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FOREWORD

The work described in this report was performed under a contract
(Number NASr-3%7) zranted to Stanley Aviation Corporation in April 1961
by the National Aeronautics and Space Administration. Quarterly
status reports have been issued in July 1961 (Stanley Report No. 776) and
October 1961 (Stanley Report No. 787) and this document represents the
Final Report on a research study to investigate human tolerance to short

duration acceleration using the dynamic model technique.

Stanley Aviation Corporation wishes to thank Mr. G, J. Pesman
and Mr. H. F. Scherer of the National Aeronautics and Space Administra-
tion (Manned Spacecraft Center) for their valuable assistance during
this program. Also, the cooperation of the following agencies who
supplied important experimental data is acknowledged; Holloman Air
Force Base, Naval Air Material Center, Federal Aviation Agency,
Aeromedical Laboratory of the Wright Air Development Division, Aviation
Crash Injury Research of Cornell University.
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SUMMARY

This report is concerned with the study of human tolerance to
abrupt accelerations where the duration times are less than one tenth

of a second.

A dynamic model analogous to the human body, consisting of a
spring-mass system, is used in the analysis. When an acceleration
is applied to the base of the spring, the response of the system is
similar to the dynamic response of the human body under the influ-
ence of the same acceleration. If the input acceleration-time his-
tory is assumed to have a simple form, such as that represented by
a step, rectangular or ramp function, the solution of the motion of
the model in terms of the spring deflection and mass acceleration is
relatively simple. The basic mathematics involved in obtaining this
dynamic response is developed in the Appendices for a variety of
simple input forms. The tolerance criterion adopted consists of
setting a limit on the mass acceleration attained by the mass, so
that the peak mass acceleration achieved under given input condi-
tions is an important parameter, A linear, undamped, single degree
of freedom system is used as the basic model, but the influence of
damping and non-linearity of the spring on tolerance limits is also
considered. The output of the model, in terms of the mass accelera-
tion, depends on the input duration and damping, but can be as much
as twice the value of the input acceleration. In the impact region,

velocity change is an important criterion.

A physical interpretation of the motion of the mass is given and
the response characteristics of the system for step, rectangular, ramp,
parabolic and sinusoidal inputs are described. The model is used in
a qualitative study of restraint and scat cushion effects, and for

the case of an occupant in an escape capsule or seat. The influence
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of rate of onset on dynamic response is considered and the influ-
ence of rise time and spring frequency on tolerance levels is

deduced.

The theory of two and three degree of freedom systems is
developed in an attempt to obtain a better representation of the
human body. These preliminary investigations show that such models
can be used, but, further information on the mechanical properties
of the body are desirable. On present evidence, it is considered
that the single degree of freedom system represents a useful work-
ing model, and over-complication at this stage will not provide

better analysis techniques.

The equations of motion governing the motion of the spring-mass
system contain certain coefficients that must be evaluated by corre-
lation with experimental data., All the available test results have
been reviewed, but end point information is very limited; and only
tentative conclusions could be drawn. Values of equivalent fre-
quency and allowable mass acceleration have been deduced for the
headward, forward and backward acceleration directions. In the
data analyses, an equivalent rectangular input was used for defining
the input acceleration and duration time, in an attempt to remove

inconsistencies in the choice of these values.

When complex acceleration inputs have to be studied, as is
usual in a practical case, analytical solutions of the equations
of motion are not possible and numerical methods must be used. A
digital computer (IBM 1620) has been programmed for this purpose
and an electronic analog developed that can be used for rapid

analyses. The method of applying these techniques is described.

The primary use of the dynamic. model is for the analysis of

arbitrary inputs to predict if a given mceleration time history




will prove harmful to a human, or not. Depending on the direction
of the applied acceleration, a frequency is assigned to the spring-
mass system and the output (mass acceleration) of the model is deter-
mined for the given input. Comparing the maximum mass acceleration
with the relevant allowable value enables the expected tolerance

level to be determined.
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SYMBOLS

The notation presented here refers to the main text

only. Because of the large amount of mathematics involved,

some duplication of symbols used in the text and Appendices

has proved necessary. For the symbols used in the Appendices,

reference should be made to the list of symbols preceding each

Appendix.

A

At
At

amplification factor for sinusoidal input

output amplitude (three degree of freedom,

F=1, 2, 3)
. . : K
damping coefficient (¢ = ;)
energy absorption capacity of cushion

force

acceleration due to gravity

o

gravitationally normalized input acceleration (

)

g

.

ml <
s

gravitationally normalized mass acceleration (

gravitationally normalirzed steady applied
acceleration

spring stiffness

damping constant

mass associated with three degree of freedom
system ( J =1, 2, 3)

mass associated with one or two degree of
freedom system

mass of escape system or seat

ratio of output to input accelerations for
three degree of freedom system (J' =1, 2, 3)
time

rise time
input duration time

limiting duration time for impulsive theory

xiii



D P E E .

-

velocity or velocity change
bottoming velocity change
acceleration required to bottom cushion (=w'&y)

input acceleration applied to system, relative
to fixed datum

acceleration of mass mp relative to fixed datum
apparent acceleration of mass due to force
developed in 1ts own spring-damper relative
to fixed datum (multi-degree of freedom system)

amplitude of sinusoidal input acceleration

step input function (acceleration)

slope of ramp input function
(rate of onset of acceleration)

constant in parabolic input function

deflection of spring

rate of change of deflection of spring (velocity)
rate of change of velocity of spring (acceleration)
deflection of spring at bottoming

initial deflection of spring

"frequency" (= Wi = Ra )
q Y n My
real part of output amplitude three degree of

freedom model
imaginary part of output amplitude

phase angle
-0

spring frequency (w* =
damped frequency of system ( Wy = W™ -c)
frequency of sinusoidal input

coupled frequency (i = 1,2,3)

Xiv




INTRODUCTION

The importance of the problem of human reaction to applied
accelerations has been recognized for many years, but recent
advances in the aerospace sciences have underlined the fact that
adequate knowledge in this area is still lacking. It is well
known that much higher accelerations can be sustained if the
duration time is short, than if the acceleration is applied
over a long period. Abruptly applied accelerations are
encountered by humans in many situations such as automobile
and aircraft crashes, ejection from high speed aircraft,
re-entry, surface impact on landing and during accelerating
rocket flight. Man's tolerance to short duration accelera-
tions must be known with some degree of aécuracy before safe
advances can be made in these areas. Although a considerable
amount of experimental information has been obtained to date,
the way in which it has been gathered and presented does not
allow adequate predictions to be made about future projects
from the available data.

The solution of the problem is not simple and will require
a high degree of cooperation between the various groups of
diverse talents and experiences working in the human factors
field. In this respect, it is important that the knowledge
gained by each group is transmitted in such a way that its
significance is not overlooked because of misunderstanding or
lack of familiarity with the particular branch of science or
engineering concerned. The purpose of this report is to present
the results of a study that essentially emphasises the analytical
approach to the subject. The investigation is mainly theoretical,
but the experimental results of others play an important part
in the development of the theory. The mathematics involved
might appear trivial to the dynamicist but, at the same time,
might present a barrier to the non-mathematically minded biologist.

This barrier must not prove insurmountable, since the engineering

1




approach presents one aspect of the problem which can have
important implications in other fields. For this reason,
an attempt has been made in the present report to explain
the basic engineering approach to the subject and point out

the physical implications of the mathematical results.

In justifying a mathematical approach to the problem
of human tolerance to abrupt accelerations it should be
pointed out that no branch of science is complete or exact
until an acceptable theory has been developed and checked
by correlation with experiment. The postulating of a
dynamic model is one attempt to produce a workable analogy,
and by analyzing the motion of a spring-méss system under
the influence of an applied acceleration, and attempting to
relate the results to the observed response of a human under
similar conditions, it is hoped that the model can be used
to predict whether or not a given acceleration~time history
will prove harmful. At least, the information gained will
make a valuable addition to the gathering stock-pile of
knowledge in the acceleration stress field and contribute

to an overall understanding of the problem.

The investigations described in this report are confined
to a study of the dynamics of human tolerance to short
duration accelerations where the injurious effects are mainly
of a structural nature, rather than hydraulic effects
associated with longer duration accelerations which have
been extensively studied in the centrifuge. Short duration
is taken here to include the impulse (or impact) region which
refers to accelerations of duration O to approximately
0.0l sec. and the plateau region, which extends the regime
to approximately 0.1 sec. The term plateau region is derived
from the general shape of the tolerance curve which appears

to level off for durations of approximately 0.01 sec. to




1.1

0.l sec., as indicated in Figure 1. The form of the

tolerance curve will be discussed 1n mcre detail in

Section 2.2.

The Problem

When a human is subjected to an abrupt acceleration
of sufficient magnitude, injuries that are mainly of a
mechanical nature can result. These depend to some extent
on the direction of application of the acceleration but
can consist of bone fracture, internal organ rupture and
bruises. Cardiovascular shock and debilitation can also
result and head injuries from impact blows and neck snap
can occur, although for the purpose of this study,perfect
head restraint is assumed. The medical and biomechanical
aspects are of extreme importance but, in the semi-empirical
analysis used here, it is sufficient to determine an
acceleration level that will cause any injury that is liable
to seriously impair the subject's functional ability. This
criterion has been taken as the definition of an end point
for the analysis of experimental results and when physiolog-
ical effects giving rise to discomfort are noticeable but do
not impair the subject's functional ability, the condition is

termed near-end point.

Very simply stated, the problem is to determine a means
of predicting whether or not a particular acceleration input
to a vehicle will prove injurious to the occupant. In the
past, experimental methods have been used where volunteers
have been subjected to high accelerations in an attempt to
determine tolerance limits for the human body. These tests
have supplied valuable information, but are often difficult
to interpret and the results cannot easily be applied to
other cases where the conditions might be radically different

from those pertaining to the test. From the point of view



of vehicle design, the lack of reliable information imposes
performance penalties on the vehicle since, when human life
is involved, it is natural to take a very conservative view
of the available allowables. Further, expensive develop-

ment testing is necessary to evaluate the vehicle from the

human factors standpoint.

Experiment has shown that the accelerations measured on
the human body can, under some conditions, greatly exceed the
vehicle accelerations. Although the occupant's response
cannot be measured with any degree of accuracy, since it is
difficult to obtain a rigid mount for the measuring instrument
and it is certain that different parts of the body experience
different accelerations, the qualitative results provide an
important clue to one way in which the problem can be tackled.
The response of the occupant must be related in some way to
the vehicle acceleration, which is the most convenient parameter
for reference purposes. This can be done by postulating an
analagous spring-mass system to represent the man and studying
the motion of the mass when an acceleration is supplied to the

base of the spring.

