I

1i - JIx, Iodx + 1 1 [(D'(XI-(DX.I1)]+ M'(1) = _ dw (t) +(29a)
di

+ (D(x 1 .- (I - X",)VD(X 2 ,1) X 1,(D' (X7I -L, (t) = L () + L± (t) + L (i).

M,(t) = MA (t) + Mi (1) + MA (t). (29b)

M J= P(x,t)xd± + J:1(x.t)d1 + V ý(t) ( + =+V;()
,(i + (0: +o,, )+ o§().

, -X , , D , , + , - .( 2 9 c )

I /1 This form is convenient for numerical solution of the
- x -2 , )•(x, + X1,+(D(X•1-, trajectory equations. Similar equations are used to

analyze subsonic store separations.8

5. Outer asymptotic solution and drag
components
The form of outer asymptotic solution is defined by

Jo,•(1) = I •O~x,/)-d+ (x,i)xdV. .the form of outer limit of inner solution.4 The outer
limits of the solutions (9) and (19) for infinite span
cavity corresponds to the dipole distributions on the

The critical points x,(/), x, (1) and their speeds are body axis

solutions of the equations

II



Da(X, t) Karman-Guderley (KG) transonic small disturbance
(Do sin 0. axisymmetric flow boundary-value problem4 

_117

r

b2 - s vl(S)
For Phase 2 D,1  b 2 fr2 vIa Y

)r - I (S) dK -for + 0 1) + • =0
I -(+ aX aX• 2 O y 0?

Phase 3 Da,(X,t)=2a(aH+B-2 ). This

situation is similar to the flow over a thin wing 4'9  Y --> 0x ( -, 0; 0: (32)
and higher order approximations will be considered 27r
to find correct outer solutions and wave drag.
Analysis shows that the dominant terms in this limit The arbitrary function of integration in the inner
contain unsteady and finite cavity span effects.7 The
objective of this paper is to calculate the drag
components rather than to describe a successive compute surface pressures wave drag, is determined
procedure of asymptotic expansions. Although from solving the KG equation in (32) and imposing
unsteady terms give significant contributions to the the matching condition

outer asymptotic expansion their contributions to eq. 1
drag components relevant to fast time scales are AO (X, t) = li (P(Xe.. - ' In?1 (33)
small. 7  Therefore, the dominant wave-drag 2ff _

component is due to the quasi-steady term related to
the flow over the equivalent body of revolution with Now, the wave drag can be calculated by integrating

the cross-section area Aeq (x, 1). This corresponds to the pressure over the body surface. In Phase 2, the
drag force coefficient is represented as the sum of

the source distribution on the body axis four terms

Q,,q (x, 1) aA= q / ax. For Phase 2, we obtain 7

Q,1 2c do sin in F-2A'(x) ,( (pn-U rf 21I

nd. =2 0eZ = C,. (1) + CIA(O) + '1(t) + +(',,(). (34)

-6~)~, n2 J(30a) Here the friction drag coefficient, C'))). (0), is found

and for Phase 3 by integrating the local friction coefficient
C, (X, Re,) over the body surface; i.e.

= 24[H(x,t)A'(x)-A(x)B 2(x,t)], (30b) D.1C I V -( t ) = ,X 1 2 1
p•,U3rg 1,e2I

where A(x) is body cross-sectional area and 1

A'= dA / dx. = Jkc,(XRe,)dX, (35a)
J0

For analysis of the outer asymptotic region, we X =X - X0, Re, = ReX[I - U(I)], (35b)
introduce the scaling

X/X Y(5 2( fJ Re = PU•I°, (35c)
= - ; Y'= •Z = Q' ] 3a) P_10 to io' to

p p where U(i) is horizontal body speed. The

. U 5 x (31b) coefficient k is indicative of the friction drag being
p~US appreciable only on the body portion submerged in

C)IU" X + g2(P(X,Y,,Z,1;K), (31b) the flow external to the cavity. For a partially

submerged body portion. ( X 1 -< X < X 2)

where K = (M2 - I) S? is transonic similarity k = #/3;- for the totally submerged portion k I
parameter. The outer potential (9 is a solution of the for the body portion totally inside the cavity k = 0.

12



Because c, is a weak function of the Mach number three parts: the first is inside the cavity; the second is

at transonic speeds. we use the Schultz-Grunow partially submerged into the outer stream; the third is
colatiaoni fped Iincompressible Schul truo totally submerged. Accordingly. the cross-flow dragcorrelation for the inopesbeaxisymmetric coefficient can be expressed as

turbulent boundary layers.2
5 Accordingly,

c, (X, Re,) =c, (Re,) a 6)(x)dx , C _( I pU 2 =
L o = s 2 (CON + C 1 ,P2 + C ,/13 ), (38a)

c, (Re,)= 0.37( ig Re , ) 2 84 . (35d) " ,-A
(',,, (t) = .[c,1 (x, )'(. x

The base drag coefficient (',,,(t) is found by .....

integrating the pressure difference, -h i p , over V2 (I 2 (x, I

the body base. It is expressed as a function of the (,)1'2 f

Mach number2 ' XI

C(,,f,,, (t) = Jc, 3 (x, i)A'(x)dx. (38b)

2, [I - •(M)], (36) +

where M = M [I -U(1); a, is base radius, and ++ +9 Vh f (38c)0

Pb,(M) p , / P. is non-dimensional base ) 1

pressure. The function p, (M) is shown in Fig. 7. c 2 =(I) - I2 j-'(+ jd,9 +

In Phase 2. the slip surface leads to new physical [V 2_+
effects. If the body base is not fully submerged into + J2 + V- - . 38d)
the external flow. then the base pressure f19} 8

p (M) = 1 due to the boundary condition on the
slip surface. Accordingly. the base drag coefficient is C( = +d,9 +

2,7f

The wave drag coefficient COW(1, M) is expressed + [ wI2 +v2 12 . (38e)

in terms of the function A (X.1) as 0

C,,, (1) =-2c' af" + "O AIAdx (37) The first term, c,1 (x,t), corresponds to the body

V- Of j ' portion being inside the cavity. The second term.
c,,(x,I). corresponds to the partially submerged

The numerical code of N. D. Malmuth is used to body portion and the third component is the cross-
solve the KG equation and calculate the function flow local drag of the fully submerged body portion.
Ao(X.t) at each time instant in a pseudo-steady These drag components can be represented in an

approximation. analytical form.

Consider the partially submerged body part. In this
The cross-flow drag coefficient C,,,, (I) results from case, the local cross-flow drag coefficient relevant to

integrating the pressure component without terms the partially submerged body cross section is

including A, (X, i). The body is subdivided into the expressed as

13



(a 7T ~ 8)T
cy2 = - + a )a(xt) + V,2 N,(n) + N 2 (0) = 2' N2(0) = --

l( at aX) 2 3

+ a2N 2 (n) + V~aN 1 2 (n). (39) (42)

The function e,, (n) is given in Appendix B; its plotThe average value of the potential over the cross-

sectional body contour, ýt_(x,t), is expressed in the is shown in Fig. 6. The function NI2 (n) is

form Na h (I - z')D 2 n Z
b a.x z d12 'a f 4.22nQ /Anu d.=

f t NX 1) a 4 Q =n o
-b =4 l-cosmn +

= a,(T2 (n) - V,• (n), (40a) ;'n )nsin/7n

= 4 sin {eo -e n [ n)cI 'n + CosI [ 2e2 (n)- 172(1 +2n 2

2(;,() =4 - 0, N 12 (1) = )r; N12 (0) = (41n2- 1). (43)
2) 3

(40b)

(1) 2( sin e7m (n), The functions (ik 0(n), 1•j(n), N(n), N,(n),
n and N17 (n) are shown in Fig. 8.

(b2 (0) 4n7e20 (0); ') 2 (1) = 0. (40c)
Using the results of Section 3. we express the local

The special function e20 (n) is given by the double cross-flow drag coefficient relevant to the submerged
The secialbody portions in the form

improper Cauchy-type integral (see Appendix B); its

plot is shown in Fig. 6. The function N,(n) is c, 2 = a2 + 2B 2 - V 2 +

expressed as +21 (A -2,-, + B52,n-2" (44)
1 ýIhAX ( _ '12 l2)D 2 1 Z " f=1

N a 16n 4Q 2" J f4 This expression is also valid for Phase 3. A similar

7 2 _relation was obtained for the cross-flow drag
22n6 -sn 2nn2_ t(1 - n), associated with the body portion located inside the

6n2 2n cavity.

N,(I) = ; N 1 (0) = - -2). (41) 6. 3-DOF trajectory analyses fora store
2 3 3 )separation from a cavity

The 3-DOF trajectory equations for a store separating

The function N 2 (n) is from a cavity are written as

N, =f[Ii1+4( I _'2) 2(An) IZ dýff dV dcLw- cM ()
12a ;+ 2Q2;) di = dt ) ' di t

4Ncos2 m e sin n 2a =cc= T(2 - n) + n i e 0 -2 n) l
(45)

- [I + f(1- n)clgn]}.
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go2 ;TPo5,T2 varied the body diameter at fixed body length. The
= 

0U"c 1  r , c, . dimensionless cavity width do is also varied inversely
1 proportional to D.

where tih and J are body mass and moment of Figure 9a illustrates the body thickness effect on time
inertia, respectively; the lift force L and the histories of the vertical CG coordinate. In Fig. 9b. the

CG trajectories are shown in X-Y space. The pitch

pitching moment MA, (/) are determined in Sections angle and the vertical speed temporal variations are

3 and 4; the drag force coefficient is determined in represented in Figs. 10, I. It is seen that the body

Section 5. To integrate the two first equations of (45) dynamics strongly depend on the thickness ratio. For

the sixth-order Runge-Kutta scheme 28 was used. D-Do, the body separates from the cavity in a

These relations provide important lumped relatively short time period. For DI21)o, the body is

parameters that can be used to correlate and almost stopped near the parent body for a relatively
interpolate CI-D solutions as well as design long time (until the pitch angle is negative). The total

experiments. The most expensive computations are vertical displacement is only about 4D. During this
associated with the wave drag. which requires phase, the body drifts downstream and departs in the

solution of the KG equation. To reduce the run time, horizontal direction from the initial state at
the Adams fourth-order explicit method28 was used X - 70D0 which is larger than four body lengths.
for solving the third equation of (45). The analytical The average pitch angle and the pitch oscillation
results herein allow us to simplify dramatically the frequency also strongly depend on the body thickness
numerical procedure of integrating trajectory ratio. The frequency increases approximately
equations. Since for bodies of considered shapes the proportional to the thickness ratio. For D 31)(',
numerical solution of the Karman-Guderley equation ricochet occurs. The body returns to the cavity with a
converged rapidly, with a total run time for relatively small downstream displacement. The pitch
calculating one trajectory being about one hour on a angle monotonically grows with small oscillations
Pentium-166. Without wave drag calculations this since the pitching moment is too small to overcome
time collapses to about one minute. In future pitching due to the initial angular speed.
computational implementations we intend to improve
the KG SLOR solver and use fits to accelerate this Figure 12 illustrates centerline trajectories for bodies
part of our prediction process. of different diameters. The body of 1) 31)( returns to

the cavity. The body of D =2Do stays near the parent
In what follows, we analyze effects of the initial body for a relatively long time. During this time, it is
conditions and the body thickness effect on the store projected downward from the cavity, with pitch angle
trajectory to illustrate the predictive method. In our decreasing. The body of D )O enters the external
calculations, we use the ogive-cylinder body B4N2 stream almost immediately, and its trajectory weakly

tested in the subsonic wind-tunnel experiments.8 depends on the parent body.
Physical properties of this body are reported in Ref.
[8]. Calculations were performed for the freestream The second series of calculations are shown in Figs.

Mach number M, = 0.999 and the Reynolds number 13-17 to illustrate the initial vertical speed effect on

Re= 6.4782755.106'. The initial location and the body trajectories. Calculations were made at ao =

horizontal velocity of the body CG are 60. oat = 0 de./s Y, = 2.54 cm and the two near-
X 0 = U0 = 0. We selected this slightly subsonic critical values of the initial vertical speed: V0 = 0.508
Mach number to maximize the wave drag effect to

better understand its impact on the horizontal m/s and 0.762 iu/s. The plots of CG histories (Fig.

separation trajectory. 13). CG trajectories (Fig. 14), and centerline time

histories (Fig. 17) at V, = 0.508 m/s indicate that the
Figures 9-12 demonstrate the body thickness effect body ricochets from the freestream and re-contacts
on the trajectory characteristics. Three bodies of the parent body back of the cavity. When the body

diameters D= Do= 0.953 cm. D =2Do, and enters into the shear layer. the pitch angle grows
slightly (see Fig. 15) due to body inertia. Due to a

D= 3D 0  are considered. The initial (release) negative pitching moment, then a decreases with a
conditions are V, - 120 m/s, 0),= 200 deg/s and small angular speed. This trend is too weak to

decrease the pitch angle to its critical value (at which
'= 00, Y... 2.54 cm. In these calculations, we
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the separation becomes possible). For V. 0.762 problems that were solved analytically for practically
m/s, the body stays near the shear layer for a long significant cases. The analytical results substantially
tmes therbody stays netrarthes sheard ayr forg aong. simplify solving the store dynamic equations. They
time period and penetrates downward a long distance. were used to develop fast and robust numerical codes
In this case, the negative angular speed is high to predict 2-DOF and 3-DOF store trajectories. The
enough to decrease the pitch angle below its critical coptinapckgwsveiedbcmaros

valu, ad te bdy epaatesfro th caity Fiure computational package was verified by comparisons
value, and the body separates from the cavity. Figure with lIT subsonic wind tunnel experiments. An
16 shows that in both cases the vertical CG speed important aspect was the similarity of the near fields

grows to a positive value. For V0 =0.762 m/s, the for the subsonic and transonic cases. Parametric

gravity force is strong enough to cause a store studies of store separation into a transonic freestream

departure from the cavity, whereas for V0 = 0.508 emphasized critical regimes relevant to store re-
contact and ricochet.

mis this force is too small for separation.
The body separation process was treated as a

Figures 18-21 illustrate the initial pitch angle effect sequence of the three phases: in Phase 1, body is
on the trajectory behavior. The calculations were inside the cavity; in Phase 2, body crosses the shear

performed at Y.- 2.54 cm, V0 = 0.508 m/s, 0)o = 0 layer; in Phase 3, body is outside the cavity in the
outer stream. We showed that for inner asymptotic

deg/s. The trajectory characteristics are very sensitive solution the cavity side-wall effects could be
to the angle ao, The latter may be induced by the neglected. This allowed us to decompose the inner
release mechanism and/or aircraft maneuvering at the problem into simplified unit problems, which was

release instant. The variation Aao0 = I0 leads to a solved analytically for the slip surface treated as a flat

substantial perturbation of the body trajectory: at plane of zero potential. Analytical solutions of the
dominant approximation problems relevant to

a0 = 5 the body separates from the cavity, whereas separation of a thin body of revolution from a

at a0 = 6 re-contact is observed (see Figs. 18 and rectangular cavity adjacent to a uniform flow were
obtained. For Phases I and 3, we used multipole

19). Near the critical angle, a 0 = 5 , the trajectory expansions that allowed us to derive compact

behavior is similar to that shown in Figs. 14-15 for expressions for the pressure on the body surface and
the cross-sectional lift. For Phase 2, the solution was

the initial speed V0  0.762 mis. However, the obtained using conformal mapping and Keldysh-

vertical CG speed in this case does not become Sedov integral representations. The local lift force
positive (see Fig. 20). The body base enters to the was also expressed in an explicit form with the
external flow and then returns to the shear layer again introduction of new special functions. As contrasted
when the angle of attack becomes negative. Then, the to the two-dimensional problem, the solutions for
body exits to the external flow and drops downward Phases 2 and 3 include new terms relevant to the

from the shear layer. The case a0 =-6 is also body shape variation in the axial direction. These
terms lead to qualitatively new features of the slip

shown for comparison. Here. the body quickly surface and rigid wall effects. For example, in Phase
crosses the shear layer and separates from the cavity 3 the slip-surface effect is essentially stronger than in
to a large distance. An interesting feature of this Phase I because the influence of this boundary
regime is observed for vertical oscillations of the CG decreases inversely with distance from the body. In
speed in Phase 3 (the body outside the cavity). This Phase 2, the flow velocities of the dominant
behavior is consistent with our analysis for the body approximation are singular at the line of intersection
dropping in an unbounded stream. between the slip surface and the body surface.

However, these singularities are integrable. This
7. Summary discussion allowed us to calculate the lift force and pitching

Aerodynamic and dynamic problems associated with moment without a detailed analysis of the singular
separation of slender bodies of revolution from regions. Nevertheless, these singularities should be
rectangular cavities into a transonic stream are analyzed in future to treat the higher-order
considered herein using slender body theory. The approximations.
inner and outer asymptotic flow regions are treated Using the asymptotic theory we formulated the
using combined analytical and numerical methods. matching conditions for the inner and outer solutions
Asymptotic analyses allowed us to highlight lumped in the case of a body of revolution separating from a
parameters controlling the separation process and to cavity into the outer transonic freestrcam. We believe
split the problem into a series of simpler unit that for many practical problems, the transonic wave
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drag can be predicted in the framework of quasi- is very complicated in the case of the separation from
steady flow. Short-time effects are averaged out over a cavity. Above an initial critical pitch angle or below
a long time scale relevant to the outer transonic a critical initial vertical speed, the body does not
region, and their contribution to the wave drag seems cross the slip surface and returns to the cavity. With
to be small. Our analysis showed that the wave drag pitch angle increasing or horizontal displacement,

increases from 0(,_g 4 ) (in Phase 2) to 0(. 4 ) (in contact with the upper or back walls is possible. Near
the critical conditions, the body can stay at smallPhase 3) as the body moves away from the slip heights from the shear layer for a long time period

surface. The quasi-steady outer flow corresponds to hegtfrmhesarlyroraontiepid
surfansonic Thowove r q asiteqvaledy oue f rresonstion. and may partially return to the cavity interior. If the
transonic flow over an equivalent body of horizontal displacement during this time period is
We obtained explicit forms of the equivalent body as larger than the cavity length, contact with the back

functions of time and the dimensionless cross-section cavity le:gth , th toe slcl

area. The latter continuously grows with time from a carates p

small value of the order of C in Phase 2 to 0(1) in separates.

Phase 3. We derived formulas for the base and Our parametric studies showed that trajectory
friction drags using known theoretical results and parameters, such as the mean state characteristic,
empirical correlations. For Phases 2 and 3, different oscillation amplitude. frequency and amplification
components of the pressure drag were calculated and rate depend critically on the body mass, CG location
analyzed. the wave drag was calculated using the and freestream speed. The trajectory is very sensitive
code of N. Malmuth to provide solutions of the to the initial conditions induced by the release
Karman-Guderley equation. mechanism. Our investigations lead to the conclusion

Our results formed a foundation for the development that a satisfactory agreement between theory and

of computationally non-intensive algorithms that experiments is difficult without detailed and accurate
release conditions. The latter need to be extractedpredict body trajectories through all separation from analysis of experimental trajectories. Our

phases. The numerical code predicting the store estimations show that the initial conditions are also

trajectory for all three phases separation was

developed and verified by comparisons with the influenced by difficult-to-control disturbances such
experimental data.8 For a majority of the data, the as wind tunnel flow oscillations or/and capture of the
calculations are in good agreement with experimenta model ends by the release mechanism. On the other

calultios re n oodageemntwit epermet, hand, the store separation can be effectively
Moreover, the theory is able to capture nuances of the controlled by the release mechanism. Our modeling

trajectory behavior observed experimentally. A

bifurcation of the pitch-angle history for Phase 3 for can help with the design of ejection units and thrust
almost identical initial conditions was obtained that is motors for stage separation. It allows for evaluationof thrust and weight required for these units, and
consistent with the experimental data and indicates indicates how to avoid an adverse re-contact situation
the existence of two substantially different pitching with a relatively small impulse.
trajectories. Despite the fact that the transitional
phase 2 is relatively short: its aerodynamics is crucial
in identifying one of the two possible trajectories Acknowledgments
outside the cavity. Further theoretical and This effort was supported by the Air Force Office of
experimental studies are needed to establish and Scientific Research, Air Force Materials Command
clarify the bifurcation mechanism. Our future work under Contract F49620-99-C-0005. The U.S.
will extend this model to transonic speeds. The use of Government is authorized to reproduce and distribute
the code to establish when this bifurcation occurs will reprints for government purposes, notwithstanding
be important in trajectory control, any copyright notation thereon. The views and

conclusions herein are those of the authors and
should not be interested as necessarily representing

Numerical results illustrating 3-DOF body dynamics the official policies or endorsements, either
for separations from a wing and cavity in the expressed. or implied by the Air Force Office of
transonic freestream show that this dynamics could Research or the U.S. government.
be rather complicated. It includes such phenomena as
store ricochet or/and re-contact. The body trajectory References
is very sensitive to initial "'launch" vertical speed or ]Goodwin. F.K., Dillenius. M.F.E.. Nielsen. J.N..
pitch angle. Critical values of these parameters exist.
In particular, ricochet/re-contact occurs when the "Prediction of Six-Degree-of-Freedom Store

initial pitch angle is larger or the vertical speed is Separation Trajectories at Speeds up to the Critical

smaller than these critical values. The body dynamics

17



Speed. V.1. Theoretical Methods and Comparison Ill, Eds. Zierep. J., and Oertel, H., IUTAM Symp.,
with Experiment," AFFDL-TR-72-83, 1972. Gottingen, May 24-27, 1988; Springer Verlag,
2Wood, M.E., "Application of Experimental Berlin, Heldelrberg, 1989, pp. 157-169

Techniques to Store Release Problems," Proceedings 8Lighthill, M.J., "Higher Order Approximations," In:
of NEAR Conference on Missile Aerodynamics, General Theoy of tligh SpeedAerodynamics. Ed. by
Monterey, California, 1988. W.R. Sears. Princeton University Press, Sec. E, 1960.

'Prewitt, N. C., Belk, D. M, Maple, R. C., "Multiple 'qHayes, W.D., "La Seconde Approximation pour les
Body Trajectory Calculations Using the Beggar Ecoulements Transsonique non Visqueux," Journal
Code," J. Aircraft, 1999, v. 36, No. 5, pp. 802-808. de Mecanique, v. 5, No. 2, 1966.
4Cole, J.D. Perturbation Methods in Applied 2-Schlichting, G., Boundaty Layer Theory McGraw-
Mlathematics. Waltham, Massachusetts, 1968. Hill, New York, 1968.
5Cole, J.D., Cook, L.P. Transonic Aerodynamics. 2'Chow, W.L., "Base Pressure of a Projectile Within
Elsevier Science Publisher B.V.., 1986. the Transonic Flight Regime." AIMA J., v. 23, No. 3,

"•Nielsen, J.N. Missile Aerodynamics. McGraw-Hill pp. 388-395, 1985.

Company, Inc., New York, 1960. 22Yaroshevskii., V.A. "Calculation of Aerodynamic

Malmuth, N.D., Shalaev, V.1.. Fedorov. A.V. Interference Forces between Two Bodies of

"Combined Asymptotics and Numerical Methods in Revolution," Engineering Journal, 1963, v. 3, No. 3,
Transonic Store Interactions." Final Technical Report p. 546 (In Russian). Translation is in lluiddDynamics.r FSoviet Researches.
of Contract F49620-99-0005, AFOSRINM, February
2002 (available in Defense Technical Information 2

-Malmuth, N.D., Fedorov, A.V., Shalaev, V., Cole,
Center, stient.dtic.mil). J., Khokhlov, A., Hites, M., and Williams, D.,

"Problems in High Speed Flow Prediction Relevant8Shalaev, V.I, Fedorov, A.V., and M almuth, N.D.to C nrl" A A Pa e N . 982 9 , 1 8, ls

"Dynamics of Slender Bodies Separating from to Control," AIAA Paper No. 98-2695, 1998, also

Rectangular Cavities," .4AIA4 J., v. 40, No. 3, 2002. unpublished notes and memoranda 1999-2001.
-4Wagner, H. "Uber Stoss- und Gleitfog, H. Uber

"Sedov, L.I. Two-dimensional problems of Stoss- und Gleitfogange an der Oberflache von

ltydrodynamics and Aerodynamics. Moscow, Nauka, Flussietn" ZAMM, 13 N 4, pp. 193-215

1966. Flussigkeiten," ZAMM, 1932, N 4, pp. 193-215.

10Kochin. N.E. "The Influence of the Lattice Step on 25Schlichting, G., Boundary Layer Theory, McGrow-

its Hydrodynamic Characteristics," J. ,ippl. Hill, New York. 1968.
Mathematics and M1echanics, vol. 5, No. 2, 1941. 26Chow, W.L., "Base Pressure of a Projectile Within

"~Lavrentiev, M.A, Shabat, B.V. Methods of the the Transonic Flight Regime," A/-IA J., v. 23, No. 3,

Theory of Complex Variable Functions. Moscow, pp. 388-395, 1985.

Nauka, 1973. 2 Gradshtein. I.S., and Ryzhik, I. M., Tables of

'2Whittaker, E.T.. and Watson, G.N. A Course of Integrals. Series. Sums and Products. Moscow,

.M1odern Analysis. Cambridge University Press, 1927. Nauka, 1970.

"8Kom, G.A., Korn, T.M. Mathematical tlandbook.'Midne-Thomson, L.M. Theoretical Hydrodynamics. McGraw-Hill Book Company, 1968.

London, Macmillan and Co., LTD, 1960.

1
4Cheng, H.K., Hafez, M.M., "Transonic Equivalence
Rule: a Nonlinear Problem Involving Lift," J. of
Fluid Alechanics, v. 72, No. 1. 1975.

S13Bamwell, R.W., "Analysis of Transonic Flow about
Lifting Wing-Body Configurations," NASA TR, R-
440, 1975.

"6Cole, J. and Malmuth, N., "Wave Drag Due to the
Lift for Slender Airplanes," NASA Conference
Publication 3020, v. 1. p. 293, 1988.

"7Cole, J.D., and Cook. L.P., "Some Problems of
Transonic Flow Theory," Symposium Transsonicum

18



Fig. 4 Different body disposition in Phase 2.

[ ~Ca ily ,.aIls

V

Slips urface V
Body, Y>O

-1,W2 ----- -- A - ,

Fig. I Flow scheme and coordinate systems: side L
view.

Body. Y<O

CAsi, 4 alls a) Physical plane;

1, s

A ,, , . . . ... B o d y , Y >W

Fig. 2 Flow scheme and coordinate systems: back -b b
view. Body, Y<O

Y=Z~iY -V,, for wall b)Transformed plane;

Fig. 5 Cross-section flow scheme for Phase 2.

V• V for slip surface 1.5

Slip surface or wall Yz e.,(n)

r
1.0-

0 z-U e 2(n)

O 0.5 ,nH e(n ) ",xn)

Fig. 3 Cross-section scheme for Phases I and 3. e,°(n)

0.0 0.2 04 0.6 0.8 10

Slip Ssrc Dimensionless angle, n

x, °Fig. 6 Plots of special functions.

a) b)

c) d)
VX,= X. X .X.

X'= \Z X X. [

e) f)

19



00 cavity wall

p'lM) 15 ricochet- D=2D0 2. 1 D=3Do

=® - shear laye_00

® •. -2

o 08-4

g ~-6:
E

0808

0 10 20 30 40 50 60 70 80 90 100
X/D

04 06 08 10 12 14 16

Mach number

b) Trajectories of CG
Fig. 7 Ogive-cylinder base pressure as a function of
Mach number. Fig. 9 CG trajectory parameters for the bodies of

various thickness.

N,(n)

0 0)

4i 0

Dimens]ionless an-gi-e, n n)=,(n N13(n) n 000 002--004 0065008 010.....S4
0 . •-5 -•- D =D.S2 "•••• •D =2D,

2 -10 D =3D ,

00 02 0.*4 06 08 10 -15
Dimensionless angle, n = I.t 0 00 0 02 0 D4 0 06 0 08 0 10

Time, sec
Fig. 8 Components of the cross-flow drag.

Fig.8 Coponnts fth cros-fow dag.Fig. 10 Pitch angle histories for bodies of various

thickness.

, Cavity wall D = Da

0TD=e2D, 4

Sricochet D=tn 2es

2 E0

"=" • D =Do

-8 . . .. . .
0 00 002 o004 00 0 Go 010 -10 - ... ....... .. . . .

Time, sec 000 002 004 0.06 0 08 0 10
Time, sec

a ) T im e h is to rie s o f th e v e rtic a l C G c o o rd in a teF i .I I V r c a sp e f o b d e s f v r o u

thickness.

20



Ricochet 8

1 0 1

-4 -- V,=0.508 m/s
ai Shear layer - 7• ,,__• - Vo= 0 762 m/sy

-3 .

D -12

o D= 2D, -20
-0 -6 D000 005 010 015

-------- . . . . . ..... --- Tim e, sec
0 10 20 30 40 50

Horizontal coordinate, X/D

Fig. 15 Pitch angle evolution for various initial
Fig. 12 Centerline positions for bodies of various speeds.
thickness.

Top cavity wall

4 0

2 5 Ricochet

Shear layer <D

0 
-2____ -

V V=0.508 m/s V Vo=0.508 m/s
2 Vo=0,762 mn/s > -3 V,=0.762 m/s

"000 005 0 10 0 15 020 -4

Time. sec000 005 010 015

Fig. 13 Time histories of vertical CG coordinate for Time, sec

various initial speeds. Fig. 16 Evolution of CG vertical speed for various

initial speeds.

Top cavity wall

05 Cavity

2 -Ricochet 00_.o
0 0-

Shear layer -

Z -10- 'eontact
- --- V=O 508 m/s 0 (

5m/s "s -1 5
-4 -r "-- V0 =08 r/s

20 _> -20 V = 0762 m/s

* ./D ° -2 5 • . . -.. .. ... . . . . ... . . . ....
0 10 20 30 40 50

Horizontal coordinate, X/D

Fig. 14 CG trajectories for various initial speeds.

21
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Appendix A. Analytical evaluation of I + 7i(I - n)clg(nmn)
improper integrals 1,2 (n) 4nsin 2 (m•) (A2,2)

Analyze the integral

Consider the integral

1,o(n) =[d~v =
D(s) I-s2 (n) = J[Qn (S) + Q'1 (S)JV2dV
- (eln ,I,, ,e 2-, _ i•_,dxe -1

=2 ft I-Y ' A l ) te) + S -

- D(x)(I+ +e- 1-s i-

= eS 2 sv e(2I-t ) I_- 1
Q= -s 2 e S ,2 +14eI (I+s),+" (1+S)+(l _, (+ d. (A3. 1)

4e 2  X _ 2 = 4eI 2 v +

(e2 +i12 (e2* +!1)'
Using the table of integrals 27 and accounting for

D(x) = e4siv - 2nm cos(M) + I (Al .lb) properties of the Euler gamma-function, we obtain

Let's consider the following integral along the closed 1, (n) = 4 n(I + 2n 2 )F(n)F(I - n) =

rectangular contour C, in the complex plane{ + 2n2

z = x + iy (see Fig.A 0 = + 2n (A3.2)
3 sin~rr)

I f(z)dIz == 2riresf(0). Using the substitution (A1.1 b) we analyze the

Cauchy type integral
f)=(e 2 n + I e2:+I f _ -,-2

~e2~Iz I~e.~_-lD( 1 (sin- J >- * (2)]I -)

Calculating the residue and accounting for that the" D(A) (1-S)

integrals along the vertical lines vanish as A -> 2 (e ( )
we obtain the function Io(n) as I-s f D(x)[e -Q(s)] A

2n 2 +I Consider the following integral along the closed
1I1 (n) =T. (A 1.2) contour C2 in the complex plane z = x + iy (see

6n 
Fig.A2)

Using the substitution (A 1.1 b) analyze the integral
1I f(z)z) 2zQire sf ( O ) .

_'rQO2 "(s)ds" I •re 2"'"dr
-2(S) 2 =() (e-iw + 1)e:l'()•I-s(I- ) 2_D() 2n:)-

=4it )]2 (A2.1) (e l) +Q(Q
4n .f [oh(t) - cos(m) The contour is similar to that shown in Fig.B I., while

the singular points

Using the table integral27 the function 1 2 (n) is In Q(s) + kr In Q(s) - i;
expressed as - , _

2 2
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are bypassed along the half-circles of radii r -- 0. F jfl(nf)'?"(()1
Calculating the residue and the integrals along the I,(s, n) = 1 2 (A4.2)
half-circles around the singular point, we express the n D(s) rI -A4'

function 1l (s.n) in the form

Consider a principal value of the Cauchy-type
integral

1 -I ,1 -+ (integration contour C

Using the table of integrals 27 and Eq. (A3.2), we get ir/2 zi

=l -s A-s
-I -I

A - S ( A ~( - S~2 ~ ~ AA

7 s ) [ Q" (Qs) cos(71n)], (AS.2a) I_ _ _
sinoin) .•..

-i~r/2 z z2

idA InQ(s),

Fig. A2 Integration contour C 2.
4snn) .,(A5.2b) Appendix B. Analytical and numerical

sin(7in) investigations of integrals

,+ - )Jd,2 - Consider the integral

-- 1

=-,fclg(n)[Q" (S),- -"(s)], (A5.2c) ,,(n) Q Q(.s)dv i

SD(s)I _S
2

Then, the function 14 (s. n) is represented as 1$()sdv (
I - +n(fl) (BL.I)

14(s,n)=4[l-fnclg(fn)]+ =sin 4[ 0  j -2 nsinfln

+S 7 COs, (In) [Cfl(s) -
sin(7m) Using the table of integrals27 we get the following

- 2s In Q(s). (A5.3) asymptotic expression at n -> I

iy e11- .33( ). (I2
integration contour C 8 337(1-n). B1.2)

/77 ix/2
1/ Expanding the integrand to Taylor series versus n

1A -112 A~xwe find in the limit n -> 0
I(n) = n-2 i+ (2+-I 7M

_ 12

Using the substitution Q(s) = exp(nx) and the
Fig. A I Integration contour C,. table integral27 we obtain
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2 2Q(S 2- =f fIn Q~~dv=2
119 + In- Q(s !-s 2  -_ I-s 2

I 1d in2 (B1.3) i InQ(s)sdv
Si+X2 ýh /2) 7r 2+In

2 Q(s) I -_S 12

Then, we obtain the asymptotic expression Then, we obtain

n )T2 e,(n) = 7r - n 2(17)=
e0(n) = In 2 - (BI.4) 7-)2 6=) -n(132.3)

To calculate the integral e0(n) in the range 120 -2n).

0<n< I, using the substitution I-s=x xwe
remove the singularity at the upper integration limit I
and transform the integral to the form E, (n) = Jf(A. n)l 2 (A. n)dA

I 2 -I

c,,,f(x)- f(2.n) = [2-(Q" + Q-" )cos(m,) . (B3.1)e ,,{n ) = 2 j - f -X -

where I(sn) is expressed in the form of successive
that is calculated by the method of trapezoids. integral

Similarly we analyze the integral F

e2(n) = nsin md2 (n) = 
12 (A, n) = (s n)ds =

-' .a s . (B 2 .1, 2

In the limit n I . we obtain

)T 2 (i -- n) D (s) I -_ S2

e2(0) - •- 0.8225(1 - n). (B2.2)
12

Then, the integral E, (n) is transformed into the
At n -* 0, we find triple integral. Using the Poincare-Bertrand rule we

change the integration sequence and express (B3.1)

i2(n) lim n 2l,(n) as

/2 I I 2.2

n 2 i2n-0 + 12 [2;7 0 - i] E, (n) =fr~s,)dV2 fOb(.v)E,,d1 + 2
-I -1

The integral i20 is evaluated similar to the case of El I = I {( A I X

I,,(n) (see Eq. A 1. 1). and the integral i2, is s2 -S] --

integrated by parts x [2 - (("(A) + Q-"(A))coS,,n]}dA .

Using Eqs. (A3.2) and (A5.2) of Appendix A the

function E, (.',1 .5' n) is expressed in the form
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E2[inQ(s)-InQ(S 2 )+ e In I+ - tad = (B4.2)
VS - 48

,r cos 2 (in) Qr

+ sin(n) [ (s')Q`"(S' At n =Owe have

-Q"(S 2 ) + Q0(s 2 )}) e f(0) = +ln2Q(t) I -12

Then, the integral E, (n) is 2In 2-I
= rr (i0 - 2?ri,)= 2n -

n 2 = - (s)ds (t)In Q(t)dt 2 4
E(n) = 2n- - s In the limit n -+ 0. the integral (B4. 1) is reduced to

the form
+ 2si COS 2 (7M) I O(s)1,(sn)d• e,°(n) el,(0) + 1; {2re (0) -

- 12

-4I 0 n 2 2;7 COS2 (m) E n) . (s1.s - I .i1 (t)dv
2n sin(mn) E l)2 fIn Q-(s) f+ )T _S

2

Using Eqs. (A4.2), (BI.l) and (A2.2), the functionE12() isevauate asThe integrals i 1 4(I) and ig;(I) are calculated using
El 2 (n) is evaluated as Es 41A.Eqs. A4.i-A4.2

E,2(n) = a [10(n)-2nsin(an)1l2(n)]= = In Q(s)dsn i4(t)=f[r,72+In 2Q(s)] i_s2(s_t)=

2= 77r e° I+)( - " 2a"m
n2 sin an 2 2; Iif f r.,. ~ 1 2 2 ( _,

Then, the function E, (n) is expressed as

i-(2) -', In Q(s)ds )l 2-t

-4E o 2 c ('n)x() = X2
E,(n) = 2n n2

x {eo(n) - n [I + ir(I - n)ctg(rn)}. (B3.2) Then, at n--0 we find

1 2 e,,(n) e,,(O +n 2-7r 2 (4 In 2 - 3) (143

Now, we analyze the double integral 24

eo(n) = n4Eo(n) = For 0 < n < ,the function e,,(n) is evaluated

-4 'Q" (s)In Q(s)dv numerically using the substitutions

= D(s,n)I- 2 x = )(+I) 2. r =(i-t)n.

I Q"(1)InQ(t)dt 2 I
SI-dr-s-('V) n41 v~ + n=.x J .(4l '

Its asymptotic value at n = I is calculated as With these variables the above integrals are
transformed into the proper integral
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Consider the integral

I

E,(n) = f(A., n)I(A, n),At
-I

SJ(t, n)I 4(t, n)dt. (135.1)
-I

The inner integral 14 (n) is given by Eq. (A5.3). The

function E, (n) is expressed as

E2(n)= 4[1 -mitlgzn]lo (n) - 212 (n) +

Cos2 m i/-t I* 1,o (n) =

sin ;rn

- [4(1- -7nctg7rtno(n)- 2e2(n) +n sinl rn

+ (2n2 + 1) cos- 2 (B5.2)6|

Its asymptotic behavior is

7T
n--* ": E(n)=-

2(! - n)

E-(0)= -- - - 4n2-"32 (3523)
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Abstract
A PC-oriented method to estimate 3-DOF store trajectories for separation from cavities and external
surfaces into subsonic or transonic freestreams was developed. Combined analytical. semi-empirical
and numerical approaches were used to calculate the lift force, pitching moment and drag. The
asymptotic theory based on slender body theory was developed to evaluate inviscid aerodynamic
characteristics. Within this framework, the flow was assumed to be potential and the shear layer
dividing the cavity from the freestream was approximated by a slip surface of zero potential. Explicit
inner asymptotic solutions derived gave analytical expressions for the lift force., pitching moment
and one drag component in all phases of the store motion. including dropping in the cavity, crossing
the shear layer and motion in the freestream. Different regimes in the outer asymptotic region
relevant to time scales intrinsic to store separation were studied. Short duration processes associated
with freestream and body oscillations averaged over a long time scale characterize the outer flow
and give a negligibly small contribution to the wave drag. Accordingly, the quasi-steady outer
solution was considered, which is induced by sources along the body axis giving the first-order
physics in a finite-span cavity. Wave drag modeling was reduced to solving the Karman-Guderley
equation over an equivalent body of revolution simulating the store. Friction drag was calculated
using a modification of the Schultz-Grunow correlation for axisymmetric flows. The base drag was
predicted using the theory of Chow. This information was used to develop a compact and rapid PC-
oriented code to predict store trajectories. It was tested using subsonic experimental data. In the
majority of cases. the trajectory predictions from it are in good agreement with experiments.
Analysis of the experimental data and computations revealed a bifurcation of the pitch angle history.
Our parametric studies identify re-contact and ricochet phenomena in the transonic regime. The
theoretical model developed herein can be generalized to 6-DOF trajectories, including yawing and
rolling motions.

1. Introduction
The store separation problem has important practical applications and its different aspects were
investigated extensively using experimental and computational methods [1-4]. Most of the studies
have been concerned with external separation at subsonic or supersonic speeds. Relatively less
attention has been given to separation from cavities, especially at transonic speeds. This problem is
very complicated due to the large number of parameters governing the flow structure and broad
variety of physical phenomena involved into the separation process. Our objectives are to identify
first-order physical effects. simplify the key aerodynamic problems, and develop fast and reliable
models for predicting store trajectories.

Separation of a body from a cavity into a subsonic or transonic flow is subdivided into three phases:
in Phase I the body drops inside the cavity; in Phase 2 the body crosses the shear layer separating
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the cavity flow from the external stream; and in Phase 3 the body moves in the external stream. For
many practical applications, the following relations are fulfilled

J o a~~a(5= C7 <<!1 , = c_<O-(I), a = a= 0(l), << 1, (L1.1a)
10 b'•5ao

'5 U, Do Ho
,'Re>>, <l,d= _ »1d >>I, = H>>. (I.Ib)LoV a0 do d

Here 10 and a0 are respectively the body length and its maximum radius. Vr is a characteristic

vertical body speed, r is the angle of attack., U. is freestream velocity; 1., Ho and D0 are

respectively cavity length, height and half-width; S, is the shear-layer thickness. Re = p•Ujo/ I

is the Reynolds number. Due to the inequalities in (1.1a), the flow over the body can be described
with slender body theory [5]. According to the inequalities (l.lb), the shear layer can be
approximated as a free slip surface by neglecting the flow inside the cavity and considering the
cavity wall effect as a small perturbation. The solution is found separately in the inner and outer
asymptotic regions using small perturbation theory.

