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The transaction model is a natural means to express atom-
icity, fault-tolerance, synchronization, and exception han-
dling in reliable programs. A (lightweight, in-memory) trans-
action can be thought of as a sequence of program loads and
stores which eithercommits or aborts. If a transaction com-
mits, then all of the loads and stores appear to have run atom-
ically with respect to other transactions. That is, the trans-
action’s operations appear not to have been interleaved with
those of other transactions or non-transactional code. If a
transaction aborts, then none of its stores take effect and the
transaction can be safely restarted, typically using a backoff
algorithm to preclude live-lock. A subset of the traditional
ACID database semantics are provided.

Although transactions can be implemented using mu-
tual exclusion (locks), we present algorithms utilizing non-
blocking synchronization to exploit optimistic concurrency
among transactions and provide fault-tolerance. A process
which fails while holding a lock within a critical region
can prevent all other non-failing processes from ever mak-
ing progress. It is in general not possible to restore the locked
data structures to a consistent state after such a failure. Non-
blocking synchronization offers a graceful solution to this
problem, as non-progress or failure of any one thread or mod-
ule will not affect the progress or consistency of other threads
or the system.

Implementing transactions using non-blocking synchro-
nization offers performance benefits as well. Even in
a failure-free system, page faults, cache misses, context
switches, I/O, and other unpredictable events may result in
delays to the entire system when mutual exclusion is used to
guarantee the atomicity of operation sequences; non-blocking
synchronization allows undelayed processes or processorsto
continue to make progress. Similarly, in real-time systems,
the use of non-blocking synchronization can preventpriority
inversion in the system by allowing high priority threads to
abort lower priority threads at any point.

We show how to integrate non-blocking transactions into
an object-oriented language, “transactifying” existing code to
fix existing concurrency bugs and using transactions for mod-
ular fault-tolerance, backtracking, exception-handling, and
concurrency control in new programs.

We propose the use of compiler-supported “atomic” blocks
to specify synchronization. This is less error-prone than man-
ual maintenance of a locking discipline: deadlocks may be
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introduced when locks are not acquired and released in a
highly disciplined manner, and the specification of locking
discipline cuts across module boundaries. Races are common
when multiple shared objects are involved in an operation,
each with its own lock. We provide several examples of such
problematic locking code. A non-blocking transaction imple-
mentation prevents inadvertent deadlocks, andatomic dec-
larations implemented with the transaction mechanism can
extend across method invocations and module boundaries to
protect multiple objects involved in an operation without al-
lowing races between them. An optimistic non-blocking im-
plementation provides performance improvements over lock-
ing strategies in some cases as well.

Language-level transactions are used as a general
exception-handling and backtracking mechanism. Instead of
forcing the programmer to manually track changes made to
program state in order to implement proper fault recovery,
we can handle the exception using transaction rollback to au-
tomatically restore a safe program state, even if the fault oc-
curred in the middle of mutating shared objects. An efficient
and graceful transaction mechanism integrated into the pro-
gramming language encourages a robust programming style
where recovery and retry after an unexpected condition is
made simple and faults and recovery do not break abstraction
boundaries.

We describe an efficient pure-software transaction mecha-
nism we have implemented for programs written in Java. We
also discuss our design and simulation (with Asanović, Kusz-
maul, Leiserson, and Lie) of minimally-intrusive architecture
extensions which allow most transactions to complete with
near-zero overhead. Unlike previous hardware approaches,
our scheme is scalable and supports transactions of unlim-
ited size, although performance is best for transactions which
fit in local cache. Finally, we describe our hybrid hardware-
software scheme combining the speed hardware provides for
small transactions with the flexibility the software implemen-
tation allows for large or long-lived transactions.

Integrating transactions into the programming language
and implementing them with the high-efficiency techniques
described enables the creation of software with higher reli-
ability. Synchronization is more robust and its specification
is modular and less error-prone, and faults and exceptions in
general can be soundly handled with low overhead using the
transaction mechanism.
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Outline

● Problems with traditional software development
– lock ordering
– proper atomicity
– fault-tolerance
– priority inversion

● Language-level Transactions
● How?

– Software implementation
– Hardware implementation
– Both!