This concept of a dynamic model representing a human
under the influence of a short duration acceleration is
developed in this report and its application to various
aspects of the problem discussed. In particular, an
analytical method is developed that can be used to determine
whether or not an arbitrary acceleration-time history is
tolerable to man. The mathematics involved in studying the
dynamics of the model have been separated from the main text
and reported in Appendix form, but constant reference is made

to the mathematical analyses and the implications of the results.




1.2

Historical Background

A complete review of the work done in the field of
acceleration stress is out of place here and will not be
attempted. Even investigations covering the short duration
regime haw produced a tremendous amount of work and fairly
comprehensive bibliographies exist, (see, for instance,
Refs. 1 and 2). Only work relevant to the present project
will be mentioned in an attempt to approach the problem with

the correct perspective.

The first systematic study of the problem was under-
taken in Germany during World War II, when the dangers
associated with the ejection seat were recognized, The
work of Wiesehofer (Ref.3) and Richter (Ref. 4) had shown
that vehicle, or input, accelerations up to about 20 G could be
withstood. Examination of the breaking loads of various
vertebrae (reported by Ruff and Geertz in Refs. 5 and 6)
led to what was probably the first tolerance curve for head-
ward accelerations, indicating a plateau limit of 20 G,
Geertz studied the dynamics of ejection by considering two
masses coupled together by an elastic spring and noted the

importance of overshoot.

At the close of the war, British workers carried out
tests using vertical catapults which culminated in the design
of the Martin-Baker seat (Ref. 7) which develops approximately
20 G's over 0.1 sec. The work of Latham (Ref. 8) is
particularly noteworthy as he studied the response of a man-
seat system experimentally and theoretically using spring-mass
systems and an analog computer, and suggested'optimum cushion
characteristics for use with ejection seats. A summary of
German and early British work on this topic is contained in

Reference 9.




In the U.S.A., ejection seat design was ploneered by
various government establishments. Kroeger (Ref. 10)
studied the interaction of a man and his ejection seat with
a view to reducing the overshoot acceleration attained by
the man. Watts, Mendelson and Kornfield (Ref. 11) observed
experimentally the influence of rate of increase of accelera-
tion on the overshoot experienced by various parts of the
body. More recently the work of Hess (Ref. 12), Kornhauser
(Ref. 13) and Brock (Ref. 14) has utilized the dynamic model
concept to study the influence of rapidly applied accelera-
tions on man and animals. The effect of restraint elasticity on
a subject's response has also been investigated (Ref. 15)
and the vibration studies of von Gierke and Coermann (e.g. see
Refs. 16 and 17) have illustrated the existence of resonance
phenomena in the human body, and contributed greatly to an

understanding of the physical processes involved.

More direct experimental measurements have utilized the
rocket sled in which animals and humans have been exposed to
accelerations approaching, and in excess of,end point
magnitudes. The work of Stapp (Refs. 18 and 19) and Beeding
(Ref. 20) in this area is particularly well known. In the
impact regime, simple drop tests have given useful data on
man's tolerance to impulsively applied forces. Many people
have engaged in this type of work and the results of Holcomb
(Ref. 21) and Swearingen (Ref. 22) are of particular interest.

At Stanley Aviation, experimental work associated with
the B-58 escape capsule development program indicated that the
dynamic response of the human was extremely important and
accelerations measured on test subjects indicated that
accelerations far in excess of the normally accepted tolérance

levels could be withstood if the application time was extremely
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short. Theoretical studies by Payne (Refs. 23 and 24)

showed that a simple mechanical model of the human body,

consisting of an elastic spring-mass system, could be used

as a basis for a theory to explain and correlate experimental
data, and his work laid the foundations of the present study.
A brief summary of the dynamic model technique and its
application to the analysis of human tolerance to acceleration

was given in Ref. 25.

Choice of a Dynamic Model

Medical research has shown that when the human body is
subjected to impulsive or steady state forces, deformation
and displacement of the structural components and organs occur
which result from forces generated within the body. The
transmission, amplification and attenuation of these internal
forces must result from basic processes that can be explained
by the laws of physics, but the effects, and therefore an
understanding of the effects, are masked by the complexity of
the human body, the limitations on the type of experiment that
can be performed, and the complicated subjective response of
the subject.

Taking a broad view, the human body consists of a bony
structural skeleton, held together by tough fibers, which
provides mechanical support and a lever system on which the
muscles act. The slightly curved vertebrae or spinai column
is the basic structural component and consists of a number
of vertebrae acting as load carrying elements and separated
by supporting tissues which act as shock absorbers and
connecting links. The rib cage and abdominal cavity contain
the visceral organs (heart, lungs, liver, etc.) which are fairly
massive components, suspended freely by connective tissues from

a muscle and bone support. The basic constituents such as bone

T



tissue, ligaments and muscle e*hibit properties familiar to
the engineer, such as elasticity, compressibility, shearing
and tensile strength. In addition, when the body is exposed
to comparatively low frequency vibrations, resonances occur
within the body which can be observed directly and by the low
tolerance level of the subject to a particular frequency of

vibration.

It appears likely, then, that the motions induced in the
body by rapidly applied accelerations can be explained by
considering the elements of the body as mechanical systems
exhibiting elastic properties., At the same time, because
of the complexity of the body structure, a complete description

- of body response in terms of integrated mechanical models
is not possible at this stage. However, a start has to be
made somewhere and it is logical to investigate the motions
of a simple spring-mass system which is known to exhibit
dynamic response characteristics similar to the human body.
For instance, a man subjected to a headward acceleration along
the spinal axis (which is known to frequently produce spinal
fractures) can be represented by a single spring-mass system
where the spring has stiffness characteristics similar to the
spine and the mass approximates that of the man. The motion
of the spring-mass system for a given input acceleration can
be mathematically predicted with accuracy, and if reasonable
correlation can be obtained between the theory and experimental
observations made with & man, the model can be used as a basis
for predicting human tolerance to arbitrary acceleration inputs.
An improved model would include mechanical components (dampers)
to simulate the damping effect of the human body. A further
refinement can be obtained by employing multiple spring-mass

systems to represent various parts of the body.
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2.1

The mechanical model consisting of one or more spring-
mass systems can therefore be regarded as an approximate analog
of the human body for studying response to short duration
accelerations, but it is in no way a true representation, and
regarding it as such may be misleading. It will only predict
gross effects and relies on the establishment of certain criteria
obtained from experimental data before it can be used. Even so,
it should prove a powerful tool in the analysis of acceleration=-
time histories and the evaluation of techniques for increasing
human tolerance levels, The actual model used is not so
important as the fact that certain equations can be deduced which
explain the existing experimental data and lend themselves to

the prediction of future events.

Existing Data

Experimental Background

A variety of experimental facilities have been used in
an attempt to establish the acceleration levels to which man
can be subjected before some form of physical injury results.
These include rocket sleds, catapults, shake tables and drop
test facilities. When human subjects are used the tolerance
level is governed by the reaction of the test subject to a
variety of conditions and it is possible that the actual
upper limit may be considerably higher than that determined
from voluntary exposure. The severe injury threshold has
been investigated with the use of animals, but some caution
should be used in applying these results to humans because of
physiological and psychological differences. The analysis of
accidents has given some information on the human injury
threshold, but the conditions governing these cases are far

from controlled.




2.2

The main difficulties in interpreting experimental data
are} correct interpretation of the results of measuring
instruments, the effect of seat and harness configuration,
lack of standard acceleration input patterns, orientation
of the subject, differences in response of individual subjects
and the often unreproducible nature of the experiments.
Qualitatively, experiment has shown that the major factors

influencing human tolerance to short duration accelerations

are:

(a) direction of application of input

(b) magnitude of the input acceleration

(c) duration of the input

(d) rate of application of the acceleration ("rate of onset")
(e) orientation of the body

These pioneer experiments, often carried out at great risk to
the volunteers, have produced tentative values for human
tolerance levels, but prediction of tolerance is still an art

rather than a science.

The useful application of a dynamic model depends on
experimental data and all the known results have been
consulted in the course of the present investigation. Wherever
possible, data referring only to properly restrained subjects
in rigid seats and subjected to acceleration forces near the
major directional axes has been used. The work of Stapp
and his successors at Holloman A.F.B. has constituted the main
source of information, but the cooperation of all persons and

agencies engaged in this field is acknowledged.

Present Tolerance Limits

In 1959, Eiband (Ref. 2), realizing the need for a
critical survey of the status of experimental data, made a

comprehensive survey of the existing literature. He
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approximated the form of the input acceleration to a
trapezoidal pulse (see inset of Fig. 2) and used the plateau
duration and magnitude as the two significant variables.
Plotting vehicle (input) acceleration in G's against duration
time he produced suggested tolerance curves based on the

more reliable experimental data. Two of these curves,
referring to accelerations applied in the headward and

backward directions, are reproduced in Figures 2 and 3.

These curves found a ready application amongst designers

and have proved invaluable, but still suffer from certain
drawbacks. Inspection will show that there is a considerable
unknown area between the region of voluntary human exposure

and the known region of injury. In the headward case, this
unknown area covers over 20 G in the ordinate, which includes
the repgion of most interest today. In addition, the boundaries
are not particularly well defined and a few more reliable points
might well change the general shape of the curves, particularly
in the impulse region. The method of analysis of the results
was in no way rigid as the deduction of a plateau level and
duration time from a complex acceleration trace is no easy

task and various combinations of the two parameters are equally
correct. The five hog points shown in Fig. 2 were apparently
obtained from a single experiment which is not particularly
valid, since the experiment representéd an end point. The
reverse argument is also true since it is difficult to fit
criteria based on a trapezoidal input to the complex acceleration-

time histories encountered in practice.

Included in Figure 2 is a tolerance curve based on German
data relating to compressive strength tests performed on the
human spine (Ref. 5). This information was used by Ruff to
calculate the static load necessary to cause rupture and used
to define the "plateau" region of the tolerance curve. In the

impulse region, dynamic considerations led to the linear tolerance

11




line similar in shape to that suggested by Eiband. The Ruff
curve estimates tolerance limits at approximately half the

input values resulting from Eiband's work.