The slip surface-body interaction of the inner asymptotic expansion presents a great challenge
because the shape of the free boundary is free, i.e., not known a priori and need to be determined in
the solution process. Indeed, many methods are being developed to solve this problem. In this
connection, the inner asymptotic problem including the slip-surface effect has been reduced to a
system of integral-differential equations, which can be solved by simple iterations a shown in [6] In
the first iteration, the slip surface is treated as a plane of zero potential, and analytical solutions are
found for all three phases of the separation process. Explicit expressions for the lift force, pressure
drag and pitching moment obtained from this solution allow us to identify lumped parameters
associated with the center of inertia trajectory and pitch angle history. From these results the 2-DOF
trajectory equations were analyzed in [7]. Their approximate analytical solutions permit direct
parametric analyses of the store trajectory in the cavity and outer stream. This shows that the body
motion outside the cavity consists of two components one of which is an average drift under gravity
and aerodynamic forces, and the oscillations/modulations about a temporal mean state. Different
time scales of these components were identified. The analytical results can be used for correlations
of experimental data and assessments of CFD methods.

The form of the outer asymptotic expansion depends on the time scale. Various outer flow regimes
relevant to different time scales are presented in [8]. It is shown that the short time scales are
averaged out during the outer long-time period. Accordingly, the outer flow can be treated as quasi-
steady in calculations of the wave drag. This flow is described by the Karman-Guderley equation
with an asymptotic boundary condition obtained from matching of the inner and outer solutions. For
proper matching, the second-order approximation of the inner expansion is analyzed. Our analysis
also reveals the effect of finite cavity width gives the main contribution to the boundary condition.
Other components need to be approximated empirically. In this regard, the base-drag theory [9] and
empirical correlation [ 10] for the friction drag are used to calculate the other drag force components.

These analytical results allow us to develop a fast and robust PC-oriented method to predict 2-DOF
and 3-DOF body motion. The method is based on a sixth order Runge-Kutta finite-difference

2
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scheme. During the few first integration steps, the Adams method is used to initiate the calculations.
It is essential fbr computers of small speed and memory that the forces and moments are calculated
using explicit expressions. The wave drag is the more time-consuming element. For external
separation, the wave-drag coefficient can be predetermined for affinely-similar bodies as a universal
function of the Kannan-Guderley transonic similarity parameter. This function is used to accelerate
the calculations. For separations from a cavity, a numerical procedure developed by the first author
[11] is used to solve the Karman-Guderley equation. This algorithm ensures good convergence after
a only few hundred iterations, which is fast enough for trajectory calculations. The codes
incorporating this methodology for PC application were developed and validated by comparison
with subsonic experimental data in [12]. Parametric runs from these codes for external separation
cavity separations into transonic and subsonic streams showed that the theory is capable of
predicting such complex physical phenomena as re-contact, body ricochet from the stream and
trajectory bifurcation. At near-sonic speeds, the store trajectory is very sensitive to initial conditions;
this leads to strong restrictions on the release conditions. Most of the theoretical results described in
what follows are new. They give new insight into the physics of store separation and unsteady
transonic flows with free boundaries.

Hereinafter, the problem lbrmulation for the inner asymptotic region and the inner solutions for
Phases I. 2 and 3 are presented in Section 2. The outer asymptotic problem is formulated in Section
3. Section 4 briefly describes the numerical method for solving the trajectory equations. A discussion
of interesting numerical examples and conclusions is given in Section 5.

2. Inner asymptotic problems

2.1. Problem formulation for inner asymptotic region

Consider a slender body of revolution released from the top wall of a rectangular cavity at the initial
time i = 0. The initial angle of attack ai, vertical speed V,, and angular speed it, are assumed

small, 0((5). where the 0 symbol is a short hand signifying "'the order of'. The body drops under
gravity in the cavity symmetry plane and separates from the cavity into the external flow. At the
initial instant, the flow within the cavity is neglected. The cavity interior is separated from the
external stream by a slip surface bridging the cavity edges. The flow scheme for Phase 2 and the
coordinate systems are shown in Figs Ia and lb. The coordinate system OXYZ is attached to the
unperturbed slip surface. Therein, the OX -axis is directed along the freestream velocity and OY as
well as OZ are respectively vertical and spanwise coordinates. The coordinate system ox-Z is

attached to the body center of gravity (CG) that moves vertically with the velocity V,(I-). The o.i-

axis is directed along the body symmetry axis: the oi- and o• -axes lie in the cross-sectional plane.

The direction of oz, -axis coincides with the direction of O)Z - axis. The axes ox- and oi' are inclined

with respect to the axes OX and OY at the angle a,(i): they rotate around o" -axis with the angular

speed o)(i). Along with the Cartesian coordinates, we use the polar coordinates, ir and 0, specified
as r = •cosO, Y_ = Isin0. Slender body theory [51 is used to solve this problem. The following
dimensionless variables are introduced for the inner asymptotic region

X Y Z t D o ( D o
.= - z= .x= , .= , (2.1a)

3
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Lo fH U •i a 3U •

Lo=LH .H= 0,1= .r= .)o= X (2.1b)
a0  ad I,,) i /
5 ,+ = !2U•(P(X,Y.Z,i) • oUý {l +,5 2[go (X,1)±+(x,Y,Z,t)]}. (2.1c)

Cavity walls I

a) side view

Caiity walls

SliSp surfs c

-d
0

d,/' d ,Xo -, 2

b) back view

Fig. I. Flow scheme and notations.

Neglecting the terms O(6 2 )and assuming that the transverse coordinates of the CG are constant, in

particular, Z,, (t) = 0, we obtain the relations between the coordinate systems OXYZ and oxyz

X = X,, (t) + x. Y = Y,, (t) + y - xa, Z = z.

In the first order approximation, the near-filed flow potentials in the cavity and in the stream,
'V(X,Y,Zi) and 'I÷(X,Y,Z,t), are solutions of the two-dimensional Laplace equation in cross-
section/crossflow planes. The function go(X,t) in (2.1c) is determined from matching with the

outer solution as described in Section 3. On the body surface, Y= Yb(X,O,i)= II(X.t)+a(x)sin9,

the boundary conditions are

Y>0: v1' =' sin 0: Vý (X,i) = Vj(i)-w(t)X. (2.2a)

Y<0: v,, a=a. +V, sin 0. V (X,i) = 6V÷ (XI) - a(i), (2.2b)

4
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where 11 = Y,)- a(i)X is the distance from the plane Y = 0 to the body axis; Y,,(1) and V,(t) are

the CG coordinate and its vertical speed, respectively. The slip surface is assumed to be the plane
Y = 0 of zero potential, 0, = ' = 0. This approximation corresponds to the first iteration of the

more general inner problem accounting for the slip-surface displacement induced by the body
motion [6]. In this approximation, the inner problem is simplified enough to make analytical
solutions possible. These will be indicated in what follows.

Pressures above and below the slip surface, p and pm. are defined by the unsteady Bernoulli
equations

, P ~- P [(P++
p 2-+ (2.3b)

p P• - P. -• +P W + 2 + V 2 (2.3b)p-p•U

On the cavity walls, the usual boundary conditions of zero normal velocity are fulfilled. Since the
cavity depth is assumed large with respect to the body radius, the top wall and slip surface efftcts on
the body motion are treated as small perturbations. In Phase I, they are calculated separately and
represented in a composite form: in Phases 2 and 3 the top wall effect is also neglected. A detailed
analysis of the inner problem shows that the side cavity wall effect is 0[(2d 0 )-]] and can be

neglected in the dominant approximation. Nevertheless, this effect gives the main contribution to the
outer asymptotic representation and will be considered in Section 3.

2.2. Solution of the inner problem for Phases 1 and 3

Within the framework of slender body theory [5]. the complex conjugate velocity W(X,,',t) is
harmonic in the cross-section planes. The body cross-section profile is a circle of radius a(X)

centered at the point 4' = iH(Xat). This circle moves with the vertical velocity VJ(x.t) in the outer

uniform stream or with the velocity Vý*(x.i) within cavity. The cross-flow scheme fbr Phase 3 is

shown in Fig. 2. Let the wall or the slip surface coincide with the plane Y = 0. For half planes
containing the body, we have the following problem:

* Find an analytical function W(X.,.t) that satisfies Eqs. (2.2) for a specified normal velocity on
the circle that has zero real (imaginary) part on the slip surface (wall).

Analytical continuation through the wall and the slip surface gives W($)=W($) and

W(;)=- -W($) respectively. Here. the overbar denotes complex conjugation. From these
conditions, we reduce the half-plane problem containing the circle to a problem for the full plane
containing two identical circles located symmetrically with respect to the plane Y = 0 (see Fig. 2). A
multipole expansion [131 is one method to treat this problem. As contrasted to the problem analyzed
in Ref. [ 13], the problems under consideration here are three-dimensional. They lead to new effects
that have not been studied previously. Some details of this analysis will now be summarized.

5
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Y
W=Z+iY Vfor wall

Vfr slip surface

Slip surface or wall Zy

0 z
iH a(x)

Fig. 2. Cross-flow scheme for Phases I and 3.

Using the Cauchy formula we obtain the integral equation for the function W(X,.I)

I W(X.iH + s,)ds ++ I W(-iII + s)ds
2i;ff , ;- iH - s 2ir _ = +iIIs

Expanding the kernels into Taylor series and using the analytical continuation and flow symmetry
we obtain the solution of this equation in the series form

W = - I(2.4)

Here the upper (lower) sign corresponds to the body motion near the wall (slip surface). Functions
C_,,_-(Xt) = A-,,-, (X.i) + iB.,, 1 (X,t) are coefficients in the Laurent series of the complex conjugate

velocity at the points j = iH(X.I). It follows from flow symmetry thai A-,,, = B-2,, = 0. Other

coefficients are found from the boundary condition on the body surface. This leads to the infinite
system of linear algebraic equations

A_1- -=a., B= B-2 =V +ý qZ(-1)"'q 2n,(A_2,,_ + qB_2,,_2 )I (2.5a)

A-±,, -I )"q2 n (21 + 2n- )! (-I)q2n' A 2iI + 2n (2.5b)
(2-- - ) 2m!- 2mi l + I,

+(-1)q (2m + 2n)! _ A_2,,+ 2i qB+2, (2.5c)
" O(2n)! ,,,=0 21n! 2m+ I

These series are convergent since the parameter q(X.t) = 0.5a(X)/1H(X.i)J <_ 0.5. If the body is a

cylinder or it drops in fluid at rest (inside the cavity), then A, = a,= 0. In this case, the equations
(2.5) coincide with the system formulated in Ref. [131. When the store is located near the wall at
zero angle of attack. the solution (2.5) coincides with the explicit solution [141. For practical
calculations. we can suitably truncate the series in Eqs. (2.5) to provide required accuracy. To

6
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accuracy O(q 8 ) (q' < 1/256), the solution for the circle dropping into uniform stream from a rigid

wall is

B = 111 + q2Sj(q)]+ qaAS 2 (q). (2.6a)
-q2[a + 2q2+ 5q' + 14q6)+ +2Vq(l~q2 +4q4)], (2.6b)

S,(q) I+ q2 +3q4+8q6. S,(q)=l+q2 +2q 4 +5q 6 . (2.6c)

For a body dropping into a fluid at rest, a, = 0 and V, are replaced by V,. in Eqs. (2.6). For a circle

dropping in a stream from the free/slip surface, the coefficients are approximated as

B= V[-q2S3 (q)]-qa, S4 (q). (2.7a)

A_ = q2[a (l-2q2 -q4 -4q6)+2qJ,(I-q2 + q 4 (2.7b)2 +4 ), +3q.7b)1

B 4 = q3 [a(i- 3q -3q q V,(I-q2 - 3q4)], (2.7c)

A_5 = -q4 [a, (1- 4q2 -6q4 )+4qV ,(I - q2)], (2.7d)

S3 =l -q= -q 4 -2q 6 , S4(q)=l-q -3q 0 . (2.7e)

When the body drops to the slip surface in a quiescent fluid that approximates the cavity flow mean
state, these expressions reduce to

B = K, 11- q2Ss(q)], AI3 A- ,2.q'(l -q 2 -2q 4 (28a)

B-4 = 3V.+q4(l-q2-4q4) S, (q)= I-q 2 -q 4 . (2.8b)

In Phase I (body drops in the cavity), the full solution is expressed as a superposition of the two

solutions: W,+(X4,i) corresponding to the body dropping from the top wall and W,+(X,C,t)

corresponding to the body dropping toward the slip surface. This "composite" solution is

w+ = w,+ + w2 - w' ,4

where WO+ is the common part of both solutions corresponding to the circle motion in the unbounded

quiescent/(motionless) fluid.

In the oxyz coordinate system attached to the body CG, the pressures on the body surface relevant to

Phases I and 3 are represented as

p = ja(2B-V), + [(2B--V"L1)a2 -2(B-V)a,}sinO+2Bu, cosO- u12 2

-•, - €, + 1•,a - 2B 2 cos 2O0- go, - g0 ,. (2.9a)
2

p+ = a(2B - V,+), sin0 + 2Bu, cosO - 1 - 0,-2B'u, cos, 0. (2.9c)
2

7
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u, = -2E {A_ 2,,, cos(2nO) + B-2,,-2 sin[(2n + 1)0 (2.9c)
n=1 t

The dimensional forms of the local., L,(x.t). and total, L(t), lift forces as well as the pitching

moment, M(t), are expressed as

2.7/ •t 1

L, (x,t) = -a fpsin OdO, L(1) = fL, (x,t)dT, M(1) = JL, (x,t)xdx

Evaluating the pressure from Eqs. (2.9) we obtain the following expressions for the cross-sectional
lift force

L, =-{a[(2B- V")a2] +a (2B-)2(B- ,a, + 2BA-3a-a at
- 2aX (A-2 ,-, - A_,,_ )B2,,_," , (2.10a)

S(2B- + 2B'A-2(A A (2.0b)

Integrating these equations along the body axis we derive formulas for the lift tbrce and pitching
moment. If the body is inside the cavity, then

LtQ) =-V(t) dM()=- ) + MA, (), (2.1 Ia)
di dIt

141)= 2,(AB~A - ,,-, A B2 n (2.11 b)

ML(i) = -2 JB+A -E(A,, -A 2,_,)B 2 _2 a(x)xd. (2.11 c)

V + ) = J[2B+ (x,i)- V,+ (x,t) a2 (x)dV, ) = ;r I[2B (x,t) - V, (x,t (x)xdx.

If the body drops into the external stream. then

L-(t)= d- d (t) + L-(t), M-() dovJ(t) + Mi- (2.12a)

dt di

L-it)=T,( 2(x,)[2B(x,,te)-V (x,,t)]+ 2f Jf[(B-V )a, -BA. +

2ffJ(B - V)a-BA_. + • (A, A a(x)d-, (2.11 b)

8
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Al1-()M i K -- FC -2 (x,)x. 2B(x,,t)- V,(x,,I)]+
+2r (B -V,)a)-BA, -(A B, +,,,- Aa(x)xdy, (2.11 c)

', J(_,_ 2,_ B 2

V,)(t) = IT f2 B(x, t) - V (x, t)]l x~d, (0-t a at f2B(x, t) - Vý,(x,t)]a ( x) xd.

The first terms of (2.1 Oa) and (2.1 ]a) for the force and moment are due to the fluid inertia. The first
terms of (2.11 b) and (2.11 c) are associated with the pressure gradient in the stream along the body
axis. The integral terms represent effects of the flow boundary and vanish at large distances from it.
Explicit dependencies of the force and moment on the trajectory parameters are found by
substituting into (2.10)-(2.1 I) the coefficients B(xt), A_,,,_<(xt) and B_2,,_2(x,t) given by (2.5)-

(2.8). The explicit expressions of the lift force and pitching moment in terms of the trajectory
parameters. CG speed V,(t). angular speed co(t), angle of attack a(t). and CG vertical coordinate

},,(i) allow us to develop a fast numerical algorithm for solving the trajectory equations.

The inner solution is also used to predict the cross-flow drag, D-J, by integrating the inner pressure

without the function go(xt). For Phase 3, the cross-flow drag coefficient is expressed as

('(j. () -- ,r, =) rg Jc (x,t)a(x)a'(x)dx, (2.12a)

c- =a2 +2B 2' -V, 2 + 2 (A2 2_ + B.2,, 2)• (2.12a)

A similar relation was obtained for the cross-flow drag associated with the body portion located
inside the cavity.

2.3. Solution for Phase 2
In Phase 2. the body crosses the shear layer (Fig. I). For the body portions being fully inside the
cavity and inside the stream (the regions X0 < X < X, andX2 < X < X, in Fig. Ia), we can use the

solutions obtained in Section 2.2. The body surface intersects the slip surface at the line
Z =+_c(Xt) = ±asinfl, where 8J(Xt) = arccos(HI/a) is the angle between the body and slip-
surface cross-section contours. For the partially submerged body portion (the region X, < X < X, in
Fig. Ia) the problem is formulated as

* Find the complex conjugate velocity W(X,(I,), which provides a specified normal velocity on

the corresponding circular arc and has zero real part at Y = 0. IZl > c.

Solutions are obtained separately in the cavity region (Y > 0) and the stream region (Y < 0) using
conformal mapping of these regions to the flat plate exterior in the complex plane a = , + iq (see
Fig. 3). The mapping of the stream region has the form

9
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R" (a, X, t)+i n(X,t) .r-/3 R=C6 h+b4' =f-(cr, X, t) = CRn ,11 , :(X ,)
R" ( .,X,t)- ! rCT - b"

b<X,ti)= C, d"_ (or 2 - b 2XR" -I ,y d<) a

n' Oý 4C2 R" ••,:.•

Body, Y>O

0 z -b I b* b
-b bx

Body, Y<O Body, Y<O

a) Physical plane; b)Transtbrmed plane:

Fig. 5 Cross-section flow scheme for Phase 2.

In the ca-plane, the submerged circle portion is transformed to the lower side of the interval [-bhb].

The mapping 4 = f÷(CrX,t) of the cavity region to the upper half plane (as well as the upper body

portion to the upper side of the interval [-b÷,b÷]) is obtained with the replacement of in = I-n by
n .

In the transformed space, the explicit solution is represented by Keldysh-Sedov formula [15]. The
complex conjugate velocities in the cavity and stream regions are

I -j or ao" I (2.13a)

2 a 2 CT' + a, aCT f b S 2(ISý (2.13b)or _ b 9=) -irVg2 -2 "b C

The velocity (2.13a) and the first term of (2.13b) describe the flow fields over cylinders fbrmed by
reflection of the upper and lower circle parts [16]. The second terms arise due to the body shape
variation in the streamwise direction. For n > 1/2, the flow velocities have a singularity of the type

(4-2 _c2)'2,n' at the points where the free surface intersects the body. Since this singularity is

integrable, the lift force and pitching moment are not singular. However, a local asymptotic analysis
near these points is needed to treat the higher-order approximations.

On the body surface, q = ±0. < <b, the pressure is expressed as

A2 (I_) • A2 "D 2- ( , =i
+ * 6L, -A 2)

10
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P(X ý go g , -0, - , 2 16n4Q 2"(A)

_A• + (1-22 12(2,n)j+Va )D (,n) I(A+n), (2.14a)

2 [ rIQ"() I 4n-L2n( o)

A= D(.n)= Q"(-s)ds , D(s.n) = Q2 (s) -2Q"(s)cos)m+ 1. (2.14b)b' -1 D(s, .) -S2 (S-_ )'

As shown below, the singularities in (2.14) (at n -- 0, n -- I and A -- ±1) are integrable.

The local lift force L,(x,t) acting on cross sections of the partially submerged body portion,

X, <_ X <_ X 2. is determined as

L, (x.l) = P(x, t)- 0((P -'+ )_ (.1a6O(P
_:, ,(2.15a)

P(x.I) = aV<2 (n)-aa2P2(n)+ aaVlP,2(n)- V P (t). (2.15b)
0 (x.t1) =a [V,, (n) +a,.02 (n)l 0 a 2ý, (, (1). (2.15c)

In Ref. [8]. the functions of Eqs (2.15) are expressed analytically as

I ff(2n 2 +l)sin 2 n 1
0, (n) = -7(i - n) + sin 2nn - 7 n2

-12 6n 2'

02 (n) = -4 sin {neo (n) - [I +;r(l - n)cIgfn}

P, (n) = sin ! -I -

Pý, (n) =2sina I + 2 c{g2,[ (n) _n (- + 7r(I -n)clg 7rn)] 4eo}(n)}
1 1 2 7 1 "2 n -3

speci a -fumncsg(mn+e, (n) -e2 (n)n+ ae 2 cos'Urn)

The special functions e,(n), e,(n) and e,(n)are analyzed in Ref. [8]. Due to the first linear terms

of Eq. (2.15a) the local lift force is singular for small submerging depth, when n -- I,

L,,(n -- 1) - a - a(I, _ 0
at -x

- 2V, a-a an + On 2a 'K-a
at ax) (! - n)

11
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This is consistent with extensions of the two-dimensional theory [161 by the first author. In the case
considered herein, there is the additional term, which is due to axial variations of the body shape.
This singularity leads to impulsive loads at the beginning of body submergence. Nevertheless, the
body momentum is continuous and is proportional to the potential c1, - I - n.

The foregoing relations allow us to evaluate the lift force and pitching moment acting on the body in
the transitional phase 2. when the body passes through the slip surface. In this phase, the total lift
force and pitching moment can be expressed as a superposition of three terms, namely.

L(1) = L+ (t) + P+ (1) + L- 9)=-dV,, (t) + L(), (2.16a)

di

M = M=+ (1)+ M )+ M'! (i)=- 'w, ( + M, (1 ) (2.16b)dt

V,( Vý'(t) V+ ) + V,(i), ao(t) = Wo+ (t) + o•()+ (t). (2.16c)

The lift force L+(t) is determined by integrating the local lift force over the body portion totally

inside the cavity. This term is similar to that given by (2.10). The lift force L-(t) acts on the body

portion being totally in the external stream. Its expression is similar to (2.11). The terms LP and M'
correspond to integration of the local lift (2.15) over the interval [x,,x,]. They are given by the
formulas

L+ fP(x. I)tIx+ X11[E7(X 1.I)-P(X1,01)] ep(X1.)-(l-X--x,)4r(X2.I)-X 21tP+(X2 ",I

AI f fP(x, t)xd-c + f ID(x, i)dx + X, [(I - X1, 'P (X,. .1) + X, (P + (X
'I V,

- , 1,(t) = [((xt)- ' (x,t()xdr.

VIl "'I

where the critical points x1 )(t) x,(t) and their speeds are solutions of the equations

Ct ±+a(xk,) =y ,(t), x-,(l) V,- ox, . k =k1, 2.
dt ao±+a,(Xk)

Note that these representations of the lift force and pitching moment allow us to avoid the singularity
at the critical points on the lowest body generator corresponding to n = I. On the other hand, this

singularity is integrable since 1 - n -x - x .

The local cross-flow drag coefficient relevant to the partially submerged body cross-sections is
expressed as

12
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X2

C = J c(xt)a(x)a'(x)dx, (2.17)

c'K :- a-.t ,a 2 (n)- V §,(n)]+ V.2N,(n) + aN,(n) + Va, N ,(n)

The functions I)L2, N2 and NQ. are investigated in Ref. [8]. They are expressed as

(1, (n) = 4 sin 7n1n [ I n+- r(l n)ctgm] ", 2(n) =4 0sin- e(n) n
n1 2 1g I n

, (l n2 { sin 1+2n 2 _ sin lni(] - n),Nn)6n2 - 27mn

N,()= ;72- n)+e os m -e_(sn7 2 el() - i + 7(! n)ctgnn
nsi)n I Im

N•,,(n) = 4 1 - cosnnsn)me0n + co 7 2e, (?7)- .T2(+22
M 2 nsinnn )mn2  6

The special function e,11(n) is presented in Ref. [8]. In Phase 2. the full crossflow plane drag consists

of three parts similar to the lift force (2.16).

3. Outer asymptotic solution and drag components
The outer limit of inner solution dictates the form of outer asymptotic solution. For cavities of
infinite span, the outer limits of the solutions (2.4) and (2.13) correspond to dipole distributions on
the body axis. This situation is similar to the flow over a thin wing. The latter was analyzed in Refs.
[I 7-20]. which showed that higher order approximations are needed to find correct outer solutions
and to evaluate the wave drag. As shown in [8] unsteady effects and the finite cavity span effect
determine dominant terms of this limit. Although the unsteady terms are present in the outer
asymptotic expansion, their contribution to the drag components relevant to short-time scales is
small [8]. The dominant wave drag component is due to the quasi-steady term related to the flow
over the equivalent body of revolution of the cross-section area A,,, (x. t). This corresponds to the

source distribution along the body axis peq(X*I)= aA.q/lx. For Phases 2 and 3, these source

distributions are respectively expressed as [8]

'2(,si n )~)sin 7m 3.a

Q' = 2 Cdsn 2A'(X)7 e(n) - A(x)V, (I + 2n2 ) 6n J(3"1 a)

Q, = 24It(x, t)A'(x) - A(x)B, (x. 1)]. (3. 1 b)

where A(x) is body cross-sectional area, and A' = dA/dr.

For analysis of the outer asymptotic region. we introduce the scaling

13



Aircraft-Stores compatibility Symposium XIII, 18-20 February 2003

x= Y= Z= (3.2a)

p ,(z' -A' , U {X + V2
9(X, Y,Z, .1; K)}, (3.2b)

where K = (M i) 62 is transonic similarity parameter. The outer potential (p is a solution of the
Karman-Guderley (KG) transonic small disturbance axisymmetric flow boundary-value problem
[5,12,191

K - (y + 1)+ r P=0 (3.3b)LK- (r +I)1 x 2 y 0 a ,
a 0 Q,,,

0;o0: Y0& _0: 27r (3.3b)

The integration function go(X,t) of the inner solutions (2.4) and (2.13), which is needed for
calculations of the wave drag that results from solving the KG equation (3.3b) and imposing the
matching condition

gO(X.I)=in([(X'.,t) - Q'q In (3.4)

Now the wave drag can be calculated by integrating the pressure over the body surface. In Phase 2,
the drag force coefficient is represented as the sum of four terms

C1,(t) - 2 C,,,:(1) + C,,() + , (I) + C,., (1). (3.5)

Here the friction drag coefficient, C,), (1), is resulted from integration of the local friction coefficient
c, (X, Re) over the body surface

D __ I '
CI" /. , 2 - -- kc (XRe.)dX. (3.6a)

X=X-Xo. Re, = Re X[I-U(i)], Re (3.6b)

where U(t) is horizontal body speed. The coefficient k is indicative of the friction drag being
appreciable only on the body portion submerged into the flow external to the cavity. For a partially
submerged body portion (X, _< X _A X,), this coefficient is k = f/81r; for the totally submerged
portion, k = I for the body portion totally inside the cavity. k = 0. Because the local friction
coefficient c, is a weak function of the Mach number at transonic speeds, we use the Schultz-

Grunow correlation [10] developed for incompressible axisymmetric turbulent boundary layers

14
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c I(X, Re',) c, (Re,,),a 6(x)IX ,c, (Re,) = 0.37(0g Re, -2584  (3.6c)

The base drag coefficient, CIB(1), is obtained from integration of the pressure difference. p, - p,

over the body base. It is expressed as a function of the Mach number [I I]

) = - a [I ph(OM)], (3.7)

where Mf = M[I -U(I)], a, is base radius, and p,(M)= Ph/p, is a non-dimensional base

pressure. For ogive-cylinder bodies, the function p,(M) is given in Ref. [8].

In Phase 2. the slip surface leads to new physical effects. If the body base is not fully submerged into
the external flow, then the base pressure is ph(M) = I due to the boundary condition on the slip

surface. Accordingly, the base drag coefficient is CI,,, = 0.

The wave drag coefficient. C,. (i,M). is expressed in terms of the function Ao(XI) as

C,,),3(t) = 0282 Ig + a. 0A',&idx. (3.8)

The numerical code of the first author was used to solve the KG equation and calculate the function
go(X,i) at each time instant of the trajectory in the pseudo-steady approximation.

4. Analysis of trajectory equation

The 3-DOF trajectory equations are expressed in the form

d/V dc/ad
d =cL(t)-c,.1 - =c,,,Mr(t), c/tU c/(t) (4.1a)

2i Ir 1,o Ij
c /0 rUn C 0 (4. I b)

where iii and 1 are respectively body mass and moment of inertia. The system (4.1) is
supplemented by initial conditions at i = t,. In Phases I and 3. the equations fbr V and o are

integrated approximately.

In Phase I. for small aerodynamic forces the approximate integrals have the form

,(t) = YO + Vol - 2(1 -7rcý,gg2' t-, a(t)) a ,, + + 2 rg ICc-. (4.2)
125
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These relations describe the parabolic evolution of the CG vertical coordinate and the angle of
attack.

In Phase 3, the explicit integrals can be obtained if the slip surface effect is neglected, q = 0 in Eqs.
(2.5). In this case, the two first equations in (4.1a) are reduced to the decoupled equations for the
angular velocity to(t) and the function W(t) = JV,()-a(t)

d2 W dW d2(o- d(o
-2) + KCW + C, =0 2y + ca) + =0 (4.3)

dt2 di dt 2  dIi
2 10" )+ c,(ci + ) - Cmsg (, A xV A.)

K c [so - A, x - c,A, (sx - 1 ), C, ,c (s. - ,A,),

c,(1 + C(sg i xCggA ,+ CIC",,zr2g 2
x, A, x

s )T fa2 (x)dx, s,, =_ Ja (x)xdy, s, - fa2(.'-x.

The form of solution depends on roots of the characteristic equation

A2 - 22± +,v = 0; 2, = y + i; = y - in, S= y 2 . (4.4)

If the roots 2, and A2 are complex, the solution is oscillatory

V, (1) = Co - C2r +(A, cos.Or + A2 sin -2r)exp(yr), (4.5a)

Co = -C, + (B, cos Or + B, sin -or)exp(yr), (4.5b)

where r = t -t1 is the time measured from the beginning of Phase 3, t0. The coefficients A,, A2I

B1, B 2. CO and C2 are determined from the initial conditions at r = 0 [7]. Equations (4.5) indicate

that the body motion includes two components. The first component corresponds to a CG translation
with constant acceleration C2 and the body rotation with the constant angular speed -C 2 . These
terms are associated with a non-oscillatory motion, which is called "mean state." The second
component corresponds to periodic modulations of the mean state. These oscillations are neutral for
y = 0, unstable for positive y, and stable for negative y.

If the roots A, and 2, are real, we obtain the exponentially growing or decaying solution

V,(t) = CO - C2r + (A, cosh vr + A2 sinh vr)exp(yr). (4.6a)

ro = -C2 + (B, cosh vr + B, sinh vr)exp(yr). (4.6b)

where v = iQ. In this case, the motion also consists of two components. The mean state of body
motion is the same as in the foregoing case. The second component describes an exponential
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approach to the mean state for negative /1 and A2 , and an exponential growth of the vertical and

angular speeds for positive A, or/and A2 . Relations (4.5) and (4.6) can be used for correlation of
experiments, in which the body is ejected into the freestream with given initial parameters. Note that
the oscillation frequency observed in the experiments [21] is in satisfactory agreement with the
relation (4.4) although the experimental models are not slender bodies.

[he 3-DOF trajectory equations (4.1) are solved numerically for all three phases of the separation
process. An explicit fourth-order Adams procedure is used for few initial time steps. Then, an
implicit sixth-order Runge-Kutta scheme is applied. The code allows for rapid solution of Eqs.
(4. ]a), with the initial conditions being determined by the store release mechanism. Using a PC-166
type computer, a complete 3-DOF trajectory is predicted in a few minutes. In Ref. [71, the code was
validated by comparison with the subsonic experimental data [12]. In the majority of cases, the
predicted trajectories are in good agreement with the experiment. This proves that the theoretical
model correctly simulates basic physical effects of the separation process in all three phases.

Our parametric studies reveal interesting body motion features that are illustrated below for the
ogive-cylinder body B4N2 tested in the subsonic wind-tunnel experiments [121. There. the model
has radius el0,= 0.9525 cm, nose length k = 9.04 cm, and total length 30.48 cm. The distance from

the nose to the CG is g0 = 15.09 cm, mass m = 46.14 g. moment of inertia I = 0.0008 kgxm2 . The

initial location and horizontal velocity of the body CG are X. = U0 = 0.

Parametric calculations discovered a bifurcation of pitch angle time history for subsonic separation.
In Fig. 6, two quite different curves (solid and dotted lines) correspond to the same initial conditions
but opposite signs of the pitching moment in Phase 3. One of the theoretical curves agrees with the
experimental data [12] (symbols). Analysis of the full database reported in [12] indicates that such
bifurcations are present in the experiments; i.e., two divergent trajectories at about the same initial
conditions are observed. This bifurcation is of the special kind for which the different curves are
tangent at the bifurcation point [22]. The trajectory equations allow for such a bifurcation, since the
aerodynamic forcing terms in Eqs. (4.1a) are nonlinear (quadratic) functions of the speeds V and wo.
One of the two possible trajectories is selected when the body crosses the shear layer. Therefore,
Phase 2 serves as a trigger of the pitch bifurcation. Although this phase is relatively short, its
accurate modeling is important for prediction of the pitch history and store trajectory in the next
phase when the store is outside the cavity.

To estimate the Mach number effect, calculations were performed for the transonic flow with M.=
0.999 and the Reynolds number Re= 6.4782755x 106. The freestream Mach number was selected to
be very close to unity to maximize the wave drag and investigate its impact on the horizontal
component of the body trajectory. Figure 7 demonstrates the body thickness effect on the trajectory
parameters. Figure 7a shows time histories of the vertical CG coordinate. In Fig. 7b, the CG
trajectories are shown in the X-Y plane. The temporal variations of the pitch angle and the vertical
speed depend strongly on the body thickness ratio as shown in Figs. 7c and 7d. For D=D0, the body
separates from the cavity in a relatively short time period. For D=2D0 , the body moves almost
horizontally near the parent body for a relatively long time period (until the pitch angle is negative).
The total vertical displacement is about 4D only. During this phase, the body drifts downstream to
the distance X- 70D0 from its initial state. This distance is larger than four body lengths. The
average pitch angle and the pitch oscillation frequency are also strong functions of the body
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thickness ratio. For D=3D0 , a ricochet phenomenon is observed. The body returns to the cavity with
a relatively small downstream displacement. The pitch angle grows monotonically with small
oscillations since the pitching moment is too small to overcome pitching due to the initial angular
speed.

Figure 8 illustrates the initial vertical speed effect on the body trajectories. Calculations were made
at x0 = 6'. too = 0 deg/s Y0 = 2.54 cm and the two near-critical values of the initial vertical speed

V0-= 0.508 m/s and 0.762 m/s. The plots of CG histories (Fig. 8a) and CG trajectories (Fig. 8b) at

V, = 0.508 m/s indicate that the body ricochets from the slip surface and re-contacts the parent body.

When the body enters into the shear layer, the pitch angle grows slightly (see Fig. 8c) due to body
inertia. Because of a negative pitching moment, the angle a decreases with small angular speed.
This trend is too weak to reduce the pitch angle to its critical value (at which the separation becomes
possible). For V0 = 0.762 m/s, the body stays near the shear layer for a long time and moves

downstream a long distance. In this case, the negative angular speed is high enough to decrease the
pitch angle below its critical value, and the body separates from the cavity. Figure 8d shows that in
both cases, the vertical CG speed grows to a positive value. For V0 = 0.762 m/s, the gravity force is

strong enough to cause the body departure from the cavity, whereas for V, = 0.508 m/s this force is

too small for separation.

Figure 9 illustrates the initial pitch angle effect on the trajectory behavior. The calculations were
performed at Y = 2.54 cm, V0 = 0.508 m/s. o,, = 0 deg/s. The trajectory characteristics are very

sensitive to variations of the initial pitch angle ao. The latter may be induced by the release

mechanism and/or aircraft maneuvering at the release instant. The variation Aate= I' leads to

substantial perturbations of the body trajectory; i.e., the body separates from the cavity at
a0 = 5 and re-contacts the parent body at a0 = 6 (see Figs. 9a and 9b). Near the critical angle,

ao = 5 , the trajectory behavior is similar to that shown in Figs. 8a and 8b for the initial speed V, =

0.762 m/s. However, the vertical CG speed in this case does not become positive (see Fig. 9d). The
body base enters the external flow and then returns to the shear layer when the angle of attack
becomes negative. Then, the body exits to the external flow and drops downward from the shear
layer. The case, a 0 = -6 , is also shown for comparison. Here the body quickly crosses the shear

layer and separates from the cavity to a large distance. An interesting feature of this regime is
associated with vertical oscillations of the CG speed in Phase 3 (see Fig. 9d). This behavior is
consistent with the expression (4.5) for the body speed in an unbounded stream.

5. Summary discussion

Aerodynamic and dynamic problems associated with separation of slender bodies of revolution from
rectangular cavities into transonic stream are considered herein using slender body theory. The inner
and outer asymptotic flow regions are treated with the help of combined analytical and numerical
methods. Asymptotic analyses allow us to highlight lumped parameters governing the separation
process and decompose the problem into a series of simpler unit problems, which are solved
analytically for practical cases. The analytical results substantially simplify the solution of the store
dynamic equations. which are used to develop fast and robust numerical codes to predict 2-DOF and
3-DOF store trajectories. The computational package is validated by comparisons with the subsonic
wind tunnel experiments of lIT. An important aspect was the similarity of near fields for the
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subsonic and transonic cases. Parametric studies of the store separation into transonic free stream
indicate critical regimes relevant to store re-contact and ricochet.

The body separation process was treated as a sequence of three phases: in Phase 1, the body is inside
the cavity; in Phase 2, the body crosses the shear layer: in Phase 3, the body is outside the cavity in
the outer stream. For the inner asymptotic solution, the cavity sidewall effects can be neglected. This
allows us to decompose the inner problem into simpler unit problems, which are solved analytically
with the slip surface treated as a flat plane of zero potential. Analytical solutions of the dominant
approximation problems relevant to separation of a thin body of revolution from a rectangular cavity
adjacent to a uniform flow are obtained. For Phases I and 3, we use multipole expansions leading to
compact expressions for the pressure on the body surface and the cross-sectional lift. For Phase 2,
the solution is obtained using conformal mapping and Keldysh-Sedov integral representations. The
local lift force is also expressed explicitly using new special functions. As contrasted to the two-
dimensional problem, the solutions for Phases 2 and 3 include new terms relevant to the axial
variation of the body shape. These terms lead to qualitatively new features of the slip surface and
rigid wall effects. For example, in Phase 3 the slip-surface effect is essentially stronger than in Phase
I because the influence of this boundary decreases inversely with distance from the body. In Phase
2, the flow velocities of the dominant approximation are singular at the line of intersection between
the slip surface and the body surface. However, these singularities are integrable. This allows us to
calculate the lift force and pitching moment without detailed analyses of the singular regions.
Nevertheless, these singularities should be considered in the future to treat the higher-order
approximations.

Using the asymptotic theory, we formulated the matching conditions for the inner and outer
solutions for a body of revolution separating from a cavity into an outer transonic freestream. We
believe that for many practical problems, the transonic wave drag can be predicted within the
framework of quasi-steady flow. Short-time effects which may include cavity shear layer
oscilliations are averaged out over a long time scale relevant to the outer transonic region. and their
contribution to the wave drag seems to be small. The quasi-steady outer flow corresponds to
transonic flow over an equivalent body of revolution. Explicit forms of the equivalent body are
obtained as functions of time and the dimensionless cross-section area. Formulas for the base and
friction drags are derived using known theoretical results and empirical correlations. For Phases 2
and 3, different components of the cross-flow drag were calculated and analyzed. The wave drag,
which was one of these, was calculated using the first author's code that provided solutions of the
Karman-Guderley equation.

Our results form a foundation for the development of computationally non-intensive algorithms that
predict body trajectories during the separation process. The numerical code predicting the store
trajectory for all three phases was developed and verified by comparisons with the experimental data
of liT. Parametric studies revealed a bifurcation of the pitch-angle history in Phase 3. This is
consistent with the experimental data indicating the presence of two substantially different pitching
trajectories at almost identical initial conditions. Although the transitional Phase 2 is relatively short,
its aerodynamics is crucial in identifying one of the two possible trajectories in Phase 3 when the
body is outside the cavity. Further theoretical and experimental efforts are needed to investigate the
bifurcation mechanism. Using the code it is feasible to predict regimes of the bifurcation occurrence,
which is important for store separation control.
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Numerical results illustrating 3-DOF body dynamics for separations from a cavity in the transonic
freestream show that this dynamics could be rather complicated. It includes such phenomena as store
ricochet or/and re-contact. The body trajectory is very sensitive to the initial "launch" vertical speed
or pitch angle. Ricochet/recontact occurs when the initial pitch angle is larger or the vertical speed is
smaller than certain critical values. Above the critical angle or below the critical vertical speed, the
body does not cross the slip surface and returns to the cavity (ricochet). With increase of pitch angle
and horizontal displacement, contact with the upper or back cavity walls becomes possible. Near the
critical conditions, the body can stay at small heights from the shear layer for a long time period and
may partially return to the cavity interior. If the horizontal displacement during this time period is
larger than the cavity length, contact with the back cavity wall is possible; otherwise, the store
slowly separates.

