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The differential system

Consider the matrix differential equation

F is a continuous matrix function, globally 
Lipschitz on a subdomain of GL(n)
the solution Y(t) exists and is unique in a 
neighborhood  ]-τ τ[ of  the origin 0
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The structure of GL(n)

Two maximal connected and disjoint open subsets 
comprising GL(n)

{ }0)det(|)( >ℜ∈= ×+ MMnGL nn

{ }0)det(|)( <ℜ∈= ×− MMnGL nn

det=0

Variety of 
Singular
nxn matrices
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Theoretical results

The existence of the solution Y(t) for all t is not 
guaranteed a prioria priori and the presence of a finite 
escape time behavior is not precluded.

The value of the escape point depends on the 
function F

If the escape point τ is finite then Y(t) approaches a 
singular matrix as t → τ
if τ < ∞ then Y(t) exists for all t > 0
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Existence interval
(-1,1)

Escape point 1

Theoretical results

Example: F constant function with trace(F) = 0
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Theoretical results

Relationship between the singular values of the 
solution Y(t), the initial condition Y(0) and the 
symmetric matrix function:
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Systems with structure

If the matrix function F maps all matrices into the 
Lie algebra of skew-symmetric matrices

Y(t) belongs to the orthogonal manifold 
(whenever Y(0) is orthogonal)

If diag(F) = 0  for all nonsingular matrices 
diag(Y(t)TY(t)) =  diag(Y(0)TY(0)) 
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Examples

Control Theory
Optimal system assignment via Output Feedback Optimal system assignment via Output Feedback 
ControlControl
Balanced Matrix Factorizations
Balanced realizations (Balanced realizations (IsodynamicalIsodynamical flows)flows)

Multivariate Data AnalysisMultivariate Data Analysis
Weighted Oblique Weighted Oblique ProcrustesProcrustes problemproblem

Inverse Inverse EigenvalueEigenvalue ProblemProblem
Pole placement or Pole placement or eigenvalueeigenvalue assignment problem assignment problem 
via output feedbackvia output feedback
Prescribed Entries Inverse Eigenvalue Problem
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Examples in Control Theory

Output Feedback Control of linear systemOutput Feedback Control of linear system
Consider the linear dynamical system defined by the 
triple (A,B,C)∈Ρn×n×Ρn×m×Ρp×n

The process of “feeding backfeeding back” the output or the state 
variables in a dynamical system configuration through 
the input channels
Output FeedbackOutput Feedback: u(t) is replaced by u(t)=Ky(t)+v(t)
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K∈Ρm×p feedback gain matrix
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Examples in Control Theory

Output Feedback Control of linear systemOutput Feedback Control of linear system
The feedback system is

Optimal system assignmentOptimal system assignment
Given a target systemtarget system described by the triple 
(F,G,H)∈Ρn×n×Ρn×m×Ρp×n find an optimal feedback optimal feedback 
transformationtransformation of (A,B,C) which results the best 
approximation of (F,G,H).
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Examples in Control Theory

The set GL(n)×Ρ m×p of feedback transformation
is a Lie group under the operation 

(T1, K1)○(T2,K2) = (T1T2 , K1+K2)
We can consider action on the output feedback output feedback 
groupgroup and orbits, particularly:

The distance function 

})(),(|,,)({(),,( 11 pmnGLKTCTTBTBKCATCBA ×−− ×∈+= ΡΦ
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Examples in Control Theory

The gradient flow of this distance function with 
respect to a specific Riemannian metric on 
Φ(A,B,C) can be written as:
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Examples in Control Theory

Balanced matrix factorizationsBalanced matrix factorizations
General matrix factorization problem:
Given a matrix H∈Ρ k×l find two X∈Ρ k×n and Y∈Ρ n×l

such that H=XY
balanced factorization X TX=YYT

diagonal balanced factorization X TX=YYT=D

Balanced and diagonal balanced factorization can be 
characterized as critical points of cost functions 
defined on the orbit

)}(|),{(),( 1 nGLTTYXTYX lnnk ∈×∈= ××− ΡΡΟ
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Examples in Control Theory

The cost functions are respectively:

Applying  a gradient flow techniques differential 
systems on GL(n) can be constructed:
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Examples in Control Theory

Balanced realizations in linear system theoryBalanced realizations in linear system theory
Consider the linear dynamical system defined by the triple 
(A,B,C)∈Ρn×n×Ρn×m×Ρp×n

Gramians:

(A,B,C) is a balanced realization if WC=WO

(A,B,C) is a diagonal balanced realization if WC=WO=D
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Examples in Control Theory

Any T∈GL(n) changes a realization by
(A,B,C)→(TAT−1, TB,CT−1)

and the Gramians via
WC→T WC T−1            W0→T−TW0T−1

Balanced and diagonal balanced realizations have 
been proved to be critical points of costs functions 
defined on the orbit

)}(|),,{(),,( 11 nGLTCTTBTATCBA nkmnnn ∈××∈= ×××−− ΡΡΡΟ
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Examples in Control Theory

