Steganalysis Techniques for Documents and Images
N. Memon, Ed Wong and Xiaolin Wu

1. Cover Sheet: Attached.

2. Objectives: The objective of this project was to develop novel techniques and
 algorithms for document and image steganalysis.

3. Status of effort: We have met and even exceeded our goals that we had outlined for
 our project. Our efforts have focused on two areas. The first area is LSB steganalysis for
 grayscale images. Here, as we had proposed (as a challenging task), we have generalized
 our previous steganalysis technique of sample pair analysis to a theoretical framework for
 the detection of the LSB steganography. The new framework exploits high-order
 statistics of the samples, and sheds some light on the effects of window size in
 steganalysis, an issue not well understood before.

 The second thrust of our efforts has been on steganalysis of binary documents. Last year
 we developed steganalysis methods to detect marked images hidden by following data
 hiding techniques:

 1. Boundary-based approaches
 2. The Line, word, or character shifting
 3. Fixed partitioning of image
 4. Modification of character features
 5. Modification of run-lengths
 6. Modification of half-tone patterns

 In addition to electronic documents we have also developed steganalysis methods to
 detect marked images when the original cover images are scanned/printed images. It is
 known that this is one of the most challenging problems in steganalysis literature. We
 have made significant progress and our work has laid the foundation to the goal of
 successfully detecting messages hidden in scanned/printed images. It should be noted that
 this goal was not part of the proposed work.

4. Accomplishments/New Findings: Below we summarize the main accomplishments of
 our project:

 a. An exciting progress made is the generalization of our previous steganalysis
 technique of sample pair analysis to a theoretical framework for the detection of
 the LSB steganography. The new framework exploits high-order statistics of the
 samples, and sheds some light on the effects of window size in steganalysis, an
 issue not well understood before. We have developed new detection algorithms.
The objective of the proposed research is to develop novel techniques and algorithms for document and image steganalysis. We developed a new framework for LSB steganalysis that gives better performance than the best of the known techniques. We also developed a new methodology of steganalysis by modeling steganography as an additive noise process and measuring the mean and variance of the stego-signal. We derived a formula that governs all additive steganography. We then illustrated the efficacy of our model using variations of LSB steganography. For binary images, we have made significant progress in developing steganalysis methods to detect marked images when the original cover images are either purely electronic images or printed-scanned images. Our work represents the first effort for detecting steganography in binary images.
in this new framework. Preliminary simulation results point to improved estimation of hidden message length in continuous-tone images compared to the best of existing techniques (RS Steganalysis). We proposed a general framework for the detection of the LSB steganography using digital media files as cover objects. The new framework exploits high-order statistics of the samples. It can compute a robust estimate of the length of a secret message hidden in the least significant bits of samples for a large class of digital media contents such as image, video and audio, in which the underlying signals consist of correlated samples. A case study on the LSB steganalysis of natural grey-scale and color images and experimental results was done.

b. We developed a new methodology for steganalysis by modeling steganography as an additive noise process and measuring the mean and variance of the stego-signal. We derived a formula that governs all additive steganography. It can be applied to any steganographic technique if the embedding process can be modeled as an additive noise process. We then used steganalysis of LSB embedding as a case study, and we achieved performance that is comparable to the most advanced LSB steganalysis techniques in the literature. We also showed that our framework performs effectively for other steganographic techniques, for example, +embedding, and boundary-based embedding in binary images.

c. Our second accomplishment was the steganalysis of pixel flipping embedding using compressed bit rate. Pixel flipping embedding refers to the binary document steganography techniques based on boundary modifications, fixed partitioning of the image into blocks, and modification of run-length patterns. All these techniques share a common characteristic - they embed information by flipping image pixels. We observed that embedding increases the compressed bit rate. Using JBIG2 compression algorithm, we empirically derived a function between flipping rate and compressed bit rate. This allowed us to estimate message length accurately.

d. The third accomplishment was the steganalysis of halftone images. We developed a steganalysis method of halftone images without knowledge of the original cover object. We first convert halftone images into grayscale-like images by low-pass filtering. Then a set of features are extracted from the filtered images by decomposing with quadrature mirror filters at different scale and orientation. Finally statistical training is performed to catch the “unusual” properties of marked images. Experimental results demonstrate that the proposed approach is effective and accurate.

e. The fourth accomplishment was the steganalysis of degraded documents. We considered the case when naturally degraded images, such as printed and scanned images, were used as cover images. When data were hidden in printed/scanned images, the embedding noise would be carefully covered by the printing/scanning noise. To do steganalysis, we used a nonlinear document degradation model to show that printing/scanning and embedding introduce different types of noises.
Then a practical approach was developed to detect marked images. Experiments gave acceptable accuracy.

5. Personnel Supported:
X. Wu, E. K. Wong, N. Memon, and M. Jiang.

6. Publications:

7. **Interactions/Transitions:**
 b. Presentation to visitors from AFRL at site meeting on July 29, 2003.

8. **New discoveries, inventions, or patent disclosures.** None.

9. **Honors/Awards:** None

10. **Markings:** None