Award Number: DAMD17-02-1-0726

TITLE: Testing Whether Defective Chromatin Assembly in S-Phase Contributes to Breast Cancer

PRINCIPAL INVESTIGATOR: Peter Adams, Ph.D.

CONTRACTING ORGANIZATION: Fox Chase Cancer Center Philadelphia, PA 19111

REPORT DATE: October 2004

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Testing Whether Defective Chromatin Assembly in S-Phase Contributes to Breast Cancer

Peter Adams, Ph.D.

Fox Chase Cancer Center
Philadelphia, PA 19111
E-Mail: Peter.Adams@fccc.edu

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

12b. DISTRIBUTION CODE
Approved for Public Release; Distribution Unlimited

Cancer cells characteristically have a high frequency of genome rearrangements. Although these genome rearrangements are likely to contribute to the defective proliferation control that is characteristic of cancer cells, the cause of rearrangements is poorly understood. We used a dominant negative mutant of (chromatin assembly factor-I) CAF1, a complex that assembles newly synthesized DNA into nucleosomes, to inhibit S-phase chromatin assembly and found that this induced S-phase arrest. Arrest was accompanied by DNA damage. These results show, for the first time, that in human cells CAF1 activity is required for completion of S-phase and defects in chromatin assembly induce DNA damage. We propose that errors in chromatin assembly, occurring spontaneously or caused by genetic mutations or environmental agents, contribute to genome instability and cancer. Consistent with this idea, preliminary evidence indicates that chromatin assembly factors are mutated in some human cancers.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Cover</td>
<td>1</td>
</tr>
<tr>
<td>Standard Form 298</td>
<td>2</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>7</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>7</td>
</tr>
<tr>
<td>Conclusions</td>
<td>7</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
</tr>
<tr>
<td>Appendices</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Introduction

Cancer cells characteristically have a high frequency of genome rearrangements (1). Although these genome rearrangements are likely to contribute to the defective proliferation control that is characteristic of cancer cells, the cause of rearrangements is poorly understood. We used a dominant negative mutant of (chromatin assembly factor-I) CAF1 (2), a complex that assembles newly synthesized DNA into nucleosomes, to inhibit S-phase chromatin assembly and found that this induced S-phase arrest (3). Arrest was accompanied by DNA damage. These results show, for the first time, that in human cells CAF1 activity is required for completion of S-phase and defects in chromatin assembly induce DNA damage. We propose that errors in chromatin assembly, occurring spontaneously or caused by genetic mutations or environmental agents, contribute to genome instability and cancer. Consistent with this idea, in this last funding period, we have obtained evidence that cells have the ability to "sense" non-chromatinized DNA. Also consistent with this idea, we have obtained additional evidence to indicate that chromatin assembly factors are mutated in some human cancers cell lines and human tumors.

Body.

The original tasks are italicized below and addressed individually.

Task 1. To investigate the processes that monitor chromatin assembly in primary HMECs and determine if these monitoring processes are impaired in transformed breast cancer derived cell lines.

In the original application, we proposed that defects in chromatin assembly in S-phase activate a checkpoint that blocks ongoing DNA synthesis - a so-called chromatin assembly checkpoint. We subsequently found, in the early stages of DOD funding, that defects in chromatin assembly cause DNA damage (3). A large body of published data has shown that DNA damage causes S-phase arrest (4). Consequently, we now favor the view that the S-phase arrest caused by defects in chromatin assembly is a consequence of DNA damage. This work has been published in *Molecular Cell* (3). To follow up on this work, we are investigating the mechanism by which cells recognize non-chromatinized, naked DNA. Although the course of this work is a departure from the original application, we feel that good progress is being made. Indeed, data related to those shown here are currently "in press" in *Developmental Cell* (5).

a. Cells respond to non-chromatinized DNA by recruitment of HIRA to PML bodies.
Since the work published in *Molecular Cell* showed that perturbation of replication-coupled chromatin assembly causes DNA damage (3), we have searched for a way to introduce non-chromatinized DNA into the cell, without simultaneous induction of DNA damage. Significantly, we found that uptake of naked, non-chromatinized DNA by the cell causes relocalization of a replication-independent chromatin assembly factor, HIRA, to PML nuclear bodies. Relocalization of HIRA is independent of DNA sequence, the method of introduction of the DNA into the cell (calcium phosphate or liposome mediated transfection or electroporation) and the conformation of the DNA (supercoiled versus linear). Clearly, the cell can sense the presence of the naked DNA. We hypothesize that the cell detects the non-chromatinized DNA and activates a chromatin assembly pathway to package the DNA into chromatin. Activation of this pathway is reflected in relocalization of HIRA to PML bodies. To investigate this further we will: i) test whether the cell is specifically sensing non-chromatinized DNA by microinjecting cells with naked, non-chromatinized DNA and DNA assembled into chromatin in vitro. We predict that the former, but not the latter, will induce relocalization of HIRA. ii) investigate the mechanism by which HIRA is relocalized to PML bodies. iii) compare the ability of HMECs and breast cancer cell lines to sense non-chromatinized DNA, as reflected by relocalization of HIRA.

Task 2. To determine whether mutations in chromatin assembly factors occur in primary human breast cancer and whether defects in chromatin assembly contribute to transformation of primary HMECs in culture.

