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Abstract  The compound-Gaussian model is often used in radar signal 
processing to describe the heavy-tailed clutter distribution. The important 
problems in compound-Gaussian clutter modeling are choosing the 
texture distribution and estimating its parameters. Many texture distribution 
models have been proposed [1], [2] and their parameters were typically 
estimated using the (statistically suboptimal) method of moments, see 
[2]. In this paper, we develop maximum likelihood (ML) methods for jointly 
estimating target and clutter parameters in compound-Gaussian clutter. In 
particular, we estimate (i) the complex target amplitudes, (ii) covariance matrix 
of the speckle component, and (iii) the texture-distribution parameters. Several 
existing texture models are considered: (i) gamma (leading to the well-known K 
clutter distribution [1], [2]), (ii) lognormal, and (iii) Weibull. Motivated by the robust 
regression model in [3], we also develop a complex multivariate t distribution 
model for the clutter. We utilize the expectation-maximization (EM) algorithm 
to estimate the unknown parameters. Numerical integration is typically needed 
to compute the conditional expectations in the expectation (E) step of the EM 
algorithm; here, we employ the Gauss quadratures to perform this integration. 
Interestingly, the proposed complex multivariate t distribution model does not 
require numerical integration, allowing for remarkably simple estimation and 
detection algorithms. We will also compute Cramer-Rao bounds (CRBs) for 
the unknown parameters and demonstrate the performances of the proposed 
methods via numerical simulations.
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ABSTRACT

Compound-Gaussian models are used in radar signal pro-
cessing to describe heavy-tailed clutter distributions. Im-
portant problems in compound-Gaussian clutter modeling
are: choosing the texture distribution and estimating its
parameters. Many texture distributions have been studied
and their parameters were typically estimated using sta-
tistically suboptimal approaches. We develop maximum
likelihood (ML) methods for jointly estimating target and
clutter parameters in compound-Gaussian clutter using
radar array measurements. In particular, we estimate (i)
complex target amplitudes, (ii) spatial covariance matrix
of the speckle component, and (iii) texture distribution pa-
rameters. We consider two existing texture models, log-
normal and gamma, and propose an inverse-gamma tex-
ture model, leading to a complex multivariate t clutter dis-
tribution. Parameter-expanded expectation-maximization
(PX-EM) algorithms are developed to compute the ML es-
timates of the unknown parameters. For lognormal and
gamma textures, Gauss quadratures are utilized to im-
plement the estimation algorithms, whereas the inverse-
gamma texture model does not require numerical integra-
tion, thus yielding remarkably simple estimators. We study
the performance of the proposed methods via numerical
simulations.

1. INTRODUCTION

Compound-Gaussian models have been used to characterize
heavy-tailed clutter distributions in radar as well as to model
speech waveforms, fast fading channels, and various radio
propagation channel disturbances, see [1] and references
therein. Important problems in compound-Gaussian clut-
ter modeling are: choosing the texture distribution and esti-
mating its parameters. Many texture distributions have been
studied and their parameters were typically estimated using

The work of A. Nehorai and J. Wang was supported by the Air Force
Office of Scientific Research Grant F49620-02-1-0339, the National Sci-
ence Foundation Grants CCR-0105334 and CCR-0330342, and the Office
of Naval Research Grant N00014-01-1-0681.

(statistically suboptimal) method of moments, see [2]. In
this paper, we present maximum likelihood (ML) methods
for estimating target and clutter parameters in compound-
Gaussian clutter.

In Section 2, we introduce the measurement scenarios
with lognormal [2], gamma [2]–[4], and inverse-gamma tex-
ture models1. For these three models, we develop parameter-
expanded expectation-maximization (PX-EM) algorithms to
compute the ML estimates of the unknown parameters (see
Sections 3.1, 3.2, and 3.3, respectively) and evaluate their
performance in Section 4.

2. MEASUREMENT MODEL

We extend the radar array measurement model in [6] to ac-
count for compound-Gaussian clutter. Assume that an n-
element radar array receives P pulse returns, where each
pulse provides N range-gate samples. We collect the spatio-
temporal data from the tth range gate into a vector y(t) of
size m = nP and model y(t) as2 (see [6] and [7])

y(t) = AXφ(t) + e(t), t = 1, . . . , N, (1)

where A is an m × r spatio-temporal steering matrix of
the targets, Φ = [φ(1),φ(2), . . . ,φ(N)] is the temporal
response matrix, X is an r × d matrix of unknown com-
plex amplitudes of the targets, and e(t) is additive noise.
Here, we assume that the additive noise vectors e(t) are in-
dependent, identically distributed (i.i.d.) and come from a
compound-Gaussian probability distribution, see e.g. [1]–
[4] and [8]–[10]. We now represent the above measurement
scenario using the following hierarchical model: y(t) are
conditionally independent random vectors with probability
density functions (pdfs):

py|u(y(t) |u(t);X,Σ ) = exp
{
− [y(t) − AXφ(t)]H

·[u(t)Σ ]−1 ·[y(t) − AXφ(t)]
}/

|πu(t)Σ |, (2)

1The proposed inverse-gamma texture model leads to a complex multi-
variate t clutter distribution, which generalizes the multivariate t distribu-
tion in e.g. [5] to the complex-data measurement scenario.