● Conclusions
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Programming Reliable Systems
(is hard)
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Conventional Locking: Ordering

● When more than one object is involved in a 
critical region, deadlocks may occur!
– Thread 1 grabs A then tries to grab B
– Thread 2 grabs B then tries to grab A
– No progress possible!

● Solution: all locks ordered
– A before B
– Thread 1 grabs A then B
– Thread 2 grabs A then B
– No deadlock
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Conventional Locking: Ordering
● Maintaining lock order is a lot of work!
● Programmer must choose, document, and 

rigorously adhere to a global locking protocol for 
each object type
–  development overhead!

● All symmetric locked objects must include lock 
order field, which must be assigned uniquely
– space overhead!

● Every multi-object lock operation must include 
proper conditionals
– which lock do I take first?  which do I take next?
– execution-time overhead!

● No exceptions!
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Multi-object atomic update

● Programmer's mental model of locks can be 
faulty

● Monitor synchronization: associates locks with 
objects

● Promises modularity: locking code stays with 
encapsulated object implementation

● Often breaks down for multiple-object scenarios
● End result: unreliable software, broken 

modularity



Ananian/Rinard: Language-Level Transactions, HPEC '04

A problem with multiple objects
public final class StringBuffer ... {
  private char value[ ];
  private int count;
  ...
  public synchronized StringBuffer append(StringBuffer sb) {
    ...
A:int len = sb.length();
    int newcount = count + len;
    if (newcount > value.length)
      expandCapacity(newcount);
    // next statement may use state len
B:sb.getChars(0, len, value, count);
    count = newcount;
    return this;
  }
  public synchronized int length() { return count; }
  public synchronized void getChars(...) { ... }
}
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Fault-tolerance

● Locks are irreversible
● When a thread fails holding a lock, the system 

will crash
– it's only a matter of time before someone else 

attempts to grab that lock

● What are the proper semantics for exceptions 
thrown within a critical region?
– data structure consistency not guaranteed

● Asynchronous exceptions?
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Priority Inversion

● Well-known problem with locks

● Described by Lampson/Redell in 1980 (Mesa)

● Mars Pathfinder in 1997, etc, etc, etc

● Low-priority task takes a lock needed by a high-
priority task -> the high priority task must wait!

● Clumsy solution: the low priority task must 
become high priority

● What if the low priority task takes a long time?
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Outline

● Problems with traditional software development
– lock ordering
– proper atomicity
– fault-tolerance
– priority inversion

● Language-level Transactions
● How?

– Software implementation
– Hardware implementation
– Both!

● Conclusions
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Programming Reliable Systems
(is easy?)
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Language-level Transactions

● Locks are the wrong model for expressing 
synchronization!

● Atomicity is a more natural (and modular) way to 
specifying the system

● Let's use transactions to implement atomic 
regions

● What sort of transactions do we want?
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Transactions (definition)

● A transaction is a sequence of loads and stores 
that either commits or aborts

● If a transaction commits, all the loads and stores 
appear to have executed atomically

● If a transaction aborts, none of its stores take 
effect

● Transaction operations aren't visible until they 
commit or abort

● Simplified version of traditional ACID database 
transactions (no durability, for example)
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Non-blocking synchronization
● Although transactions can be implemented with mutual 

exclusion (locks), we are interested only in non-blocking 
implementations.

● In a non-blocking implementation, the failure of one 
process cannot prevent other processes from making 
progress.  This leads to:

– Scalable parallelism

– Fault-tolerance

– Safety: freedom from some problems which require careful 
bookkeeping with locks, including priority inversion and 
deadlocks

● Little known requirement: limits on trans. suicide
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Making StringBuffer atomic
public final class StringBuffer ... {
  private char value[ ];
  private int count;
  ...
  public synchronized StringBuffer append(StringBuffer sb) {
    ...
A:int len = sb.length();
    int newcount = count + len;
    if (newcount > value.length)
      expandCapacity(newcount);
    // next statement may use state len
B:sb.getChars(0, len, value, count);
    count = newcount;
    return this;
  }
  public synchronized int length() { return count; }
  public synchronized void getChars(...) { ... }
}
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Making StringBuffer atomic
public final class StringBuffer ... {
  private char value[ ];
  private int count;
  ...
  public atomic StringBuffer append(StringBuffer sb) {
    ...
A:int len = sb.length();
    int newcount = count + len;
    if (newcount > value.length)
      expandCapacity(newcount);
    // next statement may use state len
B:sb.getChars(0, len, value, count);
    count = newcount;
    return this;
  }
  public atomic int length() { return count; }
  public atomic void getChars(...) { ... }
}
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Solving the lock ordering problem
void pushFlow(Vertex v1, Vertex v2, double flow) {
  v1.excess -= flow; /* Move excess flow from v1 */
  v2.excess += flow; /* ...to v2 */
}