The parametric studies showed that trajectory parameters, such as the mean state characteristic,
oscillation amplitude, frequency and amplification rate depend critically on the body mass. CG
location and freestream speed. Moreover, the trajectory is very sensitive to the initial conditions
induced by the release mechanism. Satisfactory agreement between theory and experiments is
difficult without detailed and accurate simulation of the release conditions. These conditions can be
established using direct measurements or post-processing of the experimental trajectories. The initial
conditions may also be influenced by difficult-to-control disturbances such as wind-tunnel flow
oscillations or/and capture of the model ends by the release mechanism. On the other hand, the store
separation can be controlled effectively by the release mechanism. Our modeling can help with the
design of ejection units and thrust motors for stage separation. The PC-oriented code allows for fast
evaluations of thrust and weight required for these units. Quick turnaround calculations also help to
understand how to avoid an adverse re-contact situation with a relatively small impulse.
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Abstract
Interaction of two slender bodies in supersonic free stream is analyzed using perturbation theory. Four effects of
interaction are identified: external flow inclination, additional boundary conditions on the parent body surface,
additional forces and moments due to external flow stratification and interaction with external shocks. The latter
effect is considered using an approximated model allowing for a simple formula for perturbed pressure. Numerical
examples are presented to illustrate the shock-store interaction effects.

Nomenclature Ds, L,, Ms drag, lift forces and pitching
X, Y, Z Cartesian coordinates moment due to shock-store

attached to the parent body interaction
ui, v, w, p flow velocity and pressure I unit vector collinear to incident

perturbations induced by shock
the parent body N unit vector normal to the store

x, y, z coordinates attached to the surface
R unit vector collinear reflected

store CG characteristic
r, 0 polar radius and angle M freestream Mach number
u, v, w, p flow velocity and pressure

perturbations induced by i- thickness to length ratio of the
the store parent body

p', p" pressures behind the 8 thickness to length ratio of the
incident and reflected store
shocks a angle of attack
time A length of interaction region

X, Y streamwise and vertical P = -li

store CG coordinates E external flow perturbation level
U, V streamwise and vertical

store CG speeds
[ parent body length = arcsin ' Mach angle

I store length M

a(x) store radius Y angle between normal to the

D store diameter store surface and the incident
characteristic

D, L, M drag, lift forces and external flow potential
pitching moment due to ( store induced flow potential
external flow perturbations
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1. Introduction on the store. In this paper, the problem of shock-wave
The unsteady interaction between bodies moving in diffraction by a slender body is analyzed using asymptotic
free stream is a difficult aerodynamic problem, which methods It was shown that, in the first-order
has important practical applications, such as body approximation, the flow field in the local scattering region
separation from a cavity or external supports and is described by the linear acoustic equation. In the
multiple body separation.)' 2 Common engineering framework of geometrical acoustics, an analytical solution
approaches to predict the aerodynamic interactions for shock diffraction is obtained. This solution is useful for
are based on steady experiments and computations.1"3  understanding of basic features of such flows and allows
However, effects of the external flow nonuniformity us to develop a quick and compact code for estimating the
and unsteady effects may be dominant, and the trajectory of a store separating from a thin wing to
traditional methods may lead to essential losses of supersonic free stream. Numerical examples are presented
accuracy in body trajectory calculations." 2'4 In this to illustrate shock-body interaction effects.
connection, a variety of advanced numerical
procedures were developed to predict unsteady 2. Slender-body interaction with weakly
aerodynamic loads.6 9 However, time consuming inhomoeeneous external flow-field
calculations obstruct to use of CFD solutions for Consider two slender bodies in supersonic free stream: one
practical applications, is a parent body of large size and another is a relatively

In this paper, an asymptotic theory is used to small store. To analyze the parent body-store interaction,
simplify the solution procedure and identify basic we introduce the coordinate systems: OX Y'Z" is attached
parameters governing the slender bodies interaction to the parent body; oxyz is attached to the store CG
in supersonic free stream. Interactions of two slender
bodies associated with store separation from a parent (see Fig.I). The store moves in the vertical plane with the
body of revolution or from a slender wing are basic CG horizontal speed U"(t'), vertical speed V"(t') and
unit problems to be addressed hereafter. In the first- angular speed 0o" (t) at small angle of attack a" (t"). To
order approximation, the parent-body effect on the analyze the flow we introduce the nondimensional
store can be considered as if the latter moves in the variables
external inhomogeneous flow induced by the former.
Similar approaches have been used to account for the X . Y, Z
aircraft flow-field effect on a store separating to 7' -- ' (1)
subsonic'0 "' and supersonic' 3 streams. From this
point of view the theory developed hereafter X Y Z
complements our previous studies of store I 61 =
separations from a rectangular cavity and a flat x. V z.
wall. 5',31 6 This allows for coupling of the global x =-, y -=rsinO z-=rcoso
aircraft flow field with the local flow near the store. 1 6/ 61

Note that the developed approach may be applied to t -uYx
other problems such as an interaction of the store l

with vortices induced inside a cavity, the body
motion in a vortical wake, multiple bodies Here I and / is length of the parent body and the store
interactions in free stream, etc. respectively; 8i1 is the parent body thickness, 61 is the

In subsonic flows, the external flow perturbations store thickness. The parameter 8. characterizes the
are distributed in space. Their contributions to forces
and moments acting on the store are reduced to the external flow-field inhomogeneity induced by the parent
additional angle of attack due to the external flow body: for a slender body 68 = 6-, for a thin wing 8,a = 1.
inclination as well as the inhomogeneous external The angle of attack, a Q(), is referenced to 6 ; r and 0
pressure integrals. In supersonic flows, new effects are polar radius and angle on the store cross-section plane,
are due to scattering and reflection of weak shocks.
At the initial stage of separation, these phenomena t is time, u. is freestream velocity; X,(t), YQ (t) are
lead to formation of the shock-wave system (called as coordinates of the body CG. The both bodies are slender
a wave train) between the parent body and the store.
Since shocks are weakly attenuated, the problem of 6 << 6, 8«<<1. (2)
their diffraction and re-reflection needs to be The nondimensional parameters
analyzed. Moreover, the shock-body interaction leads
to essential changes of the pressure distribution on l
the store surface that, in turn, causes appreciable j.i=.<O(1),68 =-«l, (3)
changes of aerodynamic forces and moments acting
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are assumed to be small. The store shape is given by wing in supersonic flow, the external potential and
the equations pressure are governed by the linear equations with the

Y, = H(x,t) +8Sa(x)sin0, r, = a(x). (4) boundaryconditionintheplane 1=0

where IH(x,t)=17o(t)-b.cxx is distance from the 23-- 7-0, /3 u,

plane Y =0 to ox -axis. The parent body shape is v h'(Xt), (8)

f =6-h(X,Z) (5) where p3
2 

= M 2 -1 and M is free-stream Mach number.

The external flow field is assumed to be steady. The solution of (8) describes plane waves propagating in

Then the flow velocities (u*, v', w') and the pressure the upper (upper sign) and lower half-planes1 8

p" are expressed in the form of asymptotic
expansions h(X T P Y). (9a)

p'(X., Y.,Z,t) = pý + This formula describes the distributed flow
+U2+2P inhomogeneity between two weak shocks generated at the

leading and trailing wing edges (see Fig. 1). The pressure

u" (X', Y, Z, t*) =U + jump through the leading (Ap, ) and trailing (Ap, ) shocks
+ U F[ fi ( f C , f , 2 ) + 6 2 u~ ~ ~ ~ ) . . a r e 18

%=,

w'(X', Y., Z',t.) =where kX and k, are coordinates of leading and trailing

=U • (, , w x y t + . (6) edges.

For a axisymmetric body, + = + = h(fC), the

where p. and p. are freestream pressure and external potential satisfies to 3-D wave equation with the
boundary condition being imposed on the body surface.

density; the small parameter v (E = 8 for a wing The pressure is determined by the nonlinear Cauchy
and E 6? In (1/-) for a slender body) characterizes equation

the level of external pressure perturbations. The first 2 
a i2 C a .a-0

terms in the square brackets of (6) describe an 3 X -- R =0 I
inhomogeneous external flow field induced by the a2 R aR aR
parent body. This field can be vortical, for example in d D
the wake past an aircraft. The second terms of (6) R=h '(X))

correspond to the free-stream perturbations induceds e dq 
1

by the store. In the case of nonvortical flow, the ( (10)

potential is expressed as P + (10)

V(X, Y.,Z.,t) = X +, The solution of(10) is expressed in the integral form"s

1- S'(s)ds (11)
OZ X -s 27 f 2R2

ex ay a
u =-, v =-, w=--. (7) where axial coordinate X is measured from the nose and

S(aX)t nh 2(X) is cross-section area. Near the body, far

The parent-body potential, 4D, corresponds to the from the wave front, X - 03 R = 0, Eq. (11) is reduced to
asymptotic limit 6 -> 0, 6 = 0 indicating that in the the solution of the 2-D Laplace equation

first order approximation the store does not affect this
potential. We consider the two parent bodies: a thin
wing and a slender body of revolution. For a thin

3
American Institute of Aeronautics and Astronautics



-) s'(LK') 13 1xand in its vicinity is approximately constant.
I'n kJS'(s)ln(X -s)ds. (12) Nevertheless, the flow inclination may essentially

2it 2 2it o affect the store motion in the phase of shear-layer
There is an essential difference between the crossing. Also, the flow inclination effect may be

Ther isan esenial iffrenc beweenthe dominant when a slender body moves in the aircraft
solutions (9) for a wing and (11) for a slender body: wake.

there is no pressure jump across the wave front, wake.
2. The presence of the additional boundary (the wing or

S- J3/• 0, in the case of a slender body, while Eq. body) that is the parent body surface dictates the

(11) describes the distributed pressure wave that additional boundary condition for Eq. (14a): the
transforms to N-wave far from the body.19 The shock normal velocity in this surface is zero on a wall or the
wave arises in the theory of the second order,19 the pressure jump across the shear layer is zero. This
pressure jump and the shock are determined by the effect is very important. It was analyzes in Refs.
formulas [5,15] for separations from a wing or cavity.

4 3. The external inhomogeneous pressure contributes to

Ap=3 ( '2 6 4h,4 (O). aerodynamic forces and moments. If the store moves
2 2 3 2 in inhomogeneous pressure field, then the drag D',

3( Y 3 +1 )2 Mg (olift C and pitch moment M" include additional

4 2P h (13) terms: & , L' and M>*'. These terms are external
pressure integrals over the store surface

The store-induced potential, (D, corresponds to !*(t*) E 2

the limit 8 --+0, =0. Near the body, without ,2122 (t)=-2-• f 7 J(,:+x
effects of shock-body interaction, the potential 2n

satisfies 2-D Laplace equation and the boundary if'(t) =f ( + x,)a(x)sinOddx
conditions pUl 2 0

al(D aq) (tX, 2.

+ = pY/'t =tM0(t) f= -J (ki + tx,f,)xasinOJadx0Y2•"C3Z"" 'pyU2-/6 f 0

p=JO +u+ -v 2+ w"(5
at 2 +2)], where S(x) is the body cross-section area, the prime

vl,=,) =a.- Vf sinO denotes differentiation with respect to x, x, and x, are

= V -Ox -a - - i(x t). (14) coordinates of the body nose and base, respectively. With
5 V -the help of the inequalities (2) and (3), the expressions (15)

can be simplified for different cases.
Here v. is the velocity normal to the store For y <<«1 the external pressure on the body surface

surface, ýi(x,t) = i(I(x,t)) is vertical velocity of the can be expanded to the series

external flow on the store axis. The problems (8) and
(10) for the parent body are decoupled from the P(X. + px,Y,) = (X +p t

problem (14) for the store. The store problem (14) 5 (Xf + ptx, H(x,t))
can be solved using the method developed in Refs. +5,, asia +....
[5,15].

The three external-flow effects on the store The implicit dependence of the function H(x,t) on the
motion are distinguished as: angle of attack is retained here to account for the practical
1. The vertical velocity, ýi(x,t), of the external case a >> 1. Substituting this expansion to (14) we

velocity on the store axis affects the effective obtain for the forces and moments the expressions
cross-section vertical speed V,(x,t) that leads to
additional angle of attack. The correspondent 15(t) =- f PJ(X + gx,T-(x,t))S'(x)dx
term is of the order of other terms in Eq. (10c) or IE

it is dominant in the case of >0(85). This • a.0/3 +

effect is important, for example, in store L(t) - af
separation from a cavity schematically shown in X.
Fig. 2. In this case, the pressure inside the cavity

4
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(k +( X x, R) z. Ir I

-6j " Sxdx, z =-, r'y +z-.
(9 61

(16) In this region, the flow potential is given by the

These expressions are rather simple since the asymptotic expansion

external pressure distributions on the store axis is • = lu {xI + +6S+62 In 6 g(xs) +
only needed to calculate the forces. Further
simplification is possible if A << 1. In this case, the , (XYZ)+E80(s,y,z)+ (17a)

integrals (16) are calculated in explicit form and the
external pressure derivatives at the store CG location
are only needed to estimate the inhomogeneity effect, perturbations due to wave scattering. The correspondent

pressure rise across the shocks is expressed as
3. Diffraction of a weak shock by a slender body P = -&(. (17b)

At supersonic speeds, the new problem of shock-
store interaction is added to the effects discussed in In the scattering region, the problem is reduced to the
the previous section. This problem arises at different problem of wave diffraction by a cylinder of radius
practical situation, for example, when the separated as = a(xs) (see Figs. 4 and 5). The potential is a solution
store intersects one of shocks induced by the wing of 3-D wave equation with the boundary condition
(see Fig. 1) or the shock generated by other slender
body at multiple store separation (see Fig.3). In the , O '(D a20 Ocr
latter case, it is reasonable to assume that the wave F7 = s 6z-7 -
front radius R shown in Fig. 3 is much larger than the Oe 0 (Ystore radius 61. Then the incident shock can be 0. =0 (18)

treated as a plane shock for the diffraction problem. Or r=as
Therefore, the interaction of a plane shock with a
slender body is a key unit problem. This problem can be solved using Fourier and Laplace

Consider a weak plane incident shock with unit transforms. However, in this paper we obtain a simple
vector I = (cosoi,-sino,0) inclined to the free solution using geometrical acoustics and weak shock

theory.18, 19 From geometrical consideration (see Fig.5) it is
stream at the Mach angle *• = arcsin(l/IM). Behind followed that the line of the shock intersection with the
the incident shock, the flow is two-dimensional and body is given by the equation
inclined to the free-stream direction at the small angle
S<<1. This angle may be associated with the wing s = asp (l -sinO). (19)

leading-edge angle, if the incident shock is generated In approximation of geometric acoustics, every
by the edge. In the linear approximation with respect in appration of co usti e ver yt ,tenondimensional velocity vector and the incident shock ray, which is collinear to vector ! and
to e ,the collides with the body at a certain point, lies in the planepressure rise behind the incident wave are Q, which is generated by the normal N to the body

-= surface and the reflected ray R at this point (see Fig. 6).(- ) Since the shock is weak, the incident and reflected rays are

inclined to the normal N at the same angle y , which is
Accordingly, the correspondent entropy rise can determined as

be neglected and the potential flow approximation
can be used. Let the incident wave collides with the sinO (s)
body surface at the station x* = x>. The scheme M
shown in Fig. 4 indicates that the length size of the In the considered approximation, the normal N and the
scattering region is A/, where the nondimensional unit vector R along the reflected ray are expressed as

parameter is A=6a 0•-M-7 -1-6 if the Mach tan0(s)

number is not so large. Then we introduce the R = Icoso, sino, - M
variables in the scattering region

x* x - xs Y*
X=- X= V = N(, iOcs)

x =- x 6/ The unit vector S tangent to the body surface in the
plane Q is

5
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S( cos 2 0(s) cos0(s)sin0( @ stream. However, for preliminary calculations, this
Ssiny I -Ncosy =c , MlMct is not taken into account. Therefore, the coefficients

M M of 5he drag force, lift force and pitching moment due to

shock diffraction are expressed as

Behind the incident shock, the velocity normal D:__ I x, _ _ _

p~~l6)16 Ds=it •JS'(s)ds J p"(s,O )dO=
and tangent to the cylinder surface are Ds 2 -( - -_,) f p0 0 ,

v= =- sin0 (s) oOs)t

Vs E COnd +•()coO() sd

VS~X =¢ 
-4-ho~ 

o 0()li

Ls= = fa(s)ds f p#(s,O)sinOd0 =
Due to the boundary condition (18), the normal p.u,2 (1-68U) 2 126 1

velocity is zero behind the reflected shock. Hence, xF 1

the flow in the plane Q will be turned to the angle - I |rit 0-O(s)+2cosO,(s)+-sin20 .(s)

csinO . In accordance with the theory of weak (13 L2  2

shocks,' 8 this change of the flow direction Ms
corresponds to the pressure rise Ms= ! (1-SU)2)18 2

s sin0O(s) 1oAp- = E if s EX T -o0,(s) + 2 cos°,(s) + + Isin2° (s) a(s')sdsfo
f -2

Therefore, the pressure behind the incident and (22)
reflected shocks is determined as

where U(t) is CG streamwise velocity referenced to 6 u.

p"= p' + Ap = -8[l + sinO (s)]. (20) The integration domain is subdivided into the scattering
p region ( x < x < x, , 0= 0 ) and the downstream region

In the shadow region 0 <0, the pressure is x > x,, with 0,(x) given by (21). Then, the forces (22) are

constant p" = s / 0 . subdivided into two terms

This solution is restricted by the Ds = Ds + Ds, L, = Ls + L,
inequality M > ,f2 resulted from the condition of Ms = Ms + Ms.

supersonic flow in the scattering direction. Note that
actual diffraction regions have more complicated The first terms of these sums are forces acting in the
structures including Mach reflection and a system of scattering region, where
shocks. Simulation of such structures is rather
difficult problem even for the state-of-the-art CFD 2s = _ 2si -

methods. In our theoretical model, these effects are AIA)
neglected. s L2" 2s

Additional forces due to the shock-body sin0, =2_ls 1-
interaction are calculated as integrals of the pressure ' A) A A
(20) over the body surface portion being in the
perturbed region. This region lies in the sector Then, these terms are expressed as
0•0 <5t of the scattering region D 6 (lit
xs:5 xx, =xs +A. It is assumed that downstream s= +2 4),'

from the scattering region the perturbed region is 5 n
x>x,0,(x)_<On-0,(x), where 0,(x) is Ls=--aSs 1+ ,

estimated 
as

aMs =-- ,asSsxs +- (23)
0, (x) = arccos a-') , a, = a(x,)" (21) ).

The second terms of shock-induced forces are due to
Actually, the perturbation region (behind the the pressure integrals behind the scattering region. These

reflected shock) is restricted by the diverging terms have the form
characteristics and expanded downstream. Due to this
expansion the pressure on the store surface decreases

6
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2+ behavior. At V > I mis, the body quickly rotates
D- = (.- ai)[- j+2+ 2 a) counterclockwise (pitches down) during crossing the

S --- shock. With increasing of the pitch angle the lift and drag

S a, - S a 1  a,_ V increase also, and the body translates downstream with
arcs- -- In -+I--Sao it a, a, acceleration. The angle of attack quickly grows up 500 andI calculations are stopped since such large angles of attack

-j| -". 1are beyond the scope of slender body theory. At JV,,J < 1, s arc s in a+ 2a•ý' +a-L, a(x)dx
Lrcsi8-,2-a- a -j-- -j m/s the body does not cross the leading-edge shock. In this

a a a a Jcase the angle of attack and CG slightly oscillate near a

F , 1 certain mean state. As V, decreases the trajectory becomes
L arcsin a' + 2a •, + a' a(x)xdx more slant. This "quiet" behavior is observed until the

138 a a a \a' j body collides with the trailing-edge shock. Then, the angle

(24) of attack quickly increases and the body drops rapidly.
This behavior resembles reflection of the body from theThese formulas are suitable for fast calculations taln-desok

of te sock-odyinteacton.trailing-edge shock.
of the shock-body interaction. Figures 8-11 illustrate the effect of the body mass for

two initial vertical speeds in the case of separation from
4. Exampiles of store trajectories the front wing portion. Trajectories are shown for three

The discussed above theoretical model was bodies of identical geometry but different mass and
incorporated into the code predicting storeincrpoate ino te cde redctig sore moment of inertia: M. = 0.5m, m and 2m. At V,, = -5 mr/s
separations from external supports to supersonic free
streams. Parametric studies are conducted for the body interacts with the leading-edge shock only (see
separation from a thin parabolic wing of the shape Fig. 8). Apparently, the interaction region decreases as the

body mass increases (it is easer to accelerate a lighter

h(x) = 4 body). On the other hand, the lightest body ( M, = 0.5m)
( 4). has the largest angular acceleration and its angle of attack

The leading-edge and trailing-edge shocks shown grows more rapidly (see Fig. 9). As shown in Fig. 10, at

in Fig. I are induced by the wing. The base tested V, = 0 m/s even the heaviest body (M, = 2m ) does not

body is an ogive-cylinder body B4N2, which has collide with the leading shock.. The CG trajectory
been used in lIT subsonic experiments. 4 Its length is becomes more slant as the body mass decreases. The
1 = 0.3048 m, the relative thickness and diameter are angle-of-attack oscillation period is inversely proportional

6 -0.03125 and D,= 0.01905 m, the mass m = to the body mass that is consistent with the theoretical
model.- Trajectory parameters slightly oscillate until the

0.004614 kg, the moment of inertia I = 8.10-2 kg.m2. body crosses the trailing-edge shock. This occurs for the
The wing length is l = 51, its relative thickness 6 = bodies of M, = 0.5m, m. Then the angle of attack quickly
6.25- 10-3. The free-stream parameters correspond to increases and the body drops rapidly (Fig. 11).
flight at the altitude H = 25.5 km with Mach number Figures 12 and 13 illustrate the effect of initial vertical
M = 3.9. In the parametric studies, at the initial time locus Y(0) - Y, on trajectory parameters at the front
moment ao0 = (N = U0 = 0 ; other initial parameters separation. For V,, = -5 m/s, this effect is slightly visible:

are varied. Effects of the initial vertical speed V,, the trajectories at different Y,, are almost identical. For

body mass, the initial vertical (Y,) and streamwise V(, = 0 m/s, the trajectories are significantly different as

(X(,) CG location on the body trajectories are shown in Fig. 12. They are approximately parallel to each
studied. The store CG translates with the speeds other. The increase of Y, leads to the later body collision
U(t), V(t) and rotates with the angular speed co(t). with the trailing shock. The angle of attack is almost
The body position and its orientation in the space are independent on the Y, when the body moves between the
determined by the streamwise and vertical CG
coordinates, X(t) and Y(t) referenced to 216 and shc.To estimate the effect of the initial streamwise CG
the angle of attack c (t) referenced to 8 . location X0, we calculate body trajectories at Y, = D and

Figures 6 and 7 show CG trajectories and angle of X,, = 0, 20D for different initial velocities V,} = 0, -1, -2.5,
attack histories for different initial vertical velocities

-5 ri(seFg.1-7.AX0 =0 (Figs. 14, 15) the
in the case of separation from the front wing portion. (
Interaction with the leading-edge shock crucially body crosses the leading-edge shock when the initial
changes the trajectory and the angle of attack
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speeds are V, = 5 and 2.5 mis. At smaller V0 the reflected shocks is derived. This result is useful for quick

body moves between shocks for a long time period. A first-cut estimates of the shock-body interaction effect on

contact with the trailing-edge shock occurs at the the body aerodynamics and trajectory.

initial vertical speeds close to zero. At X) = 20D (see Parametric studies of the parent body effect on store
trajectories are performed for supersonic free stream with

Figs. 16, 17) the body does not cross the leading-edge emphasis to the store-shock interaction. These calculations
shock besides the case of VJ = 0. In both cases, the lead to the conclusions:
angle of attack oscillates with small amplitude. 1. The interaction of the body with shocks plays a

5. Summary and conclusions dominant role in store separation to supersonic free

A theory of multi-body aerodynamic interaction stream. The obtained results show that this effect leads

in supersonic flows is developed using asymptotic to crucial changes of the trajectory parameters,

methods. In this framework it is feasible to analyze especially, the angle of attack.

different practical problems including store 2. The initial vertical speed strongly affects on the body
separation from a cavity or external supports. In this trajectory. At sufficiently large initial vertical speeds
connection, the interaction of two slender bodies is a the body crosses the leading-edge shock that leads to
key unit problem. The theoretical model based on sharp changes of the angle of attack and trajectory.
asymptotic theory is developed to treat this
interaction in the first order approximation. The 3. The CG trajectory becomes more slanting with the
analysis of this model leads to the following body mass decreasing. The angle-of-attack oscillation

conclusions: period is inversely proportional to the body mass that
is consistent with our theoretical analysis.

1. The external-flow inclination with respect to the
free stream changes the local angle of attack. 4. The body trajectories linearly depend on the initial

This effect is dominant when the pressure is vertical CG coordinate in the case of small vertical

approximately constant, for example, at store velocities. It is not essential at relatively large initial

separation from a cavity or at slender body vertical speeds.
motion in the wake of aircraft. 5. By variation of the streamwise CG locus it is feasible

2. The boundary conditions on the parent-body to keep the separated body in between the leading-

surface affect on the store motion. This effect edge and trailing-edge shocks for a long time period.

was analyzed in our previous studies for store The body drops between the shocks with small

separations from a flat wall or slip surface to oscillations of trajectory parameters.

subsonic and transonic free streams. 6. At small vertical speeds the main effect is related to

3. Inhomogeneous pressure distribution in the the body interaction with the trailing-edge shock.

external flow leads to additional drag force, lift
force and pitch moment. This effect can be Acknowledgments
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Lift-dominated pointed aircraft configurations are considered in the transonic
range. To make the approximations more transparent, two-dimensionally cambered
untwisted lifting wings of zero thickness with aspect ratio of order one are treated.
An inner expansion, which starts as Jones's theory, is matched to a nonlinear outer
transonic theory as in Cheng and Barnwell's earlier work. To clarify issues, min-
imize ad hoc assumptions existing in earlier studies, as well as provide a system-
atic expansion scheme, a deductive rather than inductive approach is used with the
aid of intermediate limits and matching not documented for this problem in previ-
ous literature. High-order intermediate-limit overlap-domain representations of inner
and outer expansions are derived and used to determine unknown gauge functions,
coordinate scaling and other elements of the expansions. The special role of switch-
back terms is also described. Non-uniformities of the inner approximation associated
with leading-edge singularities similar to that in incompressible thin airfoil theory
are qualitatively discussed in connection with separation bubbles in a full Navier
Stokes context and interaction of boundary-layer separation and transition. Non-
uniformities at the trailing edge are also discussed as well as the important role of
the Kutta condition. A new expression for the dominant approximation of the wave
drag due to lift is derived. The main result is that although wave drag due to lift inte-
gral has the same form as that due to thickness, the source strength of the equivalent
body depends on streamwise derivatives of the lift up to a streamwise station rather
than the streamnwise derivative of cross-sectional area. Some examples of numerical
calculations and optimization studies for different configurations are given that pro-
vide new insight on how to carry the lift with planform shaping (as one option), so
that wave drag can be minimized.

Keywords: asymptotic expansions; transonic flow; slender body theory; mixed type

1. Introduction

Performance of high-speed airplanes and missiles is closely related to our ability to
accurately predict and reduce drag. The transonic regime is quite challenging because
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of the strong nonlinearities in the flow and the occurrence of shock waves. Many com-
mercial aircraft, as well as high-speed fighters, operate in this Mach number range.
Other flight vehicles such as hypersonic aircraft and spacecraft accelerate through the
same regime. However short the duration of exposure, the drag encountered during
transonic flight is critical to overall mission performance, fuel expended and cost.

In the 1970s, a revolution occurred in computing nonlinear transonic and other
high-speed flows with computational algorithms and computers. From this pioneering
effort, computational fluid mechanics (CFD) has been an asset and workhorse for the
aerospace engineer and designer in obtaining transonic flow patterns around realistic
shapes. In spite of CFD's power, challenges still exist to predict drag and other quan-
tities, such as pitching and hinge moments, rapidly enough for the phase of aircraft
development known as conceptual design. Typical CFD calculations require signif-
icant amounts of pre-processing, a large portion of which involves grid generation.
Conceptual design optimization also requires the study of hundreds to thousands of
airplane geometry and related parametric variations as well as the interplay of physi-
cal intuition and compromises based on aerodynamic reasoning and systems impacts.
Conflicting demands exist between quick response and pre-processing. Because the
latter cannot yet be adapted to quickly restructure the grid for rapidly changing
parameter sets, CFD's role is emphasized in later phases of preliminary and advanced
design than the conceptual one. Alternatively, it is used to anchor a selected small
subset of the conceptional (basepoint) design aerodynamic predictions using other
methods.

Recent reviews, assessments and surveys of CFD approaches currently used in
industry to estimate drag as well as other forces and moments are typified by Cosner
(2000) and Lee-Rausch et al. (2003). As an alternate to CFD, empirical methods
have been employed in conceptual design. One such application is the use of alge-
braic fairings to estimate zero-lift transonic drag rise, a salient performance obstacle.
Such fairings of are of limited value because their validity is restricted to their sup-
porting datasets and they do not apply physical ideas in a self-consistent way based
on first principles. At the other extreme, large-scale CFD, with careful application
and study, is capable of providing excellent, high-accuracy results for a family of
shapes for which there are wind-tunnel and flight tests to benchmark and, even in
some cases, calibrate them. However, it provides limited design direction based on
gasdynamic ideas for rapid-response, optimal aerodynamic shaping. Mathematical
shaping guidance is possible from modern optimization techniques such as adjoint
methods, stimulated annealing and control theory, but is implicitly restricted to
small perturbations around an initial iterate. Such methods currently require high-
end workstations, which, with the exception of computer-aided design platforms, is
atypical in today's conceptual design environment, but perhaps not in the future.
Accordingly, the question of global optimality is a challenge in such techniques. New
approaches such V continuation may be a possibility in this connection.

To provide an important complement to the aforementioned existing conceptual
aerodynamic design 'toolbox', traditional asymptotic methods in a modern compu-
tational setting are attractive. Transonic application of combined asymptotics and
numerics that stem from this idea is based on concepts that derive from the early
work of Jones (1946), who published a paper giving a formula for the lift and induced
drag of 'low aspect ratio pointed wings below and above the speed of sound'. Related
work on the equivalence and area rule appear in Oswatitisch & Keune (1955) and
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Figure 1. Pointed transonic wing.

Whitcomb (1956), which correlate the aerodynamic characteristics of a full aircraft

configuration to that of a body of revolution having the same cross-sectional :ii oa

distribution along its length as the full airplane's. In Malnuth (1993), the area tle

and equivalence rule have been systemized into a combined asymptotic and ununeri-

cal method that can be used as a conceptual design tool. This approach reduces the

three-dimensional drag shaping optimization problem to one in one less space dinen-

sion and is capable (in principle) of systematic refinement. It is an example of how

intuitive concepts based on systematic asymptotic approximation procedures conm-

bined with modern computational methods can be used to provide a rapid-response

complement to the previously mentioned tools in a preliminary configuration environ-

ment. In addition, the shaping concepts are intuitive, being based on shape smoothinig,

to remove shocks of an 'equivalent' body of revolution as contrasted to that of the

complete airplane.
The work presented here, and earlier in the references cited below, represents an

extension of Jones's ideas to the transonic range with emphasis on a special concept.,

wave drag due to lift. In this connection, it is reassuring that, under suitable circum-

stances, Jones's formula for the lift and induced drag not only continues to hold, butl

is even valid for wings whose aspect ratio is order one. Under these circumstances,
shock waves and associated wave drag generally appear.

The basic ideas of how this type of flow behaves are set out in the papers by Cheng

SHafez (1973a,b) and the report of Barnwell (1975). The principal result is that the

lift produces a flow that looks, in the outer region, like the flow past, an equivalent

axisymmietric body. This physical effect shows up in the inner and outer expansions

used by Barnwell. Cheng & Hafez used similar ideas to define the apparent body and

general equivalence rule in a series of papers. Cramer (1979) also studied the problemn

(with zero thickness as is done here). He discusses thickness effects and essentially
verified the results of Cheng & Hafez.

In this paper and Malmuth et al. (1987), we have also considered wing-like configu-

rations with zero thjtkness and aspect ratio 0(1) as in figure 1. Thickness effects can

be incorporated relatively easily (see Cole & Cook 1988), where the angle of attack (t

is 0(6), where 6 is the wing-thickness ratio.t This analysis is an approximation of the

case a >> 6. Inner and outer expansions are defined in essentially the same manner

t The thickness theory applied in Malmuth et al. (1987) is applicable away from the nose. Studies of

local corrections and uniformly valid approximations valid for two-dimensional airfoils as contrasted to

the three-dimensional wings considered here are given in Rusak (1993, 1994).
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as Barnwell, although the asymptotic matching is carried out in a different way using
intermediate limit process expansions which, in our opinion, provides greater clarity.
A special new result of the paper is the formula for transonic wave drag due to the
lift associated with the outer expansion.

To show the implications of this work and in contrast with previous strictly analyt-
ical effort, this paper will describe the modern computational implementation of this
concept to provide a tool for rapid conceptual design with particular emphasis on
planform shaping to avoid wave drag due to lift. Several computations and an opti-
mization are carried out to show the effect of planform and longitudinal distribution
of lift on the transonic wave drag and give hints on how effective planform design can
reduce it in the reduced-dimension equivalent body of revolution analogue. Of other
significant importance is the fact that the combined asymptotic method provides a
method of segregating out wave drag due to lift as contrasted to induced drag. This
can provide a framework to deal with trade-offs between the two sources of drag.

2. Basic equations and boundary conditions

The problem is studied in the framework of inviscid aerodynamics. Since entropy
increases across the shock waves are of third order in the flow perturbation, the
full potential equation can be used as a starting point. The flow is thus, to this
approximation, isentropic, i.e.

= (2.1)

where p is the static pressure, p is the density, -y is the specific heat ratio and
* so' subscripts signify free-stream values.

The potential equation is an expression of the continuity equation

V pq = 0, (2.2)

where q is the velocity. ýP is the velocity potential such that q = V. Equations (2.2)
and (2.1) imply that

2 0)4XX 2(YY+.")<245 •
(a2 

- X + a2 (, + 2) = 2x(¢ + 0,5x) + 20,Oy, + 'PPYY + ezozz

(2.3)
and a is the local speed of sound V/-5-/p. The total enthalpy integral can be written
as

a 2  1 q 2
U 2 -M + 1( y- 62 - (2.4)

where U is the free-stream speed, M, is the Mach number at infinity and Al U/a
is the local Mach number.

The boundary condition of flow tangency to the surface can be written as

I V. -VB = 0 (2.5)

on B(x, y, z) = 0, which defines the surface.
We consider here an untwisted wing of zero thickness specified by an angle of

attack a and a camber function m(x). The chord of the wing c = 1 and the span 2b
is 0(1). Thus

B(x,y,z) = 0 = y - af(x) +0(a 3 ), 0< X < 1, -ZLE < Z < ZLE, (2.6)
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where f(x) = rm(x) - x and re(l) = 1. For a straight trailing edge at y = 0, the

trailing vortex sheet lies in the plane y = 0, x > 1. The planform is specified by
(±zLE(x), ZLE(1)) = b.

Cheng & Hafez (1973a) considers the breakdown of the expansions associated
with separation at the leading edges. Rigorous consideration of this effect is beyond

the scope of this analysis since this flow is actually one involving the interaction of
viscous boundary-layer separation and non-parallel flow transition in a reattaching
separation bubble. Even an inviscid flow model in which a single rectilinear vor-

tex is introduced into the flow by inductive ad hoc procedures needs to be checked

against deductive solutions of the full unsteady Navier- Stokes equations derived from
first principles.t The solution of the unit problem presented here should therefore
be regarded as one significant component of a more general problem that accounts
for this local breakdown region. Another viewpoint is that it is for the case when
6 = o(a) as a -4 0, in which the thickness at tire leading edge is not zero. For 6 = 0,
this component represents an outer expansion that should be matched with the local
leading-edge flow. The matching might involve intermediate expansions. Inviscidly,
this leading-edge neighbourhood acts like the local leading-edge singularities of thin-
airfoil arid slender-wing theory to dominant order. Possible non-uniformities occur

in the higher approximations. In both these examples, the solution ignoring this

non-uniformity gives reasonably accurate approximations since the square-root sin-

gularity in many cases is weak in an appropriate parameter space. In other cases, such

as blunt leading edges, this approximation is not so elastic and the local breakdown
regions are more important.

Another boundary condition that must be satisfied is the 'Kutta condition' at a

trailing edge where the flow is locally subsonic. This condition implies that the pres-

sure loading at a trailing edge is zero. In approximations such as the inner expansion,

which follows, each term satisfies this condition. Another interpretation of this con-

dition is that unphysical pressure jumps are not allowed in the inner solutions.

3. Inner expansion and far field (r* -+ oo)

The approximation in general is based on a -4 0, x,1 -4 1 and in the usual transonic

way (K = (1 -M•)/c 1 (a) is the transonic similarity parameter, fixed, where Ej (a) is

the parameter of outer expansion, defined later). In the inner expansion, the observer

remains a fixed distance 0(1) from the wing, and distances are measured from the

wing surface.
The inner limit process thus has

a -+ 0 (x,y*, z; K fixed),

where

~tY* = , X > 1.

The form of the inner expansion for the potential is thus

O(xy, z; a; M,) = U{x + a (x, y*, z) + a2 ( 2 (x, y*, z) + ((a 3 )}. (3.2)

t Actually, an infinite cascade of eddies may occur in such a leading-edge bubble as contrasted to a

single vortex.
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The presence of the overbar denotes the possibility of logarithmnic switchback terms

introduced into the inner expansion for purposes of matching with the outer expan-

sion. Anticipating the result, we note here that
*z1 1

y52 (x,y, Z) = log 2 I W22 (x) + log- 1P21(X) + I2(x,Y *,z). (3.3)

Note also that the velocity components of the inner expansion are

qx = ± + av~x + a 2 ((P2 . -_ f'(Pi. ) + O(a±),U

qy -- +O(a3), etc.

Substituting the assumed expansion into the full potential equation, we obtain the

equations for the first two approximations (in divergence forms, as follows from (2.2))

and the corresponding conditions of tangent flow to the wing surface

O(o) : "2ý01 0, VP1 5. (x, 0, z) = f'(x), XL1E < X < 1, -ZLE< Z < KZLE,

(3.4)

0(a 2 ): V*( 2 = 5x{(+*

w±2,. (x,0 ±, z) f'(x) t (x, 0±,z), (3.5)

where

V*= a•,, -) is the inner transverse gradient,

V*(p", is the inner transverse velocity perturbation,

= + (92 is the inner transverse Laplacian

and, heuristicallyt,

E - o(a), (3.6)

so that the term involving K does not appear in the inner equations to this order,
since these terms are to dominant order O(aEl) = o(a 2 ).

The first equation (3.4) can be thought of as the Prandtl Glauert equation of

linearized theory, but with Ml, close to unity. The second equation (3.5) shows
how, in the inner representation, either compression ýpj <K 0 or expansion 'PI, > 0

provides an effective volume source and can cause stream tube divergence. We note

the expression for the x component of the mass flux vector,
/

Pq- _ 1 -- a 2 1(QY -- +)p2 + OV (Vl )2 ) 2 0(a). (3.7)

The x derivative of the quadratic form in (3.7) is almost the right-hand side of (3.5);

the additional term l2V01 2 in (3.5) comes from V* •((V*P), which is related to

t In this connection, From (5.5) ff., El = a 2 log(l/\/FT), equation (3.6) follows from a study of
inequalities and can also be verified by solution of this identity by rapidly converging Picard iterations.
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the dominant approximation of the left side of the continuity equation V* - (pq) = 0
in the inner approximation.

The inner expansion is the driver of the entire procedure. But, as is now shown, it is
not valid as r* = vy 2 + z 2 tends to infinity. On physical grounds, we would expect
the transonic flow far away, which, in general, contains shock waves, to be described
by an equation of mixed elliptic-hyperbolic type. The Laplace equation (3.4) is, of
course, always elliptic.

Furthermore, we show that the second term a 2 02 becomes much greater than the

first, aipj, as r* -+ 00. The general symmetry of the solution ýOh P2 is

clp(x; y*, z) = -v 1 (x'; -y*, z) odd, lifting, vortex sheet,

ý02 (x; Y*, z) = (P2 (X; -y*, z) even, non-lifting, source.

We now study the behaviour of these solutions near infinity in r*. The solution for

""•j can be represented by a dipole sheet (or vortices) or, most directly, by the use of
the complex variable

= z + iy* = r*ei('/ 2 -). (3.8)

The complex potential for the wing, which is flat in a cross-plane x = const., and for

the trailing vortex sheet is

+ Ei'x{ -/ - E(X),0 <X<1 (3.9)
(-if'(1){{ - V4 2---b, X > 1

The transverse components of velocity perturbation " = (VI, w1 ) are found from

U)l - =_l b2  (3.10)

The first approximation to the pressure distribution and the lift can be found from

P (p 2 a /(2')

a_ q q2+ (3.11)

=2 -I+½(b'-I)M• 1-I- U2

P~xP - 1 -c? t + " "-

Equation (3.10) shows the leading-edge singularity at { = ZLE, whose ramifications
were discussed after (2.6). In accord with the remarks in § 1, resolution of this non-
uniformity is a sul)ject for future investigation. However, as in thin-airfoil theory,
this effect will be localized in the dominant approximation but may have other con-
sequences in the higher orders.