2A special case of the model (1) for rank-one targets (i.e. scalar X) in
compound-Gaussian clutter was considered in [8].



where “H” denotes the Hermitian (conjugate) transpose, Σ
is the (unknown) covariance matrix of the speckle compo-
nent, and u(t), t = 1, 2, . . . , N are the unobserved texture
components (powers), modeled as i.i.d. non-negative ran-
dom variables. We consider the following texture distribu-
tions:

• lognormal: ln u(t) follow a Gaussian distribution,

• gamma: u(t) follow a gamma distribution, and

• inverse gamma: 1/u(t) follow a gamma distribution.
Our goal is to compute the ML estimates of the complex
amplitude matrix X , speckle covariance matrix Σ , and tex-
ture distribution parameters from the measurements y =
[y(1)T ,y(2)T , . . . ,y(N)T ]T . In the following, we present
parameter-expanded expectation-maximization (PX-EM) al-
gorithms for ML estimation of these parameters under the
above three texture models. The PX-EM algorithms share
the same monotonic convergence properties as the “clas-
sical” expectation-maximization (EM) algorithms, see [11,
Theorem 1]. They outperform the EM algorithms in the
global rate of convergence, see [11, Theorem 2].

3. ML ESTIMATION

3.1. PX-EM Algorithm for Lognormal Texture

Assume that the unobserved texture component follows a
lognormal distribution (see also [2]); equivalently, β(t) =
ln u(t), t = 1, 2, . . . , N are Gaussian. We further assume
that β(t) have zero mean and unknown variance σ2

β ; hence,
the unknown parameters are θ = {X,Σ , σ2

β}. [Note that
the mean of β(t) can be chosen arbitrarily because the speckle
covariance matrix Σ is unknown.]

We now develop a PX-EM algorithm to estimate θ by
treating β(t), t = 1, 2, . . . , N as the unobserved (or miss-
ing) data and adding an auxiliary (dummy) parameter µβ

[the mean of β(t)] to the set of parameters θ. Under the
expanded parameter model, the pdf of β(t) is

pβ(β(t);µβ , σ2
β)=

1
σβ

√
2π

exp{−[β(t)−µβ ]2/(2σ2
β)}. (3)

We also define the augmented (expanded) set of parameters
θa = {X,Σa, σ

2
β , µβ}, where Σ = exp(µβ) · Σa. The PX-

E β|y[ exp[−β(t)]|y(t);θa ]

≈
∑L

l=1 hl · υl(µβ , σ2
β)−(m+1) · exp{−υl(µβ , σ2

β)−1 · [y(t) − AXφ(t)]HΣ−1
a [y(t) − AXφ(t)]}∑L

l=1 hl · υl(µβ , σ2
β)−m · exp{−υl(µβ , σ2

β)−1 · [y(t) − AXφ(t)]HΣ−1
a [y(t) − AXφ(t)]}

, (5a)

E β|y[βk(t)|y(t);θa ]

≈
∑L

l=1 hl · (
√

2σβxl + µβ)k · υl(µβ , σ2
β)−m · exp{−υl(µβ , σ2

β)−1 · [y(t) − AXφ(t)]HΣ−1
a [y(t) − AXφ(t)]}∑L

l=1 hl · υl(µβ , σ2
β)−m · exp{−υl(µβ , σ2

β)−1 · [y(t) − AXφ(t)]HΣ−1
a [y(t) − AXφ(t)]}

, (5b)

where υl(µβ , σ2
β) = exp(

√
2σβxl + µβ) and k ∈ {1, 2}.