The general form of these curves merits some comment.
It can be seen that for duration times up to 0.0l sec. the
tolerance level drops off linearly (log - log scale) as the
duration time increases. This can be explained in terms of
dynamic response, since the acceleration achieved by the man
takes a finite time to develop. When full overshoot is attained
(at about 0.0l sec.) any further increase in the duration time
does not increase the man's response for a given input level,
until the "long" duration regime is approached when hydraulic
effects become noticeable and reduce the tolerance level still

further.

The curves published in the Handbook of Instructions for
Aircraft Designers (H.I.A.D.) contain the human tolerance
limits that usually have to be met by present day aircraft
designs. This publication (Ref. 26) and its derivatives
(e.g. Ref. 27) have been the subject of considerable discussion
on the validity of these curves (see for instance Ref. 28) of
which the one pertaining to headward and backward accelerations
is shown in Figure 4, It certainly appears that the H.I.A.D.
curves should refer to the vehicle rather than the man, since
they do not take into account the man's dynamic overshoot.
Inconsistencies in the definition of time when referred to rate
of onset and duration time are also apparent, and the inter-
pretation of allowables in the short duration time region
containing the rate of onset curves is impossible. Further,
although "rate of onset" is important, it will be shown later

that it is not a limiting criterion.
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3.0

3.1

This discussion of the existing information shows that the

presently accepted human tolerance levels to short duration
accelerations leave much to be desired, and one merit of the
analytical approach is that it forms the basis of a more
consistent definition of tolerance levels and lends itself to
the study of any type of acceleration input. The method of
applying the dynamic model to this end will be described later.

General Principles of the Dynamic Model

Physical Interpretation of the Model

The dynamic model proposed as a basis for an analytical
study of the tolerance of the human body to short duration
accelerations is a spring-mass system composed, in its
simplest form, of a mass mp (the equivalent mass of the man)
attached to a spiral spring considered to have zero mass.
This basic model is illustrated in Figure 5(a). The spring
exhibits elastic properties in that it tends to return to an
equilibrium point when a displacement is introduced into the
system. When a displacement is induced, the restoring force
developed in the spring is proportional to the displacement or
deflection and the factor of proportionality is called the
spring constant (k). Thus the restoring force F for a given

deflection & can be written
F = kS8

If, after displacement, the spring is allowed to move
freely, it will oscillate about the equilibrium point with a
certain fixed amplitude (maximum deflection), exhibiting
harmonic, sinusoidal motion. The number of complete
oscillations or vibrations per second is the frequency (w)
which is related to the spring stiffness and mass by the
expression R

[A) = B
Mp
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As a result of its motion, the system possesses an internal
velocity which is the rate of change of deflection with time
(48/dt ) and referred to as the spring velocity in this

report, and an acceleration or rate of change of velocity with
time ( 4*6/ dt* ) which is always towards the equilibrium

point. The spring velocity and accelerdtion can be interpreted
as the velocity and acceleration of the mass with respect to

the base of the spring. The usual sign convention is that

the deflection is positive in compression and negative in

extension.

When an acceleration input is applied to the base of the
spring, the system moves in such a way that the mass accelera-
tion relative to some fixed axes is the resultant of the input
acceleration and the acceleration resulting from the spring
deflecting. The complete motion of the mass is best

illustrated by a specific example.

In Appendix B the equations governing the motion of a
single spring system subjected to a step input acceleration
are developed, for the case of a linear spring(force directly
proportional to the deflection). Solution of the equation
of motion leads to the following expressions for the deflection,
velocity and acceleration of the spring (Equations B.7, B.8,

B.9 respectively).

deflection § = --E-ﬁl (1-ceswt)
velocity A8 - & . A pumwok
oLt w
2 .
acceleration s S = «crswt

dE

where X is the step input acceleration and t represents time.
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These expressions are plotted in Figure 6.(a) to (c) and
can be interpreted as follows. The deflection of the spring
(defined as the difference between the unloaded and loaded
length) is zero at time zero and again at a time represented by
wt =21 and is never negative for this type of input. The
maximum value of ~#*/w” is reached when wt =1 , The spring
velocity is essentially a sine wave of amplitude %/w having
a zero value initially and at maximum deflection. The spring
acceleration starts off equal to the input acceleration (but in
the opposite sense) and is directed towards the spring base.

It then decreases to zero at the point in time when the system
is in equilibrium (force developed in the spring equals the
input force) and the velocity is a maximum, reverses its direc-
tion and peaks at wt = 77 and is then in the same direction
as the input acceleration. It then decreases to zero again
when the velocity builds up to a maximum in the negative

direction.

The resultant mass acceleration (yb) contains the two
components -~ spring acceleration and input acceleration ~ and

from Equation B.10 is given by
9} = ol (I~ Cos wt)

The spring acceleration is in the same direction as the input
for n@ Cwt < 3ﬁ§, so in this region the resultant mass
acceleration is greater than the input, a condition known as
overshoot. In fact the peak value of the resultant mass
acceleration, which occurs when wt = Ti , is twice the input
acceleration, which is the 100% overshoot case. The motion

of the spring continues with time in this manner, and the mass
acceleration experiences a succession of maxima at wt= i, 37, 5n

etc. until the input is removed.

At the onset of the applied acceleration the spring stores
up potential energy until it carries a load equal to the increase

in "weight" of the mass. At this stage the mass still has
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3.2

kinetic energy and the spring continues to compress until
this is destroyed, at which point the spring deflection and
mass acceleration attain maximum values (spring fully compressed)
and all the internal energy is in the form of potential energy
of the spring. |

The maximum mass acceleration (from Equation B.2)is given
by

gh = wzsnax

when there is no damping present, so the maximum mass accelera-
tion, or the maximum spring deflection is indicative of the
peak response of the system. Since the spring-mass system is
analagous to the human body, a correct choice of spring frequency
(w) corresponding to the relevant part of the body under
investigation enables the mass acceleration or spring deflection
to be calculated (for a given acceleration input), which can
be taken as a measure of the dynamic response of the man. If
criteria can be developed for the values of &ﬁ and/or § that
correspond to some end point in the man, the model can then be
used to predict tolerance limits. The necessary correlation

can be obtained from a study of the available experimental data.

The Influence of Damping

Resistance to motion is always present in any system and
the effect is normally referred to as damping. When the
motion is vibrational by nature, as in the case of a spring-
mass system, the presence of damping successively reduces the
amplitude of the vibration until the motion is completely
eliminated. Typical commonplace examples of damped motion
are the diminishing amplitude of a pendulum swinging in air
due to the air resistance and the decay of electrical vibrations
in an oscillatory circuit resulting from the resistance to
electron motion. Whenever resistance to motion is present,
energy is dissipated (usually in the form of heat) and the

system gradually runs down,
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In the humdn body, vibrations set up in the various
elements will be damped by the surrounding matter and a
mechanical analog of the body should allow for these effects.
The mechanical resistance of the body causes viscous damping,
which is akin to that obtained with a fluid dash pot, which
can be regarded as consisting of a loosely fitting piston
moving into an oil-filled cylinder. The dash pot mechanism
is included in the spring-mass system to represent all the
damping present as shown in Figure 5.(b). The mechanical
influence of the dash pot is to produce a resistive force

which is proportional to the velocity of the mass, so that
F= k8

where & is the mass velocity resulting from the spring motion

(spring velocity) and K is called the damping constant.  The

damping coefficient (C) is the quantity normally used and this

is related to the damping constant (K) by the expression

K
C—mP

As explained in Appendix E, three damping regimes exist.

These are critical damping (€ = w), dead beat ( €>®W ) and
sub-critical damping (€ < W ). The latter case is of
importance in the human body where the damping is small but not

negligible.

When damping is included in the spring-mass system, its
main influence on the output is to reduce the vibrational
amplitude and the mass acceleration so that, generally, damping
is beneficial. Tolerance c¢riteria can again be applied to
the model, but some ambiguity is introduced into the definition
of tolerance. The mechanical quantity corresponding to the
observed physiological effect can be represented by the mass
acceleration, which is a measure of the total force transmitted

through the system, or the strain (proportional to deflection)
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5.3

resulting from the force developed in the spring alone.

At this stage, it appears that the criterion adopted depends
on the part of the body concerned; thus, the latter criterion
is more reconcilable with the physiological facts for massive
organs with elastic attachments, but the former might be more
applicable to the spinal mode where crushing forces on the

individual elements are important.

A more detailed discussion of the influence of damping

will be found in Section 4.

Multi-Degree of Freedom Systems

In dynamics, a system in which the motion is specified
by only one coordinate is said to have one degree of freedom.
The single mass system described above fulfils this condition,
since the motion of the mass relative to the spring base can
be described by one coordinate. Generally, the number of
degrees of freedom is the same as the number of masses contained
in the system, so the models shown in Figure 5.{(c) and (d) are

termed two and three-degree of freedom systems respectively.

When the human body is subjected to an acceleration input,
more than one part of the body can be set in vibration. The
particular mode excited depends on its frequency and the dura-
tion of the input. Thus, low frequency modes are slow to
excite and require comparatively long input durations before
they produce any noticeable effects. Shake table tests, where
human subjects have been exposed to sinusoidal inputs of various
frequencies and amplitudes, have shown that the human body
exhibits two distinct low frequency modes in addition to the

much higher frequency spinal mode.

Although a dynamic model cannot give an exact representa-
tion of the body, it should at least contain elements represent-

ing the major vibrational modes. For the sitting man it seems
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3.4

likely that three mechanical systems are sufficient to explain
the important features of response to short duration inputs,

if the arms and head are assumed perfectly restrained. There
is, then, a need for refining the basic dynamic model by
including more degrees of freedom. The theory of a two-degree
of freedom model is developed in Appendix J and that for a
three-degree of freedom model in Appendix K. The mathematics
is naturally more complicated, but the objects are the same

in that the deflections developed in each spring and the
dynamic response of the mass associated with each system must
be evaluated. Using multi-degree of freedom models it will

be possible to investigate the response of various parts of

the body simultaneously and to study the influence of inter-
actions between the modes. The model is quite general in that
values of mass and spring frequency may be assigned to fit a
particular problem. In this way, the spinal column may be
considered as a number of spring-mass systems in series which
can be built up to include the results of experimental measure-
ments made on vertebrae. This application has been attempted
with the two-degree of freedom model with some degree of success,
but it might well be that over complication leads to less

instructive results,

Correlation with Experimental Data

The equation of motion of a single degree of freedom
model with a linear spring and no damping is derived in

Appendix B (B.5) and can be written

't{.;LC_.— W + §
For the general case of an arbitrary acceleration input this
equation can be solved in a step-by-step fashion to give the
variation of the spring deflection with time. The spring

deflection can then be related to the resultant mass accelera-

tion, since yp = uJLS',so that a time history of the output
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acceleratioﬁ can be obtained cérresponding to the response of
the man. It is now necessary to establish a maximum value of
the mass acceleration that can be tolerated before an end point
is reached. This can be done by analyzing the input accelera-
tion traces of the available experimental data, obtaining the
relevant mass accelerations and correlating these with the

medical histories of the test subjects.