Thus the lift up to a station x is given by
f ZL(X) ~

Lm(x) = y.apocLc2  dz' I [,p x ((x', 0, z') ],,, dx', (3.12)

where [ýojxwj = ý 1jx(y, 0+, z) - (•p (x, 0-, z).
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Also,

l(X) - L (x)

Pl) U
2 ac 2

z .LE(X)=ýij dz
ZLE(X)

= dimensionless (lift/a) up to station x; (ll, (0) = 0). (3.13)

From (3.9),

(x; 0±, z) = Tf'(x) Z2 - z2, (3.14)

-2f'(x) 2 
- z2, (3.15)

so that
11(X) - 7rf'(x)z2E(x). (3.16)

Thus the total lift is
11(1) = -7rf'(1)b 2. (3.17)

These results are, of course, the same as those of Jones's theory. The pressure loading
depends on (cf. (3.15))

S {f(x) Z 2  ZLE(X)ZLE(X) } ' (3.18)[l] --2 f t.,vE -- Z2 + ft(X) F -• (318

ZLE (X)z 2

The Kutta condition [Vlx]w = 0 at the straight trailing edge x = 1, zt: = b can
be satisfied by controlling the planform and camber so that zLE(1)= 0, f"(1) = 0.

Otherwise, the theory has a local non-uniformity at the trailing edge, which has to
be accounted for by a local asymptotic expansion.

The far-field behaviour of (p follows from (3.9) as • -+ o,

i + iti =if'(x) ZLE +O(), 0<x< 1, (3.19)

so that coO*1

y .(r*,O*;X) =f'(X)ZCE( ± (3.20)
r*

The dominant term is a dipole potential where the dipole strength D, (x) is equal to
the lift II(x) up to the station x (cf (3.16)),

P 1(.*,, l(x)cosO 0 (_+ ) (3.21)27r r* f3 3.1

An unyawed symmetric planform has been assumed. For more general planforms, we
can use

"-ZLE
Dx)= /E [vpi]yo(dz.

The potential problem for P2 can be thought of as describing the flow past a thin
wing with thickness and a volume distribution of sources. Thus the far-field contains
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a source term like log r* and a particular solution due to the right-hand side of (3.5).
From (3.21), the right-hand side has a term

1 _ P/_'1 2 = 1(_+ Cs c2 0
2 +. +2 ++0 '

Thus

a 02y 1 O0~2 1 9S2 W2 . 2 1 + cos20* + 0 I 3.2
Or. 2 ± r* 0* *r.2 *r.

2 4- T-1x k,2irJJ r*2  + O2r (3.22)

Taking account of the particular solution, the far-field of ý02 is

2 (r*, 0*; X) = 4('y± 1) + ' log 2 r* + S 2 (x)log r* + g 2 (x)

(27)2 + 1) (27 cos 20 + 0 (3.23)

Thus there is a non-uniformity as r* -* oo (since a•pi -c a/r*, a 2 'P2 _ a2 log 2 I'

roughly when r* log 2 r* 1/a. This shows the need for an outer expansion. An

expression for the source strength S2 (x) can be found from the boundary-value prob-

lem for (P2, but g2(x) is undetermined from an inner problem. g2(x) must be found by

matching with the outer nonlinear boundary-value problem. The presence of shock

waves in the outer flow is reflected in g2.

4. Outer expansion and near field (i1 -4 0)

The first few terms of the outer expansion necessary to match with p1, ýP2 are

considered in what follows. The limit process associated with this expansion is the

typical transonic expansion necessary to give the small disturbance equation (Cole

& Cook 1986). The representative point runs to infinity as a -- 0, AMU --> 1. More

precisely, if p• = sin-'(1/M ) is the Mach angle of the Mach waves, then the vertical
and lateral scales y, z are such that

y, z= o(tan I) = 0

since K = 0(1) is fixed in the transonic limit considered here. We consider an outer

limit in which the flow pattern is invariant by rescaling all the lengths to the expand-

ing vertical and lateral length-scales. From the just-mentioned orders of magnitude,

this invariant picture is achieved in an outer limit in which the strained coordinates

VE 1 (y, z) -=_ , i are held fixed to keep the flow field in view to the observer in the

rescaled frame as a -+ 0, in accord with the aforementioned Mach wave scaling. The

flow variables are fiNnctions of the scaled independent variables (x, fi, i, K) in this

limit.
Accordingly, the general form of the expansion for the potential is

0(x, y, z; M., a)

= U{. + lI (a)oI (x, y, i; K) + E2 (a)02 (X, y, "; K) + E3 (a)033 (X, y, i; K) ...
(4.1)
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where El, , F3 are found from matching and 3 K< E2 << El, where T, K< T2 signifies
- = 0(oT2 ) hereinafter. In order to match, it is necessary to obtain a right-hand side
term similar to that in (3.5), 17( + 1)(ýp2).. 02 can be made to match with the
dominant dipole of inner •i, and this forcing term then appears in the right-hand
side of the equation for 03. 01 is termed a 'switchback' type of function (that needs
to be inserted for matching), and turns out to be the axisymmetric flow produced by
an equivalent body of revolution. This forcing term can be made to appear in this
way by adjusting the relative orders of magnitude of the gauge functions El, E2, Ea.

Some details are now shown.

q• 1O0Pq , I & P = 1 + E101 . +- E2 0)2z Ef£3 03 , - -"

U U Ox

qy 1 a( _ 3/2, 1/2" 1/2
q.U Uay =1 + 1/2ý + 63EI ,+" , etc.,

a
2

U2 1 + EI(K - (y - 1)Jt•) - E2(6 - 1)¢02 - (-y- 1)b3; + 0(0, ).

The full potential equation (2.3) takes the form

{1 +- I(K - (2- )Olx) - 2(7ý - 1)02x - 63h• 1)03ý

I.. 1 - 2 - 2E202, -
2 E303x -- "' }

X {EIOI + E2 02 _ + C3¢3_ + }
+ {1 + o(EI)}{i9V¢4 + EIE2 V 2 + E163 ¢3}

a2 +i 02

t2 + 92 ---2 (4.2)

Thus, choosing 6163 = E2, we have

0(4): (K - (y + ) + 7 =, (4.3)

O(ElE2) (K - (+ ± 1)0,))02 - (Y + 1)002.0 + t72¢2 = 0, (4.4)

0(FIE3) (K - (.~+ 16IJ03_ - b'~ ± 00),01x + 3 =(0 + 1)~ 02x 2
(4.5)

Here, ¢1 satisfies the usual nonlinear transonic small-disturbance Karman-Guderley
(K-G) equation, 02 satisfies a linear variational equation and 03 a forced variational
equation. All the equations are of conservation type and can be written as

i
(Koj1  -(_Y + 1)02ý). + " (6)) -0,(6)

(K02, - (y + 0)¢¢2 j. + V- (04 2 ) = 0, (4.7)

(K03 - (6j + 1)4¢) + V" (V3) = 2y + 1)(2)z- (4.8)

Heuristically anticipating matching, we anticipate that the near-field behaviour
f -- 0 of these solutions, obtained from V2o1 = RHS, where i = 1, 2,3, is given
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by

( = S, (x)logf + G,(x) + O(f2 log2 %), (4.9)

02 (XI/,=0) D 2 (x) cos0 + '

27r 27r 4

(G, D2)'+ b( + 1)(c KoR), u,,\ jlgj)0(3

(4.10)

0 3 (xlf,O) +('y+ _ 2 D 2 logi+S 3 (x) logf+G3(x) - + 1)DD'
((S D=2D2")' () 0 (2wr) 2

+ T6  1)2 (27r)2f 2 log 3 i + (i 2 log 2 f

(4.11)

where
f = V2 + 52, 0 = tan' =tan-tY y

The foregoing structure is obtained from anticipated matching with the source and

dipole representing homogeneous solutions of the first- and second-order problems

and correction particular solutions from the forcing terms in the dominant part of

the recursive procedure based on the right-hand-side structure previously outlined.

The source strength S3 and doublet strength D 2 are found by matching with the

inner solution. The source strength S, is found in a special way in the matching.

The functions G1 (x), G3 (x) are found when the boundary-value problems defined by

the singular behaviour as f -+ 0 in (4.9)-(4.11) are solved (numerically).

5. Asymptotic matching

A matching limit, intermediate to the inner and outer limits, is defined by a class of

functions 71(a) such that E << ij(a) < 1. A coordinate

r,, = ( (5.1)

is held fixed in this limit. Thus

VE -*0.

In the intermediate limit, the representative physical radius again runs to infinity as

a -4 0. Al, --> 1, but not as fast as in the outer limit. For matching, the inner- and

outer-limit expansiops must read the same in the intermediate coordinate. Thus

(I'i + a( •2 ( + " E01 + E202 + E303 + "'

where " denotes 'matches to'.
Note that, in the matching,

log, = log -F-r" - log - log (5.2 a)
IDoc7 71 S A0-1
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and

log 2,- = log2 r7 - 2 log r± log 1 + 1og . (5.2 b)
77 71 log-F1 + / g5j1

Note also that

cosO* y - af(x) cosO cos20 (5.3)
r* y2 + z2 - 2ayf(x) 7" '2

Writing these out using the near-field expansions of this section and the far-field
expansion of the previous section, we have

(11 _CoOS + log2 1 ý022(W + a 2 log I 1y21 (X)

2 ¼( + 1) _ý log2 Trh+ S 2 (x)log + 9g2(x)+ f (2 7r)2  
77 M /7+7(T2-(+ 1, cos20 + )+...

l(27)2C0+ 7,

S,• W (x)log -log I +Gl(x)+'"- +62 D2 Wr COS +

+l ¼7 1)2 2l 2rII- 210ogrý'Ilo + l og1 1E34 (27r)2 11o ¢,•+Lg

+ S(WX)(logr. -log I)G 3 (X)
SD' Dtl'

+ 1) 2 cos20 +...}

(5.4)

Comparison of these two expansions shows that they match in an intermediate region
with the choices

= a, D2 (W = 1 W,

3 , Si(x) = 1 b + 1) + 1)(

1

In summary,

1 __2

El = a 2 log E2 = log --'xi0 1E = a2

where e (a) is defined implicitly by the relationship above and SI(x) is chosen by

an internal switchback in the outer expansion. Note that the first member of the
above equation giving Ei(a) agrees with that anticipated by Cramer (1979). The
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switchback functions in the inner expansion are

(2S1(x) - ± 1)- (i)' (5.6)2 =4• (27r)2'

CP21 W= G1(x) - S3 (x) = G 1 (x) - - 2 (x). (5.7)

The principal physical result of the matching is the source distribution for tile
apparent body that generates the first axisymnmetric outer potential ¢1 (x, F),

S ixW = 2(0 + 1) (2).(5.8)
(27r)2(.8

This body depends only on the longitudinal distribution of lift 1I(x). A correction
axisymmetric flow is provided by the source $3,

S3 (x) = S 2 (x), (5.9)

which generates the axisymmetric part of 03(x, f, 0). j3(X, f, 0) can be decomposed
into

3 @ (X, r, 0) =S23 (x, 0) + 13 (x, f) cos 20 (5.10)

using the form of 02,

ýP2 (x, r, 0) = 02 (x, f) cos0. (5.11)

Then, for ?3 (x, i:), + 1 ) (f ' ).7,,, . ( .
(K - (-Y+ ± I.W 3 . - by + 1) 2301- + V? 3 = + -2x (5.12)

By considering the omitted terms, an overlap domain can be shown to exist for
matching to this order. Also, consideration of higher-order terms in both expansions
shows that the matching can be continued. Thus the outer expansion reads

5=Ujx±+a21og I¢(xf,0)±+O(4)} (5.13)

where
1 1

= 1 (xf) + log 1 2 (1/ j -) p02 (x, ) + log(/ 3(x,

It can thus be noted that the collection of terms 01, 02, ¢3 that can be computed
individually satisfy together the small disturbance (K-G) equation

(K - (-y + 1)4x)&' + V+ 2  ( = 0 g//j/•) (5.14)

We remark that, as in the discussions by Cheng & Hafez, the gauge function analytical
orders are close to each other. Further analysis is required to assess their importance
with respect to wave drag due to lift. These studies should examine the question
of the numerical order of magnitude of the coefficients of these gauge functions.
In many engineering applications, the magnitude of these coefficients can be small
enough to offset the closeness of the gauge functions, allowing an accurate estimation
from the dominant orders.
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6. Wave drag

There is, of course, induced drag associated with the trailing vortex system; the
drag in dominant order, associated with Po, is just that of Jones's theory. From

the point of view of induced drag, the wing considered here, which is flat spanwise,
is an optimum. The spanwise circulation distribution (cf. (3.15)) is elliptical. The
wave drag is connected to the shock-wave system in the outer flow field. It could be

calculated from the entropy increase in the wave system.
For small disturbances to a free-stream, we have the result for the wave drag Dw,/c

Dw = pT.rc2JJ [SI dydz +.., (6.1)

where [S], is the jump in specific entropy across a shock. The integral is taken over

all the shocks in the system. Using the expression for the entropy jump in transonic
small disturbance theory (cf. Cole & Cook (1986, p. 165 ft.) for a discussion of wave
drag), we have

Dw=-&2P"U 2 ('_+ 1)a 4log2 1 2J'dF Jeld0 +-.. + (6.2)

Consider the differential conservation form associated with (5.14),

- 1) -2(V¢)
2 )7 + (j0kk.)? + (¢4o)0 0 o. (6.3)

Integrating this divergence form over all space outside a small cylinder,

(-Oc <x <oC) F --> 0,

around the x-axis enables the entropy jump of (6.2) to be related to radial momentum
flow. Equation (6.3) is not conserved across shocks, so that shock jumps appear such
as

[ 2 _( + 1)ý3 - (t _)21'

where the square brackets signify jumps.
Let

,, - p-•U 2c 2E2

Then

ff 27r 27r

b=- lim r-, dx/ dO&xI#.,. - lim r rdr dO ((VP)-2 1X2. (6.4)
iý: -+0 J ___ -. 0 - r0 2

If we consider the dominant term in (6.4), then

w, f I dx 2d lid a ('•¢10, O,+). (6.5)

From (4.9),
S'• =S(x) log ý + G', (x), 0 s, (X)

r
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Figure 2. Drag rise due to lift characteristics of model fighter planform.
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Figure 3. Lift loading of mnodel wing with sine tip fairing.

(i) y - yo = (2A(xTr - xo)/ir)sin(7r(x - xo)i2(XT - X0)); (ii) yO/Xo = A.

and using f S1(x))S'(x)dx = IS2(1) _I S2(O) = 0,

in which S1 (1) = S1(0) = 0, we have

D,, -- -27r.j S, (x)G'(x)dx = 27r S(x)G1 (x)dx. (6.6)0 1'
This wave drag dtug to lift 'area rule' formula is exactly that of a slender body in

transonic flow (cf. Cole & Cook 1986, p. 161), except with the new interpretation of

S (x) given by (5.5). Htigher-order terms in the drag formula can be found.

7. Applications and remarks

Several applications have been made of the theory in its present form. F)r fiat wings,
f'(x) = -1 and lI(x) is given by (3.16) to get 7rz2LE(O). The effective source strength
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Figure 4. pi family of wing bodies in which semi-span equals x(pi x"--' )/(1 - 1).

for the equivalent body is

S1(x) b= + 1•) ()2 +

(cf. (5.5)).
Equation (4.3), which, for axisymmetric flow, reads

(K - (-y + 1)¢lx)ýixx + qý + • = 0, (7.1)

is solved numerically with a small disturbance code NLWAVE for various K
using (4.9) as the boundary condition. It is similar to that given in Krupp & Mur-
man (1972), except that tile source strength is given by (5.5) and (3.16) instead of
that related to streamwise derivatives of the cross-sectional area for axisymmetric
bodies at zero angle of attack treated in Krupp & Murman (1972). NLWAVE uses
the successive line over-relaxation scheme (SLOR) with global iterative streamwise
sweeps and their type-dependent switch for elliptic (subsonic), hyperbolic (super-
sonic), parabolic (sonic) and shock points developed by Murman and the first author.
Jameson operators are also used to weight current and previous time iterations for
nonlinear source terms in the finite-difference discretization of (7.1). A new version
of the usual SLOR scheme is included in NLWAVE. Therein, the Neumann boundary
condition associated with (4.9),

lim rf0 = S (x)

is treated by using the local inner expansion corresponding to (4.9) for the boundary
points f = a, where a is a small constant. During the iterative scheme, the second
term in the inner expansion is obtained from (4.9) written in the form at F = a,

G' (x) x q/tilX) - Si(x) logy,

where i indicates the previous SLOR iterate and i + 1 tihe current one. This value of
G1 (x) is used to compute the dominant term of the wave-drag coefficient. Although
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Figure 5. Wave drag/aspect ratio, LID figure of merit for
p, wing-body family, A1. = 0.9951, a = 0.2 rad.

the far-field boundary conditions at the outer edges of the computational domain
could have used the doublet ideas in Krupp & Murman (1972), the extent of these
boundaries justified a simpler approach involving homogenous Neumann data. On a
modern PC, the SLOR iterations converge rapidly for non-pathological or 'burnpy'
lift distributions li(x). Pathologies and non-uniformities of the theory can occur
for special classes of pointed wing tips and reentrant corners (largely of academic
interest) where the theory herein could be improved with local solutions. Typical
cases involving of the order of 1000 SLOR iterations require less than 1 ruin on an
AMD Athlon, 524 MB RAM, 1.1 GHz Processor, Windows 2000 operating system.
More iterations are required for near-sonic and thicker equivalent lift bodies in which
the shock patterns become complex and take longer to converge as well as resolve.

Once adequate convergence is obtained, CD, is calculated from (6.6).
NLWAVE results are plotted as CD,_ versus Mi for two different angles of attack

in figure 2. Substantial drag due to lift is evident. The planforin shape and the
distribution of li(x) which is typical appears in figure 3.

Another set of calculations incorporates a parabolic body of revolution (thickness
ratio 0.057) and adds the source strength of this body to Si(x). A series of planforms
with semi-span ZLE(X) given by

ZLE(X) = x(iL - xl.-..) (7.2)

and shown in figure 4 was considered for various p, MA1 = 0.995, a = 0.2 rad. The
idea is to optimize the L/D figure of merit CDw /AR (where AR denotes aspect ratio)
by a choice of planform. Here,

D, b2
CDw - = , -I .• A R = = 1

CD p"U 2 S'

where S is the planforni area and b is the wing span.
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Figure 6. Isomachs of (a) p' = 1.2, (b) p = 2.0 and (c) p = 10.0 wing-body;
M,, = 0.995, a = 0.2 rfid, AM = 0.1.

A minimum drag occurs for it = 2.5. The planform shape and curve of CDi. versus
ft appears in figure 5. Also shown in figure 6 for p = 1.2,2, 10 are isobars which make
evident the shock wave that occurs. The wave drag for small p is large because of the
small sweep and for large p because of rapid changes of 11 near the wing tip. These
preliminary studies are meant to show the relative effectiveness of various planforms
and the utility of the theory in this article to select them.

It would be very useful to extend this work to give efficient ways of calculating the
higher-order terms ýn the wave drag. It is also possible to incorporate the effects of
wing thickness 6 - *(a2 log(1/ /i)) into the formulation in a more systematic way.
First steps in this direction are given in Malmuth et al. (1987) and Cole & Cook
(1988).

In summary, the analysis given herein provides a new result for the transonic drag
due to lift of zero-thickness untwisted two-dimensionally cambered wings. Interme-
diate limits and matching provides an effective tool to determine the unknown scales
and switchback terms to uniquely and deductively determine inner and outer rep-
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resentations. The formula for the wave drag is identical to that due to thickness

except for a new interpretation of the equivalent body or source distribution fac-

tor Sl(x) in (6.6). This changes the boundary conditions for the Karrnan Guderley

solution that determines the inner behaviour given by the function Gt(x) in (6.6).

Dramatic influence of the planform shape on shock drag has been demonstrated by

the numerical studies shown here. Optimum planforms can be determined by the

methods illustrated. In addition, our analysis can be extended to more arbitrary

shapes including twist and thickness. Interesting optima are possible with these gen-

eralizations and should be studied in the future.
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Thin Shock Layer Theory Model for a Jet in a Hypersonic
Cross Flow
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Transverse fuel injection into a supersonic cross-flow is analyzed using approximations resembling thin
shock-layer theory in the Newtonian limit. The theoretical model is based on the balance of pressures with
centrifugal force inside the jet-shock filament formed between the jet-induced bow shock and the jet outer
edge. A solution describing the jet-shock filament shape is obtained in a compact analytical form convenient
for quick estimates of the jet penetration depth and total pressure losses. Near-field asymptotic behavior of
this solution reveals a square-root singularity, which agrees with empirical fits of experimental data. The
theoretical model is verified by comparisons with experiments on combustion and mixing of a transverse
hydrogen jet injected into a supersonic cross flow. In the near-field region, the analytical solution agrees well
with the average position of the jet plume outer edge and the OH fluorescence filament indicating combustion
regions.

Nomenclature

CP = pressure coefficient

d( = jet exit width
f() = shape of shock-jet filament

F = f/ a = normalized shape of shock-jet filament

h = jet penetration depth
M = freestream Mach number
p = pressure

q = dynamic pressure
T = temperature
U = longitudinal velocity
x, y = Cartesian coordinates

X = x / a = normalized streamwise coordinate

a = jet-to-freestream momentum flux ratio
6 = characteristic flow deflection slope
" "y specific heat ratio

p = density

0 = jet injection angle
Superscripts

= dimensional
Subscripts
j = jet
S = shock-jet filament
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OO = freestream

I. Introduction

P ERFORMANCE of hypersonic air breathing propulsion systems strongly depends on efficiencies of fuel
injection and mixing in the supersonic combustion chamber. Mixing and flame stabilization may be achieved in

recirculation regions and coherent structures containing unmixed fuel and air. Transverse injection, which is
commonly used in the design of supersonic combustors, involves these mechanisms.

As shown in Fig. 1, the flow pattern induced by under-expanded transverse injection is rather complicated.1 3

The fuel jet displaces the supersonic crossflow as if a bluff body was inserted into the flow. A bow shock (3)
upstream of the injector exit is formed causing the upstream boundary layer to separate at the point S. In the
separation region (1), the boundary layer and jet mix subsonically. The jet turns to the freestream direction and
reattaches to the wall at the point R forming another recirculation region (6) downstream from the jet exit. This
process is accompanied by formation of shocks (2, 8) and expansion waves (7). Nevertheless, in the near-field
region, the time-averaged jet-penetration profile mimics the bow shock shape and looks smooth. In the far-field
region (downstream from the point A), the jet thickness continues to grow. However, this growth, which is due to
the turbulent mixing rather than the pressure gradient, is much slower than that in the near-field region.

The near-field mixing is driven by large-scale jet-shear layer vortices generated by the jet-freestream
interaction. 2 3 These vortices are formed along the jet-freestream interface starting near the injector exit. They
periodically grab large quantities of free-stream air and draw them into the jet shear layer. In the far field, the eddies
travel with velocities close to the freestream velocity. These coherent structures, where the fuel and air are mixed by
slow molecular diffusion, also travel at high speeds. Consequently the combustion process is mixing (vorticity
diffusion) controlled.

Experiments2 3,8 show that ignition is likely to occur in the recirculation region ahead of the jet exit. The flame is
convected downstream along with the large eddies and observed near the outer edge of the jet plume. To estimate
flame-holding capability of the transverse injection and stagnation pressure losses due to the jet-induced shock, it is
necessary to predict the bow-shock shape and the average penetration profile of the jet plume. This could be done
empirically using correlations of experimental data.' The average penetration profile is commonly approximated by
a power law fit, 1,4-6 that couples the jet outer edge with the downstream distance from the jet exit. However, this
correlation varies widely between experimental studies. Although CFD approaches such as RANS and DES are
nominally capable of handling jets in a cross-flow, depending on turbulence modeling and use of implicit
algorithms, they are time-consuming in engineering practice. Quicker response, analytical models are required to
shed light on the physics of jet penetration and interpolate between large-scale CFD solutions. These are also useful
for conceptual and preliminary design phases associated with turn-around parametric studies. This motivated us to
analyze the transverse injection into supersonic cross flow using asymptotic-related methods. We believe that such a
model can shed light on previous experiments and recent large simulations. An excellent example of the latter is
Ref. 9.

In Section II, the cross-flow jet problem is formulated for a hypersonic freestream in the Newtonian limit'0 of the
Euler equations. Although, some sort of blast wave theory"- 5 seems appropriate associated with hypersonic blunt
bodies, basic ideas of the thin layer Newtonian theory are also appropriate. It is shown that a shape of the thin
shock-jet filament is governed by an ordinary differential equation, which is solved analytically in Section III. In
Section IV, the analytical solution is compared with the experiments2:38 on combustion and mixing of the transverse
hydrogen jet injected into supersonic cross flows. Results of the analysis are summarized in Section V.

II. Basic Formulation

Consider normal injection of a fuel jet into a supersonic cross-flow shown in Fig. 1. The jet displaces the
supersonic flow, qualitatively as if a blunt body was inserted into the flow. In this situation, the characteristic flow
deflection slope is 6 - U* / U = 0(1), where U" is speed at the jet exit, U1 is the freestream speed, and asterisks

denote dimensional quantities. Assuming that the freestream Mach number M -, oc and the specific heat ratio
"-y - 1, consider the Newtonian limit'0 of the Euler equations: H = (M6) 2 

-- 0 and A (-Y - 1) /(y + 1) - 0 so

that N = H1/A is fixed. Neglecting viscous shear-layer processes, we assume that U is constant along the jet, and

the jet thickness approximately equals to the jet exit width d*. With these assumptions, the flow pattern is
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schematically shown in Fig. 2. The bow shock and the outer edge of the fuel jet form a thin shock-jet filament,
which is approximated by a single line y = f(x) with x = x' / d* and y = y* / d .

Following results of the Newtonian theory10' 1114, an approximate model is based on the balance of pressure with
centrifugal force inside the jet-shock filament. It is assumed that the pressure p,. behind the downstream boundary

of the jet is of the order of the pressure in the downstream recirculation region (see the dead-water cavity eddy (6) in
Fig. 1). This pressure is small compared to the static pressure ps inside of the shock-jet filament shown in Fig. 2.

The latter approximately equals the pressure directly behind the shock, which is determined by the 2-D shock
relations for a blunt body Newtonian limit. The pressure coefficient C (p, - p•) / qý is estimated as,

C 2 2sin
2 Os = 2 -f ,

I +ff

where tan90 = f' specifies the local slope of the shock-jet filament (Fig. 2). This equation leads to the relation

p, =. 2q 1 + f,2()

Along the jet-shock filament, the centrifugal force is balanced by the pressure gradient across the filament that
gives'

Op" . Ap* ps, - pc, pU (2
On* - d& d* R*(x) 

(

where n signifies the direction normal to the jet-shock filament; p, is jet density, which is approximately constant

along the jet length; d / R*(x)= If"(1 + f/2)-3/21 is the normalized curvature of the shock-jet filament. The

absolute value sign is important since for the normal injection f" < 0, and imaginary limiting solutions for small x
can arise if this is not taken into account.

Using the approximation Ap* =- ps and (1) we obtain the nonlinear ordinary differential equation

S'2= Isf"(, + f/2 ).i 21 , (3)

where ca q* / qo is the jet-to-freestream momentum flux ratio, q; = p*U' /2. The appropriate initial conditions

for (3) are

f(0) = 0, f'(0) - 0C (4)

IIl. Solution
The problem (3)-(4) gives a one-parameter family of solutions with a as the parameter. This parameter may be

scaled out of Eq. (3) by the transformations

F(X) = f(x)/a, X = x/a. (5)

Substitution of (5) into (3) and (4) gives the initial-value problem

F11 = -F 12 -11 + 71

= ~ /jT4~7T(6)
F'(0) = 0, F'(0) = 0C
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where the primes signify differentiation with respect to X. An exact solution of (6) is expressed in the analytical
form

F(X) = log (1 + X) + 4(1 + X) - 11 = cosh' j(i + X)-1 (7)

For small X relevant to the near field, the solution (7) is approximated as

F(x) = log 11+ + X +.. ,x o (8)

Note in contrast to the blast wave theory, (see for example Ref. 11), the exponent in (8) should be 2/3 rather than 1/2
for this 2-D flow. This appears appropriate since the equations are not embedded in the blast wave similitude. Note
that the 1/2 exponent applies for an axisymmetric body in the blast wave theory.

For large X, we obtain

F(X) -= log X, X -- oc. (9)

Equation (9) shows that the shock does not become asymptotic to a Mach line, as it should. This is associated
with a breakdown of thin shock layer approximations in the far-field region, where the strong shock and hypersonic
approximations are inappropriate and some form of the Prandtl-Glauert linearized theory approximations is more
valid. In some form of an outer limit and asymptotic matching that has yet to be discovered, (although unified
supersonic-hypersonic similarity has been proposed), the body appears as a supersonic source generating a Mach
wave in the far field. The yet-to-be-determined unified theory would systematically match thin shock layer, blast
wave and linearized regions as well as provide a uniformly valid description of the flow. Nevertheless, the physics-
based "engineering" approximation used here provides a useful estimate for the jet penetration as will be shown in
the next section..

IV. Comparison with experiment

In the engineering model,' the jet penetration depth h* is defined as a distance from the point A to the wall (see
Fig. 1). The experimental data discussed in Ref. 1 are correlated as

h= 1.51

d' (1+cos 
(10)

where 0 is the jet injection angle. For the normal injection, 0J. = 90', the relation (10) gives h = 1.514a-. Using

the near-field asymptotic form (8) and assuming that the point A corresponds to x 1, we obtain
h = N z 1.41.,fa, which is close to the correlation (10). More importantly, the square-root singularity near the

jet origin x = 0 predicted by the theory agrees with the empirical fit. This indicates that the analytical solution (7)
resulting from the inviscid approximate thin shock layer model captures basic features of the near-field flow. As
previously mentioned, the approximation is not strictly embedded in blast wave similitude and therefore gives a
different singular behavior near the origin than that from the blast wave theory.

Ben-Yakar and Hanson2' 3,8 performed experimental studies of combustion and mixing in high total enthalpy
supersonic flows. The experiments, conducted in an expansion tube facility of Stanford University, were designed to
investigate the near-field mixing and auto ignition of a three-dimensional under-expanded transverse hydrogen jet
injected through a cylindrical hole. Simultaneous OH-PLIF and schlieren imaging were performed at the jet
centerline to obtain information on the location of shock waves, the jet penetration, and the region of combustion.
These data are used hereinafter for testing the theoretical model discussed in Sections II and III.

Figures 3a, 4a,b and 5 compare the theoretical solution (7) with the instantaneous schlieren images 2 8 of hydrogen
injection into the cross flow at M z 3.5, static temperature T* = 1300 K, static pressure p* = 0.32 psi and
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freestream velocity U* = 2420 m/s. The jet-to-freestream momentum flux ratios are a = 1.4 (Fig. 3) and a = 2
(Fig. 4). Large-scale coherent vortical structures generated by the jet-stream interaction are clearly observed along
the jet-freestream interface (Fig. 5). These structures cause local fluctuations of the bow shock (Fig. 4b).
Nevertheless, the time-averaged shock position is smooth rather than a bumpy instantaneous shape. In the near-field
region x < 3, the jet outer edge is located close to the bow shock forming a thin shock-jet filament that confirms
our theoretical concept. In this region, the solution (7) agrees well with the average position of the jet outer edge as
shown in Fig. 6. Some of this agreement needs to be explained in view of the two-dimensional nature of the model,
which is applicable to slot injection and the three-dimensional nature of the flow out of a round hole in the
experiments. As shown in Refs. 16 and 17, round jets in cross flows flatten out due to vortical kinematics as soon as
one jet exit diameter along their length. The flattening process can legitimize the approximation that the curvature of
the jet axis is more important than the circumferential one in determining the pressure jump across the jet.

In Figures 3b and 7, the theoretical prediction is compared with instantaneous OH-PLIF images, which indicate
the presence of the OH radicals formed by the auto ignition of jet hydrogen. The OH radicals are primarily produced
in the hot separation region upstream of the jet exit (see region (1) in Fig. 1) and directly behind the bow shock and
convected downstream with the shear-layer vortices. The OH-mole fraction decreases as the gases expand around
the jet and the local mixture temperature falls.2 In the near-field region, the solution (7) mimics the shape of a thin
filament along the outer edge of the plume.

Figure 8 shows similar comparisons with simultaneous OH-PLIF and schlieren visualizations overlaid in a single
image. The experimental data correspond to hydrogen injection into the cross-flow at M = 4.7, T -= 1300 K,
p* = 0.75 psi and U* = 3300 mis.8 The jet-to-freestream momentum flux ratios are a = 2, 3, 5. Again, in the

near-field region x < 3, the solution (7) agrees well with the OH fluorescence filaments, which are mainly observed
along the outer edge of the jet plume.

V. Summary
Transverse fuel injection into a supersonic cross-flow was analyzed using a thin shock-layer model relevant to

the Newtonian limit of inviscid gasdynamics. The theoretical model is based on the balance of pressures with
centrifugal forces inside the jet-shock filament formed between the jet-induced bow shock and the jet outer edge. A
solution describing the jet-shock filament shape was obtained in a compact analytical form convenient for quick
estimates of the jet penetration depth and total pressure losses. The near-field asymptotic behavior of this solution
gives square-root similarity, e.g., - x1/2 as x -* 0, where x is the streamwise coordinate from the jet exit. This
behavior agrees with the empirical fit of Ref. 1. Since the present model does not use blast wave theory, the shock

fuel interface is not - x2/3 as x -+ 0 as for blast wave over a cylindrically blunted slab (2-D case). Coincidentally,
the blast wave theory for a hemispherically blunted cylinder (axisymmetric case), rather than the 2-D one assumed
here gives the square root behavior at the origin x -- 0. The theoretical model was verified by comparisons with
the experiments2,3- on combustion and mixing of the transverse hydrogen jet injected into supersonic cross flows. In
the near-field region x* / d < 3, the analytical solution agrees well with the average position of the jet plume outer
edge and the OH fluorescence filaments indicating combustion regions.

The theory breaks down and does not give the jet shock as a Mach line in the far-field region. This is because the
jet interface is no longer close to the shock. In addition, the shock is attenuated and becomes weak. Accordingly, the
thin-layer Newtonian assumptions are no longer applicable and a linearized model involving the jet flow appearing
as a Prandtl-Glauert supersonic source-like singularity in the far field may be applicable. Asymptotic modeling of
this region and its matching with the near-field solution needs attention. Although the present model is not a formal
asymptotic solution, it is a good starting point for such a systematic approximation scheme, using the Newtonian
distinguished limit. In spite of the aforementioned limitations, comparison of the theory in this paper and experiment
reveals that it gives a good account of the physics important for fuel penetration estimation. The scaling arising in
terms of the jet to freestream momentum ratio parameter a (sometimes denoted as J in the literature) a means of
collapsing normalized penetration data in units of jet exit width on to a universal curve shown by Bowersox and
others arises naturally in our analysis. Indications are that the ideas of the present model with some modification
apply to oblique injection. An important aspect of this work is that it can be used for a good first quantitative, non-
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empirical estimate of penetration of fuel into a hypersonic stream. The associated time and distance scales may be
decisive in determining the fraction of fuel burned and other scramjet combustion metrics.
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Figure 1. Schlieren image of the normal under-expanded hydrogen injection into supersonic cross-flow 2, and
schematics of the flow pattern (from Ref. 1): 1 - separation bubble upstream the jet exit; 2 - shock due to upstream
separation at the point S; 3 - bow shock induced by the jet; 5 - Mach discus; 6 - separation bubble downstream
from the slot; 7 - expansion waves; 8 - shock induced by the jet reattachment R; M1 - freestream Mach number;

M - Mach number of the out-coming jet.
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Figure 2. Approximate flow pattern in the inviscid Newtonian limit.
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Figure 3. Comparison of the theoretical solution (7) (red line) with simultaneous schlieren (a) and OH-PLIF (b)
images of hydrogen injection into supersonic cross-flow;8 M = 3.46, T*= 1300 K, p* 0.32 psi, U - 2420
m/s; the jet-to-freestream momentum flux ratio a 1.4.

Figure 4. Comparison of the theoretical solution (7) (red line) with simultaneous schlieren image of hydrogen
injection into supersonic cross-flow; 2 M = 3.5, T* = 1300 K, p* = 0.32 psi, U_ = 2420 m/s; the jet-to-
freestream momentum flux ratio a = 2.
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Figure 5. Comparison of the theoretical solution (7) (red lines) with the jet penetration measured from schtieren
images of hydrogen injection into supersonic cross-flow; 2 MM= 3.5, T = 1300 K, p* 0.32 psi, U1* 2420

m/s= the jet-to-freestream momentum flux ratio a = 2.
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Figure 6. Comparison of the theoretical solution (7) (red lines) with the jet penetration measured from 8 consecutive

schlieren images of hydrogen injection into supersonic cross-flow; 2 M = 3.5, T*-- 1300 K, p* = 0.32 psi,

U" = 2420 m/s; the jet-to-freestream momentum flux ratio a• = 2.
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Figure 7. Comparison of the theoretical solution (7) (red line) with simultaneous OH-PLIF image of hydrogen
injection into supersonic cross-flow; 2 M = 3.5, T* = 1300 K, p' = 0.32 psi, Uý = 2420 m/s; the jet-to-

freestream momentum flux ratio a = 2.
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Figure 8. Comparison of the theoretical solution (7) (red line) with simultaneous combined OH-PLIF and schlieren
images of hydrogen injection into supersonic cross-flow;8 M = 4.7, M=4.7, T = 1300 K, p = 0.75 psi,
Uý = 3300 mis.
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A second-mode stability analysis has been performed for a hypersonic boundary layer on a wall covered by a
porous coating with equally spaced cylindrical blind microholes. Massive reduction of the second mode amplifi-
cation is found to be due to the disturbance energy absorption by the porous layer. This stabilization effect was
demonstrated by experiments recently conducted on a sharp cone in the T-5 high-enthalpy wind tunnel of the
Graduate Aeronautical Laboratories of the California Institute of Technology. Their experimental confirmation
of the theoretical predictions underscores the possibility that ultrasonically absorptive porous coatings may be
exploited for passive laminar flow control on hypersonic vehicle surfaces.

Nomenclature Introduction
A = admittance Hl• HE ability to stabilize a hypersonic boundary layer and increase
B = thermal admittance t its laminar run is of critical importance in the hypersonic ve-
F = frequency parameter hicle design.' Early transition causes significant increases in heat
h = porous layer thickness transfer and skin friction. Higher heating requires an increased per-
n = porosity formance thermal protection system (TPS), active cooling, or tra-
p = pressure perturbation jectory modification. This translates to higher cost and weight of
Pr = Prandtl number hypersonic vehicles due to increased TPS weight. Moreover, with
Re = displacement thickness Reynolds number the low payload mass fraction, even small savings in TPS weight
Re, = transition Reynolds number can provide a significant payload increase. Vehicle maintainabil-
r = pore radius ity and operability are also affected by transition. Robust metallic
s = pore spacing TPS have temperature limits lower than ceramic TPS. Laminar flow
T = mean flow temperature control (LFC) can help meet these more severe constraints. For a
t = time streamlined vehicle with large wetted area, viscous drag becomes
U = mean flow velocity important. It can be from 10% (fully laminar) to 30% (fully tur-
u, v, w = perturbation velocity components bulent) of the overall drag.' For optimized hypersonic wave/riders,
x, y, z = Cartesian coordinates viscous drag may represent up to 50% of the total drag.3 Vehicle
a, p = wavenumber components aerodynamics is another area impacted by laminar-turbulent tran-
Y = specific heat ratio sition. Asymmetry of the transition locus can produce significant
B. = displacement thickness yawing moments. Aerodynamic control surfaces and reaction con-
0 = temperature perturbation trol systems are also affected due to sensitivity of boundary-layer
K = thermal conductivity separation to the flow state (laminar or turbulent).
A = viscosity If freestream disturbances and TPS-induced perturbations are
p = mean flow density small, transition to turbulence is due to amplification of unstable
a = spatial growth rate boundary-layer modes." 4 In this case, LFC methods and transition
V = wave front angle prediction tools are predominantly based on stability theory and
w = angular frequency experiment.'-' LFC systems are aimed at slowing down or elimi-

nating amplification of unstable disturbances using passive and/or
Subscripts active control techniques. A third form of flow control is known

ad = adiabatic as reactive control, in which boundary-layer disturbances are can-

e = upper boundary-layer edge celed by artificially introducing out-of-phase disturbances. Typical

m = maximum value passive LFC techniques are pressure gradient and shaping. Active

w = wall surface techniques include wall suction and heat transfer. In reactive control
methods, periodic suction/blowing, heating/cooling or wall vibra-

Superscript tions are used for artificial excitation of counter-phase disturbances.
In hypersonic boundary layers, amplification of the following

• = dimensional instability mechanisms may drive the transition process:
1) The first instability mechanism is the first mode associated

Received 11 February 2000; revision received 28 August 2000; accepted with ToUmnien-Schlichting waves. This instability may be domi-
for publication 3 October 2000; presented as Paper 2001-0891 at the AIAA nant at relatively small local Mach numbers (normally less than 5).
39th Aerospace Sciences Meeting, Reno, NV, 8- 11 January 2001. Copyright This mode is strongly stabilized on cool surfaces. At low wall-
© 2000 by the authors. Published by the Anmrican Institute of Aeronautics temperature ratios, the stabilization effect may be so strong that the
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ing. Member AIAA. 2) The second mode associated with an inviscid instability present
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Director, Graduate Aeronautical Laboratories. modes and becomes the dominant instability in two-dimensional and
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Fig. I Acoustic mode in a supersonic boundary layer on semitrans-
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quasi-two-dimensional boundary layers at Mach numbers M > 4.
The existence of the second mode was established by the exper- porous layer
iments of Kendall,9 Demetriades,'1 Stetson et al.," Stetson and loft
Kimmel,12 and Kimmel et al. 3 The most amplified second-mode
wavelength is approximately twice the boundary-layer thickness, Fig. 2 Schematic of a wall covered by porous layer.
and its phase velocity tends to the boundary-layer edge velocity of
mean flow. As a result, the second-mode disturbances are in the dimensional disturbances are represented in the traveling wave
ultrasonic frequency band. For example, the most amplified waves form
observed in the experiment of Stetson et al.II at Mach 8 correspond
to a frequency about 100 kHz. In contrast to the first mode, the 4 = Re{q(y) exp[i(atx + /3z - wt)]), 4 = [,i, iv, i,, 6] (1)
second mode is destabilized by cooling.