● Simple network flow algorithm
● “Flow” moved from node to node in the graph
● Updates to two different objects
● Serial version above requires a complicated 

parallel version when using locks
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Solving the lock ordering problem
void pushFlow(Vertex v1, Vertex v2, double flow) {
  v1.excess -= flow; /* Move excess flow from v1 */
  v2.excess += flow; /* ...to v2 */
}

void pushFlow(Vertex v1, Vertex v2, double flow) {
  Object lock1, lock2;
  if (v1.id < v2.id) { /* avoid deadlock */
    lock1 = v1; lock2 = v2;
  } else {
    lock1 = v2; lock2 = v1;
  }
  synchronized (lock1) {
    synchronized (lock2) {
      v1.excess -= flow; /* Move excess flow from v1 */
      v2.excess += flow; /* ...to v2 */
    }
  }
}
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Solving the lock ordering problem
void pushFlow(Vertex v1, Vertex v2, double flow) {
  v1.excess -= flow; /* Move excess flow from v1 */
  v2.excess += flow; /* ...to v2 */
}

void pushFlow(Vertex v1, Vertex v2, double flow) {
  atomic {
    v1.excess -= flow; /* Move excess flow from v1 */
    v2.excess += flow; /* ...to v2 */
  }
}

● Specifying desired atomicity property directly is 
much simpler for the programmer!
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Addressing reliability, fault 
tolerance, and priority inversion

● A proper implementation of the transaction 
mechanism allows constant-time abort

– Allows us to solve priority inversion by aborting 
the low-priority thread!

● Atomicity properties are modular – no global 
lock ordering required

● A reasonable semantics for exceptions: critical 
region aborted/undone.  No dangling locks.

● Failure of one thread will not cause the system to 
fail!
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Programming Reliable Systems
(is hard)

● Problems with traditional software development
– lock ordering
– proper atomicity
– fault-tolerance
– priority inversion

● Language-level Transactions
● How?

– Software implementation
– Hardware implementation
– Both!

● Conclusions
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Software Transaction 
Implementation
● Goals:

– Non-transactional operations should be fast
– Reads should be faster than writes
– Minimal amount of object bloat

● Solution:
– Use special FLAG value to indicate “location 

involved in a transaction”
– Object points to a linked list of versions, 

containing values written by (in-progress, 
committed, or aborted) transactions

– Semantic value of FLAGged field is: “value of the 
first version owned by a committed transaction 
on the version list”

– Values which are “really” FLAG are handled with 
an escape mechanism
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Transactions using version lists

Transaction ID #23

Transaction ID #56Transaction ID #68

VersionVersion

Object #2

Object #1

Version Version

FLAG

'B'

FLAG

'A'
FLAG

2.71828

{OID25}

OtherClass

MyClass

FLAG

3.14159
FLAG

23 55

FLAG

WAITING COMMITTED

COMMITTED

owner

next

field1

field2field2

field1

next

owner

type

versions

readers

field1

field2

field2

field1

{OID68}
readers

versions

type

owner

next

field1

field2 field2

field1

next

owner

statusstatus

status
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Performance
● Non-transactional code only needs to check 

whether a memory operand is FLAG before 
continuing.

– On superscalar processors, there are plenty of 
extra functional units to do the check

– The branch is extremely predictable

– This gives only a few % slowdown

● Once FLAGged, transactional code operates 
directly on the object’s “version”

● Creating versions can be an issue for large 
arrays; use “functional array” techniques
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Non-blocking algorithms are hard!
● In published work on Synthesis, a non-blocking 

operating system implementation, three separate 
races were found:
– One ABA problem in LIFO stack
– One likely race in MP-SC FIFO queue
– One interesting corner case in quaject callback 

handling
● It's hard to get these right!  Ad hoc reasoning 

doesn't cut it.
● Non-blocking algorithms are too hard for the 

programmer
● Let's get it right once (and verify this!)