A more direct approach is available if the results of
Eiband (Ref. 2) are used as a starting point. The data
plotted in Figure 2 indicates that, in the '"plateau" region, the
upper tolerance level based on the vehicle acceleration is about
Lo @, Since the results quoted by Eiband are limited to tests
that used rigid seats and good restraint, the vehicle accelera-
tion can be taken as the input acceleration to the model. It
will be shown later that the "plateau'" region corresponds to
duration times that allow 100% overshoot in the ouput of the
dynamic model used for headward accelerations. This means
that the output is exactly twice the input, and using the
input of 40 G taken from Eiband's curves, this implies a
criterion of 80 G on the mass acceleration before an end point

is reached.

The frequency of vibration of the particular part of the
body under consideration must also be known. In some cases
this can be measured directly from vibration tests but, for
the headward case mentioned above, no such results are
available. However, a value of the spring frequency relevant
to the dynamic model when used to analyze spinal inputs can
be obtained indirectly by applying the results of the
mathematical analysis to Eiband's results in the impulse region.
Impulsive inputs are considered in Appendix D and Equation D.23
gives the maximum mass acceleration (G_) attained for an
impulsive input of G lasting for a time At, viz. Gp(max) =GW At,

This equation holds for At <¢% . - Taking logarithms of each
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side gives the relationship

dog G = Aoy S - Aeg AL
which represents the equation of a straight line of slope -1,
and implies that,if log Gc were plotted against log A tya
series of straight lines of slope -1 would be obtained, their
position relative to the time axis being governed by the
value of log G (max). Eiband presented his results in just
L

w
this way, and it is found that his points, based on hog data

do fall approximately on a straight line. Accepting a value
of 80 for Gp(max), and fitting the above equation to Eiband's
results gives a value of W = 280 rad/sec. (approx.) or roughly
L4 cycles per second.

Bearing in mind the accuracy of the Eiband curve, it is
possible, therefore, to evaluate the coefficients appearing
in the equation of motion and to deduce a criterion for the
maximum allowable response of the spring-mass system. One
of the objects of this research program was to collect the
available experimental data in an attempt to define the
dynamic model more exactly and test its usefulness as a
method of analyzing the tolerability of arbitrary acceleration

inputs.

Linear Systems

The response of a spring-mass system to a given input
depends on the way in which the restoring force develops in
the spring with change in deflection. If equal increments
of deflection produce equal increments of force, the spring
is said to possess linear characteristics and a plot of force
against deflection produces a straight line (see Figure B.1(b)).
The force-deflection relationship for a linear spring is,

F = RS

where k is the spring stiffness, or,in acceleration units,

..E = .B’..S: wQS
mP MP
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where «w 1is the spring frequency. It is known that certain
parts of the human body exhibit non-linear characteristics at
the higher input amplitudes, but an approximation to a linear
system can often be made. Considerable progress can be made
on the assumption of a linear spring system and the mathematics

is simplified considerably.

Characteristics of Single Degree of Freedom System

The response of a single degree of fresedom model will be
investigated analytically using various types of input accelera-
tions. The equation of motion for an undamped system was

quoted earlier as

9 - WS+ 8
C

This is an ordinary second order differential equatlion describing
the variation of the deflection (8 ) with time. The input

(ic) can have any arbitrary variation with time, but a closed
form solution of the equation of motion is possible only if

the input-time relationship can be represented in some simple
mathematical form. The response of the dynamic model to a
number of simple acceleration inputs is examined below. This
simple approach gives important qualitative results and can

often be used as an approximation of a practical case.

4,1.1 Continuous Step Input

If the applied acceleration jumps instantaneously to some

finite value (X ) at t = O and remains at that value indefinitely,
the input can be represented by

y = o
C
and is termed a step input. This case is analyzed in Appendix B

and the relevant equations for zero damping are

Equation of motion (Equation R.6)

.é 4+ W8 = A
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Spring deflection (Equation B.7)

§ = 2 (1-cnawk)
w2

Resultant mass acceleration (Equation B.10)

yk = ok (- Coswit)

where S;p represents the resultant mass acceleration.

Maximum mass acceleration (Equation B.16)

(éP(max) = 2K

»

The resultant mass acceleration is analagous to the
response of a human when subjected to similar input conditionms,
and is illustrated in Figure 7. (see also Fig. B.2) in non-
dimensional form. It can be seen that the output is less
than the input for values of wt< T'/z,, is equal to it when

wt = N1/ , and for values of W& between /2, and 3%,
the output is always greater than the input. In the latter
case the output acceleration is said to overshoot the input
acceleration. When wt = Il | the mass acceleration is
exactly twice the input which represents 100¥ overshoot.

The output reduces to zero at a time represented by wwt= 20
and thereafter the pattern is repeated in a cyclic manner.
When some initial deflection is present in the spring the mass

acceleration is given by B.11 as
9? = o (1-conwt) + gt

In deriving this equation it was assumed that the influence
causing the initial deflection made no force contribution to
the motion of the mass. It can be seen from Figure 7 that
such a disturbance increases the mass acceleration for wt< n’a.
and 5W4 >t 31/, etc, but in the region where the mass
acceleration is a maximum, the value is actually reduced and
the peak mass acceleration is given by

Q‘jmax) = R - o? S
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The explanation of this reduction is that, when an initial
deflection is present, the compression 55 is attained without
a velocity being introduced into the system, so that less
kinetic energy is available and the maximum deflection and mass

acceleration are reduced.

If the disturbing force acts throughout the acceleration cycle,

(contributing an acceleration G“) the peak mass acceleration is

given by y(_max) = 2 («+G')- w8 = Ra+G’

P

so that, in this case, the peak mass acceleration is increased

L}

by the value of the steady G'field.

Thus, preloading in a direction opposite to that of the
input acceleration can alleviate the peak body response if the
loading force is removed when the input reaches the same value,
which would occur if an inelastic restraint was employed.

In practice, of course, this improvement is difficult to achieve
due to such effects as curvature of the spinal column, rebound,

and the presence of multi-directional accelerations.

When damping is included in the system the equation of
motion contains an additional term due to the force exerted on
the mass by the damper, as explained in Appendix E, from which

the following have been extracted.

Equation of motion (Equation E.3)

§ +2c8 +w§ = X
where C is the damping coefficient

Resultant mass acceleration (Equation E.9)

)L- N
g', = X {l-- C-L (Cescogle - :’:)OMV\ ‘-Oot)}

where w2 = w*-c’ and W, is the damped frequency

Maximum mass acceleration (Equation E.11)

D’Ct
gomer) = L (17 €7)

ol
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RCWo

-4 -y £C0 .
where t = ooo+u”‘ ( Ah?—C*) and the angle is in the

second quadrant

Spring deflection (Equation E.5)

§ = B_( {'_e'c’:(a S Wk + co4 Wot)}
w?* ¢

These equations refer to the sub-critically damped case
where > c? . The presence of damping terms modifies the
output of the single degree of freedom model, as shown in
Figure E.2, where it can be seen that maximum value of the mass
acceleration is reduced, but it is achieved earlier. Figure 8
compares the response of a damped system based on the total
force acting on the mass (proportional to mass acceleration)
and on the spring strain (proportional to deflection) given by
F = k§ so that

F . RS . 18 - o(i‘-e“'-t(écsﬁhwot +mw°t)}

Mp M
which has a maximum when W, =T .
Up to maximum compression, for a given damping ratio s
(where %4 = 1 represents critical damping), the acceleration
based on the force developed in the spring is always lower than
that based on total force and so represents a more optimistic
tolerance criterion. Thus a study of the response of the
damped system to a continuous step input indicates that a
tolerance curve based on input accelerations will be less severe
in the plateau region (full overshoot always attained) than the

undamped case, and that allowables based on total force will be

lower than those using spring force as a criterion.

Other Continuous Input Functions

The other simple input forms treated in Appendix B are;
the linear ramp represented by §c = t where @ is the slope
of the function, and the paranolic input represented by yc =3’t1
These are mainly of academic interest in themselves, since an

input acceleration will not go on increasing indefinitely, but
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the solutions can be useful if the input approximates to either
form during the onset phase. In this case, the response to
either the ramp or parabolic function can be used for the
starting conditions to be used in the second phase. An input
function taking the form of a ramp followed by a constant
function is quite common in practice, however, a direct solution

exists for this type of input as shown in Section 4.3.

The expressions for the appropriate mass accelerations

are
Linear ramp (Equation B.13)

s Stn ok )

dp = Bt~ —

Parabolic (Equation B.15)

e b R 2 e .
Yo = yt - L—)@;O coniot)

h,1.3.Rectangular Input

In practice, the input acceleration is applied for a short
time (At) only, and the mass continues to move after the
removal of the applied acceleration, just as a car continues to
move after the accelerating force has been removed. The peak
mass acceleration is usually attained at some time greater than
At, so the solutions of the equations of motion for t > At
are important. This case can be treated by considering an
input that rises instantaneously to some value X , remains

constant for a time At and then becomes zero.

The response of an undamped single degree of freedom
system to a rectangular input is treated in Appendix B, where
it is shown that the resultant mass acceleration is given by

(B.18) v .
%Pz O((Z.‘Z.Cmtu&t) 1Mn(wt"+¢)
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where ¢ is a phase angle given by tan S ioAL ) and time

is measured from t = At.

The peak mass acceleration is shown to be (B.19)

v/
G, (maxd = (- ees wAL) >

This expression shows that the maximum mass acceleration depends
on the frequency of the system and the input duration time, for

a given value of « ., This dependency is shown in Figure B.5

of Appendix B, and Figure 9 illustrates the typical response

of the system for various input duration times. The output

can be less than, equal to, or greater than the input accelera-

tion, depending on the input duration. Hence, for small input

durations the response of the model is low and quite high input

accelerations can be tolerated. For the condition

i i
g‘:(max7=(2;2vmwa't)"<l i.ew At < 4
oL
the peak output acceleration is always less then the input,

and the tolerable input accelerations are always greater than
the critical value assigned to the mass acceleration. The

condition of 100% overshoot is given by
2-2 craolbe = W

f.e. WAt =1

so that for duration times greater than At = "o  the

tolerance level is independent of the pulse duration.