3)Crossflow vortices are observedin three-dimensional boundary where i, i, and @ are velocity components; is the pressure ref-
layers on the leading edge of a swept wing, axisymmetric bodies at erenced to the double dynamic pressure p:U,*2 ; 0 is the temper-
high angles of attack, etc. This instability is weakly sensitive to wall ature; a = a*8* and / = 6*3* are wave number components; and
cooling. It can be effectively stabilized by shaping. For example, co = c*8*/U , is the angular frequency.The system of stability equa-
two-dimensional shaping of air breathers helps to avoid crossflow tions that is derived from the full Navier-Stokes equations for a
instabilities on large acreage regions of the vehicle surface. locally parallel compressible boundary layer can be represented in

4) G6rtler vortices play a major role in transition on concave the form"6
surfaces. Similar to the crossflow instability, their growth rate can dz dw r
be reduced by shaping. SZ (u, du-vp O -W (2)

Because severe environmental conditions make it difficult to use dy y ' dy'- dy
active and reactive LFC concepts for hypersonic vehicles, passive where S is an 8 x 8 matrix. Its elements are functions of the mean
LFC techniques are of great interest. Thus, Malmuth et al.'4 pro- flow profiles, the displacement thickness Reynolds number Re =
posed a new passive method of second- and higher-mode stabiliza- S*U,*p/fl', and disturbance characteristics W, a, and P.
tion. They exploited the hypersonic boundary layer's behavior as an eacoustic waveguide, schematically shown in Fig. 1. Therein, acous- We consider a wall covered by a porous layer of the thickness h*.tic uys are reflected by the wall and turn around near the sonic aiue: The pores are equally spaced cylindrical blind holes of radius r* per-
Yt= a, U(yar ) =Re(c)t - a(yt), where c is the disturbance phase pendicular to the wall surface, as schematically shown in Fig. 2. The
speed and a is local sound speed. The second, third, and higher hole spacing s* and diameter are assumed to be much less than the
speeduanda-loa l soudes orrespeed. tthe saeondthird, ndrm hher, boundary-layer displacement thickness S". Because the pore radius
boundary-layer modes correspond to the waveguide normal modes. is small and interactions between neighboring pores are weak, per-
Malmuth et al.' 4 assumed that the absorption of acoustic energy by turbations of longitudinal and transverse velocity produced by the
an ultrasonically absorptive coating can stabilize these disturbances.This assumption was examined using stability theory for inviscid porous layer are neglected. However, the porous structure is semi-
Thistrasesumptio was examined thatiang strasobilty theorymritnsp t transparent relative to the vertical velocity and temperature perturba-disturbances. It was found that an ultrasonically semitransparent tions. In this case, the wall boundary conditions can be expressed aswall provides substantial reduction of the second-mode growth rate.

In this paper, we study this stabilization mechanism, including u(0) = 0, w(0) = 0, v(0) = Ap(O), 0(0) = Bp(O)
viscous effects and an absorptive skin microstructure. We formu-
late the eigenvalue problem for viscous disturbances in a hyper- (3)
sonic boundary layer on a wall covered by an ultrasonically absorp- where the admittance A and thermal admittance B are complex
tive coating of special type, namely, a porous layer with equally quantities that depend on properties of the wall material, poros-
spaced cylindrical blind microholes. We obtain the analytical form ity parameters, mean flow characteristics on the wall surface, and
of boundary conditions on the porous surface and solve the viscous flow perturbation parameters such as a wave frequency and wave-
eigenvalue problem numerically. We discuss results of calculations length. These dependencies are derived in the next section. Because
showing the second-mode stabilization on porous surfaces of vari- boundary-layer modes decay outside the boundary layer, we have
ous pore radii, spacing, and thickness. Then we briefly describe the
experimental data of Rasheed et al.S that confirm the theoretically u(oo) = v(oo) = w(0o) = 0(00) = 0 (4)
based hypersonic boundary-layer stabilization by porous coatings The eigenvalue problem (2-4) provides the dispersion relation
given in this paper. These results were obtained in the T-5 Graduate The eigenva0.eForobemporal)stroides the disper ron
Aeronautical Laboratories of the California Institute of Technol- F(a, /3, w) = 0. For temporal stability, the wave number compo-
ogy high-enthalpy wind tunnel on a sharp cone that theyldetail in nents at and are real quantities, and w is a complex eigenvalue. If
Ref. 15. Finally, we conclude the paper with a summary discussion Im(w) > 0, then the disturbance is unstable. For spatial instability in
and indicate possible future directions, two-dimensional boundary layers, the frequency w and transverse

wave number component /3 are real, whereas a is a complex eigen-
value. If lm(a) < 0, then the disturbance amplifies downstream withEigenvalue Problem the spatial growth rate a = -Im(a).

We consider supersonic boundary-layer flow over a flat plate or
sharp cone as schematically shown in Fig. 2. The fluid is a perfect Admittance of Porous Layer
gas with Prandtl number Pr, specific heat ratio y, and viscosity it. The porous layer is characterized by the porosity n, which is the
The coordinates x, y, and z are made nondimensionless using the fraction of the overall volume taken up by the pores. For the pore
boundary-layer displacement thickness V'. In the locally parallel spacing shown in Fig. 2, the porosity, n = 7r(r*/S*) 2, can be varied
approximation, the mean flow is characterized by the profiles of in the range 0 < r*/s* < rK/4, where the upper limit corresponds to
x-component velocity U(y) and temperature T(y), referenced to s* = 2r*. The pore radius and spacing are considered to be much
the quantities U• and T,* at the upper boundary-layer edge. Three- less than the disturbance wavelength, which is of the order of the
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boundary-layer displacement thickness. In this case, the porosity where r = r*/8* is nondimensional pore radius. The characteristic
is fine enough to avoid disturbing the laminar boundary layer by impedance Z0 and the propagation constant A are expressed in the
other mechanisms associated with effective surface roughness. The form
porous layer thickness h* is assumed to be much larger than the pore
radius r*, that is, each pore is treated as a long tube. Z0 = F/Y¥, A = Z7Yý, Re(A) < 0 (12)

To obtain the relationship between the admittance A and porous The coupling between the pressure amplitude p and the average
layer parameters, we use the theoretical model developed by velocity disturbance amplitude v at the pore end, y = -h, can be
Gaponov for subsonic17' 18 and moderate supersonic speeds. 9 These expressed as p(-h) = X. -(-h), where the impedance X depends
studies addressed the porosity effect on Tollmien-Schlichting (TS) on characteristics of the backup structure. If the lower pore end is
waves. As contrasted to second-mode waves of acoustic type dis- closed by a solid wall (blind pores), then V_(-h) = 0. In this case, the
cussed in this paper, the TS waves over porous walls analyzed by impedance is X = oo, and the velocity-pressure ratio at the upper
Gaponov are vortical disturbances that become unstable due to vis- end of the pore is
cous mechanisms. For this reason, the second-mode interaction with
a porous surface is fundamentally different from that of TS waves. [i(0)/p(O)J = (/Z 0 ) tanh(Ah) (13)
Yet, the results"' for the disturbance propagation within a porous
wall are independent of the nature of the boundary-laycr distur- Averaging the vertical velocity amplitude at the wall over the surface

bances, for example, second-mode acoustic or TS waves. In par- area, we have v(0) = n. -i (0). Then the admittance in the boundary

ticular, they can be used in formulating the porous wall boundary conditions (3) is expressed as

conditions for the vertical velocity of second-mode disturbances A = (n/Zo) tanh(Ah) (14)
considered herein. The thermal admittance B is derived using an
explicit coupling between the pressure, temperature, and velocity If the porous layer is relatively thick (Ah - oo), then Eq. (14) is
perturbations within a uniform pore.20  reduced to the form

Following the analysis,"' we apply the theory of sound wave prop-
agation in thin and long tubes (see, for example, Ref. 21). Because A = -(n/Zo) (15)
h* >> r*, the pressure is approximately constant across the pore. In Note that the limit Ah -+ o leads to Eq. (15) at any finite value of
this case, the acoustic field within each pore is characterized by the X (i.e., the disturbance at the upper end of each hole does not feel
propagation constant A and the characteristic impedance ZO. These the lower end due to the decay of sound propagating along a tube).
parameters can be expressed as a function of the series impedance According to the analysis of Stinson and Champoux, 20 the pres-
Z and the shunt admittance Y for the tube element of unit length sure disturbance, average temperature disturbance, and average ve-
using the transmission line formalism.22 '23 The series impedance locity disturbance within a cylindrical pore are coupled as
properties of the tube element are associated with the storage of
kinetic energy and its dissipation due to viscous losses at the tube :1 dp [ 2 J (k.) 1
wall. The shunt admittance is associated with the potential energy of iw*pd*w k- ) 0 (17)

compression and the thermal energy losses due to the wall heat con-
ductivity. We assume that the mean gas temperature along the tube 0 *(* = iwt 

i___[_*p. *)/ (P) v (Pra*) (17)
is constant and equal to the wall surface temperature T,. Daniels22  

- P
and Benade

2 3 showed that the dimensional series impedance Z*

and shunt admittance Y* per unit length of a tube with radius r* are Substituting Eq. (16) into Eq. (17), accounting for Eq. (7), and nondi-
expressed as mensionalizng the result, we obtain

Z io)*P•[1 2 J,(k,) (5) = -(y - 1)M2 T.pJ2 (k,)/Jo(k,) (18)

r2 L _k, •J( (k5) )Thus, the thermal admittance in the boundary condition (3) for the
iw *rr. 2 r 2 J,(ki) 1 temperature disturbance is expressed asY" I + (Y ) (6)

P [a.2 - , -Tk(k,) B = -n(y - 1)M 2 TrJ 2 (k,)/Jo(k,) (19)

where, p* and a.* are mean density and sound speed in a tube. Jo Computational and Parametric Studies
and J, are Bessel functions of the arguments k, = r*V/(i.o10P,/g*) To evaluate-the porous layer effect on the second-mode stability,
and k, = k, V(Pr), which measure the ratio of the tube radius to the we solve the eigenvalue problem (2-4) numerically using the ad-
viscous boundary-layer thickness and to the thermal boundary-layer mittance (14) or its limiting form (15) and the thermal admittance
thickness on the tube surface, respectively. Using the relation (19). We consider the boundary layer of a perfect gas with Prandtl

Jo(x) + J2(x) = 2J 1 (x)/x (7) number Pr = 0.71 and specific heat ratio y = 1.4. The temperature-
viscosity law is specified as g =po(T/To)'m with the exponent

we express Z* and Y* in the form m = 0.75; the second viscosity is zero. Figure 3 shows the spa-

tial growth rate or as a function of the Reynolds number Re for

Z itp• Jo(kp) (8) two-dimensional unstable waves (fi = 0) of nondimensional fre-
7rr*2  J2 (k,) quency F= v;/U =2.8 x 10-4 in the boundary layer at the

i r2 r 1Mach number M = 6. The wall temperature T. = 1.4 approximately

Y= Yi -rrr - J2(k,) J corresponds to the wall temperature ratio T./ Td =0.2. Calcula-
a . Jo+- ) / (9) tions were conducted for a thick porous layer (Ah -+ cc) with the

porosity n = 0.5 at various values of the nondimensional pore radius
For the average velocity through the pore, the transmission line r = r*/I*. Note that the porous layer causes massive reduction of

is characterized by the impedance Z, = S*Z* and shunt admittance the second-mode growth rate. In Figs. 3-6, symbols correspond to
Y• = Y*/S*, where S* = 7rr*2 is pore cross-sectional area. Choosing the case of zero thermal admittance, B = 0. For all cases considered,
the boundary-layer displacement thickness and mean flow parame- temperature perturbations on the porous surface weakly affect the
ters at the upper boundary-layer edge as reference scales, we have disturbance growth rate and can be neglected.

orr*2 k Figure 4 shows that deep pores of fixed radius (r = 0.03 at
r_ Z o k = r R (10) Re = 2 x 103) and spacing (porosity n = 0.5) strongly stabilize the

;Ul T, J ) lsecond-mode waves in a wide frequency band at various Reynolds
pU* 'y = _ioM2 numbers Re (dashed lines). This example illustrates that it is possi-

" rr*2+ (y - J (kJ (11 ) ble to cause significant reduction of the disturbance growth rate on
I A[ +(k) large surface areas without fine tuning the pore size. As contrasted to
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Fig. 4 Growth rate or as a function of disturbance frequency F at m
various Reynolds numbers Re: M = 6, T, = 1.4, n = 0.5, and Ah -- oo; 0.02
solid lines r = 0, dashed lines r = 0.03 at Re = 2.0 X 103, symbols indicate
zero thermal admittance. (R = Reynolds number in figure.) 0.01

reactive flow control techniques, a porous coating provides passive 000 4 8 12 16

stabilization of the boundary-layer flow regardless the disturbance RX1 0
phase and amplitude distributions in space and time and with no
external energy inpuL Note that the waveguide behavior described Fig. 5 Distributions of maximum growth rate or.(Re) at various pore
earlier in this paper in connection with the instability of the acous- radii r: M = 6, n = 0.5, and Ah - oo (-); symbols indicate zero ther-
tic second mode that is quenched by the ultrasonic absorbing wall mal admittance. (R = Reynolds number in figure.)
concept described herein resembles amplification processes studied
by the second author in connection with the stability of hypersonic 0.04
strong interaction flows 24

Figure 5 shows distributions of the maximum growth rate,
a.m(Re) = maxf[a(w, Re)], at the wall temperatures T, = 1.4, 3.5, 0.03
and 7.0, that approximately corresponds to the wall temperature ra- in
tio T/TId = 0.2, 0.5, and 1. The stabilization effect decreases as the 0.02
wall temperature increases. A strong reduction of the growth rate is
observed in the boundary layer on a cool wall (see Fig. 5), a more
practical case for hypersonic applications. This trend is consistent 0.01
with the admittance asymptotic behavior associated with Eqs. (10-
12) and (15). For deep pores (Ah >> 1) of relatively small radius
(Ik.l << 1), the admittance A is proportional to kMV/(T.) and de- 0.00
creases with the wall temperature as T.r-t/2. / 0.0 0.2 0.4 0.6

Figure 6 shows the maximum growth rate a. as a function of the Fig. 6 Maximum growth rate a,. as a function of porosity n at
porosity n for Re=4 x W andr=0.03 for theboundarylayerat Re=4 X 103: M=6, T, = 1.4, r = 0.03, and Ah -+ oo (-); symbols
M = 6 and T. = 1.4. The porous layer of spacing s = 4r(n ; 0.2) indicate zero thermal admittance.
reduces the growth rate by a factor of 2 compared to the solid
wall case n = 0. Our calculations using the el method indicates wall effect is able to stabilize the disturbance completely. In this
that this stabilization translates to extending the transition onset case, the disturbance reflected from the pore bottom is in counter
point more than three times its value without porosity. In Fig. 7, phase with the boundary-layer disturbance. However, the optimal
the second-mode growth rate is shown as a function of the nondi- thickness strongly depends on the disturbance frequency and the
mensional porous layer thickness h = h* * at n = 0.4, r = 0.03, thick porous layer is more robust. Figure 8 illustrates the stabiliza-
Re = 4 x I10, and F = 3 x 10-. The limit Ah -- oo is achieved tion effect for three-dimensional waves of the second-mode family.
at a relatively small value of h-t 0.3 (pore depth is about five The growth rate is shown as a function of the wave front angle
diameters) that is due to strong damping of sound waves in thin (p = arctan(fj,/a,) at various pore radii. The porous coating causes
pores. There is an optimal thickness, h ;z 0.12, at which the porous massive reduction of the disturbance growth rate and substantially
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Fig.8 Growth rate ar as a function of wave front angle 'p at various pore laminar up to the model base.
radPr:M=6,T.=l.4,Re=4287,F=3 X 1 4 ,n =0.3,andaAh-oo.

laminar up to the model base, that is, the value plotted is not a real
decreases the unstable range of wave front angles. These examples data point because the cone was not long enough to measure the
show that a relatively thin porous coating can dramatically reduce transition locus. In all cases, the circles are well above the squares.
the second-mode amplification and increase the laminar run if tran- This indicates that the porous coating always delays transition by a
sition is driven by second-mode disturbances, significant amount.

Experimental Validation of Theory Summary
Rasheed et al.'5 have recently verified the theoretical concept A second-mode stability analysis has been performed for hyper-

by testing a 5-deg half-angle sharp cone with an ultrasonically ab- sonic boundary layers over walls covered by porous coatings with
sorptive coating in the California Institute of Technology T15 high- equally spaced blind microholes. Absorption of the disturbance en-
enthalpy shock tunnel. The cone was 1 m in length, with half of its ergy by porous l~yers was modeled using the theory of disturbance
surface solid and the other a porous sheet perforated with equally wave propagation in thin and long tubes. The admittance and ther-
spaced blind cylindrical holes. Porosity parameters were chosen mal admittance coupling the pressure disturbance with the vertical
from the preliminary theoretical analysis of Fedorov and Malmuth velocity and temperature disturbances on the porous surface are
as well as manufacturing constraints. The average pore radius r* expressed as explicit functions of porosity characteristics. Stabil-
was 30 tzm, the depth h* was 500 Mm, and the average spacings ity calculations showed that the absorption of disturbance energy
was 100 tm. Figure 9 shows a microphotograph of a portion of by the porous coating provides massive reduction of the second-
the porous surface. For typical runs, the boundary-layer thickness mode growth rate in a wide range of disturbance frequencies and
was about 1 am, and the estimated number of holes per boundary- Reynolds numbers. The flow stabilization is due to vertical velocity
layer disturbance wavelength was about 20. Static measurements of perturbations on the porous surface associated with nonzero admit-
ultrasound reflectivity of perforated sheet coupons (without flow) tance of porous medium. Temperature perturbations weasly affect
showed that the porous oathing attnua ncident icaltrasonic the boundary-layer disturbance and can be neglected. This indicates
signal of 400-kHz frequency by 3.0 dB relative to a solidwall. that temperature disturbances play a passive role in the second-mode

The model was instrumented by thermocouples, and the tran- instability mechanism.
sition onset point was determined from the Stanton number dis- Our conclusions are consistent with the results of Malmuth
tributions St(x) measured simultaneously on both sides of the et al.,o4 obtained from their invsiscidstbilt anali. The most pro-
model for each run. Nitrogen was selected as the test gas to found effect is observed on a cool wall that is typical for hypersonic
minimize the chemistry effects, which were not included in the vehicle TPS surfaces. A relatively thin porous coating (of thickness
theoretical analysis. Runs were performed for the ranges of the about 30% of the laminar boundary-layer displacement thickness)
freestream total enthalpy 4.18 < Hay< 13.34 MI/kg and Mach num- provides a strong stabilization effect. Such porous coatings can be
wer 4.59 < M 6.4. Figure 10 shows a summary plot of the tran- designed for passive LFC in hypersonic vehicle surfaces. Note that
sition onset Reynolds number Res = x•Up/* vs H0. The solid the disturbance absorption should be introduced at the irtial phase
squares correspond to transition on the solid wall, and the open cir- of transition process, where the unstable disturbance amplitude is
tes correspond to transition on the porous surface. The circles with about 0.01-0. 1% of its level in transitional and turbulent bound-

arrows indicate that the boundary layer on the porous surface was ary layers. In this phase, additional heating of the porous coating
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associated with partial absorption of the disturbance energy is neg- pp. 1487-1493.
ligibly small compared to the turbulent heating. 5Malik, M. R., "Stability Theory for Laminar Flow Control Design,"

The first series of experiments conducted by Rasheed et al.15 on Viscous Drag Reduction in Boundary Layers, edited by D. M. Bushnell and
a sharp cone in the T5 shock tunnel at the Graduate Aeronauti- J. N. Hefner, Vol. 123, Progress in Astronautics and Aeronautics, AIAA,
cal Laboratories at the California Institute of Technology qualita- Washington, DC, 1990, pp. 3-46.
tively confirms the theoretical prediction. Quantitative comparison 9Kendall, J. M., "Wind-Tunnel Experiments Relating to Supersonic and

n Hypersonic Boundary-Layer Transition,3 AAA Journal, Vol 13, No. 3,
of the theory with these data is planned for the future. Because the 1975, pp. 290-299.
boundary-layer stabilization is due to the disturbance energy extrac- t°Demetriades, A._ "Hypersonic Viscous Flow over a Slender Cone, Part
tion mechanism, we believe that similar effects may occur for other III: Laminar Instability and Transition," AIAA Paper 74-535, 1974.
types of high-frequency instabilities. Absorptive coatings may also "Stetson, K. F., Thompson, E. R., Donaldson, J. C., and Suler, L. G.,
affect the bypass mechanism, which is responsible for transition past "Laminar Boundary-Layer Stability Experiments on a Cone at Mach 8,
TPS roughness elements. These assumptions could be examined by Part 1: Sharp Cone,' AIAA Paper 83-1761, 1983.
further theoretical modeling and verified by experiments. t2Stetson, K. F., and Kimmel, R. G., "On the Breakdown of a Hypersonic
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the boundary layer and unstable disturbances with a random porous Paper 95-2292, 1995.
coating may be different from the case of the regular pore structure 14Malmuth, N. D., Fedorov, A. V., Shalaev, V., Cole, J., and Khokhlov, A.,
discussed earlier. Because of communication between randomly dis- "Problems in High-Speed Flow Prediction Relevant to Control," AIAA Paper
tributed pores, a mean flow may occur inside the coating that leads 98-2995, June 1998.
to a slip effect on the coating surface. Boundary conditions for un- "5Rasheed, A., Hornung, H. G., Fedorov, A. V., and Malmuth, N. D.,
stable disturbances may be also affected. These effects will also be "Experiments on Passive Hypervelocity Boundary-Layer Control Using a
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Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary
layers by using an ultrasonically absorptive surface to damp the second mode (Mack mode). Boundary-layer
transition experiments were performed on a sharp 5.06-deg half-angle round cone at zero angle of attack in the
T5 Hypervelocity Shock Tlnnel to test 6tis concept. The cone was constructed with a smooth surface around half
the cone circumference (to serve as a control) and an acoustically absorptive porous surface on the other half.
Test gases investigated included nitrogen and carbon dioxide at M. '-- 5 with specific reservoir enthalpy ranging
from 1.3 to 13.0 Mi/kg and reservoir pressure ranging from 9.0 to 50.0 MPa. Comparisons were performed to
ensure that previous results obtained in similar experiments (on a regular smooth surface) were reproduced, and
the results were extended to examine the effects of the porous surface. These experiments indicated that the porous
surface was highly effective in delaying transition provided that the pore size was significantly smaller than the
viscous length scale.

Nomenclature Introduction
h = enthalpy, MJ/kg J EAT loads and forces on hypervelocity vehicles depend crit-
M = Mach numberII ically on the location of transition from laminar to turbulent
P = pressure, MPa flow. Although significant progress has been and is being made in
q = heat flux, MW/mn2  

the theoretical understanding of transition, it is still one of the most
Re = Reynolds number severe uncertainties in the aerodynamic design of such vehicles.
St = Stanton number An extensive series ofexperiments studying boundary-layer tran-
p = density, kg/m3  

sition over a 5-deg smooth surfaced cone has previously been per-
g = viscosity, N- s/mn2  

formed in the T5 Hypervelocity Shock Tunnel by Germain and
Hornung' and Adam and Homung.' In addition to capturing a flow

Subscripts visualization (shadowgraph) image of the boundary-layer transition

aw = adiabatic wall process, these experiments determined the dependence of transi-

D = hole diameter tion Reynolds number on specific stagnation enthalpy. One of the

e = edge condition main results obtained by Germain and Hormung' was that the transi-

k = roughness height tion Reynolds number correlated with specific stagnation enthalpy
provided that the Reynolds number was calculated at a reference

tr = transition temperature 3 rather than the boundary-layer edge conditions. AsS= locanstion o mshown by Adam and lornung,7 the reference condition character-l = location on cone measured along surface, mm izes the conditions in the boundary layer better than the edge con-
0 = stagnation condition ditions, especially when comparisons are made between flows at

0 = freestreamn different Mach numbers. These experiments also observed a trend

Superscript of delayed transition as enthalpy increased. It is known that acoustic
waves are absorbed by chemical activity, and the delayed transition

• = reference condition was attributed to the increased chemical activity acting as a damp-
ing mechanism on the growth rate of the second mode acoustic
instability waves.Presented as Paper 2001.0274 at the 39th Aerospace Sciences Meeting. In the absence of large freestream disturbances or surface per-
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conditions, the most unstable mode had frequencies of the order of through the nozzle. Shock speeds of up to 5 km/s can be obtained to

1-3 MHz. Such high frequencies are highly indicative of the sec- produce nominal Mach 5 flows with a specific reservoir enthalpy of

ond mode and confirmed that the Mack mode was indeed the most up to 25 MJ/kg, reservoir pressure of 60 MPa, and reservoir temper-

strongly amplified mode. These computations also confirmed the ature of 8000 K. Typical flow velocities for the present experiments

experimental observation that increased chemical activity at higher were of the order of 3-4 km/s with typical useful test times ranging

enthalpies damped the second mode growth rates and delayed tran- from I to 2 ins. Existing shock tunnel diagnostic instrumentation

sition at the T5 tunnel conditions. 
provided the shock speed and reservoir pressure from which the

Even more desirable than being able to predict the transition lo- freestream conditions were calculated. The stagnation enthalpy was

cation would he to control it, specifically to move it downstream, calculated by solving the one-dimensional equilibrium gasdynamics

Inviscid and viscous second mode stability analyses recently per- reflected shock problem using the measured shock speed, the mea-

formed by Fedorov and Malmutho and Fedorov et al. 9" suggested sured initial shock tube pressure, and room temperature as inputs.

that transition could be delayed in hypersonic flow by using a suit- The freestrearn conditions were calculated using a one-dimensional,

ably porous surface that would absorb and dissipate the most unsta- inviscid, vibrational equilibrium, chemical nonequilibrium nozzle

ble second mode acoustic waves. The porous surface considered in code, which used the computed stagnation temperature and mea-

the analysis was a surface pitted by equally spaced cylindrical blind sured stagnation pressure as inputs. Detailed descriptions regarding

microholes, that is, holes with closed bottoms, whose size and spac- T5 operations and performance may be found in Homung."

ing were determined by the frequencies (or rather, the wavelengths)

of the most unstable mode. The scale of the required porosity at the Model and Instrumentation

high frequencies of the second mode is extremely fine and would not Model Configuration

prematurely trip the boundary layer by other mechanisms. Note that The model used for these experiments was a heavily modified ver-

the proposed control mechanism is purely passive and that there sion of the same model used by Germain and Hornung' and Adam

is no net flow (suction or blowing) through the holes. This paper and Homung.
2 The final configuration was a sharp 5.06-deg half-

will discuss the details of the experiments performed in the T5 Hy- angle round cone consisting of five pieces with an overall length

pervelocity Shock Tunnel to test the computational prediction by of 999 mm. It had a smooth surface over half the cone and the ab-

Fedorov et alBO that suitable wall porosity delays transition in by- sorptive porous surface over the other half beginning at 148 nun

personic boundary layers. 
from the cone tip (Fig. 1). The aluminum base cone used by Ger-

main and Homung' and Adam and Hornung
2 was lengthened by

Experimental Objective the cone insert for the purposes of this project. The base cone was

The main objective was to test the boundary-layer control scheme already hollow to allow room for instrumentation, and this aspect

by testing a nominal 5-deg half-angle cone with a smooth surface was preserved- An intermediate piece made of stainless steel 304

on one side and the ultrasonically absorbing porous surface on the referred to as the cone tip holder was screwed into this assembly.

other side. In this manner, each experiment was self-contained in The molybdenum cone tip was then screwed into this intermediate

that the smooth surface transition Reynolds number provided a di- piece and was easily replaceable in the event of excessive blunting

rect baseline for the porous surface results. In addition, these exper- or other damage. Extreme care was taken during the manufacturing

iments were used to verify agreement with previous data obtained process to minimize the steps at these junctions.

by Germain and Horung' and Adam and Horung, tpeata- The cone sheet was manufactured by rolling two initially flat

bility and to confirm that nonaxisymmetry or angle-of-attack issues sheets of metal (one perforated, one smooth) to form two longitu-

were not affecting the results. 
dinal halves of a cone and then laser fusion welding them along

The previous set of experiments and linear stability analyses pro- the seams. Refer to Fig. 2a for a micrograph of the final weld. The

vided the basis for the current experimental study. In particular, the resulting stainless steel cone sheet was fitted over the aluminum

Mack mode was identified as being dominant at T5 tunnel condi- base cone using a thermal interference fit that took advantage of the

tions, and the proposed control scheme addresses this mode. Fur- mismatch in thermal coefficients of expansion of the two materials.

thermore, the transition data from previous experiments provided This was accomplished by cooling both parts down to 190 K in

important comparison data and served as a checkpoint for the new special freezers used to store biological cell samples. This assembly

results. Finally, Adam and Homung's comparison
2 with flight data technique resulted in the cone sheet being stretched tightly over tht

ensured that the experimental results obtained were relevant to ac- base cone providing the blind microholes for the porous surface an(

tual future flight vehicles, 
eliminating any surface imperfections. In addition, it eliminated IN

need for any mechanical fasteners that would disturb the bounds.

Experimental Setup layer. Finally, this attachment method allowed the cone sheet to b

T Hypervelocity Shock Tunn tl nondestructively removable (and thus reusable) by simply revers

This series of experiments was performed in the Graduate Aero- ing the thermal interference fit process. Note that all surfaces th2

nautical Laboratories, California Institute of Technology, T5 Hy- were exposed to the flow were made of stainless steel 304, with th

pervelocity Free-Piston Shock Tunnel. In this reflected shock tun- exception of the removable tip, which was made of molybdenum.

nel facility, a piston is initially launched by high-pressure air. The The final fully assembled model was placed in a lathe, and indic;

resulting adiabatic compression of a helium-argon mixture bursts a tors were used to verify the geometry of the cone. In particular, It

diaphragm (Pti 90 MPa) causing a shock wave to travel into a half-angle of the cone was verified to be 5.06 deg, and the steps

shock tube, whose end wall is closed except for the small throat of the two junctions (cone tip/cone tip bolder and cone tip holder/col

the nozzle. The reflected shock from the end wall creates a quasi- sheet junctions) were measured to be less than 0.038 0.006 mi

constant pressure reservoir for the subsequent steady expansion Table 1 summarizes the angular distribution of the measured st4
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Fig. I Schematic diagram of the assembled test model from the profile and rear view.
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heights. This was acceptable because previous experiments by surface area was about 48 cm2 resulting in approximately 480,(X)0
Germain and Homungt at similar run conditions indicated that holes connecting the gap to the freestream. Conservative estimates
roughness elements, and steps as large asO. I mm placed at the x = 76 with an assumed cavity volume of I cm3 indicated that it would take
and 203 mm locations had no measurable effect on the transition approximately 25 its to fill the gap. This is well within the 0.5 ms
location, required for the nozzle to start and for steady flow to be established.

As expected, there were highly localized imperfections along the Furthermore, data were never taken earlier than 1.0 ms after the start
welded seams of the cone sheet, even after the thermal interference of the experiment, which allowed more than sufficient time for the
fit assembly process. The size of the bumps was approximately con- gap to be filled and the pressure to be equalized. Note that no flow
stant along the length of the cone such that the local increase in could enter this gap in the streamwise direction because the front
diameter was about 0.3 umm. Note that this effect was very small. edge of the cone sheet at the gap location butted solidly against the
The cross-sectional diameter at the front edge of the cone sheet back of the cone tip holder. For these reasons, it is felt that the small
(where the effect was most pronounced) was 26.1 mm, resulting gap had no appreciable effect on the results.
in the bump height being less than 1% of the local diameter. The
cone tip was sharp with a measured radius of 0.076 ± 0.005 mm. Porous Sheet
A limited amount of blunting of the tip occurred over the course As indicated earlier, the very high frequencies, that is, small wave-
of these experiments (blunted radius of 0.130 ± 0.005 mm) due tothe high heat loads at the stagnation point. Studies by Germain and lengths, of interest necessitated extremely fine porosity. The desired
heornung (and confirmed in the present work) indicated that the parameters for the porous surface were determined based on theestimated wavelength of the most unstable mode. Numerical simu-effect of this minimal blunting on transition Reynolds number fell lations by Adam12 indicated that the boundary-layer thickness was
well within the overall error tolerance and, therefore, was not rele- approximately 0.5-t mm (computed at the x = 305 and 914 mm
vant for this series of experiments. New and blunted nose tips were locations); therefore, the most unstable mode had a wavelength of
examined under a microscope and were observed to be perfectly lo at ely 1-2ef m. The final p ode had a th oistraight. The most significant imperfection was a small gap that aprxmtl1-m.Thfilpoushetad6 4md-existed between the cone sheet and the base cone. This gap was ameter holes spaced 100 ± 7 1m apart in a rectangular grid arrange-loeaisted beartwebeginningedgeo the cone sheet anda the base conment. This resulted in approximately 10-20 holes per disturbancelocalized near the beginning edge of the cone sheet and was the re- wavelength and an open area (or porosity) of 28%. Because of the
sult of imperfect rolling/welding of the cone sheet halves. This was nature of the laser drilling process, the holes were slightly conical
of concern because the gap causes suction through the perforated (taper angle of about 0.5-deg) with the small diameter exposed to
sheet during the time it takes the test gas to fill the cavity between the flow. The thickness of the sheet (thus, the depth of the holes)
the cone sheet and the base cone. This would, of course, have a was 450 gm (26 gauge sheet) and followed the Fedorov et al.1tstrong stabilizing effect on the boundary layer. After the pressure analysis that the depth of the holes be approximately 30% of the
equalizes, however, the suction effect would no longer occur. The analate d ept no thechoes be pprox t surf temaximum gap height was measured to be less than 0.05 mm and boundary-layer displacement thickness. The porous surface began
eaxtendhed no more thanl50mdownstreamson then porous si ade oft at approximately 148 mm from the tip of the cone as per the Fedorovextended no more than 50 turn downstream on the porous side of the et al. analysis"0 using the lower branch of the neutral stability curvecone only, that is, the affected area extended from approximately for the Mack mode at a frequency of I MHz. Refer to Fig. 2b for a
150 to 200 mm as measured from the cone tip along the surface. micrograph of the porous surface.
The quoted numbers are considered to be conservative estimates
and result in a maximum cavity volume of 0.3 cm 3 . The affected

Instrumentation

The model was instrumented with 56 Type E flush-mounted coax-Table I Measured step heightsa at cone tip/cone tip ial thermocouples of which 52 (26 per side) were actually used to
holderb and cone tip holder/cone sheetc interfaces collect data because this was the maximum number of channels

Junction A, Junction B, available on the data acquisition system. The thermocouples were
Angle, deg HIM 1un arranged in a staggered pattern 24.5 mm apart with the first one

located at 255 mm and the last one located at 814 mm from the tip.90 (smooth surface) 0.013 -0.013 Figure 3 is a schematic diagram showing the location of the ther-
180 (weld) . 0.013 0.025 mocouples on a developed view of half the cone, that is, the smooth
270 (porous surface) 0.013 0.038 surface side. The azimuthal lines are drawn at 12.7-mm (0.5-in.)

intervals with the third line located at 165 mm (6.5 in.). The second
'Atl step height measurements are +0.006 umm. Positive quantities line shows the location of the cone tip holder/cone sheet interface
indicate forward facing steps: negative quantities indicate backward at 148 mm (5.8 in.). The porous surface side had the mirror image
facing steps; angular locations are further defined in Fig 3. au. thermces deiberatelybJunction A, x = 75 tm. of the same layout. Note that the thermocouples were deliberatelyClunction B. x = 148 am. placed as far from the weld as possible, with the closest one being

a) b)

Fig. 2 Magnified image of a) weld joining the porous and solid sheets and b) stainless-steel perforated sheet.
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Fig. 3 Schematic diagram showing the locations of the thermocouples on a developed view of half the cone.

placed along the 40-deg ray. This is deemed more than adequate a viscosity model for reacting gases developed by Blottner et al.17

because shock tunnel experiments by Mee"3 in Mach 5 hyperveloc- to determine the viscosity of each species in the gas mixture at the

ity flow over a flat plate indicated that the spreading half-angle of edge temperature. Coefficients for the model for the different gases

turbulent bursts is approximately 3-4 deg. were obtained from Olynick et al.' 8 When the computed gas compo-

The small (0.8-mm-diam) and fast-response (I-Azs) thermocou- sition at the edge condition was used, the code then used Wilke's' 9

pies were manufactured in-house based on a modified design origi- semi-empirical mixing rule to calculate the overall viscosity of the

nally developed by Sanderson " and whose performance was tested gas mixture.

in detail by Davis.' 5 During the shot, the thermocouple signal was In Figs. 4a-4f, each point represents a heat flux value (or Stan-

amplified by a factor of 500 and then sampled at 200 kHz. The ton number St) for the thermocouple at that particular location (or

sampled voltage levels were converted to temperature using corre- Reynolds number Re.). The dark black data points correspond to the

lations for Type E thermocouples. The heat flux for each thermo- data collected in the current series of experiments, whereas the gray

couple was subsequently computed using a spectral deconvolution data points correspond to previous results. The state of the boundary

technique' 4-16 based on the heat equation for one-dimensional un- layer was determined by comparing the experimental results with

steady heat transfer in a semi-infinite solid, theoretical models assuming frozen chemistry. The solid line that

essentially runs through the data points represents the theoretical

Results value for a frozen, noncatalytic surface laminar boundary layer. The

A total of 29 shots were carried out in nitrogen, and 19 shots dashed-dotted and dotted lines represent the expected values for

were performed in carbon dioxide. The nitrogen shots were per- turbulent boundary layer as computed using semi-empirical models

formed with reservoir pressures ranging from I I to 50 MPa and developed by Van Driest and White/Christoph, respectively. These

specific reservoir enthalpies ranging from 3.0 to 13 MJ/kg. Above models are described in detail by White,2' Adam,' 2 and Rasheed.' 6

13 MJ/kg, the Reynolds numbers acbieved in T5 were too low to Although error bars are not shown in Figs. 4a-4f for clarity, the

observe transition on the cone. The carbon dioxide shots were per- uncertainty in the Stanton number was computed based on the un-

formed with reservoir pressures ranging from 9.0 to 40 MPa with certainty in the dimensional heat flux (from ± 13 to ± 18%), the

specific reservoir enthalpies ranging from 1.3 to 9.0 MJ/kg. The stagnation enthalpy (±8%), the edge velocity (±4%), and the edge

complete set of data and results is available.t 6  density (±8%). The details of the estimation of these uncertainties

are presented by Rasheed,16 The final uncertainty in the Stanton

Transition Reynolds Number number for each thermocouple ranged from about ± 18 to ±22%.

The transition Reynolds number was determined by examining The transition location was determined by first fitting a line

the heat transfer traces measured at each thermocouple station. For through the data points in the laminar region (the dashed-triple dot-

each shot, a heat flux level for each thermocouple was obtained by ted line near the solid line) while enforcing the Reynolds number

averaging over a short time period after the nozzle starting process Re--' law expected for a zero pressure gradient laminar boundary-

but before the onset of driver gas contamination and always within layer. Another line was then fitted through the data points in the

the constant reservoir pressure window, transition region (the other dashed-triple dotted line). The intersec-

The heat flux levels were used to produce nondimensional plots of Lion of these two lines was determined to be the transition Reynolds

Stanton number vs Reynolds number (evaluated at edge conditions) number, that is, the onset of transition. Note that, although includ-

such as in Fig. 4. The Stanton number was computed as ing fewer or more data points in the curve fit for the transition

region changes the slope of the dashed-triple dotted line, it does

St = (X) (!) not significantly change the intersection with the laminar line. The

peUehaw uncertainty in the transition Reynolds number was computed by

first determining upper and lower uncertainty bounds for the lam-
where q is the heat transfer rate, ph is the edge density, is the inar experimental data fit from the linear regression assuming the

edge velocity, and is the enthalpy assuming an adiabatic wall. 95% confidence level using the small sample T distribution. Al-

The Reynolds number was computed as though not shown in Figs. 4a-4f for clarity, these upper and lower

Re. peUex/lp (2) uncertainty bounds would be represented as parallel lines above and
below the laminar experimental fit. Similarly, another pair of lines

where P, and U, are as before, x is the distance along the surface was drawn above and below the transitional experimental fit. The

of the cone, and z,, is the viscosity evaluated at the edge condi- intersections of these two sets of upper and lower bounds formed

tions. The viscosity was calculated using a simple code based on an error rhombus around the transition location. The minimum and
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Fig. 4 Stanton number St vs Reynolds number ReR.

maximum vertices (in terms of absissca coordinates) of the error experiment. This is attributed to the slightly higher unit Reynolds
rhombus were used as the upper and lower uncertainty bounds, and number obtained in Germain and Hornung's experiments.
the average percent error of these two values was used as the esti-

mate for the uncertainty in the transition location. This uncertainty Case 2: Both Sides Transitional
varied from shot to shot, but it ranged from ±3 to ±-15%, depending Figures 4c and 4d show plots of Stanton number St vs Reynolds
on the slope of the transitional fit. When the additional uncertainty number Re. for shot 1963, which was a midenthalpy shot (po =
due to density (±-8%), velocity (±-4%) and viscosity (±-5%) were 45.6 MPa, ho = 7.2 MJ/kg) in nitrogen. Figures 4c and 4d show
factored in, the overall uncertainty in transition Reynolds number typical transition behavior with the data following the theoretical
ranged from ±- I I to 1-19%, with a median of ±- !13%. laminar curve at low Reynolds number and moving to the expected

turbulent curve farther downstream. Figures 4c and 4d show that the
Case 1: Both Sides Laminar boundary layer on the smooth surface transitions well upstream as

Figures 4a and 4b show plots of Stanton number St vs Reynolds compared to the porous surface and appears to validate the prediction
number Re. obtained from shot 1960, a high-enthalpy shot (Po = by Fedorov et al."° Once again, the Germain and iornung' data
51.5 MPa, ho = 12.8 MJ/kg) in nitrogen. Figures 4a and 4b show for a similar run condition is shown for comparison with excellent
that the boundary layer was lamninar over the entire length of the agreement as to the transition location.
cone for both the smooth and porous surfaces- Furthermore, the
results obtained on the smooth surface are shown to be in excellent Case 3: Porous Side Laminar, Smooth Side Transitional
agreement with previous results obtained by Germain and Horuung' Figures 4e and 4f show plots of Stanton number St vs Reynolds
for essentially the same run condition. Note that the Ref. I data number Re. obtained from shot 1976, a low-enthalpy shot (P0 =
indicate that the boundary layer is just beginning to transition toward 14.5 MPa, ho = 5.0 MJ/kg) in nitrogen. [nt this particular case, the
the back ofthe model, whereas this effect is not evident in the present smooth surface boundary layer transitions roughly at the halfway



486 
RASHEED ET AL

point on the cone whereas the porous sheet boundary layer is laminar multiplied by the last thermocouple location. This is not a valid

all of the way to the end of the cone. This shot clearly demonstrates data point but rather a manner in which to show that the boundary

the dramatic effect of the porous surface in delaying boundary-layer layer was entirely laminar. The same discussion applies for the open

transition. Once again, notice the good agreement with the previous square symbols with an T for the smooth surface side. The two data

experiment performed by Germain and Homung.1 points at 13 MJ/kg are actually open diamonds supernmposed on

open squares, with an T, indicating that both the smooth and porous

Summary Data surface boundary layers were entirely laminar. The lines are linear

The summary data are presented in the form of plots of Reynolds curve fits to help guide the eye (dashed-dotted for porous and solid

number Re' vs stagnation enthalpy ho (Figs. 5 and 6). The data are for smooth). Note that the porous sheet appears to be less effective

presented in this manner because both Germain and Homung' and at midenthalpies as compared to low and high enthalpies.

