Lie group techniques for Neural Learning

Edinburgh June 2004

Elena Celledoni

SINTEF Applied Mathematics, IMF-NTNU
Title: Lie group techniques for Neural Learning

Author:

Performing Organization:
SINTEF Applied Mathematics, IMF-NTNU

Performance Period:
03 JAN 2005

Abstract:
See also ADM001749, Lie Group Methods And Control Theory Workshop Held on 28 June 2004 - 1 July 2004., The original document contains color images.
Outline

- Neural Networks
 - a short introduction
Outline

- Neural Networks
 - a short introduction
- Independent Component Analysis
 - Stochastic signal processing
 - Constraint optimization in ICA
Outline

Neural Networks
- a short introduction

Independent Component Analysis
- Stochastic signal processing
- Constraint optimization in ICA

Geometric Integration of Learning equations
- gradient flows and algorithms on manifolds
- MEC learning
- Newton methods
- diffusion algorithms
Neural Networks

Goals:
- Achieve efficient use of machines in tasks currently solved by humans
- Improve computing capabilities looking at the brain as a model
- Understand how the brain works

Applications
- Machine Learning
 1. How can a computer learn from a set of examples?
 2. Constraint optimization
 3. Pattern recognition, classification
 4. Associative memory
- Cognitive science
 1. Models for high level reasoning: language, problem solving
 2. Models for low level reasoning: vision, speech recognition, speech generation
- Neurobiology: find models for how the brain works
List of fields where Neural Networks are used

- Signal processing
- Control
- Robotics (navigation, vision)
- Medicine
- Business and Finance
- Data Compression
The brain as an Information Processing System

- Massively parallel: 10 billion neurons, 10000 synapses per neuron
- Slow hardware: neurons operate at about 100 Hz, while conventional CPUs execute several hundred million machine level operations per second
The brain as an Information Processing System

- Massively parallel: 10 billion neurons, 10,000 synapses per neuron
- Slow hardware: neurons operate at about 100 Hz, while conventional CPUs execute several hundred million machine level operations per second
The brain as an Information Processing System

- Massively parallel: 10 billion neurons, 10000 synapses per neuron
- Slow hardware: neurons operate at about 100 Hz, while conventional CPUs execute several hundred million machine level operations per second

![Motor Neuron Diagram](https://via.placeholder.com/150.png)
The brain as an Information Processing System

- Massively parallel: 10 billion neurons, 10000 synapses per neuron
- Slow hardware: neurons operate at about 100 Hz, while conventional CPUs execute several hundred million machine level operations per second

Synapse: transmission of a signal between neurons via a neurotransmitter. **Learning** corresponds to alteration of the strength of the connection between neurons.
A simple model for a neuron

Each node (neuron) receives signal inputs from n neighbor nodes.

$$y_i = f\left(\sum_j w_{i,j} y_j \right)$$

The weighted sum $\sum_j w_{i,j} y_j$ is called the net input. f is the activation function, if f is the identity we have a linear unit. y_i is the output signal.

$$y_i = f(\text{net}_i)$$
Linear Neural Networks

Several inputs one output

http://www.willamette.edu/ gorr
The cocktail-party problem
Suppose you record two time signals $x_1(t)$ and $x_2(t)$ form two different positions in a room. Each recorded signal is a linear mixture of the voices of two speakers which emit two sources $s_1(t)$ and $s_2(t)$

$$
x_1(t) = a_{1,1}s_1(t) + a_{1,2}s_2(t)
$$

$$
x_2(t) = a_{2,1}s_1(t) + a_{2,2}s_2(t)
$$

Estimate $s_1(t)$ and $s_2(t)$ from the sole knowledge of $x_1(t)$ and $x_2(t)$
Independent Component Analysis

The cocktail-party problem
Suppose you record two time signals $x_1(t)$ and $x_2(t)$ form two different positions in a room. Each recorded signal is a linear mixture of the voices of two speakers which emit two sources $s_1(t)$ and $s_2(t)$

$$x_1(t) = a_{1,1}s_1(t) + a_{1,2}s_2(t)$$
$$x_2(t) = a_{2,1}s_1(t) + a_{2,2}s_2(t)$$

Estimate $s_1(t)$ and $s_2(t)$ from the sole knowledge of $x_1(t)$ and $x_2(t)$
Assume the sources and the recorded signals are samples of the zero-mean random variables x_1, x_2 (mixtures) and s_1, s_2 (independent components).
Assumption $s_1(t)$ and $s_2(t)$ are statistically independent
Independent Component Analysis

The cocktail-party problem
Suppose you record two time signals $x_1(t)$ and $x_2(t)$ form two different positions in a room. Each recorded signal is a linear mixture of the voices of two speakers which emit two sources $s_1(t)$ and $s_2(t)$

$$x_1(t) = a_{1,1}s_1(t) + a_{1,2}s_2(t)$$
$$x_2(t) = a_{2,1}s_1(t) + a_{2,2}s_2(t)$$

Estimate $s_1(t)$ and $s_2(t)$ from the sole knowledge of $x_1(t)$ and $x_2(t)$
Assume the sources and the recorded signals are samples of the zero-mean random variables x_1, x_2, (mixtures) and s_1, s_2 (independent components).