4.,1.4,.Impulsive Inputs

If the input duration time is extremely small, the motion
of the system is of an impulsive nature and may be assessed in

terms of velocity change since

impulse = force x time
mass mass

= velocity change
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In this report the impulse region covers duration times

that are so short that full overshoot in the output response
is not achieved. The impulse region is also referred to

as impact and the short duration input acceleration are
sometimes called "spike'" inputs, although the latter term

strictly refers to triangular shaped inputs.

The single degree of freedom system with no damping
is analyzed in Appendix D for the general case of a non-
linear spring. If n is put equal to unity, the equations
are applicable to the linear system discussed here. The
.peak mass acceleration, from Equation D.21, can be represented

by
(ai“(max\ = oV

and depends only on the frequency of the system and the
velocity change introduced by the impulse, so that input
acceleration and duration times need not necessarily be
considered as tolerance parameters. However, these terms
can be introduced by writing the above equation in the form

(Equation D.23)
%mu) = wgcAl:

which is the relationship used in fitting the theory to
experimental data, as explained in Section 3.4, For a given
frequency, it is the area represented by 50,43£ that is
important. Equation D.22 of Appendix D gives the duration

limit over which the impulse theory is valid as

When damping is present in the system, the peak mass

acceleration derived in Appendix E (Equation E.19) is

.. — Ct
Y (maex) = Ve
d
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where the damping influence is contained in the € term,

and the time at which the maximum occurs is described by
— t ".wo _C_wo
t.__ EO{M(E)’zM(E)}

from Equation E.18 where tan~t (Wosc ) and tan! ( “o4 ) are

in the third and second quadrants respectively.

If the force developed in the spring is used
tolerance criterion, the relevant acceleration is w?&,.,,
given by Equation E.16

w"EM“ = wVv e ¢t
where t is now Hb“f'(“hy ) . The two criteria are compared
Wo ¢

in Figure 10 for various damping values.

Using the deductions of Section 4.1.1 and the results
quoted above, allows the influence of damping on the general
form of the tolerance curve (based on total force) to be
determined. Figure 11 shows how the position of the tolerance
curve is affected by the choice of certain damping ratios.
It can be seen that, for damping ratios associated with the
human body (15 to 20%), the tolerance curve is moved up about
20% in the plateau region (~ 8 G). In the impulse region the
tolerance line moves up with increasing damping until the
value €/w = C.27 is reached (see also Figure 10), and then
back to the undamped line at €/4v = 0.5. This is due to the
fact that for ¢/w values up to 0.5 the maximum output occurs
after t = O (see discussion following Equation E.19) and some
energy is dissipated. For'QQ,> 0.5 the tolerance curve moves
down, since the force is transmitted through the damper immediately.
Using spring strain as a criterion, the tolerance curve would
become less stringent as the damping increased throughout the whole
region., This is because the peak spring force is always reduced

when damping is present.
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4,1.5 Sinusoidal Inputs

If the applied acceleration fluctuates in a sinusoidal

fashion it can be represented by the expression

'jc = f'c..e A DL E
where yco is the amplitude and £L the frequency of the motion.
A continuous vibration of this form normally involves duration
times outside the range of the model consifered here, but in

some cases a particular acceleration car be approximated by

the initial cycle or cycles of a sine wave.

The solution of the equation of motion is developed in
Appendix E. The expression for & (see Equation E.28) has
two distinct parts, one representing an oscillation of frequenc
(ﬁ%) dependent on the parameters of the spring-mass system, and
the other describing a motion of frequency (§2), the forcing

function. The former, known as the transient solution, is

given by
.o ne_ct x)
. Yeo - {(—ﬂ TR Sl Wb + RLW w(wong&)}
froraYrue2} U wo Wo
where @ = t:an-1 ‘6-9" and Wg= w*-c* The part that

oscillates with the applied frequency is called the steady

state solution and is represented by

& - _Feo ‘§(wk£f)awhn¢-zcllumivﬂ
(wr-* ) et
The output of the system is the resultant of these two terms
as shown in Figure 12. As time increases, the transient
term is gradually damped out due to the influence of the
-ck

e term, the rate of attenuation depending on the damping

constant of the system.
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The steady state solution was used in Appendix E to obtain
the amplification factor (A) which indicates the amount of

overshoot in the output acceleration. This is given by

}
f (oY + bci}™

: . 2 2 2
This expression has a maximum when £2° = @w™—R2¢ i.e,

|
R W,
which represents the case of resonance. When no damping is
present, resonance occurs when L) =& and the amplification
can be infinite. Under these conditions very high output
amplitudes result for small input amplitudes, but the presence

of even a small amount of damping modifies the picture

considerably.

Restraint Effects

During the analysis of the experimental data it became
apparent that the results depended to a large extent on the
type of restraint used in the particular experiment. The
importance of good restraint has long been recognized in the
design of harness systems and practical experience counts
for a great deal in this field. Although outside the terms
of the present study, it was decided to make a brief investigation
of the influence of restraint on the output of the dynamic
model. Although the results are of a qualitative nature they
illustrate the usefulness of the model and provide pointers

for future work.

k.2.1.8eat Cushion Effects

The single degree of freedom system is modified to include

an elastic cushion by placing aspring in series with the one
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representing the human body, as shown in Figure G.1 of
Appendix G. If damping is ignored the model can be
represented by a simple equivalent spring system where the
equivalent frequency wis related to the two component spring
frequencies W, (man) and w, (cushion) by the following

expression (Equation G.4)

w? = > Wi

W+ W

The cushion spring effectively reduces the overall frequency
of the system which implies that the response will be slower
and, for a given input duration in the impulse region,of
smaller magnitude (decreasing «) moves the tolerance curve up).

This is true if the cushion does not bottom as shown by

Equation G.9 which gives the ratio

§p max (with cushion) ) !
yp max (no cushion) (1 + g@:_\vi
W,

The maximum mass acceleration of the system is always reduced
by using a cushion, and the reduction is greater for small
values of W (i.e. a soft cushion) which is illustrated
graphically in Figure G.2. For long duration times the full
100% overshoot is always attained and the cushion has no

effect on the output of the system or the tolerance curve.

If the cushion bottoms during the motion the mathematical
analysis proceeds as explained in Appendix G. The cushion
spring has to be restrained at some deflection given by &,y
(deflection at bottoming) and thereafter the input is transferred
directly to the body spring. At the instant of bottoming any
kinetic energy of the cushion spring is transferred to the body

spring, only the potential energy being retained.

In the impulse region, it can be shown (Equation G.11)
that the peak mass acceleration after bottoming is
pRY ) ke
™MpE

ié'P(n\u.() = (0, (A'Vz'-
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where Av is the velocity change introduced by the impulse
and Ec is the energy absorption capacity of the cushion,
i.e. the potential energy ( 3 R, S;E ) stored in the cushion
spring at bottoming. Comparing this equation with that
representing the output of the single' (body) spring system
(Equation D.21)

..

gr@\“) = Ww/Av

it can be seen that the output is again reduced due to

attenuation in the cushion. The bottoming velocity can be
written
k),l \
Av _ 2E, <|-+ 511)} r
BT (mp | wi
w3

which is small for a weak cushion spring ( W, and k1 small)
and for large values of the body spring ( w, and R, large).
The beneficial influence of the cushion in the impulse region,

even when bottoming occurs,can be seen from Equation G.15

yp max (with cushion) | 2E, )Vm
'jp max (no cushion) ( mpAvV?

So, for a given velocity change, the attenuation of the impulse
depends on the energy absorption capacity of the cushion and

is independent of stiffness ratio.

When relatively long duration inputs are considered a
bottoming cushion can have very severe effects on human
tolerance. The solution developed in Appendix G gives the
maximum mass acceleration after bottoming as

. . .. - wl w“ ‘lj_
 max) = o Roly — gt (14 W W }
IJP(MM) = °(+§ Js 35( .2 w;)
This shows that for the condition
w2 _ W

2 X > i+ .t
# ' w?r oyt
‘33 +
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which is true for all finite values of the frequency ratio,
the overshoot can exceed 100% which represents a much more
severe acceleration imposed on the human than when no cushion
is present. Thus, large bottoming velocities are dangerous
and if bottoming must occur it should happen as early as

possible.

Summarizing, for impulsive inputs a cushion is always
beneficial and increases the tolerance level; for longer
duration inputs, the cushion has no influence unless it
bottoms, in which case considerable magnification of the
output can occur. These conclusions are presented, in

graphical form, in Figure 13 and Figure G.4 of Appendix G.

4.2.2 .Rebound

The phenomenon termed rebound can occur when the
acceleration applied to the occupant of a seat is suddenly
removed and the occupant is thrown into his harness system.
The undamped linear single degree of freedom model can be
used to analyze this problem as explained in Appendix H.

The body spring goes in to compression in the usual way

when the acceleration is applied to the seat pan and when the
input is removed after a time At, the spring returns to its
original position, but with a certain velocity. At this
stage, the body spring becomes inoperative and the restraint
spring starts to compress, decelerating the mass. From

Equation H.1ll the maximum deceleration is given by

gr(m“\ = -k Wy At

where (v, is the restraint frequency and o is the initial
step input. This expression is similar to that derived for

the impulsive input (Equation D.23 of Appendix D) but

3l
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(W, is now the important parameter. The ratio of the peak
mass accelerations imposed during the impact phase and rebound

respectively can be tormed, viz.

}p max (rebound) _ (o2

§§ max (input) ZST

where @, is the frequency of the body spring. ‘'he expression
for the mass acceleration in rebound can be maximized for a

particular input duration and "start of rebound" time to give

gr(mm < -’ %\

Regarding W, and &, as the equivalent man-harness and man-cushion
frequencies respectively, it tollows that considerable amplification
of the input acceleration is possible, if the equivalent restraint

system is stifter than the equivalent cushion system.