Adam and Homung 
2 found a correlation of Reynolds number Re,

with stagnation enthalpy ho, where the transition Reynolds number Carbon Dioxide Shots

(evaluated at reference conditions) is calculated as An analysis similar to that performed for the nitrogen shots was

also performed for each carbon dioxide shot. The resulting summary

Re. = p'U,•,x/91 (3) plot of Reynolds number Re., vs ho is shown in Fig. 6. Once again

there is fairly good agreement between the present smooth surface

where p' is the density evaluated at the reference condition, U, is results (dark data points) and those obtained in previous experi-

the edge velocity, x, is the transition location (as defined earlier) ments by Adam and Hornung
2 (gray data points), although there is

measured along the surface of the cone, and tp" is the viscosity much more scatter. Figure 6 shows that the porous sheet (diamonds)

evaluated at the reference condition. In addition, there. was reason was, in fact, detrimental at higher enthalpies, but was effective at

to believe that the effectiveness of the porous surface would depend lower enthalpies with a crossover point at roughly 3.0 MJ/kg. The

on h0 because calculations by Johnson et at.7 in air indicated that diamonds represent the Re. on the porous surface, whereas the tri-

I. the most unstable mode frequencies varied with h0 . angles represent Reynolds number Re, on the smooth surface for

the same shot. The lines are second-order curve fits to help guide

Nitrogen Shots 
the eye (dash-dotted for porous and solid for smooth).

Figure 5 gives a summary of the data for the nitrogen shots.

The first observation is that the present experimental results (dark Resonantly Enhanced Shadowgraph

data points) agree fairly well with the previous results obtained by Further evidence of the effectiveness of the porous sheet is seen

Germain and Hornung' (gray data points). The diamonds represent in Fig. 7, which is a resonantly enhanced shadowgraph showing

the Re, on the porous surface, whereas the squares represent the ReZ the boundary-layer transitioning on the smooth surface (top) while

on the smooth surface for the same shot. The second observation remaining perfectly laminar on the porous surface (bottom). Flow is

is that, in all cases, the porous surface delayed transition by a sig- left to right and the schematic at the top right indicates the window

nificant amount. The open diamonds with an upward-facing arrow position relative to the model. The rectangular boxes in the main

t indicate that the porous surface boundary layer was laminar to image indicate the location of the magnified images whose left and

the very end of the cone. The value plotted assumes that transition right edges are 495 and 615 mm from the cone tip, respectively

occurred at the last thermocouple, that is, unit Reynolds number (as measured along the surface of the cone). The white line on

the magnified image of the smooth surface was digitally added to

indicate the approximate surface of the model. This shadowgraph

2.0 
corresponds to shot 2008 (Po = 48.2 MPa, h0 = 9.8 MJ/kg) and was

A .. obtained by seeding the flow with sodium and tuning the frequency

,5 .- of the dye laser light source to one of the sodium D lines. The

1. -"transition location on the smooth surface identified by the analysis

of the heat transfer data is approximately at the left edge of the

"L. 
magnified image of the smooth surface. The magnified images were

also used to measure the boundary-layer thickness, and this value

was found to be approximately I mm, which is in agreement with

0.5 Adam's computations. 1

0.5* P. : -
Discussion

As already indicated, to validate the effectiveness of the porous

0 .to .
20 surface, it was necessary to ensure that angle-of-attack or nonax-

h. (MJ/kg) isymmetry issues were not affecting the results and that the results

Fig. 5 Reynolds number Re•. vs ho summary of nitrogen dama. were repeatable. Angle of attack was eliminated as a cause for the de-

layed transition by carefully aligning the model to within ±0.05 deg

of the tunnel axis. Furthermore, it was noted that the observed ef-

fect was to delay transition as much as 100% (or more because the

8 
cone was not long enough). This is significantly larger than the 5%

variation in Reynolds number Re. that could be attributed to an an-

gle of attack of 0. 1 deg as observed by Krogmann (and reported by

Stetson
2 t) in his study of the effects of angle of attack on Reynolds

S•number 
Re, in hypersonic flow (M. =-5) over a 5-deg half-angle

cone.
Flow asymmetry issues were addressed by rotating the model to

& -- 
the 0-, 90-, and 180-deg orientations and repeating the experiments.

4 ~11 
In particular, two run conditions were repeated and can be seen in88• c. Fig. 5 as the data points clustered at 5 and 8 MJ/kg, respectively.

SClearly, there is excellent agreement, and there appears to be no

0 
effects from rotating the model. The model asymmetries due to

0 2 4 6 8 10 12 imperfections were discussed earlier and were determined to be

ki (MI/kg) irrelevant in the context of the present results.

Fig. 6 Reynolds number Re4 vs he summary of the carbon dioxide Repeatability was tested by repeating selected experimental run

data. 
conditions at various stages in the test program and noting that there

BETBREPRODUCED FROM

BEST AVAILABLE Copy
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Smooth Surface

Porous Surfac

Fig. 7 Resonantly enhanced shadowgraph.

was no observable effect on transition location. This was of particu- 2'to6
lar importance because it confirmed that the slight accumulation of
soot on the surface of the model over the course of the experiments
had no effect on the results. The soot was generated by the pyroliza- 1 106
tion of the polyurethane buffers used to stop the piston in this facility
and was carried by the driver gas at the end of each shot, that is, I ..
the soot arrived at the model after the useful test time. Extensive 0 -.. ----- - -------

testing performed on two sample test pieces of the porous surface
mounted on Plexiglas® backings (flat plate normal to the flow and .
cylinder inclined at 5 deg to the flow) before testing the actual cone -1t0
model had previously suggested that the soot would not be a prob-
lem. The Plexiglas mountings allowed the samples to be backlit so 6
that it was possible to determine whether the holes were clogged (no -2-106 _ _°

200 400 600 800light passing through). Based on these tests it was decided to allow Re'.
the soot to accumulate over the course of the series of experiments. Fig. 8 Decreased effectiveness as Reynolds number Re; increass be-
The repeatability tests confirmed that the soot had no effect on the yig. 8 Decas eine se
results and also provided an indication of the robustness of this
boundary-layer control scheme to small amounts of contamination.

As already mentioned, for the nitrogen experiments, the porous Re; greater than 300. The most relevant experiment (to the present
surface was effective over the whole enthalpy range tested, although case) regarding distributed surface roughness effects was performed
it was more effective at low- arid high-enthalpy conditions than at by Germain and Hornung,' who found that 0.1-mm salt crystals
midenthalpy conditions. For the carbon dioxide shots, however, the (Re, = 220, based on salt crystal height) randomly distributed over
porous surface was only effective at very low-enthalpy conditions the first 206 mm ofthe model tripped the boundary layer. No attempt
and was counterproductive at mid- to high enthalpies. This behav- was made to identify the critical roughness Reynolds number below
ior suggested that another parameter was important in the carbon which the surface roughness had no effect on transition. For such
dioxide flows. a comparison, it is useful to recognize that the present results cor-

A possible explanation for the observed behavior lies in the ex- respond reasonably well with experiments in incompressible flow
pectation that the porous surface must be hydraulically smooth, by Feindt (as reported by Schlichting 22), who examined the effect
that is, pore size must be sufficiently small in relation to the vis- of distributed surface roughness (in the form of sand grains) on
cous length scale, for the proposed mechanism to effectively delay transition Reynolds number. Although the type of roughness dif-
transition. If this were not the case, then the holes would act as fered from the present experiments (sand grains vs porous surface),
distributed surface roughness and prematurely trip the boundary Feindt also found that the surface roughness became important when
layer. A plot of Re, r. - Re*o• vs Reynolds number based Reynolds number Rek (based on the sand grain height) was greater
on pore diameter Ret clearly shows that the delay in transition be- than 120. Similarly, Pfenninger23 reported that surface roughness
comes much smaller as Reynolds number Re* increases (Fig. 8). issues were important in laminar flow control experiments (suction
Note that no such trend was observed when the results were plot- through slots) when Reynolds number Re, (based on slot width) was
ted using the Reynolds number evaluated at the edge conditions approximately greater than 100.
(Ren), and it is, therefore, concluded that the reference Reynolds More recently, Reda 24 reviewed the effects of distributed surface
number is the proper Reynolds number to use in this analysis for roughness in hypervelocity flows on nose tips, attachment lines, and
these flows. The grayscale indicates the qualitative effectiveness of lifting entry vehicles. Reda concluded that there exists no universal
the porous surface. Black indicates laminar over the entire length value for critical Reynolds number Re, (based on roughness height)
of the cone on the porous side, medium gray indicates delayed tran- for transition to turbulence and that this critical roughness Reynolds
sition was observed on the cone, and light gray indicates premature number was highly dependent on the particular flowfield and rough-
transition. Squares and triangles correspond to N2 and CO2 , respec- ness characteristics. Despite this observation, Reda indicated that a
tively. Figure 8 shows that the mechanism becomes qualitatively number of differedt experiments suggested that the critical rough-
less effective at an Reynolds number Re; of about 130 and actu- ness Reynolds number ranges between 100 and 200. Reda's earlier
ally prematurely trips the boundary layer at an Reynolds number experiments on nose tip transition in a ballistic range yielded values
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Fig. 9 Reynolds number Rer vs Unit Re* showing unit Reynolds num- Fig. 10 Reynolds number Re1 r vs Unit Re* showing that unit Reynolds

ber effect observed in the transition data on the smooth surface. number effect was not observed in the transition data on the porous

surface.

for the critical Reynolds numberRek of 192. Bertin et al. (as reported Conclusions

by Reda24 ) found Rek = 110 to be the critical value at which rough- Extensive experiments on hypervelocity boundary-layer transi-

ness effects began to dominate in wind-tunnel tests of a0.0175 scale tion control have been carried out in the T5 on a 5.06-deg half-angle

model of the Space Shuttle Orbiter at Mach 8-12. Finally, Goodrich sharp cone with a smooth surface over half the cone and an ul-

et al. (as reported by Reda2 4 ) found that the transition data on the trasonically absorptive porous surface over the other half. These

windward centerline of the Space Shuttle Orbiter during reentry for experiments, performed in nitrogen and carbon dioxide, used heat

missions STS- I to STS-5 suggested a critical Reynolds number Rek transfer measurements to determine simultaneously the transition

of 120. Note that in these cases, the Reynolds number Rek value location on the smooth and porous surfaces for each shot. These new

was for surface bumps (as opposed to holes in the present work) measurements for the smooth surface transition location compared

and were calculated using the conditions in the boundary layer at very well with experimental results obtained by previous researchers

the roughness height. This may or may not allow direct comparison in the same facility. The theoretical result that transition may be de-

with the Reynolds number Reo used to analyze the present results, layed by suitable wall porosity has been confirmed convincingly

but it is clear that the critical Reynolds number Re* is in the same in nitrogen flows, and the reversal of the phenomenon in carbon

range as previous experiments. 
dioxide flows appears to be due to the chosen wall porosity scale

Note, however, that closer examination of Fig. 8 also indicates being too coarse in carbon dioxide. These results were tested for

that some parameter is still not fully accounted for because the effec- repeatability and were checked to ensure that they were not induced

tiveness of the porous sheet does not decrease monotonically with by angle-of-attack or other effects. The effectiveness of the porous

increasing Reynolds number Reo. Specifically, the porous sheet ap- sheet was further evidenced by a resonantly enhanced shadowgraph

peared to be more effective in the carbon dioxide shots at Re, -_ 200 that clearly showed transition occurring over the smooth surface but

than the nitrogen shots at Re*, -• 130. Although unexpected, it is not not the porous surface.

entirely surprising that nitrogen and carbon dioxide behave slightly

differently because the different chemistry involved could affect the Acknowledgment
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Experimental and theoretical studies of the effect of an ultrasonically absorptive
coating (UAC) on hypersonic boundary-layer stability are described. A thin coating
of fibrous absorbent material (felt metal) was selected as a prototype of a practical
UAC. Experiments were performed in the Mach 6 wind tunnel on a 7' half-angle sharp
cone whose longitudinal half-surface was solid and other half-surface was covered
by a porous coating. Hot-wire measurements of 'natural' disturbances and artificially
excited wave packets were conducted on both solid and porous surfaces. Stability
analysis of the UAC effect on two- and three-dimensional disturbances showed that
the porous coating strongly stabilizes the second mode and marginally destabilizes the
first mode. These results are in qualitative agreement with the experimental data for
natural disturbances. The theoretical predictions are in good quantitative agreement
with the stability measurements for artificially excited wave packets associated with
the second mode. Stability calculations for the cooled wall case showed the feasibility
of achieving a dramatic increase of the laminar run using a thin porous coating of
random microstructure.

1. Introduction

For small free-stream disturbances and negligible surface roughness, laminar
¾' turbulent transition is due to amplification of unstable modes in the boundary

layer (Malik, Zang & Bushnell 1990; Reshotko 1994). In this case, stability theory
and experiment are basic tools for predicting transition loci and developing laminar
flow control methods (Mack 1984; Reshotko 1969; Malik 1989). For essentially
two-dimensional supersonic and hypersonic flows, the initial phase of transition is
associated with excita4tion and amplification of the first and/or second modes.

The first mode is an extension to high speeds of the Tollmien-Schlichting (TS)
waves, which represent viscous instability at low Mach numbers. The inviscid
nature of the first mode begins to dominate when the Mach number increases,
since compressible boundary-layer profiles contain a generalized inflection point
(Mack 1984). This mode may be stabilized by wall cooling, suction and favourable
pressure gradient. Another way to damp the first mode is by a very thin perforated
sheet stretched over a plenum chamber (Carpenter & Porter 2001). When the TS
waves propagate along the boundary layer, the fluctuating pressure forces air in
and out of the plenum chamber that modifies the wall boundary conditions for
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the disturbances. Carpenter & Porter (2001) conducted a stability analysis for the
incompressible boundary layer on a flat plate and showed that the TS waves are
stabilized when the wall admittance phase is close to in. Their analysis is based
on linear stability theory for the boundary layer with modified boundary conditions
on the perforated wall. Certain aspects of this theoretical modelling are similar to
the approach developed by Gaponov (1971, 1975) and Lecoudis (1978) for subsonic
boundary layers and by Gaponov (1977) for moderate supersonic flows. Whether the
experiments will confirm the theoretical predictions remains to be seen. Carpenter &
Porter (2001) indicated several factors that could lead to problems in practice. The
theory requires the admittance phase to be very close to in. This can be achieved only
by minimizing the losses through the pores, which leads to severe constraints on the
perforated sheet thickness. Another difficulty is associated with pressure variations
along the perforated panel. This may lead to areas of quasi-steady inflow and outflow,
thereby modifying the mean flow and its stability characteristics.

The second mode results from an inviscid instability driven by a region of supersonic
mean flow relative to the disturbance phase velocity. This instability belongs to the
family of trapped acoustic modes propagating in a waveguide between the wall and
the sonic line (Mack 1984; Guschin & Fedorov 1989). The existence of the second
mode was established by the experiments of Kendall (1975), Demetriades (1974),
Stetson et al. (1983) Stetson & Kimmel (1992a,b) and Kimmel, Demetriades &
Donaldson (1995). Once the second mode sets in, it becomes the dominant instability
since its growth rate tends to exceed that of the first mode. For insulated surfaces,
this occurs for Mach numbers larger than 4. For cooled surfaces, the second mode
can dominate at even lower Mach numbers (Lysenko & Maslov 1984). In contrast
to the TS instability, wall cooling destabilizes the second mode. This effect can be
important in the transition of hypersonic flows. Since the temperature of a hypersonic
vehicle surface is relatively small (less than 0.2 of the adiabatic wall temperature),
the TS instability is eliminated by natural cooling, whereas the second mode remains
unstable and may trigger early transition. Increasing the laminar run requires the
second-mode instability to be diminished.

In high-speed flows, the second mode is associated with disturbances of relatively
high frequency corresponding to the ultras6nic band. Malmuth et al. (1998) assumed
that a passive ultrasonically absorptive coating (UAC) of fine porosity may suppress
these fluctuations and, at the same time, may not trip the boundary layer owing to
roughness effects, i.e. the passive UAC may stabilize the second and higher modes
by a disturbance energy extraction mechanism. This hypothesis was examined by
an inviscid linear stability analysis. Using the WKB method, Malmuth et al. (1998)
formulated the boundary condition on an ultrasonically absorptive wall for the second
and higher modes, and showed that the absorption does cause a strong stabilization
of the second mode. Later, Fedorov & Malmuth (2001) analysed the absorption effect
at finite Reynoldý numbers using viscous stability theory and found that viscosity
weakly affects th'e stabilization mechanism. They also considered an ultrasonically
absorptive surface of a particular type, namely, a wall covered by a porous coating
with cylindrical blind micro-holes, and showed that a relatively thin coating (of
thickness - 0. 1 of the boundary-layer displacement thickness) can dramatically reduce
the second-mode growth rate. In contrast to the TS waves (Carpenter & Porter 2001),
the second mode is effectively suppressed without a plenum chamber underneath the
porous sheet. This significantly simplifies practical application.

These theoretical findings lead to the expectation that a passive porous coating
may be exploited for hypersonic laminar flow control. The concept was verified in the
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California Institute of Technology GALCIT T-5 shock tunnel (Rasheed et al. 2002) by
testing a 5' half-angle sharp cone. The cone in these tests had one half of its surface
solid and the other a porous sheet that was perforated with equally spaced blind
cylindrical holes. The average hole diameter and depth were respectively 60Ptm and
500 jtm. Average spacing between the holes was 100 [im. The model was instrumented
by thermocouples, and the transition onset point was determined from the Stanton
number distributions measured simultaneously on both sides of the model for each
run. The experiments were performed for the ranges of the free-stream total enthalpy
4.18 < H0 < 13.34 MJ kg-I and the free-stream Mach number 4.59 •< M,, < 6.4. This
study revealed that the porous coating delays transition by a significant amount. For
the majority of runs, the boundary layer on the porous surface was laminar up to the
model base, whereas transition on the untreated solid surface was observed halfway
along the cone. These experiments qualitatively confirmed the theoretical prediction
of Fedorov & Malmuth (2001). However, quantitative comparison was not feasible
because the cone was not long enough to measure the transition locus on the porous
surface. Since the boundary-layer disturbances were not measured, these experiments
did not give direct evidence of the second mode instability, and its effect on the
transition process was not clear.

A regular microstructure UAC is one possible good starting point for validation
of the hypersonic laminar flow control concept. However, most porous materials,
which provide efficient absorption of acoustic disturbances, have a random porosity.
A practical UAC should be symbiotic with thermal protection systems (TPS) of actual
hypersonic vehicles. Since the majority of TPS materials have random microstructures,
a randomly porous coating is of most interest for applications. This motivated the
theoretical and experimental studies of a randomly porous UAC to be discussed
herein. The investigation is focused on direct measurements of the boundary-layer
disturbances and verification of the stability theory predictions.

2. Experimental apparatus
2.1. Wind tunnel

The experiments were conducted in the T-326 hypersonic blow-down wind tunnel
with open-jet test section (Grigoriev et al. 1972) at the Institute of Theoretical and
Applied Mechanics (ITAM) of the Siberian Branch of Russian Academy of Sciences
in Novosibirsk. The diameter of the axisymmetric contoured nozzle of this facility
is 200 mm. Run-time can be as long as 30 min, subject to a Mach number flow-field
non-uniformity of 0.7% in the flow core at a freestream Mach number M-:. 6.
The test core diameter is approximately 180mm. Typical of conventional hypersonic
wind tunnels, the noise level is about 1%. During the experiment, pressure, P0, and
temperature, To, in the settling chamber are kept constant, with accuracies of 0.06%
and 0.25%, respectively.

2.2. UAC parameters

Characteristics of a porous coating must meet certain requirements to suppress the
boundary-layer instability effectively. For the wind tunnel tests, the boundary-layer
thickness on a 70 half-angle cone is approximately 1 mm (see §4.1 and figure 8).
According to the experimental observations of Kendall (1975), Demetriades (1974),
Stetson et al. (1983), Stetson & Kimmell (1992a, b) and Kimmel et al. (1995), the
second-mode wavelength is approximately twice the boundary-layer thickness, i.e. it
is -- 2 mm in the case considered. The characteristic size of the porous coating should
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FIGURE 1. Magnified sixty-fold image of the upper surface of the felt-metal coating;
I x 1 mm 2 grid.

be much smaller than the disturbance wavelength to avoid resonant interactions
with the porous-layer microstructure and minimize roughness effects. On the other
hand, the pore size should be large enough to diminish the rarefied gas effect and
provide intensive absorption of the boundary-layer disturbances in the frequency band
200-400 kHz associated with the second mode. Compromising these constraints we
chose the felt-metal coating, which is composed of stainless steel fibres of diameter
d = 30 gm. To provide integrity of the coating, the fibres were hard sintered randomly
on a solid stainless steel sheet of thickness ý0.245 mm. Then, they were rolled to a
porosity of 75%. The porous layer has a thickness of 0.75 mm resulting in a total
thickness of the felt metal sheet of 1 + 0. 1 mm. Magnified images of the porous surface
(one of them is shown in figure 1) reveal that the average pore size is • 100 pm. This
results in 20 pores per boundary-layer disturbance wavelength.

2.3. Model

The model was a 7' half-angle sharp cone of 500 mm length (see figure 2) consisting
of three parts: (i) a sharp cone 65mm in length and 0.1 mm nose radius; (ii) a middle
part 65 mm in lengt containing an electric glow discharge perturber; and (iii) a base
portion 370mm in length. Half of the base part is covered by a felt-metal sheet as
shown in figure 2. Roughness of the solid surface is 0.6 gm. The model is equipped
with a three-dimensional perturber providing a high-frequency glow discharge in a
small chamber. Artificial disturbances generated by the perturber are introduced into
the boundary layer through an orifice of 0.4 mm diameter located at a distance of
69 mm from the model nose. The perturber construction is similar to that used for
excitation of artificial wave packets in supersonic boundary layers (Kosinov, Maslov
& Shevelkov 1990). Maslov et al. (2001) have successfully applied this technique to
hypersonic flows.
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Nose Middle part Base part

FIGURE 2. Schematics of the model; dimensions are in mm.

A major challenge in the construction of the model was attachment of the felt-
metal sheet to the basic cone. After bending, the porous layer expanded, leading

to its thickening by approximately 20%. This complicated the determination of the
undercut of the basic cone to allow flash attachment of the felt-metal sheet. To
minimize mismatch between the porous and solid surfaces, the felt-metal sheet was
attached to the base cone and then ground until the surface irregularity was reduced
to 0.05 mm.

Another difficulty was detachment of the felt-metal filaments because of sheet
stretching. Examination of the porous surface under a microscope showed that some
of the detached filaments protrude from the surface approximately 3-4 mm. These
filaments (about 1500-2000) were manually trimmed off.

The model was installed at zero angle of attack. The estimated misalignment
between the cone axis and the free-stream direction was less than 0.05°. This allows
three-dimensional distortions of the mean flow to be neglected.

2.4. The measuring system
To determine the free-stream parameters, IPD-89008 pressure gauges and k-type
thermocouples measured pressures and temperatures in the settling chamber and
provided accuracies of 0.15% and 0.1%, respectively. The free-stream Mach number
was determined using Pitot measurements. -

Two traverse gears were used in the experiment. A three-component traverse system
provided t, Y, Z displacements of the hot-wire probe to an accuracy of 0.01 mm. A
special unit was used to roll the whole cone around its X-axis and measure transverse
distributions of wave packets. The roll angle, o, was controlled within an accuracy

0.10.
The high-frequency glow discharge system consisted of clock and high-voltage

generators. The clock generator signal was used to trigger the high-voltage generator
and synchronize hot-wire measurements with the high-voltage generator initiation.
The high-voltage generator produced voltage pulses up to 2000fV, of 1 ats duration
and pulse frequency uw to 400 kHz. During the run, the glow discharge was controlled

visually through optical windows and a mirror in the test section.
A constant-current hot-wire anemometer, custom built at ITAM, was used to

measure mass flow fluctuations. The hot-wire probes were made of tungsten wire of
5 itrm diameter and 1 mm length which was welded to pointed stings. The overheat
ratio was 0.5 and the frequency response of the hot-wire anemometer was 500kHz.
The constant and alternating components of the hot-wire signal were measured by
a 12-bit analogue-digital converter with a sampling frequency of 5 MHz. At each
measurement station, 98 time-series of 4096 samples were acquired. An analogue
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Surface Po (MPa) To(K) M, M, RecT(m-) Re 1,(m-n) T.,/To f (kHz)

Solid 1.0+0.002 395+3 5.92 5.3 11.8 x 106 15.4 x 101 0,79-0.83 280

Porous 1.0+0.002 391 + 1 5.92 5.3 12.0 x 106 15.6 x 106 0.81-0.84 280

TABLE 1. Basic parameters.

signal of the main generator initiating glow discharge was used to trigger ADC.
Details of the processing techniques have been discussed by Maslov et al. (2001).

2.5. Processing of the disturbance characteristics

To obtain the amplitude, A, and phase, 0, of artificially excited disturbances, the
discrete Fourier transform is used

2 N

A(X, Y, 1)exp(iOP(X, Y, 19)) = p pU,1 (X, Y, 0-, tj)exp(-2if tj),
j=1

where N is the sample count in the time-series, f is the disturbance frequency, and
pUn(X, Y, 0(, tj) is the time-series of mass flow pulsations. The artificial wave packet is
represented as a decomposition of elementary waves. For this purpose the transverse
wave spectra are calculated as

0
SA(x, Pl)exp(iS F(x, fi)) = f A(x, 0) exp(i4O(x, o9)) exp(-iplO )d -,

where SA and SF are the amplitude and phase spectra with respect to the transverse
wave number 3.

3. Measurement results

Basic experimental parameters are given in table 1, where Re, is the unit Reynolds
number, Tw, is the wall temperature, f is the frequency of artificial disturbances,
and the subscript e denotes quantities at the upper boundary-layer edge. Hy-
personic viscous-inviscid interaction is neglected, since the interaction parameter
X =M3/ ýRex (Hayes & Probstein 1959) is less than 0.1 for the region X > 94rmm,
where all measurements are conducted.

Figures 3(a) and 3(b) show the mean flow velocity U/Ue and the r.m.s. mass flow
pulsations versus the vertical coordinate, Y, normalized with respect to the boundary-
layer thickness 3 (U(3) =0.99Ue). Symbols correspond to the hot-wire measurements
on the (i) porous and (ii) solid surfaces at X = 224.9 mm; the solid line (iii) in
figure 3(a) showp the self-similar solution of the laminar boundary-layer equations
discussed in § 4. 1 The good agreement between the theoretical and experimental mean
flow profiles indicates that the boundary layers on both surfaces are laminar. Similar
results were obtained at the cross-sections where hot-wire measurements were made.
Note that the disturbance profiles for both surfaces have maxima located at Y/8 = 0.8
(see figure 3b).

Mass flow disturbance spectra were measured at the normal coordinate Y cor-
responding to the disturbance maxima. Hot-wire measurements were conducted at
the equally spaced X-stations given in table 2. The first station Si was chosen
near the leading edge of the porous surface (X = 185 mm). Disturbance spectra are
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FIGURE 3. Comparison profiles of (a) mean velocity and (b) r.m.s, mass-flow pulsations for
(i) porous and (ii) solid surfaces; (iii) self-similar profile.

Surface SI S2 S3 S4 S5

Solid 192.8 217.8 242.9 268.0 293.0

Porous 189.1 214.2 239.2 264.3 289.4

TABLE 2. Locations of the measurement stations (X mm).

shown in figures 4(a) and 4(b) for the solid and porous surfaces, respectively. At

the upstream station St, the spectra are similar on both surfaces. Downstream from

S l, the spectrum evolutions are quite different. On the solid surface the disturbance

spectra look very similar to those measured by Stetson & Kimmel (1992b) on a sharp

cone at M, = 8; they correspond to the second mode instability. At the upstream
station S1, the second mode is observed at the frequency f • 340 kHz. Downstream

from SI, its amplitude quickly increases, whereas its central frequency decreases to

275 kHz at the last station S5. On the porous surface, the low-frequency disturbances
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FIGURE 4. Disturbance spectra for (a) solid and (h) porous surfaces; curves (i)-(v) correspond
to stations S1-$5 of table 2.

associated with the first mode are destabilized in the frequency band 100-200kHz.
At the upstream station St, a small increase of the disturbance spectrum is noticeable
near the frequency 350 kHz that may be relevant to the second mode. However, there
is no evidence of the second mode at stations $2-$5. These data demonstrate that
the porous coating strongly stabilizes the second mode and destabilizes the first mode
under natural flow conditions.

To investigate tlje second-mode stabilization effect a series of experiments was
conducted with aitificially excited wave packets. The artificial disturbances were
generated at a frequency of 280kHz, which corresponds to the maximum of the
second-mode amplitude observed on the solid surface at station S5 for natural
disturbances (see the spectrum (v) in figure 4a). At first, the artifical wave packet was
measured on the solid surface. Then, the middle part with the perturber was rolled
1800, and experiments were carried out on the porous surface. This approach allows
for excitation of the wave packets with almost identical initial amplitudes on both
surfaces. The disturbance characteristics were measured at the same stations as for
natural disturbances (see table 2).
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FIGUR1E 5. Transverse distributions of amplitude of artificial wave packet f'or (a) solid and
(b) porous surfaces; curves (i)-(v) correspond to stations S1-$5 of table 2.

The disturbance phase measured at the wave packet centre is a linear function of X
in the range X = 240-300 mm. For the solid and porous surfaces, the phase velocities
are equal to (0.896_0.03)Ue, which is consistent with the value 0.916U- calculated

for the second mode using the theoretical model of § 4.
Transverse distributions of the wave packet amplitude are shown in figures 5(a)

and 5(b) for the solid and porous surfaces, respectively. These distributions have a
single peak in the middle of the wave packet (at 6) • 0) for all X-stations. The
porous coating reduces the disturbance amplitude more than twice. The transverse
wave spectra (the ij-,spectra resulting from the Fourier transform of the transverse
distributions) are shown in figures 6(a) and 6(b). These spectra have a single peak
at ,3 = 0 for all X-stations, i.e. two-dimensional waves are dominant. This is typical
for the second mode. On the porous surface, the maximum amplitude is essentially
smaller than on the solid surface, clearly demonstrating boundary-layer stabilization.

Longitudinal distributions of the mass flow disturbance amplitude SAo at /3 = 0 are
shown in figure 7 for the solid (i) and porous (ii) surfaces. The amplitudes of natural
disturbances with a frequency f = 280 kHz are also shown for comparison. They were
normalized to match the distributions at the initial X-station. On the solid surface,
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FIGURE 6. fl-spectra for (a) solid and (b) porous surfaces; curves (i)-(v) correspond to stations
SI-S5 of table 2.
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FIGURE 7. Longitudinal distribution of mass flux pulsations amplitude for solid ((i) artificial
and (iii) natural disturbances) and porous ((ii) artificial and (iv) natural disturbances) surfaces.
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the disturbance amplitude exponentially grows up to X = 243 mm. Downstream of
this location, the amplification rate decreases. On the porous surface, the amplitude
increases approximately twice as slowly as on the solid surface. Moreover, disturbance
decay begins downstream of the station X = 264 mm. The amplitude distributions of
artificial and natural disturbances are very close to each other. This indicates that
two-dimensional waves are dominant in the natural disturbance field in the same
manner as for artificial wave packets.

4. Stability analysis
4.1. Mean flow

For the laminar boundary layer on a flat plate or a sharp cone at zero angle of attack,
the boundary-layer equations are written in the self-similar form (Hayes & Probstein
1959)

(Cf")' +ff" = 0, (4.1)
S]2

S+ fg' + . ( r f'f+] = 0, (4.2)Prrg P
C _ " u; (y - M)g2 e (l + (y l)M) g f 1' 2 .

p.. H - 1 _ (-)1(p)M,Pe#*te' H,* I + 1(y - 1)M;" 2p2

(4.3)

Hereinafter, f'(rl) = U*/Ue,g(ij) = Hl/He, p,i, Pr and y denote the stream-
wise velocity, total enthalpy, density, viscosity, Prandtl number and specific heat
ratio, respectively; primes denote differentiation with respect to 0, and asterisks
denote dimensional quantities. The independent variables are given by the Howarth-
Dorodnitsyn transformations and Mangler transformation by the coordinates

. .j... 2j dXue 7 r, j *d y. (4.4)
P A r pe p*er dx* r -- ,!

where x is along an external streamline, y is normal to the body surface, r,, is the
distance from the symmetry axis to the wall surface; j = 0 for two-dimensional
flow and j = 1 for axisymmetric flow. The porous coating is assumed to affect the
mean flow only weakly. Accordingly, the conventional no-slip boundary conditions
are imposed on the wall surface

=0: f = f'= 0, g = g, (org' = 0 for adiabatic wall), (4.5)

q--+ 00: f' = 1, g = 1. (4.6)

In all calculations discussed hereinafter, the fluid is a perfect gas of y = 1.4 and
Pr = 0.708. The viscosity temperature dependency is approximated by Sutherland's
law

S= (1 + S) T (4.7)
-(T +S

where S = ll0/Tej,* = p/i , and T = T*/T,; are non-dimensional viscosity and
temperature. The mean-flow parameters correspond to the experimental conditions
discussed in §3: Me = 5.3;T," = 59.3K; the local unit Reynolds number Re,, =
Uelve = 15.5 x 106 m-'; the wall temperature, T, = 5.5 T, is close to the adiabatic
wall temperature.
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FIGURE 8. Boundary-layer thickness at Rej = 15.5 x 106 m-1 , Me 5.3, Te = 59.3 K, and the
wall temperature Tw, = 5.5 Te. -, theory; Q, experiment, porous surface; El, experiment, solid
surface.

Figure 8 shows that the theoretical boundary-layer thickness 3 correlates well with
the experimental data for the solid and porous surfaces of the cone. Since wall
temperature, T. z 326 K, is close to room temperature, thermal deformations of the
porous coating during the wind-tunnel run are neglected.

4.2. Linear stability problem

The stability analysis herein includes the non-parallel effect associated with down-
stream growth of the boundary-layer thickness. Cone surface curvature and conical
divergence of streamlines are neglected in this model. It is based on the method
developed by Gaster (1974) for incompressible boundary layers and extended by
Padhye & Nayfeh (1979) to compressible flows. This method (with insignificant
variations) has been used to investigate the non-parallel effect on stability of
supersonic boundary layers (Gaponov 1980; EI-Hady 1980; Tumin & Fedorov 1982).
Its extension to the case of multiple modes was discussed in Zhigulev & Tumin (1982)
and Fedorov & Khokhlov (2002).

Following Fedorov & Khokhlov (2002), we outline the non-parallel stability analysis
for a monochromatic wave. The coordinates (x, y, z) are made non-dimensional using
the boundary-layer scale P = v/e*L'/Ue, where the distance V from the leading
edge is assumed to be much larger than 1, and the ratio e = l*/L" is treated
as a small parameter. Time t and pressure P are referenced to lV/U, and pUU ,

respectively; other flow characteristics are non-dimensionized by normalizing them to
upper boundary-layer edge quantities. Introducing the slow variable, x, = x*/L* = sx,

we specify the mtan-flow velocity components (U, V) and temperature T as

U = U(x1 , y), V = eVo(xj, y), T = T(x1 , y). (4.8)

A monochromatic disturbance is represented by the vector function

/ u ao aw
Z = (u, i--, v, p,O , Wa(,

S/, z(4.9)Z(x, y, z, t) = F(x, y)exp(i flz - iwt),
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where u, v, w, p and 0 are velocity components, pressure and temperature;/7 = P31,
and cw = v*l'/U,. The amplitude vector-function F(x, y) satisfies a system of partial
differential equations that result from a Fourier transform of the linearized Navier-
Stokes equations with respect to time and the z-coordinate. These equations with the
boundary conditions can be written in the matrix-operator form

H(y, ay, xi, Eaxt, o, fl)F = 0. (4.10)

y=0: Fi = AF 4, F3=AyF4, F5 =A0 F4, F7 =A,F4, (4.11)
y - oo: F1, F3, F5, F7 - 0. (4.12)

Here admittances Ax, Ay, AZ and thermal admittance Ao are complex quantities,
which couple velocity and temperature disturbances with the pressure perturbations
on the porous surface. They depend on properties of the porous material, mean flow
characteristics on the wall surface, and disturbance frequency. These dependencies will
be specified in §4.3. For the solid wall A, = Ay = Az = A0 = 0, which corresponds
to no-slip conditions and zero temperature perturbation on a surface of high thermal
conductivity.

We consider a partial solution of the problem (4.10)-(4.12), which is a discrete mode
of the complex eigenvalue a(xi, f, cv). The amplitude vector-function is expressed as

F = (FO +EFi +...)exp(ie-1S), S =Jf (xi)dxi (4.13)

Substituting (4.13) into (4.10)-(4.12) and grouping terms of the same order of
magnitude with respect to e we obtain a sequence of problems for Fj(x1 , y), j =
0, 1, .... In the zeroth-order approximation, the eigenvalue problem for a locally
parallel mean flow is written as

(U-a- HO) F0 =0, (4.14)

y = 0: Fo1 = AxF04 , F03 = AyF0 4 , F05 = AoFo4, F07 = AzF 04 , (4.15)
y -- 0 : F0I, F03 , F05 , F07 ' 0. (4.16)

Here, the matrix H0 has dimension 8 x 8; its non-zero elements are given in the
Appendix. Solution of the problem (4.14)-(4.16) is expressed as

Fo = c(x1 ),(x 1, y, ar), (4.17)

where " is the eigenvector normalized by a certain condition, such as the pressure
disturbance amplitude on the wall surface is ý4(xj, 0, a) = 1. For spatial instability of
two-dimensional boundary layers, the frequency a) and the transverse wavenumber
component fi are real, whereas ot is a complex eigenvalue. If Im a < 0, then the
disturbance amplifies downstream with the spatial growth rate a,, = -Im a. The
amplitude coefficient c(xi) is determined from the first-order approximation, which
leads to the inhomogeneous problem

(- ±- ) -H° H F1 oF° + H, Fo, (4.18)

y =0: F01 = A Fo4, F03 = AyFo4, F05 = AoFo4 , F07 = AzF 0 4, (4.19)

y - Cc: F01, F03, F05, F07 - 0. (4.20)

The right-hand side of (4.18) is associated with the non-parallel effect; the vector
G = H1Fo is given in the Appendix. The problem (4.18)-(4.20) has a non-trivial
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solution if its right-hand side is orthogonal to the eigenvector 4(x,, y, a)of the adjoint
problem

Gy- + H(')• 0, (4.21)

y = 0: &2 = 46 = 8 =0, 44 + AxjI + Ay&3 + Ao&5 + az7 = 0, (4.22)

Y 0 0: 42, 44, 46 48 - 0, (4.23)

where the upper bar denotes a complex conjugate value. The orthogonality condition

leads to the ordinary differential equation for the amplitude function c(x,)

B110 ) dc [= / H° 1, - ( , H1,) c, (4.24)

where the scalar product is defined as

j,, 

8

(f, g) = Z figjdy. (4.25)
Sj=1

Substituting the solution of (4.24) into (4.17) and (4.13), we express the amplitude
vector in the form

F = [co;(x,, y) + O(e)Iexp (iE-f [J(xI) + EW(x,) + O( 2-)Idxl) (4.26)

W(xj) = \a _x, (4.27)

where co is constant. The amplification rate of any physical quantity can be calculated
using (4.26) and (4.27). For example, the x-component of mass flow disturbance is

Q(x1 , y) = [coq(xi, y) + O(E)]exp(iel f[a(xi) + FW(x) + O(2 )]dx,), (4.28)

q = [ki + (yM,24 - 5/T)U]/T. (4.29)

The disturbance growth rate is a logarithmic derivative of (4.28), which is expressed
in the form

a x In jq(x, Y)l W) + 0(2). (4.30)aa(x,, y) = -Im a + E - Im +(

Because of the non-parallel effect, the growth rate depends on the vertical coordinate
y. According to the experimental measurements, au,(xi, y) is calculated at y = y
relevant to the maximum of mass-flow disturbance in the boundary layer. This
maximum lies in the critical layer, where the mean-flow velocity is close to the phase
velocity, U(y) = c.