EM algorithm for this model consists of iterating between
the following PX-E and PX-M steps:

PX-E Step: Compute

T1(y;θ(i)
a ) =

1
N

·
N∑

t=1

{
y(t)φ(t)H

·E β|y[ exp[−β(t)] |y(t);θ(i)
a ]

}
, (4a)

T2(y;θ(i)
a ) =

1
N

·
N∑

t=1

{
y(t)y(t)H

·E β|y[ exp[−β(t)] |y(t);θ(i)
a ]

}
, (4b)

T3(y;θ(i)
a ) =

1
N

·
N∑

t=1

{
φ(t)φ(t)H

·E β|y[ exp[−β(t)] |y(t);θ(i)
a ]

}
, (4c)

t4(y;θ(i)
a ) =

1
N

·
N∑

t=1

E β|y[β2(t) |y(t);θ(i)
a ], (4d)

t5(y;θ(i)
a ) =

1
N

·
N∑

t=1

E β|y[β(t) |y(t);θ(i)
a ], (4e)

where

θ(i)
a = {X(i),Σ (i)

a , (σ2
β)(i), µ(i)

β } (4f)

is the estimate of θa in the ith iteration and (4a)–(4e) are
computed using (5) (below).

PX-M Step: Compute

X(i+1) = [AH(S(i))−1A]−1AH(S(i))−1

·T1(y,θ(i)
a )T3(y,θ(i)

a )−1, (6a)

Σ (i+1)
a = S(i) + [Im − Q(i)(S(i))−1]T1(y,θ(i)

a )

·T3(y;θ(i)
a )−1T1(y,θ(i)

a )H [Im − Q(i)(S(i))−1]H, (6b)

µ
(i+1)
β = t5(y;θ(i)

a ), (6c)

(σ2
β)(i+1) = t4(y,θ(i)

a ) − (µ(i+1)
β )2, (6d)

Σ (i+1) = exp(µ(i+1)
β ) · Σ (i+1)

a , (6e)



where

S(i) = T2(y,θ(i)
a )

−T1(y,θ(i)
a ) · T3(y;θ(i)

a )−1 · T1(y,θ(i)
a )H , (6f)

Q(i) = A[AH(S(i))−1A]−1AH . (6g)

The above iteration is performed until X(i), Σ (i), and (σ2
β)(i)

converge. Here, Im denotes the identity matrix of size m,

We now discuss computing the conditional expectations
in (5). First, recall the Gauss-Hermite quadrature formula
[12, Ch. 5.3]:

∫ ∞

−∞
f(x) · exp(−x2) dx ≈

L∑
l=1

hl f(xl), (7)

where f(x) is an arbitrary real function, L is the quadra-
ture order (determining approximation accuracy), and xl

and hl, l = 1, 2, . . . , L are the abscissas and weights of the
Gauss-Hermite quadrature (respectively), tabulated in e.g.
[13]. Using (7), the Bayes rule, equations (2) and (3), and
change-of-variable transformation x = (β − µβ)/(

√
2σβ),

we obtain the approximate expression in (5).

3.2. PX-EM Algorithm for Gamma Texture

We now model the texture components u(t), t = 1, 2, . . . , N
as gamma random variables with mean one (as in e.g. [4])
and unknown shape parameter ν > 0; hence, the unknown
parameters are θ = {X,Σ , ν}. (The shape parameter ν is
also known as the Nakagami-m parameter in the commu-
nications literature, see e.g. [14, Ch. 2.2.1.4].) This choice
of the texture distribution leads to the well-known K clutter
model, see [2] and [4] and references therein.

We develop a PX-EM algorithm to estimate θ by treat-
ing u(t), t = 1, 2, . . . , N as the unobserved data and adding
an auxiliary parameter µu [the mean of u(t)] to the set of
parameters θ. Under this expanded model, the pdf of u(t)
is [for u(t) ≥ 0]

pu(u(t); ν, µ) =
1

Γ(ν)

( ν

µu

)ν

u(t)ν−1 exp
[ − νu(t)/µu

]
(8)

where Γ(·) denotes the gamma function. Hence, the aug-
mented parameter set is θa = {X,Σa, ν, µu}, where Σa

and Σ are related as follows: Σ = µu ·Σa. The PX-EM al-
gorithm for the above expanded model consists of iterating
between the following PX-E and PX-M steps:

E u|y
[
g(u(t)) | y(t);θa

]
=

∫ ∞
0

g(xµu/ν) · py|u(y(t) | xµu/ν ; X,Σa) · xν−1 exp(−x) dx∫ ∞
0

py|u(y(t) | xµu/ν ; X,Σa) · xν−1 exp(−x) dx
. (10)

PX-E Step: Compute

T1(y;θ(i)
a ) =

1
N

·
N∑

t=1

y(t)φ(t)H

·E u|y[u(t)−1 | y(t);θ(i)
a ], (9a)

T2(y;θ(i)
a ) =

1
N

·
N∑

t=1

y(t)y(t)H

·E u|y[u(t)−1 | y(t);θ(i)
a ], (9b)