The Importance of Rise Time

An expression that often appears in the literature on
acceleration stress is '"rate of onset of acceleration" which
is usually quoted in units of G per sec. Rate of onset has
frequently been used as a critical parameter in determining
human tolerance to abrupt accelerations and in some cases
test subjects have reported being able to sense different
onset rates. The dynamic model is based on the concept that
the acceleration response of the subject is the important
criterion and, in this context, the maximum input acceleration
and duration time are the important parameters. If the input
acceleration is less than half the allowable mass acceleration,
the peak mass acceleration will never exceed the critical value
regardless of the rate of onset (e.g. a step input where the
rate of onset is infinite). When the input acceleration is
greater than half the allowable mass acceleration, the over-
shoot is influenced by the rate of onset, but it is more
explicit to refer to the time taken to reach a certain plateau

or peak value, i.e. the rise time £, , since the frequency of
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the system (cycles per second) is also involved. The
definition of rise time will be clarified by reference to
Figures I.1(a) and (b). Rate of onset, in itself, does
not mean very much unless the peak input acceleration is
also specified, then ~ rate of onset x rise time = peak

input acceleration.

The simple case of an input consisting of a linear ramp
function followed by a constant is studied in Appendix I.

For zero damping, the model response is given by Equation I.5.
iy - - 2/5 t._.tr . u)t
%P = pty = {c«au:( z ) s E;Y}

where 3 is the slope of the ramp function, i.e. the rate

of onset of acceleration.

When the ramp input is operative, i.e. before the
acceleration levels off, the mass acceleration is given by

Equation B.13 as
. - ; - {.MMU.)L'
gy =€ (£ PEET)

This function exhibits no maxima, only points of inflection
and the acceleration output has the form shown in Figure B.2
of Appendix B. The fluctuations of the output about the
input are governed by the values of W and 8 , overshoot is
still present in the output, but is combined with an
increasing input to give the effect shown in the figure.

The important quantity is the degree of overshoot obtained
when the input acceleration has levelled off and remained
constant for a long time. This can be represented by

Equation I.8 which gives

Y (vax) " aum wiy
%tt = |"' ( ) ",Z‘
p v wty

2
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where n is an integer and/sfr is the plateau value of the

input. The integer n enters the expression since s:'m“l’_-?-t‘r
may be positive or negative, depending on the quadrant
containing the angle W&y /2, It is shown in Appendix I

that for n = 1,

and for n = 2

and so on. The above expression is plotted against wty
in Figuré I.2 and the curve exhibits a series of humps.

For very small values of wty (representing a short rise
time or a low frequency system) the overshoot is 100%; as
wty increases,the degree of overshoot decreases eventually
reaching zero when the output equals the input. When wtby
is increased further, some overshoot is again obtained, the
pattern repeating itself, but with rapidly decreasing

amplitude.

For a given system having a certain frequency w , the
rise time of the input is, therefore, an important parameter
if the input exceeds half the tolerable output. For a given
rise time, a low frequency system will exhibit greater over-
shoot than a high frequency system. These theoretical
deductions have been further illustrated in the analog

computer studies reported in Section 7.0.

The theory indicates that, if the rise time is long
enough, very large input acceleration-can be tolerated.
However, it must be remembered that the present model is
limited to structural effects and a large rise time means a

long total duration, which involves other tolerance criteria.
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L,4  Application to Escape Systems

The limiting acceleration-time history that is
permissable, from human tolerance considerations, during
the ejection phase of an escape capsule or seat has been
the subject of considerable experimental research, and the

dynamic model will have important applications in this area.

Basically, the approach is similar to that described
in the general applications described so far, but the model
now consists of two masses coupled together by a spring
representing the occupant and his cushion (Figure F.1).
The theory is developed in Appendix F for impulsive and
continuous inputs. Equation F.8 gives the peak acceleration
experienced by the man for the zero damping case as

2F

Q(Ma’x) S
b me+ Mp

where F is the applied force (constant), m, is the seat, or
capsule mass, and mp represents the occupant's mass. Now
F is the acceleration obtained for the system as a
m +m
c
whole, so the acceleration history calculated by regarding

the escape system and occupant as a rigid body can be used in

assessing the occupant's tolerance to the input.

During the acceleration phase, the occupant provides a
downward force on the escape device, modifying its accelera-
tion and it is shown in Appendix F that the ratio of the

peak accelerations of man and escape device is given by

v (max) occupant
yp (max) occup Mp

= 2(’ -mP.rM¢)

&c (max) escape device

Thus, the lighter the seat or capsule compared to the occupant,

the lower the relative accelerations, but the peak occupant
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output is always twice the value calculated for the combined
masses. When an impulsive input is considered, the system

can again be treated as a rigid body.

The Two Degree of Freedom Model

The single degree of freedom system does not predict
the decrease in tolerable accelerations in the higher duration
time region (from .07 sec. to 1 sec.). The quite rapid drop
in the tolerance curve suggests that a second lower frequency
mode exists, and this has in fact been verified by shake table
tests (Ref. 16). The predominant mode indicated by these
tests has a frequency of 5 cps. With two distinct modes
present, it seemed likely that a two degree of freedom model,
such as that illustrated in Figure 5(c), could be used to
investigate the dynamics of the body under the influence of
short duration accelerations. Since data on the dynamic
properties of various parts of the body is sparse, the

application of the model was limited to the following two cases:

1. The upper spring-mass system representing the
visceral mode of 5 cps, and the lower system
the spinal mode at 4l cps.

2. The upper spring-mass system representing the
thoracic vertebrae, and the lower system the
lumbar vertebrae, (the data given in Ref. 5 being
used for this application).

The mathematical analysis of the model is given in
considerable detail in Appendix J so that only the important
results need be quoted here, The solution of the equations
of motion were developed for the zero damping case in order
to reduce the algebra involved so that the influence of the

important parameters could be more readily seen. The
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solution for a step input is oAf particular interest, since it
yields all the important information about the response of
the model. Equations J.35 and J.36 give the deflections

:» 2
SP= 4% {_ -ew b l—mnzt}
n.t._n; _ﬂ,i'
S = Y wq.‘-na (..w.ﬂ t)4.ﬂ.-w1, (|-—M-ﬂ,,l:)
% n"_n; _n" __r).

where &, , and 8y are the deflections in the upper and lower
spring and &}, and Wy are the uncoupled frequencies of the
upper and lower system respectively. JSL, and L2, are the
coupled frequencies and are given in Equation J.29 and J.30

by the expressions

V.
0, = 4 fuoprugeg-[Cogroprif Vet o]
. a a 2 +L(w’:._’w;* Wi )'z.__ uw:wz:]'&}
nl = i{h)f,*h)"fwﬁ P 9 P$ PF™9

where w,:,/ = ._"DP w,: and m and m are the masses assocliated
My, p q
with each spring.

Since damping has been omitted, it is permissible to
express the tolerance criterion as a limit on deflection in

either or both springs.

Time histories of the deflections were obtained for a
range of values of the parameters m p/mq’ w andldq with the
aid of a digital computer and maximum values of w,‘: 87“ and
w;'%/& (the overshoot factors) were obtained from the results.

The two applications are discussed separately.

1. Model Representing the Visceral and Spinal Modes

The spring q is taken as analagous to the spinal mode

and the low frequency visceral mode is represented by the
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spring p. For short duration inputs to the base of the
system the displacement of the mass mq is quite small and
so the deflection in the spring p is small, giving rise to
insignificant forces acting in opposite directions on the
masses mp and mq respectively. Hence, the force acting

on the mass mq is virtually that of the single degree of
freedom system. As the input duration time increases,

so the displacement of the mass q increases, which in turn
increases the deflection and the force in the spring p.
This force is reacted back through the mass q to the spring
g, such that a larger force must be applied to the base of
the system for a given constant input acceleration. The
build up of forces within the system is revealed as
deflections of the spring q. A limit on this deflection
is used as the main tolerance criterion, which may be
related to the limit on acceleration used previously (80 G)
by application of the relationship 91 = 00:; Sq, . Values
of Sq (max) were obtained for four ratios of o tom

since the exact ratio is not known with any degree of
accuracy. Several maxima were obtained in the output

for each mass ratio and these values were used to construct
the curves shown in Figure 1k4. The first maximum occurred
at approximately t = 0.0114 sec. and was the same for

each mass ratio and equal to that for the single degree

of freedom spinal model. Hence, for times less than

t = 0.0114, the normal spinal headward tolerance curve

is applicable.

The ratio of mp to mq is quite important in that
as mp/mq increases, so the tolerable acceleration decreases.
Neglecting damping, the mass ratio giving the best fit to
the presently available data is TE = 1.0. However, for

m
q
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2.

duration times of the order of .05 sec. or greater,
damping is important and with, say, 15% critical damping
in the spinal mode, and some 30% critical damping in

the visceral mode, then the curves corresponding to values
of 2?: = 1.5 or 2 would probably give a better fit to

the experimental results.

Although these results diminish the duration of the
plateau region considerably, they are instructive in that
they give a probable explanation of the reduction in

tolerable G's for duration times of the order of .08 sec.

Application to the Upper and Lower Spine

The stiffness and mass data relating to the human
spine given by Ruff (Ref. 5) were used to estimate the
frequency ratio (“°p/icq ) and mass ratio (Mp/mgy ) for the
two degree of system representing the spine as two springs
and associated masses in series. Values of 0.67 for the
frequency ratio and 2.5 for the mass ratio were obtained.
The frequency ratio was assumed to be exact, but various
massratios in the region of 2.5 were assumed in view of
possible errors in Ruff's value. Using various values
of Wp (thereby fixing ¢ ) and of mass ratio, the digital
computer was used to find maximum values of §P and Sq .

4e Ye

For input values of 30, 35 and 40 G (corresponding to
the known tolerance levelsin the plateau region) values
of éﬁ\ and (57, were then obtained and plotted against
frequency for each value of mass ratio. Tolerance
criteria of &p = 0.02 ft. and &y = 0.033 ft. were taken
from Ruff's experiments on spinal breaking loads, and it
was assumed that the two parts of the spine failed
simultaneously, as indicated by Ruff's work. For the

three mass ratios used, this procedure yielded three pairs
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of frequencies (and three pairs of frequency ratios (ﬁéi))
for each value of input acceleration. These frequency
ratios were then examined to determine which gave the best
agreement with Ruff's figure of 0.67. It was found that,
for all acceleration inputs, the frequency ratio corres-
ponding to a mass ratio of three gave the best agreement,
and theme results are shown in Figure 15. The absolute
values of frequency obtained were then used to calculate
the coupled frequencies 11., corresponding to input
accelerations of 30, 35 and 4O G, yielding values of 280,
300 and 335 rad/sec., respectively. The coupled frequency
(9, ) should be the same as the frequency deduced for the
single degree of freedom model. However, experimental
results indicate that the tolerable input (plateau region)
is about 40 G, and the spinal frequency is approximately

225 rad/sec.