The zeroth-order and first-order approximations of or, were validated by comparison
with the experimental data of Kendall (1967) and the calculations of Chang et al.
(1991) performed in the framework of linear parabolized stability equations (PSE).
Figure 9 shows the first-mode growth rate as a function of the non-dimensional
frequency, F = wcvI/U,2 , for the boundary layer on a flat plate at the Mach number
Me = 2.2 and the Reynolds number R = VU•L'/v• = 1000. The wave angle is

= arctan(fi/ar) = 60'. This approximately corresponds to the most unstable waves.
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FIGURE 9. The first-mode growth rate as a function of frequency; boundary layer on a flat plate
at Me = 2.2, R = 1000, the wave angle *t = arctan(p/ar) = 60': A, experiment of Kendall
(1967), --- , parallel theory (present);*0, parallel theory, Chang et al. (1991); -,non-parallel

theory (present); 0, non-parallel PSE, Chang et al. (1991).
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FIGURE 10. Effect of longitudinal admittance on the second-mode stability: F = 1.2385 x 10-4,

R = 2095;---, solid wall; , A =-1, A, = 0; 0, A., = -1, A, = exp(i•0 /180).

The results are in good agreement with the linear PSE calculations, thereby confirming
the aforementioned model.

4.3. Admittance of porous layer and boundary conditions

Fedorov & Malmuto (2001) showed that thermal admittance produces a negligible
effect on boundary-layer stability. This finding allows us to use the boundary condition
0 = 0 at y = 0. To estimate effects of the admittance components A, and A.,
associated with non-zero perturbations of the velocity components u, u, on the
porous surface, we conducted stability calculations in a wide range of A, and Az. This
parametric study indicates that the second-mode growth rate weakly depends on A,
and A,. As an example, figure 10 shows the growth-rate distribution ora(y) for a two-
dimensional disturbance of non-dimensional frequency F =_ wo1*/U• = 1.2385 x 10-4

for a Reynolds number R = Uil/v. = 2.095 x 101. This case corresponds to the
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disturbance of the frequency f = 250kHz at x" = 283.2 mm. The calculations
were conducted at normal admittance A, = -1.0, transverse admittance A, = 0
and longitudinal admittance A, = exp(i•pn/180) with (p being measured in degrees.
The longitudinal admittance effect is small compared to the normal admittance
effect. This feature is due to instability of the hypersonic boundary layer being
predominantly governed by an inviscid process. For the limit R -. X, the system
of stability equations is reduced to the two equations coupling the vertical velocity
disturbance v and the pressure disturbance p (Mack 1984). Since the other components
u, w and 0 are passive, their interference with the porous layer weakly affects the
disturbance growth rate. Moreover, the felt-metal fibres lie predominantly in the
planes, which are orthogonal to the y-axis (see figure 1). Because of this anisotropy,
disturbances weakly penetrate in the x- and z-directions compared with the y-
direction, i.e. IAJ -" IAI < IAY1. Summarizing, we approximate the boundary
conditions on the felt-metal coating as

y=0: u =w=O=0, v-= Ayp, (4.31)

that is equivalent to the assumption that A, = A = Aa 0.
Fedorov & Malmuth (2001) showed that the porous-layer admittance A, is

expressed in the form

A, tanh(Ah), (4.32)
zo

where 0 is porosity, h = h'/Pl is the porous-layer thickness, ZO and A are the
characteristic impedance and propagation constant of a porous media, respectively. In
the case of cylindrical holes perpendicular to the surface, the characteristic impedance
and propagation constant are expressed as a function of the series impedance and
the shunt admittance for the tube element of unit length using the transmission
line formalism (Daniels 1950; Benade 1968). The same analytical solution can be
obtained in terms of the complex dynamic density ý and the complex dynamic
compressibility e (see, for example, Johnson, Koplik & Dashen 1987). Hereafter,
we use the latter approach, which is more convenient for analysis of acoustic
disturbances in randomly porous media. Accordingly, the characteristic impedance
and the propagation constants are expressed as

T_/C - i,. A, (4.33)

where ) = p*(wo)/p, and C = yPI/K* (w); K'(w) is the dynamic bulk modulus; p•,
and P,, are mean density and static pressure in the porous layer, respectively.

The problem crf disturbance propagation within the porous layer is decoupled
from the boundary-layer stability problem. The former can be treated as a problem of
acoustic wave propagation in a porous media, which is characterized by the quantities
,0 and e'. Unfortunately, there is no rigorous theory to predict these characteristics for
porous materials of random microstructure. Delany & Bazley (1970) gave empirical
relations for 5 and e for fibrous absorbent materials. These relations are widely used
in various applications such as sound attenuation in ducts, room acoustics and the
transmission loss through walls. Allard & Champoux (1992) modified the correlation
of Delany & Bazley (1970) using the theoretical results of Johnson et al. (1987). They
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FIGURE 11. An elementary cell of the felt-metal microstructure; b x b x 2d parallelepiped
including two adjoining sections of fibres with diameter d and mutually orthogonal axes.

derived the semi-empirical relations
1 g(+ ) C, Y y -I+(01' (4.34)

W= 1 , [+ Ea g(A-- 1  (4.35)

;.t = iapwo*/(t&a*), A2 = 4Pr21 . (4.36)

Here, or* is the flow resistivity determined from the equation

AP" = --u"AZ*W*, (4.37)

which couples the steady pressure drop AP* of viscous flow with the mean flow
velocity W" through the porous layer of thickness AZ*. The parameter a., is the
tortuosity, which is equivalent to the structure form factor k, of Zwikker & Kosten
(1949) or to the parameter q 2 of Attenborough (1987). It is coupled with the dynamic
density 6(ao) as a, = limo, 0 j5(w). The characteristic pore size is defined as

r 2 f vIW-(r*)12 dv" (4.38)

J IW (r)12 dS

The integral in the numerator is evaluated over the pore volume, and W*(r") is the
velocity vector of inviscid fluid within the pore; r" is the radius vector of the point
inside the pore volufue for which the fluid-velocity vector is defined. The integral
in the denominator is taken over the pore surface, and W*(r*) is the fluid velocity
vector on the pore surface. For isotropic porous materials, Allard & Champoux
(1992) showed that rp = Sh Vi8p al/ua 0, where Sh is the dimensionless shape factor.
However, this relation seems not to be valid for the felt-metal, which is highly
anisotropic. To resolve this difficulty, we note that the shape factor is Sh ;Z in the
case of cylindrical pores (not necessarily circular), if the fluid velocity is constant.
Accordingly, the characteristic pore size r, can be treated as a hydraulic radius, i.e.
it is a ratio of the doubled cross-sectional area to the cross-sectional perimeter. To
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FIGURE 12. The absorption coefficient K,, versus the sound frequency f at the ambient
pressure; -, correlation (4.34)-(4.36); 0, laboratory measurements.

estimate rp, we consider an elementary cell (see figure I1) simulating topology of the
felt-metal microstructure. The cell is assumed to have the same average statistical
properties as the actual porous layer. Accordingly, the characteristic pore size rp

and the porosity 0 are expressed in terms of the fibre diameter d" and the cell size
b* as

rp = 4b'/l~ + ltd-/4b*), 0 = 1 - td*/4b*. (4.39)

Using (4.39), we represent r, as a function of the quantities 0 and d*, which can be
measured experimentally,

* = (4.40)

2(1 - p)(2 -, )4

Using the method of acoustic standing waves S. Mironov (ITAM) performed
laboratory measurements of the felt-metal energy absorption coefficient Ka = I-HRr,,f2

(where Rrtf is the reflection coefficient for plane acoustic waves of normal incidence)
and coordinates of nodes for standing waves in the resonance tube. The measurements
were conducted in the frequency band 1-6 kHz, for which the non-dimensional
arguments ),.2 of the correlation (4.34)-(4.36) correspond to the wind-tunnel con-
ditions. The best fit of the experimental data gives the felt-metal flow resistivity
cr" = (1.66+0.21)x 105 kg(m 3 s-) assuming that the tortuosity a,, 1= and the
porosity 0 = 0.75. With these parameters the relations (4.34)-(4.36) have been used for
stability calculations discussed in § 5. Note that 12.6% uncertainty of or* is due to a
relatively large scatter of the absorption coefficient measurements shown in figure 12

along with the prediction based on (4.34)-(4.36). However, stability calculations of
§ 5 show that tfiis uncertainty weakly affects the second mode amplification (see
figure 16).

Under wind-tunnel conditions, the flow density is relatively small (-I-% of the

normal density). Because the characteristic pore diameter is also small, rarefied gas

effects need to be evaluated. Our estimates show that the mean free path in the

porous layer is ;.,*fp-- 10 pm. Using the pore diameter 2rr as a characteristic length

scale we obtain the Knudsen number Kn = Afp/2r; -• 3 x 10-2, i.e. the Knudsen-layer

thickness is only a few per cent of the pore diameter, and rarefaction effects can be

neglected.



Stabilization of a hypersonic boundary layer 117

0.05 (a)

0.04

E 0.03 ;

0.02-

0.01 O

"----------

0 100 200 300 400

0.05 (b)

0.04-

E 0.03 -

0.02 -
I I

0.01 - I

0 100 200 300 400

80 (c))

60

S40.

20

0 100 200 300 400

f(kHz)

FIGURE 13. (a) Virowth rate of two-dimensional disturbances vs. frequency at x 200.1 mm
(R = 1761.2); locally parallel approximation. (b) Maximum growth rate of three-dimensional
disturbances vs. frequency at x = 200.1mm (R = 1761.2); locally parallel approximation.
(c) The wave angle * = arctan(fi/a,) of the most unstable three-dimensional waves vs.
frequency at x = 200.1 mm (R = 1761.2); locally parallel approximation. -- , porous wall; --- ,

solid wall.

5. Stability calculations and comparison with experiment

The first series of stability calculations has been conducted in the local parallel
approximation using the system of equations (4.14)-(4.16). Figure 13(a) shows the
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FIGURE 14. Growth rate of two-dimensional disturbances vs. frequency at x =283.2 mm
(R =2095); locally parallel approximation. Maximum growth rate of three-dimensional
disturbances vs. frequency at x = 283.2 mm (R = 2095); locally parallel approximation. --solid wall; -, porous wall.£

growth rate, or,,*=-Ima*', of two-dimensional disturbances (,6=0) as a function
of the disturbance frequency f at the streamnwise coordinate x*=200.1mm. The
porous coating strongly stabilizes the second mode relevant to the high-frequency
band, 225 < f < 375 kHz; whereas the first mode associated with low frequencies, f <
225 kHz, is marginally destabilized. Figure 13(b) shows similar trends for the maximum
growth rate, a.,,=max[a,,*•(p)], of three-dimensional disturbances. Figure 13(c)
shows the wave angle, *p = arctan(fi/ct,), of the most unstable waves. The low-
frequency disturbances 9f maximum amplification are oblique waves relevant to thefirst mode. In the higli-frequency band, the most unstable disturbances are two-
dimensional waves (with * =0) of the second mode. Similar trends are observed
in the case of x" = 283.2 mm shown in figure 14. These results are in qualitative
agreement with the experimental data for 'natural' disturbances discussed in § 3.

Figure 15 compares theoretical amplification curves with experimental data for
the two-dimensional component of an artificially excited wave packet of frequency
f = 280 kHz. (See curves (i) and (ii) in figure 7.) In these calculations, the initial
amplitudes are adjusted to experimental data at the first data point. For the solid-
wall case, the theoretical growth rate is essentially larger than the experimental one,
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FIGURE 15. Amplification of the two-dimensional component for the artificially excited wave
packet of frequency f = 280 kHz; locally parallel theory versus experiment.
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FIGURE 16. Amplification of the two-dimensional component for the artificially excited wave
packet of frequency f =280kHz; non-parallel theory versus experiment; -, the felt-metal
flow resistivity o = 1.66 x 105 kgm 3 s-,",.C =(t.66_+0.21)x 105 kgm-3 s-.

i.e. the locally parallel approximation gives only qualitative agreement with stability
measurements. I

To perform a more'accurate comparison, we accounted for the non-parallel effect
using the first-order approximation, (4.30). According to experimental measurements,
the disturbance growth rate o,(x1 , y) was calculated at the vertical coordinate, y = yi',
relevant to the maximum of mass-flow pulsations. Figure 16 shows that with this
correction, theoretical growth rates (slopes of the amplification curves) are remarkably
close to experimental data in the region 190 < x < 260 mm, especially for the porous
surface. The dotted lines indicate that an approximately 12% uncertainty in the
laboratory measurements of the felt-metal resistivity or leads to much smaller changes
of the amplification curve.
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FIGURE 17. Growth rate of two-dimensional disturbances as a function of frequency f
at various x, T, 2T,, Re, = 107 M 1 ; locally parallel approximation; (i) x = 206.35 mm,
(ii) x =298.72mm, (iii) x =406.05mm, (iv) x = 515.79 mm.-, solid wall; , porous wall.

Finally, we discuss a combination of the UAC and wall cooling effects on the
boundary-layer disturbances. We consider the boundary layer at local Mach number
Me =5.3, wall temperature T,,*= 27 (T~,/ T,,d-0.35) and the local unit Reynolds
number Reie =1i7m-1. Stability calculations for various fi show that, in contrast
to the adiabatic wall case, the most unstable waves are two-dimensional for both
low and high frequencies. Seemingly, wvall cooling leads to a stronger stabilization
of the first-mode oblique waves than the two-dimensional waves. Figure 17 shows
the growth rates of two-dimensional disturbances as functions of the frequency f at
various x* stations. The porous coating leads to a dramatic reduction of or, for high
frequencies associated with the second mode instability. In the low-frequency band
of the first mode, the coating causes a marginal increase of or,,. However, the wall
cooling leads to such a strong stabilization of the first mode that the low-frequency
waves are stable everywhere. This exampl67 demonstrates that the porous coating on
a cold wall causes a massive damping of unstable disturbances. Note that for actual
hypersonic vehicles, the wall temperature ratio is small (less than 0.2) enough to
eliminate the first-mode instability. With the help of a passive porous coating, it is
feasible to diminish the second-mode instability and significantly increase the laminar
run on hypersonic vehicle surfaces.

6. Conclusions

Experimental pnd theoretical studies of hypersonic boundary-layer stability were
performed for ultrasonically absorptive coatings (UAC) of random mnicrostructure.
Such structures typify practical TPS materials. Stability of natural disturbances and
artificially excited wave packets in the boundary layer on solid and porous surfaces
of a sharp cone were measured in the ITAM Mach 6 wind tunnel. These results were
compared with stability analyses that included theoretical simulations of the UAC
characteristics.

The experiments were conducted on a 7 half-angle sharp cone, one half of which
is solid and the other covered by a thin porous coating of random microstructure.
Hot-wire measurements showed that boundary layers on solid and porous surfaces
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are laminar. The mean flow profiles are similar in both cases and agree with the
self-similar solution of the boundary-layer equations. The hot-wire measurements
of 'natural' disturbances showed that the disturbance spectra on the solid surface
are typical for hypersonic boundary layers, with the second mode being dominant.
On the porous surface, the second mode is so strongly suppressed that it is not
observable in the measurement region, while the first mode becomes unstable. To
investigate the second mode stabilization effect, artificial wave packets were generated
in the boundary layer at a frequency relevant to the second mode instability. Two-
dimensional waves of the wave packets were dominant and unstable on the solid
surface. Additionally, the porous coating reduced the second-mode growth rate.

A linear stability problem was formulated for the boundary layer on a sharp cone
with and without a porous coating. A major effect of the coating is associated with
porous-layer admittance to vertical velocity disturbances. Non-zero perturbations of

. .the longitudinal and transverse velocity components on the porous surface weakly
affect the second-mode instability and can be neglected. With this approximation, the
porous coating admittance was determined using the semi-empirical relations of Allard
& Champoux (1992) and laboratory measurements of the felt-metal characteristics.

Stability calculations for two- and three-dimensional disturbances showed that the
felt-metal coating strongly stabilizes the second mode relevant to the high-frequency
band and marginally destabilizes the first mode of relatively low frequencies. These
results are in qualitative agreement with experimental data for natural disturbances.

Comparison of the theoretical amplification curves with the experimental data
for a two-dimensional component of an artificially excited wave packet showed
that the theoretical growth rate is larger than the experimental one. The locally
parallel approximation of the stability problem gives only qualitative agreement
with the stability measurements. The mean-flow non-parallel effect, associated with
the downstream growth of the boundary layer, was incorporated into the stability
analysis. With this correction, theoretical growth rates are remarkably close to
experimental data (especially for the porous wall case), which confirms the theoretical
model.

Stability calculations for the cooled-wall case indicated that wall cooling leads to a
strong stabilization of the first mode, while the7 second mode is effectively suppressed
by the porous coating. For actual hypersonic vehicles, the wall temperature ratio
is small (less than 0.2), which eliminates the first-mode instability. Using a passive
porous coating, it is feasible to diminish the second-mode instability and significantly
increase the laminar run on actual hypersonic vehicle surfaces with predominantly
two-dimensional boundary layers.
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Appendix
D=d/dy, jt'=djt/dT, m=.2(e - 1), r=(e + 2), where e= 1.2 corresponds to

the ratio of the second viscosity to the first viscosity /12/P = je = 0. 8 ; X=
[(R/i) + iryM2(CtU -- o)]-. Non-zero elements of the matrix H0 in (4.14) are

H12 = H56 = H 78 = 1;
RD/

H21 =2 + 12 + i(aU - w) , H2 =-

tT
H23=- (m+)+DT+ + RDU

23 Ia T itj jtT

.otR T D(/p'DU)
H 24 =i -- (m + l)yM (U - co), H 25 = (m + 1)T (oU -w)- P

H 'DU
H2 /6

DT i
H31 =-iaI, H33 - T, H 34 =-iYM2(aU -a), H35 =_-(tU - w), H37 =-if3"

H41 =-iax(r-rD- + 2 -D) H42 =-iax,

H43 X a-2 _o2 + rDpDT D2T _-i R 1U- r ]
I- -__ iT (aU -t),

H44 =--ixryM2e [,aDU± (DT + D/ )(a U - w)]a,
[DU JL'DU Dpz

H4 5  iX ra - + ± t -- + r - (aU-w ,

H46 = iX (U-w) H 47 =-iflX r D +2 , H48 =-ifx;TDT A

H62 =--2 Pr(y - I)M2DU, H63 =W Pr p - 2ia(y - I)MPrDU,

H64 = -iR Pr - ')Me(CU - 0j),

H65 = a2 + fi + iR Pr(aU w) -))M)• P'(DU)2 D 2A, =-2 Dp_H6= P+RrIT (y - I)e I

H83 = -0i (m + )-T + D , H84 = i-R - (m + I)YMe((aU - o9),

H85 = (m + IY-(aU -Co), H8 7 = ot2 + f2 + i(aU -wo) R H8 = D
T7 p T  A.

The vector G = H, Fo in (4.18) is expressed as

Fo = (f, f 2 ..... fs)T,

G = G5 = G7 = 0,

G 2 = -[f + + (- M 2 f4 f U + vo)],M Tax T ay T T2 ax y
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G3 f T M, UaT 2UaT ( 2 f•i (au aV0
Tx e -Tx fsTh - yMf4 - -yL -+

M2 (f 4 f4 T ay / +
T ax TMa I _F° -ay T ) (ax y 2

MeO'2 V 1f f4afIs~ 2f5 aT

I V( a3  a 0NG4-+ f3 aa ,
T\ ( y ay')
RPr[ Voafs (yM2f 4  f) (( aT aT')
/-t I- T ay T M 2T' T ax, ayV

+( )M2V f4_ftaT\1
a ay T ax, '

R Vo0 f7
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Theoretical and experimental studies of hypersonic boundary layer stabilization using a
passive porous coating of regular microstructure are discussed. Propagation of disturbances
inside pores is simulated with linear acoustic theory including the gas rarefaction effect,
which is associated with Knudsen layer on the pore wall. This model provides boundary
conditions for stability analysis of boundary-layer disturbances on the porous wall.
Experiments are conducted in the Mach 6 wind tunnel on a 7 half-angle sharp cone whose
longitudinal half surface is solid and whose other half surface is covered by a perforated
sheet comprising equally spaced cylindrical blind micro-holes. Hot-wire measurements of
"natural" disturbances and artificially excited wave packets are conducted on both solid and
porous surfaces. Natural disturbance spectra indicate that the second mode is a dominant
instability. The porous coating stabilizes the second mode and weakly affects the first mode.
Measurements of artificially excited wave packets show that the porous coating leads to
substantial decreasing of the wave-packet growth. The experimental data on phase speeds
and amplitudes of the second-mode disturbances are compared with theoretical predictions.
Satisfactory agreement is obtained for both solid and porous surfaces. This study confirms
the concept of hypersonic boundary-layer stabilization by passive porous coatings, which
can be used for laminar flow control.

Nomenclature

A = disturbance amplitude
A, ., 1= admittance components

A, = thermal admittance

C = dynamic compressibility
f = frequency

" = . i,' /I 2

h - porous layer thickness

PI - I I /
Kn Knudsen number
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M = Mach number
p = pressure disturbance
f' = mean pressure
Pr = Prandil number
r, = pore radius

Re,, = U,* X / v: local Reynolds number

Q = mass flux disturbance

T = temperature
u. v. w = velocity disturbance
U. V = mean-flow velocity components
Z. y. z = Cartesian coordinates

X. Y. X hot wire coordinates

ZO = characteristic impedance

a(.3 = wavenumber components

= specific heat ratio

P) = density

= dynamic density

A = propagation constant
11 = viscosity

ii = kinematic viscosity
O = spatial growth rate
0 = temperature disturbance
0 = porosity

= angular frequency
Subscripts
e = upper boundary-layer edge
w = wall

= free stream
0 = initial
LST = linear stability theory

1. Introduction

L AMINAR turbulent transition leads to substantial increase of the aerodynamic drag and surface heating of
hypersonic vehicles.' 2 The ability to increase the laminar run is of critical importance in design and

optimization of aerospace planes. Aspects of hypersonic boundary-layer transition control are discussed in Ref. 3.
Smoothing and shaping of the vehicle surface help to avoid early transition due to roughness. leading-edge
contamination as well as cross-flow and G6rtler instabilities. However, with these measures the laminar run may be
still short because of the first and/or second mode instability. 4 5 The wall cooling, which naturally occurs on
hypersonic vehicle surfaces, strongly stabilizes the first mode6 while destabilizes the second mode. This indicates
that hypersonic laminar flow control concepts should address the second-mode instability.

The second mode is associated with instability of trapped acoustic waves of relatively high frequency.4 Malmuth
ei al.8 assumed that a passive ultrasonically absorptive porous coating (UAC) may stabilize the second mode and, at
the same time, may be aerodynamically smooth. This hypothesis was confirmed by the linear stability analyses,8 '
which showed that the porous coating causes a massive reduction of the second-mode growth rate. The theoretical
predictions were qualitatively confirmed by the experiments'"' conducted in the high-enthalpy GALCIT T-5 shock
tunnel of California Institute of Technology on a sharp cone at the freestream Mach number 1.59 < Xl < 6.4.
However, quantitative comparison was not feasible because stability characteristics of the boundary-layer
disturbances were not measured. This motivated us to perform a series of stability experiments on cones covered by
porous coatings of various microstructures. Further theoretical research was also needed to address randomly porous
coatings as well as to account for rarefied gas effects occurring in pores of small size.

The first series of stability experiments was conducted in the T-326 Mach 6 wind tunnel of the Institute
Theoretical of Applied Mechanics (ITAM, Novosibirsk. Russia) on a 7' half-angle sharp cone whose longitudinal
half surface was solid and other half surface was covered by a thin porous coating of random structure, namely. a
fibrous absorbent material (felt metal).' 2' 3 Hot-wire measurements of"natural- disturbances and artificially excited



wave packets were performed on both solid and porous surfaces. Stability analyses for two- and three-dimensional
disturbances showed that the porous coating stabilizes the second mode and marginally destabilizes the first mode.
These results are in qualitative agreement with the experimental data for natural disturbances. The theoretical
predictions are in good quantitative agreement with stability measurements for artificially excited wave packets
associated with the second mode. 12,13

In this paper, we discuss the second series of stability experiments and calculations, which has been
performed for the UAC of regular microstructure similar to that tested in the GALCIT T-5 shock tunnel."'0

I!. Theoretical Modeling

In this section. we formulate the linear stability problem on a porous wall and discuss the disturbance dynamics
inside micropores with emphasis on rarefied gas effects associated with Knudsen layer on the pore wall.

A. Linear Stability Problem
Consider a supersonic laminar boundary layer on a sharp cone at zero angle of attack. The fluid is a perfect gas

with constant Prandtl number Pr and specific heat ratio -y. Viscosity p is a function of temperature given by

Sutherland's formula. The Cartesian coordinates (x. y. z) are made nondimensional using the boundary-layer scale

-z I' /I'" . where the distance L* from the leading edge is assumed to be much larger than I* ; i.e., the ratio

V/ 1F/L' is treated as a small parameter. Time t and pressure P are referenced to 1' /',' and p 1r,:

respectively: other flow characteristics are made nondimensional using their quantities at the upper boundary-layer
edge. Introducing the slow variable., 1 = xr // = cx, we specify the mean-flow velocity components (U. I') and

temperature 7' as

(U. V) = (U(x,, ,Y). lE,(X,. Y)), T = TI(X 1. ). (I)

A three-dimensional monochromatic disturbance is represented by the vector function

Oil 00 Ou,
Z =(. - 1.P . _._U1 _- (2)

Z(x. y. z, t) = F(r. y) exp(Ozz -

where u, •', , p and 0 are velocity components, pressure and temperature; 3 = 3 and we = e'* / (I'. The

amplitude vector-function F(x.y) satisfies a system of partial differential equations that resulted from Fourier

transform of the linearized Navier-Stokes equations with respect to time and z -coordinate. These equations with the
boundary conditions are written in the matrix-operator form''23

H(y,, =. cO" .A. 3)F,= 0. (3)

Y -- ' O: F.7 F,, hF F -0 .

lIere the admittance components A, , A, , A. and the thermal admittance . are complex quantities, which

couple velocity and temperature disturbances with the pressure disturbance on the porous surface. The admittances
depend on properties of the porous material, mean flow characteristics on the wall surface, and disturbance
frequency. These dependencies are specified in Section B. For the solid wall A = A, = A = .A0 = 0, which

corresponds to no-slip conditions and zero temperature perturbation on the surface of high thermal conductivity.
We consider a partial solution of Eq. (3), which is a discrete mode of the complex eigenvalue n(x.,3..•); this

may be the first or second mode. The amplitude vector-function is expressed as

F = (F,, + Eý + ... )xp(S), (4)

S = i f(r,)dx( .

According to the analysis of Refs. 12,13 the amplitude vector-function is

F, ) Y , (5)



where , is eigenfunction of the local-parallel stability problem

ý 06
(+ HV (6)

y = 0: , 1, . = , -, = .1,1;,, (, = .(7

Y y-ýo: - -+0

The 8 x 8 matrix H, is given in Appendix of Refs. 12,13. The amplitude coefficient c(x,) is resulted from

analysis of the next-order problem for F. The mass-flow disturbance Q, which is measured in experiments, is
calculated as 1213

Q(X' y) = c'q(x,. y) exp{S(x )], (7)

S(-,) i= jf o(x,) + Estl'(x ) + O(2 )}Wr1

q = [,+ (-)M( -(, / 7'1, I I

where c, is constant; IV(xr,) is relevant to the nonparallel effect. The spatial growth rate o is the logarithmic

derivative of Eq. (7) with respect to x

_Y = I OI! IIIn) a + _ 1 11i + 0(<). (8)
IQI O:I Ox,)

Due to the nonparallel effect the growth rate depends on the vertical coordinate y. In accordance with
experimental measurements, a(. y) is calculated at y = y,,, relevant to the maximum of mass-flow disturbance in

the boundary layer.

B. Admittance of Porous Layer
Consider a porous layer of thickness h" with equally spaced cylindrical blind holes of the radius *i , as

schematically shown in Fig. I. The spacing s* between holes is assumed to be much smaller than the boundary-
layer displacement thickness. Mean perturbations of longitudinal and transverse velocities induced by the pores are
neglected. As shown in Refs. 9,12,13, the admittances A, A1 and .1, produce small effects on the boundary-layer

instability, compared to the effect of A,. This allows us to approximate the wall boundary conditions as
(0) = y(O)= (0) = 0, Q,(0 )- .1 ,(). (9)

The admittance component A. is expressed in the form)

A ( = - tanh(Ah), (10)7- .

where o is porosity, h = h* //" is the porous-layer thickness, Z,, and A are the characteristic impedance and
propagation constant of a porous medium, respectively. The two latter are functions of the complex dynamic density

j, and the complex dynamic compressibility ('

-, ,A 7)(7. (11)
AM , TF

The porous-media characteristics j) and (0 are solutions of the problem related to propagation of disturbances
within an isolated cylindrical pore. This problem was solved in Refs. 14,15. Its solutions are widely used for
analyses of acoustic disturbances in wave-guides and perforated panels. They serve as a basis for the semi-empirical
models'16-22 predicting absorption of sound in porous media of random microstructures. However, these solutions
cannot be directly applied to low ambient pressures at which the gas rarefaction is essential.
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Hereafter we consider the case when the most part of the pore interior may be treated as a continuum medium.
The rarefaction effects are appreciable near the pore wall in Knudsen layer of thickness - the molecular mean free
path A. They revile themselves as slip and temperature jump on the pore surface. Detailed reviews of this
phenomenon and its modeling for stationary flows are presented in Refs. 23-25.

Disturbances of velocity v" and temperature 0* within an infinitely long circular tube, which typifies an isolated
cylindrical pore, are governed by the linearized Navier-Stokes equations. A fundamental solution of these equations
is expressed in terms of the Bessel function of first kind

•_ 1 dp" [1-!)D.,,(4')]exp(-iw '. 12

O " = d 11 - ) , ( 12 )

where I) and DI, are constants: the y -axis is directed along the pore axis; r is radius referenced to r,, ; (, is

specific heat capacity under constant pressure; P* is amplitude of pressure disturbance; ,s - x 1:i", I;/, is the

complex ratio of the pore radius to the viscous-layer thickness 6,. = iV • ,, ; p" is gas density; subscript "ir'"

denotes gas characteristics within the pore.
The boundary conditions on the pore wall are approximated as'3

7 = -B, a , , (ý, B (14)

where v, and 0, are disturbances of velocity and temperature on the solid surface; the dimensionless factors

s, = (ao r- 0.5)Kn and B,, = 12-) (al,' - 0.5)/(-) + I)Prl Kn depend on the molecular tangential impulse, o,,

and energy, n, E accommodation coefficients as well as the Knudsen number Kn = A* IV/ . In turn, 0, and cr

depend on interaction of gas molecules with the solid surface. Usually, they are determined experimentally. In the
framework of elementary kinetic theory (see, for example. Ref. 23), the Knudsen number is expressed as

I ,n . l-,i2/(pJcY) ,where J' is the mean module of molecular velocity vector, RI is gas constant

per unit mass. The pore surface temperature 77 is assumed to be constant. With the boundary conditions (14) the

constants of integration in Eqs. (12). (13) are

1)1 (15)

JJj 1-0.513,~Q<j(5

where Q(ý) = 2J,(ý)i[jJ,,()]. The relations (1 5) differ from the case of continuum media due to the presence of

the factors ItI - ,( Q(, ) and 11 - 0.5B s2Q(,)] , which depend on the ratio A /6,,. They are

valid for KIni is << I if 1<1 - I, and for Nin << I if 1iý < 1. The latter case corresponds to disturbances of relatively

low frequency, when the viscous-layer thickness is , > , .

Substituting Eq. (15) into Eqs. (12). (13) we average v', and 0' over the pore cross-section as
I

(f) = 2.f(r)lrt. Using the general relations for the average characteristics (see, for example, Ref. 16)

d "(16)
dy,

C (P. _ (17)

we express the dimensionless dynamic density ý3 and the dynamic compressibility C' of Eq. (1 I ) in the form
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P (18)

c '--2p<c =1 +( 1) - i(B, !. d 'Pr). (19)

where

F(,.0 Q( _ (20)
F(B.,) = 1-0.. (0

(,- Q(ý PNr) (21)I _ 0 st•,' (ý' p )2q ( • p ) "

The relations (18)-(21) coincide with the known relations for Kn = 0 (see. for example, Ref. 16). The latter
were used for modeling of the UAC admittance A. in Ref. 9.

Parametric calculations show that the rarefaction effect leads to increasing of the pore admittance that, in turn,
enhances the UAC performance. As an example, Figure 2 shows the second-mode maximum growth rate,
0'... = max 0(,"'), as a function of the longitudinal coordinate for the boundary layer at l, = 5.3, T = 56A K,

the local unit Reynolds number Re -U / ;' = 2 x 10 m- and the wall temperature 7f, 7,. Stability

calculations are conducted using the locally parallel theory; i.e., the second term in Eq. (8) is neglected. The UAC
characteristics are: t;, = 25 pm, s = 100 pm, the porous-layer thickness hV >> r, the accommodation

coefficients n = onI" t. At these parameters, which are typical for the wind-tunnel experiment discussed in

Section III, the Knudsen number is Kn 0.1 . The second-mode stabilization, predicted at this Knudsen number
(dotted line), is essentially stronger than in the case of Kn = 0 (dashed line).

i11. Experimental Setup and Instrumentation

Experiments are conducted in the hypersonic blow-down wind tunnel T-326 with open-jet test section at
ITAM."(, The diameter of the axisymmetric contoured nozzle is 200 mm. The Mach number in the flow core is
1l,=5.95. The noise level is • 1%. which is typical for conventional hypersonic wind tunnels. During the
experiments, the total pressure, 1P, = 10" kPa, and the stagnation temperature., T, 385 - 100 K, in the settling

chamber are kept constant with accuracy 0.06% and 0.25%, respectively. The freestream unit Reynolds number is
Re, = (11.5 - 12.3) x 10" me; the wall-temperature ratio, 7', / 7,, = 0.80 - 0.81 , approximately corresponds to

the adiabatic wall.
The model is a 7' half-angle sharp cone of 500 mm length (see Fig. 3) consisting four parts: the sharp nose of 65

mm length and 0.1 mm tip radius; the middle part of 65 mm length with an electric glow-discharge actuator; the
base part of 370 mm length; a unit providing turning of the cone around its axis. The solid surface roughness is
approximately 0.5 pm. The cone is installed at zero angle of attack with accuracy 0.05.

A longitudinal half of the base part is covered by the stainless steel perforated sheet, which has equally spaced
cylindrical holes of depth hI = 450 pm and the average spacing s' = 100 ± 4 pm. The average hole diameter is
d' = 50 ± 6 pm on the face side and d' = 6-1 ± 6 pm on the back side (see Figs. 4a,b); i.e., holes are slightly
conical with taper angle • 0.9' . The perforated sheet is flash mounted on the cone surface. With the help of a
custom-built tension mechanism the sheet is tightly tensed onto the model to avoid cavities underneath the porous
coating. The UAC leading edge is located at the distance X = 182 mm from the cone tip.

The model is equipped with a three-dimensional actuator providing a high-frequency glow discharge in a small
chamber. Artificial disturbances generated by the actuator are introduced into the boundary layer through an orifice
of 0.4 mm diameter located at the distance of 69 mm from the cone tip.

The actuator, instrumentation and measuring system are the same as in the experiment with the porous coating of
random microstructure. 2.3 A constant-current hot-wire anemometer is used to measure mass-flow fluctuations.
Details of hot-wire probes and processing techniques are given in Refs. 12.13,27.

The amplitude .A and phase 'P of disturbances are obtained using the discrete Fourier transformation

. 2 '-
6 -x p1,,(X.Y, .t )c (22)



where N is the samples count in the time-series, pU,,(X. YOI R) is the time-series of mass-flow pulsations: a is

circumferential angle in the cone cross section.
To compare the experimental and theoretical data, the artificially excited wave packet is decomposed to waves.

The transversal wave spectra are calculated as

SA(.r3)c"' r )dO. (23)

where SA, ST'- are the amplitude and phase spectra with respect to the transversal wave number 3 measured in
rad/deg.

IV. Experimental Results

Hot-wire measurements of mean profiles and root-mean-square pulsations of p'U" / p,' - at the stationsN 138-

287 mm show that the boundary layer is laminar on the solid and porous sides; i.e., roughness of the porous coating
does not cause premature tripping of the boundary-layer flow.

A. Natural Disturbances
Spectra of maximum (versus the vertical coordinate I) mass-flow disturbances are measured at equally spaced

X-stations. The first three stations are located upstream from the UAC leading edge. The disturbance spectra A(f)
are shown in Figs. 5ab. for the solid and porous sides, respectively. At the first three stations, the spectra practically
coincide on both sides. Downstream from the UAC leading edge, spectrum behaviors are quite different:

On the solid side, spectra look very similar to those reported in Ref. 28 for a sharp cone at Al3 = 8 ; they

indicate that the second-mode instability is dominant. At the first upstream station, the second mode is observed at
frequencies • 430-450 kHz. Its amplitude quickly increases downstream, whereas its central frequency decreases to
270 kHz at the last station. In the middle of the measurement region (Re • 3.12 x 10W), the second mode

becomes lager than the first mode associated with the frequency band 50-200 kHz; i.e., the first mode grows slower
than the second mode. Measurements at the last downstream station (on both solid and porous sides) indicate the
beginning of boundary-layer turbulization.

On the porous side, the second mode grows quickly in the first three stations located upstream from UAC.
Further downstream this growth is slowed down due to the presence of the porous coating. Over the entire
measurement region, the second-mode amplitudes are smaller than the first-mode ones.

To evaluate the downstream growth of boundary-layer disturbances, the spectra A(f) are referenced to the initial
spectrum .1(f) measured at the first X-station. These normalized spectra .I/ A,, are shown in Figs. 6a,b for the

solid and porous sides respectively. The first-mode disturbances have nearly equal growth on the both sides; i.e., the
porous coating weakly affects the first-mode instability. Maximum amplifications are observed in the range 100-
130 kHz; they are 3.3 and 3.6 for solid and porous sides, respectively. The second-mode disturbances grow faster
than the first-mode disturbances. Their maximum amplifications are 6.9 and 20.4 on the porous and solid sides,
respectively; i.e., the UAC effectively stabilizes the second mode.

B. Artificial Wave Packets
Artificial disturbances are generated in the boundary layer at frequency 275 kHz. which is relevant to the

maximum amplitude of the second mode, measured on the solid side under natural conditions (see Fig. 5a) Figure 7
shows transversal distributions of the amplitude at various Re,.,. They are nearly symmetric and similar to each

other in all cross sections. The amplitudes are maximal at the wave-packet center indicating that the two-
dimensional wave component is dominant. The phase distributions are very flat and give nearly constant phase
speeds C, = C', /'.U shown in Fig. 8.

Figure 9 shows the amplitude wave spectra with respect to the transversal wave number 3. The wave packets lie
within the range 3 = ±0.5 radldeg corresponding to the range of the wave-vector inclination ±20 . The amplitude

maximums are observed at ,9-0. These features indicate that the dominant component of the artificially excited wave
packets is two-dimensional.

Amplitudes of natural and artificial disturbances of 275 kHz are shown by symbols in Fig. 10. On the porous
side, these amplitudes practically coincide (compare circles and squares): i.e., natural disturbances of this frequency
are predominantly two-dimensional waves of the second mode. It is clearly seen that the UAC leads to substantial
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decreasing of the amplitude growth: the maximum amplitude on the porous side (circles and squares) is
approximately 3 times smaller than that on the solid side (triangles).

V. Comparison with Linear Stability Theory

Stability calculations are conducted for two-dimensional disturbances ( 3 = 0) of the second mode at flow
parameters relevant to the experiment. Namely: the local Mach number Al, = 5.325: the wall temperature

T,, = 320 K corresponds to the wall temperature ratio T, /7" - 5.471, - 1.1 and Pr 0.708 . The local unit

Reynolds number is Re,, = 15.2 x 10'ý m-; the disturbance frequency f - 275 kHz corresponds to the frequency

parameter F = 1.393 x 10-4.
The spatial growth rate is calculated with the relation (8) including the nonparallel effect. For the porous wall,

stability calculations are conducted using the boundary conditions (9), in which the admittance is given by Eqs.
(10), (I1) with the dynamic density (18) and compressibility (19). The UAC parameters are specified as: 1,, = 25

pm, s' = 100 pm, the porosity o = 0.2, the porous-layer thickness h' =: 450 p-m.

Figure 102 compares theoretical amplification curves (solid lines) with the experimental data (symbols). In these
calculations, the amplitudes are adjusted to the experimental values at the initial X-station. The theory agrees well
with the experiment on the solid side (compare the solid line with triangles). The amplification curve calculated for
the porous surface (dashed line) lies above the experimental points (red triangles and blue squares); i.e., the theory
underestimates the UAC stabilization effect. Assuming that this discrepancy is due to the conical shape of actual
pores, we calculated the amplification curve for the pore radius averaged over the pore length ( r," = 28.5 pm). With

this correction the agreement of theory (dashed-dotted line in Fig. 10) with the experiment is satisfactory.
Another reason of discrepancy between theory and experiment may be due to nonlinear effects, which decrease

the second-mode amplification. As mentioned in Section A, the nonlinear breakdown of natural disturbances is
observed at the last X-station. Since amplitudes of artificially excited wave packets are significantly larger than those
of natural disturbances, the nonlinear effect may be exposed earlier. This assumption is consistent with decreasing of
the disturbance amplitude at the last station (see the right square in Fig. 10).