As reported in this report last year, we began by sequencing cDNAs encoding chromatin assembly factors from various transformed human cell lines. We sequenced cDNAs encoding p60CAF1 from 17 human tumor-derived cell lines (including 2 breast cancer cell lines, MCF7 and MDAMB435). In one of these cell lines (U2OS cells - an osteosarcoma derived cell line), we found a C to T somatic base change that is predicted to result in substitution of P427 with L (P427L). This base change was confirmed by sequencing of the corresponding genomic DNA. Since U2OS cells are derived from a Caucasian individual, as a control we sequenced genomic DNA from 100 normal Caucasians with no cancer history. In all of these, residue 427 was predicted to be P. This argues against the P427L substitution being a polymorphic variant, although we cannot rule out a very rare polymorphism. Significantly, the DNA sequence data showed only a C at this position, and no wild type T.
either U2OS cells are homozygous for the P427L variant, or the 2nd allele is deleted or otherwise not expressed. Since a homozygous, rare polymorphic variant seems highly unlikely, these data support the notion that the P427L variant has been selected for during tumor progression.

We were encouraged by these preliminary data and have continued as described below.

Sequenced cDNAs from primary human tumors.
To date, we have sequenced cDNAs encoding p60CAF1 from 5 human tumors. To do this, total cDNA was prepared from each of 5 fresh frozen tumors. Then, cDNA encoding p60CAF1 was amplified as 5 separate fragments, fragments 1-5. Each of these was direct sequenced, and the sequenced compared with the p60CAF1 sequence deposited in the NCBI database and with known single nucleotide polymorphisms (SNPs, Table 1). Significantly, a single somatic base change, a C to T at position 250, was identified. In the amino-acid sequence, this corresponds to a substitution of alanine to valine. We are currently sequencing the corresponding patient-matched normal human DNA. This will tell us whether this is a sequence polymorphism or a tumor specific mutation. Encouragingly, no sequence polymorphisms are reported at this position.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Fragment 1 63-500</th>
<th>Fragment 2 451-840</th>
<th>Fragment 3 800-1150</th>
<th>Fragment 4 1101-1600</th>
<th>Fragment 5 1600-2178</th>
</tr>
</thead>
<tbody>
<tr>
<td>4425</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>1499 SNP C</td>
<td>1958 SNP A/G</td>
</tr>
<tr>
<td>4341</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>1499 SNP C</td>
<td>1958 SNP G</td>
</tr>
<tr>
<td>4355</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>1499 SNP C</td>
<td>1958 SNP G</td>
</tr>
<tr>
<td>4253</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>1499 SNP C</td>
<td>1958 SNP G</td>
</tr>
<tr>
<td>4227</td>
<td>250 C>T</td>
<td>wt</td>
<td>wt</td>
<td>1499 SNP C</td>
<td>1958 SNP G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variation</th>
<th>Position</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1499</td>
<td>.02</td>
</tr>
<tr>
<td>C</td>
<td>1499</td>
<td>.98</td>
</tr>
<tr>
<td>C</td>
<td>1578</td>
<td>.08</td>
</tr>
<tr>
<td>A</td>
<td>1578</td>
<td>.92</td>
</tr>
<tr>
<td>G</td>
<td>1958</td>
<td>.45</td>
</tr>
<tr>
<td>A</td>
<td>1958</td>
<td>.55</td>
</tr>
</tbody>
</table>
Key Research Accomplishments.
1. This is the first published demonstration that defects in chromatin assembly inhibit DNA synthesis and cause DNA damage in human cells (3). This finding predicts that defects in chromatin assembly will promote the genome instability that is thought to contribute to development of the neoplastic phenotype.
2. We provide evidence that cells can "sense" the presence of non-chromatinized DNA (Figure 1).
3. We provide the first preliminary evidence that S-phase chromatin assembly factors, such as CAF1, are mutated in human cell lines and tumors (Figure 2 and Table 1).

Reportable Outcomes.
Manuscripts.
Prior to 2004, we had already reported key research accomplishments in Molecular Cell (3) and this work has been also been extensively reviewed elsewhere (6-8). Other work concerning the role of HIRA as a replication-independent chromatin assembly factor is currently "in press" in the prestigious peer reviewed journal Developmental Cell (5).

Meeting abstracts/presentations
Oral presentation at 2002 Cold Spring Harbor Cell Cycle meeting, Cold Spring Harbor, NY
Poster at 2003 Enzymology of Chromatin and Transcription Meeting, Big Sky, MT
Poster at 2003 Alan Wolfe Chromatin Meeting
Poster presentation at 2003 FASEB Chromatin meeting, CO
Oral presentation at 2003 22nd PSU Molecular Biology Symposium
Oral presentation at 2004 Keystone Cell Cycle and Development Mtg, Snowbird, Utah
Oral presentation at 2004 Cold Spring Harbor Cell Cycle meeting, Cold Spring Harbor, NY
Oral presentation at 2004 Cold Spring Harbor Cancer Genetics meeting, Cold Spring Harbor, NY
Poster presentation at 2004 Cold Spring Harbor Chromatin symposium, Cold Spring Harbor, NY

Invited seminars
2002 University of Pennsylvania, Philadelphia, PA
2003 Cancer Research UK
2003 Dana Farber Cancer Institute, Boston, MA
2003 UC Berkeley, CA.
2004 University of Toronto, Toronto,

Conclusions.
As reported in Molecular Cell (3), defects in chromatin assembly can contribute to DNA damage and genome instability in human cells. Consequently, to maintain genome stability cells must faithfully incorporate all newly replicated DNA into chromatin and/or assembly non-chromatinized DNA into chromatin in a replication-independent manner. Consistent with the latter idea, we have shown that uptake of plasmid DNA into cells triggers relocalization of a replication-independent chromatin assembly factor, HIRA. In addition, preliminary evidence from sequence analysis of chromatin assembly factors in human tumor derived cell lines and human tumors indicates that mutations in chromatin assembly factors might be selected for and drive progression of human tumors. Continuation of this project has the potential to uncover a novel class of tumor suppressor and oncogenes that might, ultimately, provide new diagnostic, prognostic and therapeutic targets.
References.