Ananian/Rinard: Language-Level Transactions, HPEC '04

The Spin Model Checker
● Spin is a model checker for communicating 

concurrent processes.  It checks:
– Safety/termination properties
– Liveness/deadlock properties
– Path assertions (requirements/never claims)

● It works on finite models, written the Promela 
language, which describe infinite executions.

● Explores the entire state space of the model, 
including all possible concurrent executions, 
verifying that Bad Things don't happen.

● Not an absolute proof – pretty useful in practice
● Make systems reliable by concentrating 

complexity in a verifiable component
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Spin theory
● Generates a Büchi Automaton from the Promela 

specification.
– Finite-state machine w/ special acceptance 

conditions
– Transitions correspond to executability of 

statements
● Depth-first search of state space, with each state 

stored in a hashtable to detect cycles and 
prevent duplication of work
– If x followed by y leads to the same state as y 

followed by x, will not re-traverse the succeeding 
steps

● If memory is not sufficient to hold all states, may 
ignore hashtable collisions: requires one bit per 
entry.  # collisions provides approximate 
coverage metric



Ananian/Rinard: Language-Level Transactions, HPEC '04

Verified Software Transactions

● Modelled the software transaction 
implementation in Promela

● Low-level model – every memory operation 
represented

● Spin used 16G of memory to exhaustively verify 
the implementation within a 6-version 2-object 
scope.
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Hardware Implementation
● Following earlier work by Knight '86, Herlihy and 

Moss '92, '93
● Cache is used to store uncommitted 

transactional state (marked with a T bit)
● Main memory contains 'backup state'
● Cache-coherence protocol extended to 

coordinate transactions
● Our recent work (Ananian, Asanović, Kuszmaul, 

Leiserson, Lie HPCA 2005) overcomes 
transaction-size limitations in earlier designs

● Near-zero performance overhead.
– Piggy-backs on existing cache coherency traffic



Ananian/Rinard: Language-Level Transactions, HPEC '04

Hardware Transaction Cache 
Organization

● Each cache line gets a “T” bit indicating that this 
line is involved in a transaction

● On abort, “T” lines are invalidated
● On commit, the T bits are cleared
● Overflow mechanism

Overflow
Handler

index offset

datatagdatatag

Overflow Storage

Uncached DRAM

tag
Address

Way 0 Way 1

Overflow
base register

T TO . . .

. . .
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Register File Modifications
● Minor 

modifications to 
the processor 
rename table to 
support register 
restore after 
transaction 
abort.

1

0

FIFO

FIFO

To Register Renaming Table

Physical Registers

active

commit

free

Reorder Buffer

active

Rename Table

Register
Free List

Register Reserved
List
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P56

S

S

P2

. . .

S

S
P56

LPR

P127

P56

P0

snapshots
saved?

R31

R0

snapshots
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Hardware/Software Implementation
● Hardware transaction implementation is very 

fast!  But it is limited:
– Slow once you exceed Cache capacity
– Transaction lifetime limits (context switches)
– Limited semantic flexibility (nesting, etc)

● Software transaction implementation is unlimited 
and very flexible!
– But transactions may be slow

● Solution: failover from hardware to software
– Simplest mechanism: after first hardware abort, 

execute transaction in software
– Need to ensure that the two algorithms play nicely 

with each other (consistent views)
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Overcoming HW size limitations
● Simple node-push benchmark
● As xaction size increases, we eventually run out 

of cache space in the HW transaction scheme
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Overcoming HW size limitations
● Simple node-push benchmark
● Hybrid scheme best of both worlds!
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Conclusions
● Language-level transactions provide a more-

modular way to build reliable concurrent 
systems.

● Transactions can reduce software complexity 
and eliminate common programmer mistakes

● We've implemented a transaction mechanism for 
Java programs using software, hardware, and (in 
progress) joint approaches using the FLEX 
compiler infrastructure.

● Transactions can be efficient and practical to 
use!
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