The cost functions are respectively:

All balancing transformation T∈GL(n) for a given 
asymptotically stable system (A,B,C) can be 
obtained solving the gradient flow
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Examples in Multivariate Data 
Analysis

WeightedWeighted oblique oblique ProcrustesProcrustes problemproblem ((WObPPWObPP))
Manifold of the oblique rotation matricesManifold of the oblique rotation matrices

Given A,B,C fixed matrices with conformal dimensions
Minimize || AXC- B || subject to X∈OB(n)

Problem in factor analysis known as a Problem in factor analysis known as a ““rotation to rotation to 
factorfactor--structurestructure matrixmatrix””

Minimize || AX-TC- B || subject to X∈OB(n)
Problem of finding an approximation Problem of finding an approximation toto a a ““factorfactor--
patternpattern””matrixmatrix

})(,0)det(|{)( IXXdiagXXnOB Tnn =≠∈= ×Ρ
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Examples in Multivariate Data 
Analysis

The solution of the WObPP problem can be 
obtained solving a descent matrix ODEdescent matrix ODE:

being ∇ the gradient of the function to be 
minimize with respect to the chosen metric

(N. Trendafilov FGCS 2003)

)()()( ∇−=∇−= − TT
nOB XoffX

dt
dX π



Nicoletta Del Buono

Examples in Inverse Eigenvalue
Problem and control theory

Pole placement or Pole placement or eigenvalueeigenvalue assignment via assignment via 
output feedbackoutput feedback: 

Given a linear system described by the triple (A,B,C) 
and a self-conjugate set of complex points {λ1 λ2 … λn, }
find a feedback gain matrix K such that A+BKC has 
eigenvalues λi 

Denoted by Λ a fixed matrix with eigenvalues λi 
the pole placement task is equivalent to find a
matrix T∈GL(n) and K∈Ρ m×p minimizing the 
distance µι ||)(|| 1−+−Λ TBKCAT
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Examples in Inverse Eigenvalue
Problem and control theory

Using a gradient flow techniques the solution can 
be obtained solving 
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Examples in Inverse Eigenvalue
Problem

Matrix completion with prescribed Matrix completion with prescribed eigenvalueseigenvalues
PEIEP (prescribed entries inverse eigenvalue
problem) : 

Given 
Λ={(iv,jv) | v =1,…,m} m pairs of integers 1≤iv < jv ≤ n
a ={a1,…,am} ⊂ Ρ
{ λ1,…, λn } ⊂ Χ closed under conjugation

Find a matrix X ∈ Ρn×n such that   σ(X)={ λ1,…, λn }
and mvax vji vv

,...,1  ==
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Examples in Inverse Eigenvalue
Problem

Let Λ a matrix with eigenvalues λi and denoting
Μ(Λ)={VΛV −1 | V∈GL(n) }

the orbit of matrices isospectral to Λ under the 
action group of GL(n) and

Solving the PEIEP is to find intersection of the 
two geometric entities Μ(Λ) and Σ(Λ,a)

Σ(Λ,a)={X=[xij]∈ Ρn×n |                                 }mvax vji vv
,...,1  ==
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Examples in Inverse Eigenvalue
Problem

Minimize for each given X∈ Μ(Λ) the distance 
between X and Σ(Λ,a)

Using a descent flow approach we get

(M.T. Chu et al.  FGCS 2003)
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Numerical Approximation: 
substituting approach

Consider our system:

Setting Z=Y -T from YTZ=I we get
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Substituting Approach

AdvantagesAdvantages::
No direct use of the inverse of Y(t) (computational 
advantages)

Drawbacks:Drawbacks:
Solution of a new matrix ODE with double dimensiondouble dimension
with respect to the original system;
High stiffness (when Y(t) tends to a singular matrix or 
the Lipschitz constant of H is large);
The presence of an additional structure of the solution 
matrix Y(t) is not considered         need of ad hocad hoc
numerical scheme 
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When the matrix function F does not depend
explicitely on Y−T, i.e.:

It could bebe convenientconvenient work with the implicit
equation

Solution via Riccati equation
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Solution via Riccati equation

Applying the second order Gauss Legendre
method, we get:

The previous equation can be iteratively solved 
starting from an initial approximation 
(avoiding the nonlinearity of avoiding the nonlinearity of FF)
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Solution via Riccati Equation

The latter equation is the prototype of an Algebraic Algebraic 
RiccatiRiccati equationequation, in fact setting

we get








 +
+== +

2
 2     and    

)0(
1nn

n
T

nn
YYhFYYCYA

0)( =+−+= CAXXAXXXR TTT



Nicoletta Del Buono

Solution via Algebraic Riccati
equation

Numerical methods to solve Algebraic Algebraic RiccatiRiccati
equationequation are based on fixed point or Newton 
iteration:

PicardPicard iterationiteration:
Newton methodNewton method:

R : Ρn×n → Ρn×n

its Frechét derivatitive is:
the Newton iteration starts from X0 and solves 

R(X)=0 via  Xk+1= Xk+ Dk being Dk the solution of 
Sylvester equation 
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T
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T
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Solution via Riccati equation