Assumption $s_1(t)$ and $s_2(t)$ are statistically independent

Unknown source signals $s(t) = [s_1(t), \ldots, s_n(t)]^T$
Given the output signals $x(t) = As(t)$, $x(t) = [x_1(t), \ldots, x_k(t)]^T$
Unknown mixing matrix $A_{p \times n}$
Independent Component Analysis

The cocktail-party problem
Suppose you record two time signals \(x_1(t) \) and \(x_2(t) \) form two different positions in a room. Each recorded signal is a linear mixture of the voices of two speakers which emit two sources \(s_1(t) \) and \(s_2(t) \)

\[
\begin{align*}
 x_1(t) & = a_{1,1}s_1(t) + a_{1,2}s_2(t) \\
 x_2(t) & = a_{2,1}s_1(t) + a_{2,2}s_2(t)
\end{align*}
\]

Estimate \(s_1(t) \) and \(s_2(t) \) from the sole knowledge of \(x_1(t) \) and \(x_2(t) \)
Assume the sources and the recorded signals are samples of the zero-mean random variables \(x_1, x_2, \) (mixtures) and \(s_1, s_2 \) (independent components).
Assumption \(s_1(t) \) and \(s_2(t) \) are statistically independent

Unknown source signals \(s(t) = [s_1(t), \ldots, s_n(t)]^T \)
Given the output signals \(x(t) = As(t), \; x(t) = [x_1(t), \ldots, x_k(t)]^T \)
Unknown mixing matrix \(A \; p \times n \)
Find approximations \(y \) of \(s \) by constructing a de-mixing matrix \(W \) and

\[y = Wx. \]
Principles for reconstruction

The sum of two independent random variables usually has distribution closer to Gaussian than the two original random variables. (Central Limit Theorem)

\[x = As \]

Find

\[y = Wx \approx s \]

maximizing nongaussianity.

A measure of nongaussianity is kurtosis,

\[\text{kurt}(y) = E\{y^4\} - 3(E\{y^2\})^2, \]

with \(y \) of unit variance \(\text{kurt}(y) = E\{y^4\} - 3. \)
Withening

Preprocessing of the output signals $\mathbf{x} \rightarrow \tilde{\mathbf{x}}$ such that the components of $\tilde{\mathbf{x}}$ are uncorrelated with variances equal to 1

$$E\{\tilde{\mathbf{x}}\tilde{\mathbf{x}}^T\} = \mathbf{I}.$$
Preprocessing of the output signals $x \rightarrow \tilde{x}$ such that the components of \tilde{x} are uncorrelated with variances equal to 1

$$E\{\tilde{x}\tilde{x}^T\} = I.$$

Use for example $E\{xx^T\} = VDV^T$ and

$$\tilde{x} = VD^{-1/2}V^Tx \quad \Rightarrow \quad E\{\tilde{x}\tilde{x}^T\} = I$$

and $\tilde{x} = VD^{-1/2}V^TAs = \tilde{A}s$, then

$$E\{\tilde{x}\tilde{x}^T\} = \tilde{A}E\{ss^T\}\tilde{A}^T = \tilde{A}\tilde{A}^T = I.$$

Lie group techniques for Neural Learning – p.10/24
Reconstruction

Reconstruction of \(s \). We can look for a de-mixing matrix \(W \) s.t. \(W^T W = I_p \) and \(y(t) = W x(t) \) solving

\[
\min_{W^T W = I_p} D(W)
\]

\(D(W) \) is the dependency among the components.

A. Hyvärinen and E. Oja Independent component analysis: A tutorial, *Neural Networks*.
Let \mathcal{M} be a Riemannian manifold with metric $m(\cdot, \cdot)$, given $\phi : \mathcal{M} \to \mathbb{R}$ a smooth function the equilibria of

$$\dot{x}(t) = -\nabla \phi(x(t))$$

are the critical points of ϕ.

$\nabla \phi$ is such that:

- $\nabla \phi(x) \in T_x \mathcal{M}$
- $\phi'(x)(v) = m(\nabla \phi(x), v)$ for all $v \in T_x \mathcal{M}$
Optimizing via gradient flows

Let \mathcal{M} be a Riemannian manifold with metric $m(\cdot, \cdot)$, given $\phi : \mathcal{M} \to \mathbb{R}$ a smooth function the equilibria of

$$\dot{x}(t) = -\nabla \phi(x(t))$$

are the critical points of ϕ.