T3(y;θ(i)
a ) =

1
N

·
N∑

t=1

φ(t)φ(t)H

·E u|y[u(t)−1 | y(t);θ(i)
a ], (9c)

t4(y;θ(i)
a ) =

1
N

·
N∑

t=1

E u|y[ ln u(t) | y(t);θ(i)
a ], (9d)

t5(y;θ(i)
a ) =

1
N

·
N∑

t=1

E u|y[u(t) | y(t);θ(i)
a ], (9e)

where θ(i)
a = {X(i),Σ (i)

a , ν(i), µ
(i)
u } is the estimate of θa

in the ith iteration and (9a)–(9e) are computed using (10)
(below) with g(u(t)) = u(t)−1, ln u(t), and u(t).
PX-M Step: Compute

X(i+1) = [AH(S(i))−1A]−1AH(S(i))−1

·T1(y,θ(i)
a )T3(y,θ(i)

a )−1, (11a)

Σ (i+1)
a = S(i) + [Im − Q(i)(S(i))−1]T1(y,θ(i)

a )

·T3(y;θ(i)
a )−1T1(y,θ(i)

a )H [Im − Q(i)(S(i))−1]H, (11b)

µ(i+1)
u = t5(y,θ(i)), (11c)

Σ (i+1) = µ(i+1)
u · Σ (i+1)

a , (11d)

where

S(i) = T2(y,θ(i)
a )

−T1(y,θ(i)
a ) · T3(y;θ(i)

a )−1 · T1(y,θ(i)
a )H , (11e)

Q(i) = A [AH(S(i))−1A]−1AH , (11f)

and find ν(i+1) that maximizes

ν(i+1) =arg max
ν

{
− ln Γ(ν) + ν ln ν − ν ln[t5(y,θ(i))]

+νt4(y,θ(i)) − ν
}

. (11c)

The above iteration is performed until X(i), Σ (i), and ν(i)

converge. The conditional-expectation expression (10) is
obtained by using the Bayes rule, equations (2) and (8), and
change-of-variable transformation x = νu/µ. The integrals



in the numerator and denominator of (10) are efficiently and
accurately evaluated using the generalized Gauss-Laguerre
quadrature formula (see [12, Ch. 5.3]):

∫ ∞

0

f(x)·xν−1 exp(−x) dx ≈
L∑

l=1

wl(ν−1) f(xl(ν−1)),

(12)
where f(x) is an arbitrary real function, L is the quadrature
order, and xl(ν − 1) and wl(ν − 1), l = 1, 2, . . . , L are the
abscissas and weights of the generalized Gauss-Laguerre
quadrature with parameter ν − 1.

The computation of ν(i+1) requires maximizing (11c),
which is performed using the Newton-Raphson method (em-
bedded within the “outer” EM iteration, similar to [15]).

3.3. PX-EM Algorithm for Inverse Gamma Texture

We now propose a complex multivariate t distribution model
for the clutter and apply it to the measurement scenario in
Section 2. A similar clutter model was briefly discussed in
[10, Sec. IV.B.3], where it was also referred to as the gener-
alized Cauchy distribution. Assume that w(t) = u(t)−1, t =
1, 2, . . . , N are gamma random variables with mean one and
unknown shape parameter ν > 0. Consequently, u(t) fol-
lows an inverse gamma distribution and the conditional dis-
tribution of y(t) given w(t) is py|u(y(t)|w(t)−1;X,Σ ), see
also (2). Integrating the unobserved data w(t) out, we ob-
tain a closed-form expression for the marginal pdf of y(t):

py(y(t);X,Σ , ν) =
Γ
(
ν + m

)
|πΣ | · Γ(

ν
) · νm

·
{

1 +

·[y(t) − AXφ(t)]H Σ−1 [y(t) − AXφ(t)]
/
ν
}−ν−m

, (13)

which is the complex multivariate t distribution with loca-
tion vector AXφ(t), scale matrix Σ , and shape parameter
ν. Here, the unknown parameters are θ = {X,Σ , ν}. We
first estimate X and Σ assuming that the shape parameter ν
is known and then discuss the estimation of ν.
Known ν: For a fixed ν, we derive a PX-EM algorithm for
estimating X and Σ by treating w(t), t = 1, 2, . . . , N as
the unobserved data and adding an auxiliary mean parame-
ter for w(t), similar to the lognormal and gamma cases dis-
cussed in Sections 3.1 and 3.2. Here, the resulting PX-EM
algorithm consists of iterating between the following PX-E
and PX-M steps:
PX-E Step: Compute