Solving Riccati equation implies the numerical 
treatment of the Sylvester equation

ΑX +X TΒ = Χ
with Α, Β, Χ given n×n matrices

ExistenceExistence: there exists a solution solution XX of the 
Sylvester equation iff

are equivalent
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Solution via Riccati equation

To obtain conditions for uniqueness of solution 
and for constructing it, we reformulate the 
Sylvester equation as a  n2×n2 linear system:
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being bi the columns of the matrix Β

Uniqueness:Uniqueness: there exists a unique solution X of the
Sylvester equation ΑX+X TΒ=Χ if the matrix M is 
non-singular (rank (M)=n2)

Solution via Riccati equation
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Solution via Riccati equation

Considering the linear equation derived from:

PicardPicard iteration:iteration: Α=AT and Β =A ⇒ M is singular
Newton iteration:Newton iteration: Α=Xk+AT and Β =Xk− A ⇒ M is 
non-singular ⇒ unique solutionunique solution !!

Newton method converges in a reasonable number Newton method converges in a reasonable number 
of iterations of iterations 
Numerical solution of Sylvester equation :

Direct methods (QR, Gaussian Elimination);Direct methods (QR, Gaussian Elimination);
Iterative algorithms; Iterative algorithms; 
Generalize Conjugate Residual method.Generalize Conjugate Residual method.
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Singular Value Decomposition

To avoid the inverse matrix computations and to To avoid the inverse matrix computations and to 
control the singularities of the matrix solution control the singularities of the matrix solution Y(tY(t)) we we 
can adopt a continuous Singular Value Decompositioncan adopt a continuous Singular Value Decomposition
approachapproach
The continuous SVD of Y (t) is a continuous 
factorization

Y(t)=U(t) Σ(t)V T(t)
U(t),V(t) orthogonal matrices (UTU=In and V TV=In)
Σ(t) diagonal matrix with diagonal elements the 
singular values σi (t) of Y(t)

The motion of The motion of Y(tY(t)) is now described by the variables is now described by the variables U(tU(t),),
ΣΣ(t(t)),, V(tV(t)) giving more information on the flowgiving more information on the flow
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Singular Value Decomposition

Suppose that the solution Y(t) possesses dinstinct
and nonzero singular values σi(t), for i=1,…, n 
and t in [0, τ) then there exists a continuous SVD  
of Y(t) and the factors U(t), Σ(t), V(t) of such a 
decomposition satisfy the following ODEs:
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Singular Value Decomposition

The differential equations for the singular values are

The elements of the skew-symmetric matrices H, K
are
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Singular Value Decomposition

Numerical solution of: 
a diagonal system in σi (information on the conditioning (information on the conditioning 
of the matrix solution of the matrix solution YY((tt))))
two linear systems in Hij Kij

two orthogonal systems in U and V
our aimour aim is to preserve the nonnon--singular behaviorsingular behavior of 
the numerical solution explicit integration of the 
systems in U and V (orthogonalityorthogonality preserved up to the preserved up to the 
order of the methodorder of the method)

Drawback distinct singular valuesdistinct singular values
Block Continuous SVDBlock Continuous SVD
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Some of the previous results can be extended to 
differential problems on the manifold 

GL(m, n) ={Y∈Ρ m×n | rank(Y ) = n},    n ≤ m
Differential systems on GL(m,n) have the 
following form:

with G belonging to the tangent space of GL(m,n):

Rectangular case

),()0(    ),( 0 pnGLYYYGY ∈==
•

( ) ( )[ ] )()()( 2
1

1
1 YFYYYYIYFYYYYG TT

n
T    

−−
−+=

n×n m×n



Nicoletta Del Buono

ContinuousContinuous SVD (SVD (economyeconomy))

Differentiating we obtain the differential systems
satisfied by the three factors: 

diag(σ1,…,σn)
n×n matrix

V TV=VV T=In

m×n matrix
U1

TU1=In

Rectangular Case: numerical
treatment

)()()(  )( 11 tVttUtY TΣ=
m×n
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Rectangular Case: numerical
treatment
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Rectangular Case: numerical 
treatment

Substituting approach:Substituting approach:

Setting  Setting  Z Z = (= (Y Y TTY Y ))−−1  1  we obtainwe obtain
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Numerical Illustrations

First example:

With solution existing in (-1/δ, 1/δ)

We solve the problem with δ =1/2
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Numerical Illustrations

Behaviour of the global error on [0 2)
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Numerical Illustrations

Second example

with solution

periodically singular (for each τk= k π/2)
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Numerical Illustrations

Semilog plot of the global error on (π/4,π/2)
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Conclusions

We have considered a particular ODEs on GL(n) 
often occurring in applications
Several problems modeled by such ODEs
Different numerical approaches avoiding the 
direct use of matrix inversion and detection of 
singular behavior
Future works:Future works:

Improving the validation of the proposed approaches by 
tackling numerical tests on real examples