$\nabla \phi$ is such that:

- $\nabla \phi(x) \in T_x \mathcal{M}$
- $\phi'(x)(v) = m(\nabla \phi(x), v)$ for all $v \in T_x \mathcal{M}$

U. Helmke and J.B. Moore, Optimization and Dynamical Systems, Springer-Verlag 1994

S.I. Amari, Natural Gradient Works Efficiently in Learning, Neural Computation, 1998

Y. Nishimori, Learning algorithm for ICA by geodesic flows on orthogonal
Proc. IJCNN 99
Consider $S^* = \{[2m_i, w_i]\}$ rigid system of n masses m_i with positions w_i (unitary distance form the origin on mutually orthogonal axis). The masses move in a viscous liquid. No translation.

$$\dot{W} = HW, \quad P = -\mu HW$$

$$\dot{H} = \frac{1}{4}[(F + P)W^T - W(F + P)^T]$$

μ viscosity parameter

P matrix of the viscosity resistance

W matrix of the positions

F active forces

H angular velocity matrix

W is on $O(n)$ or on the Stiefel manifold
The mechanical system seen as an adapting rule for neural layers with weight matrix W. The forces

$$F := -\frac{\partial U}{\partial W}$$

with U a potential energy function. The equilibria of the mechanical systems S^* are at the local minima of U. Take $U = J_C$ cost function to be minimized, or $U = -J_O$ objective function to be maximized, $W(t), \ t \to \infty$ approaches the solution of the optimization problem.

S. Fiori, 'Mechanical' Neural Learning for Blind Source Separation, Electronics Letters, 1999
Reformulation of the equations when $n \ll p$

Using the Lie algebra

\[\dot{W} = HW, \quad P = -\mu HW \]

\[\dot{H} = \frac{1}{4} [[F + P]W^T - W(F + P)^T] \]

Using the tangent space

\[\dot{W} = V \]

\[\dot{V} = g(V, W) \]

where

\[V = (GW^T - WG^T)W, \quad G = V - W(W^TV/2 + S) \]

and

\[g(V, W) = (LW^T - WL^T)W + (GW^T - WG^T)V, \quad L = \dot{G} - GW^T G \]
The learning algorithm

\[
\begin{align*}
V_{n+1} &= V_n + hg(V_n, W_n) \\
G_n &= V_n - 1/2W_n(W_n^T V_n) \\
W_{n+1} &= \exp(h(G_n W_n^T - W_n G_n^T)) W_n
\end{align*}
\]

with $W_0 = I_{n \times p}$ and $V_0 = 0_{n \times p}$.

Here

\[
\exp(h(G_n W_n^T - W_n G_n^T)) = [W_n, W_n^\perp] \exp\left(\begin{bmatrix} C - C^T & -R^T \\ R & O \end{bmatrix}\right) [W_n, W_n^\perp]^T
\]

and $C = W_n^T G_n$, and $G_n - W_n C = W_n^\perp R$. We exponentiate matrices of dimension $2p \times 2p$ instead of $n \times n$.

Computational cost

For the exponential $9np^2 + np + \mathcal{O}(p^3)$ flops. For the overall geodesic learning algorithm (one step) $21np^2 + 6np + \mathcal{O}(p^3)$ flops.
Computational gain

Computing the largest eigenvalue of an $n \times n$ matrix A (discretization of the 1-D Laplacian with finite differences).

The potential energy function is $U(w) = -w^T A w$, $p = 1$.

<table>
<thead>
<tr>
<th>SIZE OF A</th>
<th>New MEC</th>
<th>Old MEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 32$</td>
<td>4.72×10^5</td>
<td>1.31×10^6</td>
</tr>
<tr>
<td>$n = 64$</td>
<td>1.82×10^6</td>
<td>5.25×10^6</td>
</tr>
<tr>
<td>$n = 128$</td>
<td>7.39×10^6</td>
<td>2.10×10^7</td>
</tr>
<tr>
<td>$n = 256$</td>
<td>2.49×10^7</td>
<td>8.39×10^7</td>
</tr>
</tbody>
</table>

Floating point operations per iteration versus the size of the problem.
Experiments Blind source separation

Original images, with their kurtosis and their linear mixtures

Kurtosis = 4.981

Kurtosis = 4.699

Kurtosis = 2.157

Kurtosis = 2.871

Kurtosis = 2.953

Kurtosis = 1.329
Source separation

The force \(F(W) = -kE_x[x(x^TW)^3] \).