ŵ(i)(t) = (ν + m) ·
{

ν + [y(t) − AX(i)φ(t)]H

·[Σ (i)]−1 [y(t) − AX(i)φ(t)]
}−1

(14a)

for t = 1, 2, . . . , N and

T
(i)
1 =

1
N

·
N∑

t=1

y(t)φ(t)H · ŵ(i)(t), (14b)

T
(i)
2 =

1
N

·
N∑

t=1

y(t)y(t)H · ŵ(i)(t), (14c)

T
(i)
3 =

1
N

·
N∑

t=1

φ(t)φ(t)H · ŵ(i)(t). (14d)

PX-M Step: Compute

X(i+1) = [AH(S(i))−1A]−1AH(S(i))−1 T
(i)
1 (T (i)

3 )−1, (15a)

Σ (i+1) =
{

S(i) + [Im − Q(i)(S(i))−1] · T (i)
1 (T (i)

3 )−1

·(T (i)
1 )H [Im − Q(i)(S(i))−1]H

}/[ 1
N

N∑
t=1

ŵ(i)(t)
]
, (15b)

where

S(i) = T
(i)
2 − T

(i)
1 (T (i)

3 )−1 (T (i)
1 )H , (15c)

Q(i) = A [AH(S(i))−1A]−1 AH . (15d)

The above iteration is performed until X(i) and Σ (i) con-
verge. Denote by X(∞)(ν) and Σ (∞)(ν) the estimates of
X and Σ obtained upon convergence, where we emphasize
their dependence on ν.
Unknown ν: We compute the ML estimate of ν by max-
imizing the observed-data log-likelihood function concen-
trated with respect to X̂(ν) and Σ̂ (ν):

ν̂ = arg max
ν

N∑
t=1

ln py(y(t);X(∞)(ν),Σ (∞)(ν), ν),

(16)
see also (13).

4. SIMULATION RESULTS

The numerical example presented here assess the estima-
tion accuracy of the ML estimates of X,Σ , and the shape
parameters of the texture components. We consider a mea-
surement scenario with a 3-element radar array and P = 3
pulses, implying that m = 9. We selected a rank-one target
scenario with φ(t) = 1, t = 1, 2, . . . , N , complex target
amplitude X = 0.207 · exp(jπ/7), and

A = b(�) ⊗ a(ϑ),

where b(�) = [1, exp(j2π�), exp(j4π�)]T with normal-
ized Doppler frequency � = 0.42, and a(ϑ) = [1, exp(j2πϑ),
exp(j4πϑ)]T with spatial frequency ϑ = 0.926. Here, ⊗
and “T ” denote the Kronecker product and transpose, re-
spectively. The speckle covariance matrix Σ was generated
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Figure 1: MSEs for the ML estimates of X , σ2
β , and Σ as

functions of N under the lognormal texture model.

using a model similar to that in [16, Sec. 2.6] with 1000
patches; the diagonal elements of Σ were 10.17. Our per-
formance metric is the mean-square error (MSE) of an es-
timator, calculated using 2500 independent trials. The or-
der of the Gauss-Hermite and generalized Gauss-Laguerre
quadratures was L = 20.

We first study the performance of the ML estimation of
the clutter and target parameters for lognormal texture in
Section 3.1. Here, the variance of β(t) was set to σ2

β = 0.5.
Fig. 1 shows the MSEs for the ML estimates of X and σ2

β

and the average MSE for the ML estimates of the speckle
covariance parameters3, as functions of the number of range
samples (snapshots) N .

We now examine the performance of the ML estimation

3In particular, we average the MSEs of the elements of Re{vech(Σ)}
and Im{vech(Σ)}T ]T . Here, the vech and vech operators create a single
column vector by stacking elements below the main diagonal columnwise;
vech includes the main diagonal, whereas vech omits it.
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Figure 2: MSEs for the ML estimates of X , ν, and Σ as
functions of N under the gamma texture model.

for gamma texture in Section 3.2. We have set the shape
parameter to ν = 2. Fig. 2 shows the MSEs for the ML
estimates of X and ν and the average MSE for the ML esti-
mates of the speckle covariance parameters, as functions of
N .

Finally, we show the performance of the ML estimation
for inverse gamma texture in Section 3.2. Here, the shape
parameter was set to ν = 4. Fig. 3 shows the MSEs for the
ML estimates of X and ν and the average MSE for the ML
estimates of the speckle covariance parameters, as functions
of N .
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Summary

Develop maximum likelihood (ML) methods for jointly

estimating target and clutter parameters in compound-

Gaussian clutter using radar array measurements.

We estimate:

(i) complex target amplitudes,

(ii) spatial covariance matrix of the speckle component,

(iii) texture distribution parameters.
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