The results of this analysis are not very encouraging,
but do point the way for more detailed future investigations.
The work of Coermamat W.A.D.D. might well provide more
detailed information on the mechanical characteristics of

the body that could be used in this type of analysis.

4,6 The Three Degree of Freedom Model

In the analysis of the two degree of freedom model, the
concept of a normal (or resonant) mode was introduced. The two
degree of freedom model was described uniquely by two such modes.
The three degree of freedom system may be described by three
normal modes and, in general, the number of normal modes required
for a full description of the unidirectional motion of a system
is the number of degrees of freedom it possesses. This in turn
is (generally) the number of attached (but not rigidly attached)

masses comprising the system. In Appendix F a system of two
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masses joined by a spring is analyzed. The frequency ()

of oscillation of such a system is given by

N

mc+ Mp
where ™M¢ and ™p are the masses and R is the stiffness of

the connecting spring. The effective mass of this simple
system is ™cMp  and is termed the inertia of the system.
Me+Mp

Several masses, each connected to the adjacent mass by a
spring and a damper will now be considered. For convenience
of reference,the number of masses shall be n + 1, hence the
springs and dampers number n of each. Such a system has n normal
modes, since the first does not contribute to the number of
degrees of freedom. For each normal mode there exists an equiv-
alent mass or inertia, and the general motion of the system is
a combination of these normal modes of vibration, as was
illustrated in the solution obtained for the two degree of
freedom model. Generally, it is found that a system can be
described practically by a relatively small selection of these
modes; often only one mode, (that with the lowest frequency,
referred to as the first mode) will suffice. For example,
the response of a conventional fixed wing airplane to aileron
control, and the phenomenon of aileron reversal,can be explained
adequately by restricting the deformation of the airplane to its
first wing torsion mode, Naively, perhaps, the supposition is
that the response of a complex structure,such as the human body,
to a very abrupt acceleration (less than .05 sec.) can be
represented adequately by the first spinal mode, and for longer
duration accelerations by the introduction of the first and
second visceral modes. Each mode is characterized by an
inertia, a frequency and a damping constant. It is this
characterization that allows the representation of the human
body by a simple mass-spring system, or a combination of such

systems.
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The development of a threebdegree of freedom model
representing the human body subject to spinal accelerations
was considered sufficient to demonstrate the usefulness and

limitations of this approach,

Shake table tests on human subjects have shown that two
distinct low frequency modes are present in the human body.
The frequencies of these modes are five and ten cycles per
second respectively (these frequencies were suggested by
Dr. Coermann of W.A.D.D., and are based on experimental
evidence). Although Coermann measured total body modes, the
spinal frequency is relatively high, and the two low frequencies
may be regarded as the natural frequencies of the visceral masses.
This assumption leads to the model shown in Figure 5 (d), which

represents a mechanical analogy of the spine and visceral masses.

The analysis of such a model is dealt with in considerable
detail in Appendix K. The deflection ( §, ) in the spinal
spring is obtained for a general rectangular input, and for an
impulsive input. A sclution for a sinusoidal input is also
developed, using the concept of complex numbers to reduce the

algebra involved,

(a) Solution for a Rectangular Input Acceleration

The general solution for a rectangular input is given
in Equations K.32 (a) and (b) with damping included in each
mode. The solution for a step input, which is a special
case of the rectangular input analysis, is useful since it
includes all the maxima that can be obtained with various
duration rectangular inputs and yields sufficient points

to obtain an accurate graph of the tolerable accelerations.

The solution for the step input is represented by Equations
K.32 (for §, ) and K.37 (for S; ) and the constants
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contained in these equations are obtained from K.3l

and K.37.

The criterion for injury is expressed as a limit
on the force (fvlg.) exerted by the spring and damper
of constants R, and 2K, respectively, on the mass ™.

i.e.

M§| = h(8| + 2K|S,

This limit may be expressed in terms of the acceleration

.
—

Y = w8, + 22,8,

Time histories of'gl/gc were obtained for several values of
the damping coefficients Ci{ with the aid of a digital
computer, and the maximum values obtained by inspection.
The values of tolerable input accelerations given in

Fig. 16 were obtained by putting y—, (max) = 80 G, and

dividing this by each maxima ofng. in turn. The zero

damping case does not differ signfficantly from the

results plotted in Fig. 14 for the two degree of freedom
model, and the conclusion is that the two degree of freedom
system is sufficient for accelerations of less than say

one second. The effect of damping is very pronounced for
duration times where the low frequency modes are important.
From the similarity of the undamped case to that of the

two degree of freedom it is not unreasonable to suppose
that damping will have a similar effect upon the tolerable

accelerations predicted by the two degree of freedom model.

(b) Solution for a Sinusoidal Input Acceleration

The response of a spring mass system subjected to a
sinusoidal input acceleration can be divided into two

parts. (See Appendix E).

1. The transient respcnse with a frequency

dependeut upon the parameters of the system,
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2. The steady state response with the frequency

of that of the input acceleration.

When tolerance to long duration inputs is considered,

only the steady state response is important.

The equations governing the three degree of freedom
model are developed in Appendix K. The application of
this model to the human tolerance curve involves calculating
the ratio R of the output to input amplitudes, given by
(K.46). ) sy

R, . (M7
& -
Yeo

where gcc, is the amplitude of the input acceleration and
A4y and WV} are the real and imaginary parts respectively

of the output amplitude A9 and are defined by Equation K.45.

The ratios R,, R, and R, corresponding to the three
modes of vibration, were calculated on the digital computer
for various input frequencies (1 to 17 cps) and damping
values of 15% critical in Mode 1 (spinal), 3% in Mode 2
(10 cps visceral), and 25, 30 and 35% in Mode 3 (5 cps
visceral). These values of damping coefficients were

suggested by a survey of experimental results.

The low frequency criteria were taken from the
tolerance curve of Ref. 16 (Fig. 21), which is replotted
in Fig. 17a. One method used the tolerable input
corresponding to the first minimum (point A) to obtain
a reference amplitude for both low frequency modes. In
the second method, points A and B were used to define
reference amplitudes for Modes % and 2 respectively. The
tolerance level for the high frequency mode was established by

assuming a critical allowable deflection (&' ) that gave
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5.0

the best fit with the curve of Ref. 16. The value of
&', so obtained (Fig. 17.b) was 0.01 ft., which is about
20% of the spinal breaking deflection for steady loading,
but it must be remembered that the curves of Ref. 16 are

based on voluntary tolerance (greater than 20 sec. duration).

The agreement obtained between the theory and the
experimental results of Ref. 16 is not particularly good.
However, the experimental results may be at fault, rather
than the theory, and an evaluation of the usefulness of the
three degree of freedom system should await further develop-

ments in both the theoretical and experimental fields.

Non-Linear Systems

It is known that certain parts of the body respond in a
non-linear fashion in certain force ranges so that the analogous
linear spring system represents an ideal case. In a non-linear
system, equal increments of -applied force do not produce equal
increments of deflection and a force-deflection plot does not
produce a straight line. Non-linearity in the human body shows
up as increasing effective stiffness as the applied force increases.
Mathematically, & non-linear spring can be represented in a
variety of ways, but a good approximation is to represent the

force-deflection characteristics by the relationship
h
F = hhg

where n is an integer. The equation of motion now takes the

form

l.éc = w,?ghi-.s‘

The solution of this equation is developed in Appendix C for
a step input and for an impulsive input-in Appendix D. The

peak mass acceleration for a step input is from Equation C.10

)

%émudz(n+0ﬂ
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and for the impulsive case (Equation D.16)

Gmay = (Nt Y A
%Pm‘_"—i—i

where QL, =0, . Knowing the maximum allowable value of &
in the plateau region from‘experiment and assuming a value
of n, the step input formula gives a value for the allowable
peak mass acceleration. Now the expression describing the
impact case can be rearranged to give
.. ht = 4

ffmen] 8 - T (neiyiaae

which can be used to represent the tolerance curve in the

impact region of Figure 2 for any value of n, since

(May)

Logo( B nH /&’3 S’/nn(nu Y /Lug at

A plot of log K against log At would give a straight line
of slope -1, the actual position of the iine being controlled
by the value of the remaining expression in the above
equation. Using the allowable value of the mass accelera-
tion (n + 1), where X is obtained from experiment
(plateau region of Figure 2), results in certain values of
€ (orw) corresponding to the chosen value of n. For
headward accelcrations, drop tests have shown that the
critical impulsive velocity change is 11 ft/sec., and using
the maximum permissible spine deflection of 0.05 ft., as
deduced hy Ruff (Ref. 5), values of the "equivalent linear
spring frequency'" can be deduced corresponding to various
values of n. Such a valve would correspond to a linear
model that would predict the correct conditions at maximum
deflection. In view of what has been said above, and the
accuracy of the available experimental results, it is
considered that a strictly linear model (n = 1) is adequate

for the present studies.
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Digital Computer Studies

The equation of motion for the undamped, linear single
degree of freedom model is
9 = 0315‘-+ g
¢ .
where the input acceleration Y, can take any form, depending
on the conditiong of the case under consideration. For
simple input forms that can be approximated by a concise
mathematical formulae, the equation of motion can be sgolved
by analytical methods, as demonstrated previously. When the
input is of a complex nature ~ the case usually met in
practise - the solution must be obtained by an iterative or
step-by-step procedure. Such a procedure can be exceedingly
tedious and time consuming if performed by hand, so one

normally seeks the aid of an automatic digital ccmputer.

The Stanley Aviation IBM 1620 computer has been programmed
to solve the equation of motion of a linear single degree of
freedom system for any arbitrary acceleration or force input.
The program uses the Fortran system and is quite general in
that the coefficients relevant to the particular problem can
be used. The equation of motion is solved for the deflection
() which is then related to the mass acceleration (yp) by

the expression

y-4, =8

The results are presented on a card output, in a form
suitable for antomatic plotting on a Benson-L~hner data
plotter, and contain information on & ,é, & and yp against
time. The machine employs a time interval that is automat-
ically adjusted to give the desired accuracy of + 3% in the

result, which means that quite complex inputs can be handled.
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The time involved in obtaining a solution using the computer
varies from 15 to 30 minutes, depending on the complexity of
the input acceleration-time history. The mass acceleration-
time plot is studied to establish if the peak acceleration
exceeds the allowable value for the particular direction of

applied input.