Recovered image, and potential energy

![Recovered image](image1.png)

![Algorithm: MEC3](image2.png)

![Potential energy](image3.png)

![Kinetic energy](image4.png)
References

Future work

- On the orthogonal group consider quasi-geodesic paths using low-rank splittings
- Other manifolds occur in the case of multi-layer neural networks: Flag manifolds
- comparison with Newton methods
Newton methods, Mahony’s approach

For finding minima or maxima of $\phi : G \to \mathbb{R}$, and G is a Lie group,

- choose an inner product $\langle \cdot, \cdot \rangle$ on the Lie algebra \mathfrak{g} and take an orthonormal basis in the Lie algebra X_1, \ldots, X_d, and $\tilde{X}_1, \ldots, \tilde{X}_d$
- the right invariant vector fields

$$\text{grad}\phi = \sum_{i=1}^{d} m(\tilde{X}_i, \text{grad}\phi)\tilde{X}_i = \sum_{i=1}^{d}(\tilde{X}_i\phi)\tilde{X}_i$$

$(m(\tilde{X}, \tilde{Y}) = \langle X, Y \rangle$ (right invariant group metric))

- if $\exp(X)\sigma$ is a critical point of ϕ, the vector field \tilde{X} satisfies,

$$\text{grad}\phi(\sigma) + \text{grad}(\tilde{X}\phi)(\sigma) = 0$$

Newton methods, Mahony’s approach

For finding minima or maxima of $\phi : G \to \mathbb{R}$, and G is a Lie group,

- choose an inner product $< \cdot, \cdot >$ on the Lie algebra \mathfrak{g} and take an orthonormal basis in the Lie algebra X_1, \ldots, X_d, and $\tilde{X}_1, \ldots, \tilde{X}_d$

the right invariant vector fields

\[
\text{grad} \phi = \sum_{i=1}^{d} m(\tilde{X}_i, \text{grad} \phi)\tilde{X}_i = \sum_{i=1}^{d} (\tilde{X}_i \phi)\tilde{X}_i
\]

$$(m(\tilde{X}, \tilde{Y}) = < X, Y > \text{ (right invariant group metric)})$$

- Find X^k such that \tilde{X}^k solves

\[
\text{grad} \phi(\sigma_k) + \text{grad}(\tilde{X}^k \phi)(\sigma_k) = 0
\]

set $\sigma_{k+1} = \exp(X^k)\sigma_k$, $k \leftarrow k + 1$ and continue, (equivalent to Lie Euler for $\dot{\sigma} = X^k \sigma$, $\sigma(0) = \sigma^k$)

Newton methods, other approaches

Diffusion-type algorithms

Perturbation of the standard Reimannian gradient to obtain a randomized gradient. Diffusion-type gradient on $\mathfrak{so}(n)$

\[
V_{\text{diff}}(t) = V(t) + \sqrt{2\theta} \sum_{k=1}^{n(n-1)/2} X_k \frac{d\mathcal{W}_k}{dt}
\]

$V(t)$ deterministic gradient, X_k is a basis of the Lie algebra $\mathfrak{so}(n)$ orthogonal with respect to the chosen metric, and $\mathcal{W}_k(t)$ are real-valued, independent standard Wiener processes i.e. a random variable \mathcal{W} continuous in t s.t.

- $\mathcal{W}(0) = 0$ with probability 1
- for $0 \leq \tau < t$ the random variable $\mathcal{W}(t) - \mathcal{W}(\tau)$ is normally distributed with mean zero and variance $t - \tau$
- for $0 \leq \tau < t < u < v$, the increments $\mathcal{W}(t) - \mathcal{W}(\tau)$ and $\mathcal{W}(v) - \mathcal{W}(u)$ are statistically independent
Diffusion-type algorithms

Perturbation of the standard Reimannian gradient to obtain a randomized gradient. Diffusion-type gradient on $\mathfrak{SO}(n)$

$$V_{\text{diff}}(t) = V(t) + \sqrt{2\theta} \sum_{k=1}^{n(n-1)/2} X_k \frac{dW_k}{dt}$$

$V(t)$ deterministic gradient, X_k is a basis of the Lie algebra $\mathfrak{SO}(n)$ orthogonal with respect to the chosen metric, and $W_k(t)$ are real-valued, independent standard Wiener processes. The learning differential equation is

$$\frac{dW}{dt} = -V_{\text{diff}}(t)W$$

Langevin-type stochastic differential equation on the orthogonal group

Conclusion

- Integration of learning equations and gradient flows is achieved with simple first order explicit Lie group integrators.
- Efficient approximation of the matrix exponential from a Lie algebra to a Lie group or the computation of geodesics is crucial.
- Development of methods based on other coordinate maps then the exponential, and quasi-geodesic strategies.
- Geometric integration of stochastic differential equations.