As shown in Figure 8, the theoretical phase speeds agree well with the experimental data for artificially excited
wave packets on both solid and porous sides of the cone.

VI. Summary

Experimental and theoretical studies of hypersonic boundary-layer stabilization using a passive porous coating of
regular microstructure were conducted in order to evaluate the UAC performance for further applications to
hypersonic laminar-flow control.

Linear stability problem for disturbances in the boundary layer on a porous wall was formulated using the
asymptotic method of multiple scales. This problem differs from the typical stability problem because of new
boundary conditions associated with absorption of disturbance energy by the porous coating. The boundary
conditions are formulated in terms of the porous-layer acoustic admittances, which depend on the UAC
microstructure. Acoustic properties of cylindrical pores were analyzed in the framework of linear acoustic theory
including gas rarefaction effects. This analysis is focused on the most practical case when the molecular mean free
path is smaller (or much smaller) than the pore radius.

Stability experiments were carried out on a 7' half-angle sharp cone with a longitudinal half of its surface solid
and the other a porous sheet perforated with equally spaced cylindrical blind microholes. The cone was tested at zero
angle of attack in hypersonic free stream of Mach number 5.95. Hot-wire measurements were conducted in the
boundary layer on the porous and solid sides of the cone. Spectra of natural and artificially excited wave packets
were obtained at various cross sections of the cone.

Measurements of mean profiles and root-mean-square pulsations of the mass flow showed that the boundary
layer was laminar on the solid and porous sides; i-e., the coating roughness did not cause premature transition.

Under natural conditions, the first (low frequency) and second (high frequency) modes were observed in the
boundary layer. Analysis of natural-disturbance spectra showed that the second mode was dominant on the solid
side. The porous coating stabilizes the second mode and weakly affects the first mode that is consistent with the
theoretical predictions. 2.13

To evaluate the UAC stabilization effect, the wave packets were artificially exited at the frequency relevant to
the second-mode instability. It was found that the two-dimensional wave is a dominant component of the wave
packets. The amplification of this component practically coincides with the amplification of natural disturbance of
the same frequency. This indicates that natural disturbances of high-frequency band are predominantly two-
dimensional waves of the second mode. It was shown that the UAC leads to substantial decreasing of the wave-
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packet growth: the maximum amplitude on the porous side is approximately 3 times lower than that on the solid
side.

Stability calculations were conducted for the second mode and compared with the experimental data. The
theoretical amplification curve agrees well with the experiment on the solid side. In the case of the porous wall, the
theory underestimates the UAC stabilization effect. With the correction accounting for conical shape of actual pores,
the agreement is satisfactory.

In summary. the present theoretical and experimental results confirm the concept of hypersonic boundary-layer
stabilization by passive porous coatings. The following issues remain to be addressed in future:

I) The wall temperatures of actual hypersonic vehicles are substantially lower than the adiabatic wall
temperature. Stability calculations 9' 2 13 showed that the UAC performance dramatically increases as the wall
temperature ratio decreases. These theoretical predictions need to be verified by stability experiments on the model
with cooled wall.

2) Roughness of the porous coating may lead to premature tripping of the boundary layer. Detailed studies of this
detrimental effect will help to formulate criteria for the pore size and spacing.

3) It needs to be shown that the second-mode stabilization leads to the increase of laminar run. At present. we
have only indirect experimental evidence in favor of this connection. Namely. the experiments '"' in the GALCIT
T-5 shock tunnel showed significant increase of the transition Reynolds number on the porous surface. Further
experimental studies are needed to clarify this issue.

4) Refinements of the theoretical model are also needed to address the pore end effects and treat disturbance
absorption by coatings of complex microstructures.
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Analytical solutions describing propagation of monochromatic acoustic waves inside long pores of
simple geometries and narrow flat slits are obtained with accounting for gas rarefaction effects. It is
assumed that molecular nature of gas is important in Knudsen layers near solid boundaries. Outside
the Knudsen layers, the continuum approach is used. This model allows for extension of acoustic
analysis to regions of low pressures and microscopic cross-sectional sizes of channels. The problem
is solved using linearized Navier-Stokes equations with the boundary conditions that resulted from
the first-order approximation with respect to small Knudsen number Kn. For slits and pores of
circular and square cross sections, the theoretical dependencies of the dynamic density in the
low-frequency range are compared with those that resulted from known experimental data on
steady-state flows of rarefied gases in uniform channels. Despite the formal restriction Kn I of
asymptotic analysis, the theoretical model agrees well with experiments up to Kn-5. It is shown
that the molecular phenomena affect acoustic characteristics of micro-channels and pores starting
from relatively small Knudsen numbers Kn>0.01, especially at low frequencies. The obtained
results may be used for analyses of acoustic properties of waveguides, perforated panels,
micro-channels and pores in wide range of gas pressures as well as for stationary flows of rarefied
gases through long uniform pipes etc. © 2005 Acoustical Societ of America.
[DOI: 10.1121/1.1893428]

PACS numbers: 43.20.Bi, 43.20.Jr, 43.20.Mv, 43.55.Ev [RR] Pages: 1-10

I. INTRODUCTION may be modeled using the concept of slip flows, in which the

The classic solutions'12 of Navier-Stokes equations, gas is treated as a continuum except thin Knudsen layers on

which describe acoustic waves traveling inside a long circu- solid walls. Within the Knudsen layer of thickness -X, the

lar tube, are widely used for analyses of acoustic properties thermodynamic equilibrium is violated. As shown in the ki-

of waveguides and perforated panels. They also formn a foun- netic theory of rarefied gases, slip flows are governed by the

dation for the semi-empirical models3 9 predicting the ab- Navier-Stokes equations with the boundary conditions that

sorption of sound by rigid frame porous media of complex resulted from the first-order (instead of zeroth-order) ap-
structures. The exact solutions describing acoustic waves in- proximation with respect to the small Knudsen number Kn

side pores of rectangular and triangular cross-sectional = /L,, where L, is a macroscopic length scale.

shapes were presented in Refs. 10-13. These results have Kundt and Warburg17 were the first who revealed experi-

been obtained with the assumption that gas inside pores is a mentally the slip effects in the gas outflow from a circular

continuum, tube. They showed that the volume rate of laminar low-

However, there are practical cases in which the con- density flow inside a circular tube exceeded that predicted by

tinuum assumption is not valid. In particular, rarefaction ef- the Poiseuille law. Maxwell' 8 gave a qualitative explanation

fects become important in flows within porous materials, of this phenomenon by means of molecular-kinetic consider-

which have ultra-fine structure and/or are exploited at so low ation. Smoluchowski' 9 discovered physical reasons causing

ambient pressures that the molecular mean free path X is the temperature discontinuity on the solid wall submerged

comparable to a characteristic length scale. For example, in into nonuniformly heated gas of low density. These effects

the ultrasonically absorptive coating'4-15 designed for the were thoroughly studied both experimentally and theoreti-

laminar flow control at hypersonic speeds, the mean free cally. Detailed reviews of the main results are given in Refs.

path was approximately 40% of the pore radius r1, 2 0-22 and many other monographs dealing with the interac-

=25/xm. This leads to 20% increase of the boundary-layer tion of molecular gas with solid surfaces.

stabilization effect produced by the coating.' 5 Similar situa- Similar to the case of stationary flows through pipes, the

tions occur in microfluids' 6 dealing with gas flows in capil- gas rarefaction may affect acoustic disturbances propagating

laries and ducts of - I -pum diameter. Many of these cases in pores. To our knowledge, this problem has not yet been
studied. This motivated us to analyze propagation of sound
in isolated long pores of various cross-sectional shapes and

"'Flcctronic mail: afcdoro%,(apmcomcor.ru detennine their acoustic characteristics accounting for the

J. Acoust. Soc. Am. 117 (5), May 2005 0001-4966/2005/117(5)/1/10/$22.50 © 2005 Acoustical Society of America 1
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(a) (b) , where Pr is Prandtl number (Pr= 7CP/IK), C P is the specific

Yr "heat capacity under constant pressure, r] and K are the dy-

namic viscosity and heat conductivity of gas, respectively;X b I A =__ - - _' ...
xA=,-iwpoL/Iy is the dimensionless parameter, the

-- modulus of which is the ratio of the characteristic length LP
to the viscous skin depth (5 ,jw= vl ?/owpo", and Po is gas den-

) (d) sity in equilibrium; the Laplacian A= (?2IdV2 for slits, A
=(l/r)(d/dr)(rd/dr) for the pore of circular cross section,
and A=,d2!0x 2+d 2 dyV2 for pores of rectangular and trian-

f 2b, gular cross-sections. The coordinates x, v, r are dimensional-

ized using LP. The cross-sectional length scale Lp is speci-
2a d fled as Lp=b is the half-height of the slit; L-,=r0 is the

radius of the cylindrical pore; Lp= \r3d/4 is the half-height
FIG. I. The pore cross-sectional shapes, They arc (a) slit of half-height b, of the equ i r ria l pore, t he icha

(b) circle of radius ro, (c) rectangle of half-width a and half-height b. and of the equilateral triangle. For the rectangular pore, the char-
(d) equilateral triangle with sides d. acteristic size, L-. may be detennined as the pore half-width

a or half-height b, the diagonal 2 \a•b, the hydraulic ra-

rarefaction effects. The acoustic problem for straight, uni- dius 2ab/(u+b) depending on applications. Thus, the key

form, and infinitely long pores is formulated in Sec. Ii. Its macroscopic parameter A is specified as

analytical solutions for flat slits and pores of circular, rectan- I' 2
gular, and triangular cross-sections are obtained in Section i

Ill. The theoretical results are compared with available ex- A \-i- pr•O 1/ 77, circle;
perimental data in Sec. IV and summarized in Sec. V. Ap1Li' rectangle;

II. FORMULATION OF THE PROBLEM triangle.

In accordance with the concept of slip flow, the bound-Consider a pulsating flow of rarefied gas inside flat slits ary conditions on the solid surfaces are written as23 (in our
and straight uniform pores. It is assumed that the rarefaction notations)

effects are appreciable in thin layers (Knudsen layers) form-
ing on the solid boundaries. Outside the Knudsen layers, the diu
fluid is treated as a continuum medium. The corpuscular ef- ui;= B,, ,! (3a)
fects are taken into account via boundary conditions. In the
kinetic theory (see, for example, Refs. 21 and 22) this model dTý
corresponds to the first-order asymptotic approximation with Tg= BE! )N) ' (3b)
respect to small Knudsen number Kn. As usual for
asymptotic models, the range of Knudsen numbers in which where dION is the directional derivative calculated along the
the first-order approximation is robust can be estimated by unit normal drawn into the pore, the subscript "w" denotes
comparison with experimental data. quantities on the pore wall. and ug and Tg are perturbations

The Cartesian coordinate system (x,v,z) is used for quniesothprewlad ndTaeprubtosof gas velocity and temperature on the wall surface. The
pores of arbitrary cross-sectional shape, and the cylindrical factors B. and BE are introduced for brevity. They are ex-
system (r,cp,z) is used for circular pores, where z is mea- pressed in terms of the molecular tangential impulse a,, and
sured along the longitudinal axis of the pore. The origin of energy aE accommodation coefficients, the specific heat ra-
each coordinate system is located at the cross-sectional cen- tio y, Prandtl number Pr and Knudsen number Kn, aster of the pore as sketched in Fig. I. With the assumption that
the longitudinal pore length is much larger than its cross- B,= (2a -- I )Kn, BE = (2,y/Pr( y+ I ))(2aE - I )Kn.
sectional size Lp, the end effects are neglected. Gas motions
inside the pore are caused by an infinitesimal periodic pres- The accommodation coefficients a,, and aE depend,
sure gradient Re{(dj/d:)exp(iwt)}, where = . = 2 'rf mainly, on collision interaction laws between gas molecules

is angular frequency, t is time, and dj/dz is complex ampli- and the solid wall, and on gas temperature, and depend al-
tude. Solutions of the linearized Navier-Stokes equations for most not at all on pressure (see, for example, Ref. 20). In
the particle velocity u and temperature disturbances T' are practice, an approximation cr,,- aE is often used.
expressed in the form u = if exp(iwt) and T'= Texp(iwt). The Hereafter, we use the well-known theoretical expression
momentum and energy equations lead to the equations for for the dynamic viscosity of monatomic gas modeled by hard

complex amplitudes ii and T: spheres 23 YI-0.5p0oX to express the molecular mean free

path X through experimentally determined parameters pu,
A2 d/= (la) T0 , and ?7. Accordingly, the Knudsen number is specified as

iwp0  Knd 2 r/(poJL,,), where J= \8RgTi_ 7 is the mean mo-

-PrA 2  lecular speed, Re is gas constant per unit mass, and To is gas
AT+ PrA 2 T-= , (b) temperature in equilibrium. In addition, the unperturbed solid

poCpp surface temperature T,, in (3b) is assumed to be constant.

2 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 Kozlov et aL.: Acoustic properties of rarefied gases
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5 4 1 corresponding maximal frequency is 1f-108 Hz. Since this

3- frequency is far beyond the ultrasonic range, the theory is
"applicable to any practical range of acoustic disturbances.

3 "The boundary conditions (3) cannot be satisfied for a
2 ".polygonal cross section, since the direction of the surface

normal N jumps at the polygon apices. This may cause sud-
-6 7den changes of the tangential viscous stress and the normal

heat flux on the pore surface. To avoid this unphysical be-
havior, additional restrictions must be imposed, namely, con-

0 tinuity of the shear stresses and heat fluxes acting on the
0.0 0.2 0.4 0.6 0.8 1.0 fracture lines of the pore surface. Analysis of the

Kn solutions' 0 t
-1.13 for rectangular and triangular pores shows

FIG. 2. The 1AI-Kn diagram of the regimes of validity of the asymptotic that theoretical values of the tangential viscous stresses and
theory. Isolines I-5 correspond to constant ratios Lp,'A:I -LP A = 104. the normal heat flux vanish at the polygonal vertices. Obvi-
2- L,;A=2.5.10 . 3-L,,A -- 10 A . 4-L¼,;A=0.04. and 5-Lp')A ously, solutions considered herein should also possess this
--0.25. The dashed curve 6 restricts the parameter plane by Kn<0.5 in the property for Kn--0. Accordingly, the dominant approxima-
low-frequency range and by Kn,\t<0.5 in the high-frequency range. respec-
tively, The dash-and-dot line 7 does the same for the corresponding restric- tion gives
tiots Kn<l and KnIA< \1. dF (IF

The boundary conditions (3a) and (3b), which are ob- IN,-. ,., -•--r•0.,-l0) d .-. ,,.V t- +0i, -'0)

tained in the first-order approximation with respect to the dF2

small ratio of molecular mean free path X to a macroscopic ( - O(A)X Kn (4)
length scale, give a nonzero relative macroscopic gas veloc- N,,,, ..... * -0.,,-0(
ity and temperature jump on the solid wall. More general where subscript "s" denotes the sth salient point of the
forms of these conditions, in particular, for varying wall tern- boundary and F stands for the function u or T'.
perature T, , are discussed, for example, in Refs. 21 and 22.

In the problem considered herein, there are two impor-
tant macroscopic length scales: the cross-sectional pore size Ill. SOLUTION OF THE PROBLEM
LP and the viscous skin depth (S,.i The asymptotic analysis
should be conducted using a small parameter to be deter- At first, we consider the cases of slit, circular, and trian-
mined as the largest of ratios X/LP, and X/3 visc, In the low- gular pores. The solution for rectangular pores will be ob-
frequency range (IAI< 1) the viscous skin depth 6,j, exceeds tained later in a different manner. We perform the following
the cross-sectional size Lp,, and the small parameter is the substitutions in (I):
Knudsen number Kn=X/L1,. In the high-frequency range I d/5
(IAI>I) the characteristic cross-sectional size L, is larger u(x,y,:)- -[I-F(x,v-B,,A)], (5)
than 6,vji, and the proper small parameter is KnmAI (assum- iopo dz

ing that Pr- I). Figure 2 illustrates these two cases for air T
(y= 1.4) in the parameter space Kn-IAI. Using definition of T(XYz) n -- [I -F(x,y,B-,A)], (6)
Kn and (2) we obtain the relation IAI =1 7 y2)1 4 \ k /Kn,
where k= 2 7r/A is the wave number and A \f-yRgTo is where A= ,PrA. In accordance with (1) and (3), the new
the wavelength of a monochromatic acoustic wave propagat- unknown dimensionless functions F(x,y,B,,,A) and
ing in unbounded gas medium. With the help of this relation, F(x,y,BF,A) satisfy the uncoupled Helmholtz equations in
we plotted the isolines Lp = const (solid lines). The dashed two-dimensional space (except the case of slit),
line 6 and dash-dot line 7 indicate restrictions on the (A+A 2 )F(.,.,B,,,A)=O, (7a)
asymptotic model. From the left of line 6 the parameters

satisfy the restrictions: Kn<0.5 in low-frequency range, (A++A2 )F(x,y,BE,A\)=0, (7b)
KnIAI<0.5 in high-frequency range. The line 7 corresponds
to the restrictions Kn< I and KnIAI< I correspondingly. This
diagram allows us to estimate the wavelength (and fre- IdF(x,v,B,,A)
quency) range in which the theory is applicable. Say the F(x,, YB, ,A)- 1 B,) = I, (8a)

molecular mean free path is X = 0.6X 10- 5 cm, which is typi-
cal for air at normal ambient conditions in accordance with a dF(x,Y.B, A)
model of hard spheres.23 For the pore cross-sectional size F(x",,'Y,_BE A)-B,-- N- . I (8b)

L,= 3 X 10- 5 cm, the Knudsen number is Kn=0.2. Drawing
the vertical line Kn=0.2 up to the intersection, for example, If the boundary contains salient points (the case of pores
with the boundary 6 one finds that the dimensionless param- of triangular cross sections), then the functions F must sat-
eter IAI should not exceed 2.6. This corresponds to the iso- isfy the additional conditions (4). Since the problems (7a)
line LIA= 1/7 on which A-2 #tm is treated as a minimal and (8a), and (7b) and (8b), are similar, it is sufficient to
allowable wavelength. For air temperature To- 273 K, the solve the first one. The solution of the second problem is

J_ Acoust. Soc. Am., Vol. 117, No. 5, May 2005 Kozlov et al.: Acoustic properties of rarefied gases 3

PROOF COPY 045505JAS



PROOF COPY 045505JAS

obtained by the formal substitutions B, -- BE and A--A. 4A 2 djff(x'_'Z) = ---
In the continuum approximation, the problem for pores iowpo dz

of rectangular and triangular cross sections was solved in
Refs. 10-13 using Fourier series. However, these series are ( -I ) . cos cr,,,q x cos ta,,q 2y
not differentiable in the vicinity of solid boundaries, because ,0 110 ",m,,r,(,rqj+ ,q•- Aq2)
they include decompositions of discontinuous functions.
Since the boundary condition (8a) contains the partial deriva- which was used in Refs. 10 and II for continuous media, is

tives with respect to the space variables, this method cannot reduced to the one-dimensional form using the Fourier series

be applied to the problem (7a) and (8a). This motivated us to cosh(132.q x) ( - I )"CosaqIx
use the appropriate eigensolutions of (7a): I cosh( 2  ,, ( = 28, ,( i - +------

'A cos Av, slit;

B11 (Ar), circle; cosh( q2Y)( - I ) cos ,,q 2yF( 2~hflqY fi')• rtnP,,

l-(x,y.B , A) 2 (9) cosh fl 1,,, = 2 [31 ti
Sai~ipxy,A ), triangle;n

Stiwhere (IqlxlI- 1,lq 21- I). This form is written as

where A. B, aI, and a2 are constants of integration; J0I(Ar) i1(x..v,z)
is Bessel function of the first kind of order zero;
(p(xj,.y\ )=sinAt,+sin Ak-sinA,3 and 2(x,y,A) d (- 1 I cosh([31,,q 2y)

= +cosA•1 cosAý 2+cosAf 3 are independent eigensolutions itopo dz = cosh q23,m
of (7a), .l =y/2+ výý3x2, 6,=yi2- •/3-x/2, •3=ý..

In the cases of slit and circular pores, the coefficients A x + cosh(/)-ý,q 7 x)
and B are solutions of the algebraic equation resulted from qcos(aq2 coshIx2 , ,

substitution of (9) into the boundary condition (8a):

SXcos(tr.,qzv)} (13)
A Cos,\ I I- anA (10)a A

where q I= a/Lc and q, 1=b/L c are dimensionless rect-
1 -~2 i a2 11 2B= (21) angle sides, 8 1 ,=q 2 -aqI-A. 82.=ql \aq 2 A

J1 (dA){1 -0.5B,,A 2 Q(A)} and a,, = (r + 0.5)V7. Note that we use the two independent
where Q{A) =2Jj(A)!AJ0(A). complete systems of functions to symmetrize (13) with re-

Owhere to AA the roaininainspect to x and y. Now we can modify (13) in order to satisfyOwing to the rotation invariance of the solution for tri- the boundary condition (3a). This modification is written as

angular pore, it is sufficient to consider the boundary condi-

tions on one side of the triangle, say y= - •. Substituting the A2 d/ 2

corresponding expressions into (8a) at v= - • and equating u(x,y,z) . I jp° dz ,,,,0 A )
to zero the coefficients of similar terms, we obtain the linear
algebraic system for a, and a 2 : ( ,,( B,, ,A

2Aý2A2A cotA_ I+a2OS,1q2))
(1 sin- (I +ABCotA +a 2 cos- I -AB, tan2A) =(-l)m I c- esh(fl'qI)x

3 3 3 3 q 2 y ,f12 Q 1  cosh c3 1 m
=1, Qlm= I +q 2Bfltmtanhf6j.,.

A + AB,, cA A{ AB,, A =( B (14)
a l sin 3  2+-f--c2- 3 - a 2 cos -3 1 -2- tan 3 2 ) 0.

_(- 0') 1 ohoi_
Its solution is expressed as q- 2, (1 I - - -fl- cos( Y 2 .q 2 Y),

q Y2rf2m Q2,, Cosh 12.A( A A/
at=cos( I- - B,, tan- A- , Q2,,,= I +qB,,fl2,,, tanhfl,,,,

A1 \.q•-.\-, fl 22,,=q 1 i yq2

2= sin• 9(1+ 2-B cot•-)/ A, (12) where aj,, (j = 1,2) are unknown integration constants; the

where A,,I + 1.5AB,,cotA-0.5(AB,,)
2]Sn. Direct eigenvalues y ,,, and Y2,, are roots of the equationswhere~~~~ 5.[+.A.et-.(B)]in A. Direct

substitution shows that the solution (9) and (12) satisfies the cos Yj m = q 1 B. y,,, sin yl,,,. (15a)
condition (8a) and the additional conditions (4) at the tri-
angle apices. cos , q2 B,,y 2 ,,, sin Y2,,,. (15b)

Now we consider the case of the rectangular pore. Note In the expansion (14). each function T'.( ,y,B,,.A v B A
that the two-dimensional Fourier expansion = 1,2) satisfies the boundary condition (3a). Hlereafler we

4 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 Kozlov et al: Acoustic properties of rarefied gases
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explain how to find the coefficients ajm in the decomposition 2 4

(14). Direct substitution shows that (14) satisfies (1a), if T(x,v,z)=-- I {a,,nPn"(xy',BEA)},
1 I ) "ja1i my cos( y 1 q mqx)+a 2nY2m cos(y 2,,q2v)}= 1.9

The left-hand side of this equality may be interpreted as a
sum of two series: the first series depends on x and the sec- where
ond on v. The sum of these two terms may be constant if and
only if each of them is constant. Thus, taking into account 'k 3,f(X,YBE,A)

the solution (13) for continuous medium we write ( I)m( cosh(J3 ,qv
I = q 2 Y3(-ip1i)m Q[ cosh 163.qv Co(Y1nqi)

, l)',a ,, I i y1 Cos( yj ,qix) = -2 2

16 -2Q3. = I + q 2BE133 . tanh f 33.•. (16)
2. (-1 )"afm~ ,~cs - . 1 4,,(X,v.BE,A)m )"a2 YD"mCOS( Y2,nq y) = -2"(XEý

This system of linear algebraic equations has a simple - I )i I 1 --sh(134 -•, osx)

solution at B.=0. In this case the system (15) gives y,, qiY4,, 4 Q4. coshn " -co(

- y2,,= a,.=(m +0.5) r". Using Fourier decompositions Q I,= q BEP4atanh /3,,,
we obtain the equation 2Y)-O(- )'aI cos(a,,qlx)
=21-._.(- I)",,1 cos(n,.,.qv)= I (Iq~xj<l,IqjvI< 1), which -I3 I 2n3 2 /2= __"

gives aI.,=a2,,= I (mn=0,I,2,...). Thus, the solution (14)

coincides with (13) in the case of B,. = 0. Direct verification Equations for the cigenvalues yi., and coefficients ai,
shows that (14) satisfies the conditions (4) at the angular of the solutions (14) and (19) may be written in the common
points of rectangle. form for j= 1, 2, 3, 4; n = 0,l1,2....

The functions T i., and T2,., which are used in the case
of rectangular pore, do not represent an orthogonal system cos Ym=hy 1,, sin yin,, (20)

on the rectangle sides. For this reason we cannot immedi-
ately solve the system (16). The orthogonalization is per- Cos(y 1 IT) a (21)
formed using the complete trigonometric systems {cos ,aqlx} n Y1 ,(0- 2 2 ajn 2(

and {cos a.,qjy}. Substituting the decompositions

where hl=q1 B,, h2=q2Bn. h3 =qBE, andh 4=q 2BE.
cos( yj,,,q x)-cos Yir Approximate solutions of the equations (20) may be ob-

- ICtained as follows. Noting that m rr•< yi,,< (mr+ 0.5)7r we ex-

2 y=,,, cos y( - I ()qo x 1) press the eigenvalues in the form
an.- YT.,

y1 ,,, =(n + 0.25)T7+ A Yjn= 6,m+ A y(,..
cos( Y2rnq2Y)- cos Yin2,

which allows us to rearrange (20) as
I2 ] , c s 2 . ( - lI)" Cos a nq2_v ( q y

2y nCO Y2n2 _ 2,n 1ql7 ih 1 Ay ,,,o a n( ,, Y2m) A Yi n,, 4 - tanm (ZI.)+ ,. In l I- iZ ,,

into (16) and using the orthogonal properties of the trigono- i hj -y j.!
metric functions we reduce the problem to solving two un- -InI 1+
coupled infinite systems of algebraic equations (j= 1,2):

cos( yj, - n 7T) 1 -t h-Ay (Z
2 - i= (17) 4 1-tan-(Z )--

-0 .(-,, ,,) 2a;,, 4 )I 2Zan

From (15) we also obtain + Zim
+ - A -qiB~~yj,, ~(I +Z ZY,,)(hAy,)

Co (Yn-n7) qjB j (j = 1,2). 1_3Z1

csy-n)=[+(B. )2+ -- --2 -3 (h IA y .)

Owing to this we can express (17) in the form 3( 1 +Zj,n)3

- 2q"1Ba, -z,.,( - z],,,) ,n, ~ ~n
I1_Z

2
1f

(18) Zi, -. h A jn) Zin,,= hj•,$.t
. ion•- Y'.) \,-I+ (q iBnYi,,)2 2qiB,,ot2. (t Z,,) hn") - .

As discussed above, the solution of (Ib) is obtained by the This equation may be solved in various ways. An approxi-
replacement (Bn.A)-'(BE•.A) in the solution of(la). This mate solution may be obtained, for example, using the
leads to the amplitude of temperature pulsations method of successive iterations
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_(I +Z~m)•> h,- Z,., 22 ((B , )

2+ ( 2+lm ( I1zmTn + - I-g ' "t (22)
Ih z2I ( h+ Zj1, )2 tan AA [I -B/ma AI - slit;

where Thm=7r/4-tan-'(Zj,,). Numerical tests showed that

the maximal relative deviation of the results obtained with Q(A) circle;
use of (22) from corresponding numerical solutions was less I -0.5BA 2Q(A)'
then 10-3 at ni=0 and Kn=l1.0 (qi1 l). =

Since (20) and (21) do not depend on the parameter A I+ A2 (alm('I',n)+a2m(+2m)), rectangle;
(or A), the eigenvalues yj,, and coefficients aim are deter- ... 0
mined once (for example, numerically) for particular q I, q 2 , 3( 1 - A cot A + 0.5A 2B,)
B,, and BE. Then these solutions may be used for calcula- triangle;
tions of the acoustic characteristics at any dimensionless fre- A 2[I + 1.5AB, cot A - 0.5( ABu) 2]'
quency A2. (31)

Since the pressure disturbance in the considered ap-
proach does not depend on the transversal variables (x,v), (F(Bl-, y,A))
acoustic properties of an isolated pore can be obtained by tan
averaging of the particle velocity and temperature excess t slit;
over the pore cross-sectional area. In this connection, acous- A( I - BA tan AX)
tics of porous media deals with the following parameters: Q(\)

(a) Dynamic density Q 2 circle:
I-0.5BFA2 Q( A)'

I d,ý
(z) (23) I+A2 (a 3 ,(1V 3,,,) +a 4,,(+f4,,)), rectangle;

(b) Dynamic compressibility 3(1 - A cot A-i- 0.5\ 2B1 )

Cý(BE y, rpJ'()j5 2 I + 1.5ABI. cot A\- 0.5( AB,)2]'trnge
(32)

1 I T7) -I ( p0 R( T)~ sin( y)~,-ir ( -n, T anhrl31- - 1 =.(24) 1'j,

Po Top Po P ( 2 Y DiYjmjm "13J, ."..

where P0 is unperturbed ambient pressure and ( ) denotes Dj=q2 at j= 1,3 and Dj=q, at j=2,4.
averaging over the cross-sectional area S (. In the case of triangular pore, the following averages are
=(I/S)#fJ(x,y)ds. In turn, the dynamic density and dy- used:
namic compressibility are used to calculate the characteristic 2A]
impedance Z,, and the propagation constant mi: (4A(A))= A sin - 2- +sin A- cos j,

1- HAk3 33
Z',= \ýp/C, (25) 3[ I f 2A 4A, 2A1

(ýP2(')=A• I~ s 3 - c s 3 + sin -3 "

mn = io v\C. (26)
For the Knudsen number Kn=0, the formulas (29) and

Using (5) and (6) we obtain (30) together with (31) and (32) coincide with the corre-

sponding expressions (which are presented, for example, in
I -[I-(F(B..A))]. (27) Ref. 13) for continuum media.

iwpo dz Results of numerical calculations with use of (29)-(32)
are presented in Fig. 3 for a circular pore filled with air at

) I8 Knudsen numbers 0, 0.05, 0. 1. and 0.5. In these calculations,
T(z)) = [1-\FBE,7)I]. (28 we used the approximations a,= CE=0.9. This assumption

is consistent with the data presented in Table II and with data
Substituting (27) and (28) into (23) and (24) we express the from other literature sources. It is seen that influence of rar-
complex dynamic density 7i(B,,A) and the dynamic com- efaction effects on acoustical characteristics of air becomes
pressibility C(BE,y,A) as noticeable at Kn-0.01 and increases with the Knudsen num-

ber.
t(BB,,A) = po![I - (F(B, ,\A))], (29)

I IV. COMPARISON WITH EXPERIMENT
•7(E,,,X) -[ I+ (y,- I)F(B•,7\))], (30)YPB Unfortunately, we could not find experimental data on

sound propagating in uniform channels filled with low-
where density gases. However, it is known (see, for example, Ref.
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8) that in the low-frequency limit, JAI-.0, acoustic properties For low frequencies (IAI-.0). the dynamic compressibility is
of gas inside pores may be approximately expressed in terms approximated as
of parameters characterizing steady viscous flows. For the- - -

ORE .. ....... YPO BE... , y,),.00(BE.,, (5

considered above cases, this approximation may be also ob- (
tained using expansions of (31) and (32) into power series in Formulas (33)-(35) allow us to evaluate 3 and C using pa-
A. For example, (F(B, ,A))- 1 + (k1 +±cB,)A 2+.. ", where rameters of the stationary flow through pores, and calculate
the decomposition coefficients k, and c depend on the pore the characteristic impedance Z. and the propagation constant
cross-sectional shape: k1 =3, c= I for slit; k l= , and c m using (25) and (26). The experimental data to be used for
- 1/2 for circular pores: etc. Substituting this decomposition comparison were reported in forms, which differed from (33)
into the exact formula (29) and using the definition of A one and could not be directly substituted into (34). Hereafter we
finds that ( B,,A) -- r0 lo/, where tr 0= tl/(ki + cB,)L,2 will derive a suitable modification of (34) for each source of

A 0 data. All comparisons are performed for the imaginary part
is resistivity of slip flow, which coincides with dc flow resis- of dynamic density at I AI= 10- . The accommodation coef-
tivity in the continuum approach B,--0 (see also Ref. 13). ficient is a,,= 0.9, besides the case of a slit for which o,, was
Thus, the dynatnic density is pure imaginary in the low- measured in experiment. In this case, the relative error of the
frequency limit. It is inversely proportional to frequency with low-frequency approximation does not exceed 10-2
the constant depending on stationary flow characteristics
only. Note also that the rarefaction effect on acoustic prop- Kn
erties is stronger in the low-frequency band owing to the
relatively large imaginary part of the dynamic density, which
tends to infinity as A 2

_ 0. This is also confirmed by depen- 0

dencies shown in Fig. 3. All these arguments allow us to
verify the theoretical model by comparisons with numerous

experimental data on stationary flows of rarefied gases °. -

through long tubes of different cross-sections. c"
The definition (23) may be written in the form _ I0

I(BA) I dp S djo
Po_ -~ iop (i7()} d iwG dz (33) E"
P0 io-)(i~) d-- iwG U.,

where G=oo(U(z)YS is treated now as the stationary mass
flow rate through a pore in the low-frequency limit. Normal-
izing the mass-flow rate as G=-GNI2RgT0/SLp(dp/1d), "M
we express the dynamic density in terms of the dimension-
less parameters FIG. 4. Comparison of theoretical predictions (solid lines) for the normal-

ized imaginary pail of dynamic density at 1,\I= 10t . cj= 0.9 
with those

p(8B,,A) PoLp \,2 R, TO 7T resulted from Knudsen's interpolation 636) (dashed lines) and experimental
_=_ - - (34) data"

1
' for flows of air in copper pipes of 1.30-cm radius and 33Ž-cm length

Po 7A 2 6 A 2 Kn" (squares).

J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 Kozlov et at.: Acoustic properties of rarefied gases 7

ROOF COPY 045505JAS



PROOF COPY 045505JAS
Kn Kn

0.01 0.1 1 0.01 0.1 1

0 o

-200 . 20

-400- 4W-2"E E

-400 - -400

ME a

-800 -0

Fl(.. 5. Comparison of theoretical predictions (solid lines) for the normal- FIG. 6. Comparison of theoretical predictions (solid lines) for the normal-
ized imaginary part of dynamic density at IAI= 10- 1 ,,= 0.9 with those ized imaginary parl of dynamic density at AI= 10 1. a,,= 0,9 with those
resulted from experimental data2' for flows of hydrogen in copper pipes of resulted from experimental data

27 for flow of argon in the square tube of
1.30-cm radius and 332-cm length (squares), 2.5-mm cross-scction side and 305-mam length (squares).

A. Circular pores the data on air flow (squares in Fig. 4) and hydrogen flow

The mass-flow rates of stationary flows in circular pipes (squares in Fig. 5) obtained in copper pipes of 1.30-cm ra-
were evaluated by many researchers, both theoretically and dius and 332-cm length. The average relative deviation of the
experimentally, for a wide range of Knudsen numbers (see, experimental data from the theory does not exceed 6% in the
for example, Ref. 24). Some of the experimental data were considered range of Knudsen numbers.
approximated analytically. For example, the correlation (in
our notation)

SI+&52/2 Kn+ '2 () B. Square pipes

G Kn + 8.52 -K Kn+ 1 .235 I (3) Data for pipes of square cross section were presented in

Ref. 27. For straightforward usage of these data we express
is known as Knudsen's formula. 525 Along with (36) we use the dimensionless dynamic density in the form
the data.26 For comparison with these data, we write (34) in
the form 101.325h3 \32 7T

m=- ,(38)
T3 0.76A 2 NKLmnAr, RAT(ni/ Ap)

__o= - ,(37) where h -1.25 mm is the half-side of square, L -305 mm is

AXU . the tube length, mA, is the molecular mass of argon, and RA,

where L is the pipe length in cm, ro is the pipe radius in cm, is the gas constant per unit mass for argon. The Knudsen
U is the gas flow rate per unit pressure drop in micron-cubic number NK and the molecular flow rate per unit pressure
fbut per second per micron, and X=(71ro)p,(pg,) [2 is the niAp are tabulated in Ref. 27. The factor 101.325/0.76 is
dimensionless group of parameters defined in Ref. 26. The used to convert mm Hg to Pa.
theoretical dependences of Im 4,,A) were calculated at The corresponding theoretical dependencies were calcu-
I A = 10- 1 and compared with the experimental data in Figs. lated using (29)-(32) and (20) and (21) at q I = q2 = I. The
4 and 5. The theoretical predictions (solid line) agree well roots of (20) were determined using the method of bisection.
with the Knudsen's interpolation (36) (dashed line) and with Equations (21) were solved by the Gaussian method. For

"TABLE I. Dimensionless flow rate G as a function of rarefaction parameter ;=2iKn (slit 3 in Ref. 28).

H, , lie Ne COl

20.18 7.50 39.45 10.13 27.35 9.66 34.91 11.50 37.15 11.66
9.42 4.79 14.42 6.40 13.55 6.10 17.30 7.08 18.41 6.87
4.95 3.55 7.60 4.21 6.73 4.29 7.83 4.58 7.83 4.37
2.53 3.08 3.55 3.32 3.24 3.39 3.77 3.63 3.44 3.21
1.22 2.89 1.93 3.05 1.60 3.10 2.11 3.26 1.38 2.82
0.624 2.95 1.38 2.95 0.984 3.05 I.'l 3.16 0.726 2,84
0,301 3.08 0.489 3.10 0.473 3.24 0.552 3.24 0.318 2.95
0.113 3.45 0.265 3.18 0.301 3.42 0.249 3.39 0.149 3.16
0.0578 3.71 0.113 3.58 0.144 3.60 tI.116 3.74 0.0673 3.37
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TABLE II. Slip constants (r-±A\ (slit 3 in Ref. 28 or slit 2 in Ref. 29). Krn

Hl, D tie Ne COl 0.1 1 10

1.374±0.014 1.407±0.014 1.494--0.010 1.55810.017 1.235+-0.017 0

-~-50

each numberj of the unknown coefficients, a system of 300 ".
equations was solved. This provided a relative accuracy of v -100
the order of 10-8.

Comparisons of the theoretical predictions (solid line) . 1 -iso
with the experimental data (squares) are shown in Fig. 6. The 2.A
average relative deviation of experimental values from theo- *2oo 0

retical results is approximately 10% in the considered range
of Knudsen numbers. -2W

C. Narrow slits ...

The first experimental observations of rarefied gas flows FIG. 8. Comparison of theoretical predictions (solid lines) for the normal-
ized imaginary part of dynamic density at JAI = 10' with those resulted

through slits were made by Gaede.29 However, for compari- from experimental data2"'( for flows of helium (squares) and neon (aster-

sons we use the later data," which were obtained with isks) in flat slits.
accounting for roughness of slit walls and for which the
mean accommodation coefficients were determined. Unfor- dimensionless theoretical distributions weakly depend on
tunately, the experimental conditions of the results 29 30 were Prandtl number and do not depend on other individual gas
not well documented. In particular, the pressure gradient parameters (besides the specific heat ratio y), we used the
d,/dz and the mean pressures inside slits were not specified. same theoretical curves for deuterium and hydrogen in Fig. 7
This leads to some uncertainty in evaluation of basic param- and for helium and neon in Fig. 8.
eters such as Knudsen number. The dimensionless dynamic Figures 4-9 show that the normalized imaginary part of
density is approximated using (34). The dimensionless flow the dynamic density predicted by the theory (solid lines) cor-
rate G for different gases is given in Table I as a function of relates well with the distributions that resulted from experi-
the rarefaction parameter 5=2/Kn. These data were obtained ment (symbols) in the Knudsen number range 0<Kn<5 (0
by scanning of the plots in Fig. 5 of Ref. 29 for slit 3 (see <KnlAI<5) for all considered cases. This indicates
also the data for slit 2 in Ref. 30). remarkable elasticity of the first-order asymptotic model,

Experimental values of the slip constant o, for various which was initially elaborated for small Knudsen numbers.
gases are given in Table 11. They correspond to the data in Note that a similar feature was observed in the asymptotic
Table 11 of Ref. 29. Since the slip constant is expressed via theory3t developed for heat conductivity of highly porous
the molecular tangential impulse accommodation coefficient ceramic materials.
r,, as r= (2- ,)/•Ir,,, then B,,= o, Kn. Data from Table 11 Figures 4-9 also show that the gas rarefaction leads to
were used for computations of the theoretical and experi- significant reduction of the dynamic density in low-
mental distributions Imhn BA). frequency limit. Parametric computations indicate that the

Results of comparison are shown in Figs. 7-9. Since the gas rarefaction effect decreases with the dimensionless pa-

Kn Kn
0.1 1 10 0.1 1 10

.................................................... .....................

-s0 -so

. v.
-100 -- 100

-150 - -150

E E
.-+200 -- 200

-250 - -250

-300 .... '..3............. .............. f....

FIG. 7. Comparison of theoretical predictions (solid lines) for the normal- FIG. 9. Comparison of theoretical predictions (solid lines) for the normal-
izcd imaginary part of dynamic density at I.1 = 10t with those resulted ized imaginary part of dynamic density at JAI= 10 1 with thosc resulted
from experimcntal dataý` ý" for flow-s of hydrogen (triangles) and deuterium from experimental data2`13

5 
for flows of carbonic gas (rounds) in narrow flat

(circles) in flat slits, slits.
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