A typical analysis is shown in Fig. 18, The example
used is taken from the test program being carried out on the
Daisy Track sled at Holloman A.F.B. The subject was a
male bear (Run No. 390) fully restrained, and the acceleration
was measured on a rigid portion of the sled and no cushion
was present. The output shown in Fig. 18 represents the
response of the equivalent spring-mass system, using a frequency
of 278 rad/sec. (spinal mode). The high frequency peaks
appearing in the input might be instrument "hash'" and have very
little effect on the output, which exceeded 80 G, the critical
mass acceleration deduced from Eiband's work. The subject

did in fact incur a spinal injury during the test.

The digital computer has also been used with the two and

three degree of freedom models, but only for limited input forms.

Analog Computer Studies

A special purpose analog computer has been developed at
Stanley Aviation to aid in the study of human tolerance to short
duration accelerations. Although this computer was developed
outside the N.A.S.A. research program, a brief description of
the device is necessary, since it was used in the analysis of

some of the experimental data.

The analog computer is capable of solving the equation
governing the motion of a spring-mass system in a continuous

fashion by operating on an applied voltage input that simulates
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the applied acceleration. Using the D.C. operational amplifier
as the basic component, the electronic network can be arranged
to perform multiplication, summation and integration of the
voltages in the circuit. Thus, mathematical operations can be
performed on the voltage that are analogous to the operations
necessary for the solution of the equation of motion of the

mechanical model.

The basic principles of the analog circuit are illustrated
by Fig. 19, where an electronic network is arranged to solve
the equations pertaining to a single degree of freedom model
with damping. Fig. 20 shows an experimental arrangement,
where the input is read directly from a given trace, represented
by a current carrying wire. A magnetic pick-up fbllows the
trace and generates a voltage proportional to the magnitude of
the acceleration. This voltage is fed into the analog circuit
and the output voltage (equivalent to the mass acceleration) is
presented on a cathode ray tube. The analog can work in real
time or a "scaled time" depending on the time constants of the

net work.

The influence of rise time on the response of the spring-
mass system has been investigated using the analog. These
tests were conducted in the course of a check out on the
accuracy of the computer and should not be regarded as
confirmation of the theory, since the computer only performs
the operations suggested by the theory. In this respect it
is only as good as the theory that governs the dynamic model.
Some computer outputs are shown in Figs. 21 and 22. These
are direct traces of pictures taken of the cathode ray tube
during a test, using a polaroid camera, and show the input
acceleration and the mass acceleration determined by the analog.
The scale used for the output is half that used for the input

so overshoot was attained in each case. Fig. 21(a) illustrates
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the output obtained using a stép input and zero damping; the
error involved is about 3%. The results presented in

Fig. 21(b) refer to another Daisy Track experiment (Run No.389).
The input acceleration was applied in the headward direction
and reached over 50 G. The bear subject received spinal
injuries that would be expected from the peak mass response of
over 80 G. Fig. 22(a) shows a typical trace obtained during
the tests when the variation of rise time was investigated.

A ramp input function followed by a constant value was used
and the peak mass accelerations obtained gave good agreement
with the theory, showing that the accuracy of the analog
analysis is quite acceptable. (Fig. 22 (b)).

The main advantage of the analog technique is that the
characteristics of the mechanical system can be varied at
will by adjusting the equivalent parameters in the analog.
Such important parameters as restraint and cushion character-
istics and body postion can be optimized without resorting
to expensive and time-consuming test programs. With this in
view, a more advanced computer, including cushion and restraint
characteristics, is presently being developed by Stanley

Aviation.

Analysis of Experimental Data

8.1 Availability of Data

One of the disappointing aspects of this program is the
dearth of usable experimental information. Considerable
evidence exists that vehicle accelerations of up to 30 G can
be withstood for duration periods of up to ¥1Oth of a second
in the spinal and transverse directions, but the vital areas
of interest, including the plateau region covering a range of
input values from 30 to 50 G, and the impulse region for input

accelerations exceeding 50 G, have not been adequately explored.
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This is understandable from the nature of the experiments and
the need for using human subjects to get realistic data, and
much of the information that does exist is based on animal test
subjects chosen because some degree of similarity of body
structure exists between the animal and man. Thus, bears,
chimpanzees)and to a lesser extent hogs, have been used.
Another disappointing feature of the experimental program is
the lack of existing methodical documentation of tests that
were carried out some years ago. In many instances, when
information was requested on tests that were apparently of
extreme interest, it was found that comprehensive records of

the tests did not exist, or had been destroyed.

In early experiments, for instance the German work and
tests carried out by the Naval Air Materials Laboratory, many
of the injuries were sustained at relatively low G values
due to inadequate restraint. The experimental programs were
designed to meet the immediate needs that existed at the time,
and there was very little standardization of input acceleration
pattern, restraint system, seat and instrumentation. Thus,
many of the results obtained are limited by the lack of reproduc-
ibility and the absence of strictly controlled conditions, and
the information of interest in an evaluation of the dynamic

model is masked by a variety of factors.

The problem of instrumentation is always present in human
factors experiments and much of the early work presents
conflicting results because of the inability to measure the
relevant parameters with any degree of accuracy. Accel~
erometers are extremely sensitive to their immediate environment
and good mounting and attachment are essential. In many cases,
the instrument can record the peculiar response of the mount
rather than the gross accelerations imposed on the vehicle and,
in some experimental arrangements, resonance vibrations can be

set up in the main structure (sometimes termed ringing) which
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again gives an erroneous response. The response of an
accelerometer of a certain natural frequency is analagous to
that of the spring-mass model, so that overshoot can occur in
a similar manner, depending on the duration and frequency of
the applied acceleration. Rigid mountings are therefore
essential to obtaining reliable readings. For this reason,
accelerations measured on the human body during tests are
highly suspect and should only be regarded as indicative of
trends rather than the actual acceleration of the part of

the body being investigated.

All the agencies known to be active in the field of
experimental acceleration stress were contacted in an attempt
to obtain as much experimental information as possible. The
bulk of the usable results came from the work of Stapp carried
out at Edwards A.F.B., with a rocket-sled, and that of Beeding
at Holloman A.F.B., using the pneumatically propelled Daisy
Track sled. A summary of the agencies contacted and the
results obtained is given in Table 1. Because of the shortage
of results, the analysis of experimental data was restricted to
those relating to applied accelerations in the spinal headward,
transverse backward, and transverse forward directions. Much
of the experimental information used was taken from the
literature which is referenced in this report, and the data

used that is not readily available is summarized in Appendix L.

8.2 Spinal Headward Data

The logical starting point for the analysis of the headward
acceleration is the data presented by Eiband (Ref. 2). As
discussed in Section 2.2, Eiband's method of presentation of
the results is highly subjective, since no firm criteria were
used in assigning G levels and duration times. FEiband's actual
results are plotted in Fig. 2, and apain in Fig. 23, where

the notation used indicates the source of the information, the
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run identification number, and the type of analysis used.
Thus, Eiband's original results have the letter E after the
run number (see Table 2). These results were re-analyzed
using exactly the same technique as that used by Eiband,
eliminating some information that was considered unreliable,
e.g. where more than one point on the graph had been deduced
from a single end-point experiment. The analysis was performed
as objectively as possible and the discrepancies between the
results and the original deductions serve to illustrate the
need for a more exact method of analysis of the results,
Eiband's results have been supplemented by the additional
data that was available, and can be identified by the symbol
E:

Considering the plateau region, although the information
is limited, there is some evidence of the tolerance line
lying just above the 4O G input acceleration level, and in
view of the accuracy of the data, 40 G appears to be a reasonable
value. Since this represents half the maximum response of the
model, the allowable peak mass acceleration is taken as 80 G,
The position of the tolerance curve in the impulse region
controls the value of the ratio Gp(max)/bu for the dynamic
model. The slope of the line, from single degree of freedom
theory is ~ 1, and fitting a line to the experimental data
gives a value forw , The value deduced for w is then

278 rad/sec.

A method suggested for standardizing the analysis consists
of comparing the dynamic model output obtained with a
particular test, with that from a standard input. In the
plateau region, an equivalent rectangular input, of duration
At and input acceleration Gc’ was deduced. To do this, the
output of the undamped, linear, single degree of freedom model
was obtained using the system characteristics deduced above.
The equivalent rectangular input is then one which gives the

same peak mass acceleration (assuming 100% overshoot) and the
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same velocity change (GC A t). The input acceleratién and
duration time of the equivalent rectangular input are then

used as the parameters for plotting on the tolerance curve.

In the impulse region, full overshoot is not attained and
another criterion is necessary. The rise time is very short
and the input was considered rectangular. Using the peak
input acceleration from the experiment an equivalent rect-
angular input was constructed where the dynamic response was
the same as that obtained from the experimental acceleration
time history. The duration of the equivalent rectangular
pulse was then taken as At for plotting purposes. Inconsist-
encies due to the finite rise time can be removed by comparing
the experimental velocity change with that obtained from the
equivalent rectangular input, and adjusting the value of Gc
used until agreement is obtained between the two velocity
changes. The results obtained from this analysis are plotted
in Fig. 23 and denoted by the letter S. Fig. 24 illustrates’

the definitions used.

The general effect of this procedure is to move the
experimental points to the right, implying that the effective
input acceleration was of lower magnitude but lasted for a
longer time than assumed in the original plot. Only one point
(S508) remains in the impulse region - meager evidence for
fixing the position of the tolerance line. This run concerned
a hog experiment that showed a severe end point and a two inch
layer of styrafoam restraint was used that did not bottom out
during the run. So even this point cannot be regarded as
reliable. The procedure for finally fixing the position of the
impulse tolerance line should now proceed by an iterative
process - obtaining the new frequency and evaluating the
equivalent rectangular input and so on - until agreement is
obtained between the calculated and assumed frequency. However,

in view of the unreliability of the experimental point,
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this procedure was not adopted'and evidence from another

source was sought.

Simple drop tests, if properly controlled, can provide
extremely valuable results in the impulse region, also
accident data such as those reported in Ref. 29 can be
consulted, but the latter rely on deduced information and
the degree of injury usually greatly exceeds the tolerance
level used here. Accident data are also difficult to analyze
from the point of view of applied force direction. Experiments
conducted by Swearingen and reported in Ref. 22 appear to give
the most reliable impact region results. The safe limit
suggested from a large number of drop tests carried out with
human subjects, seated on rigid seats, corresponds to an
impulsive velocity change of 11.35 ft. per sec. From
Equation D.23 of Appendix D, this velocity change is given by
Gp(max) = w Av , which gives a value of the frequency of the
equivalent spinal spring of @ = 226 rad/sec. Human drop
tests carried out at Stanley Aviation have indicated that
velocity changes up to 10 ft/sec. can easily be tolerated,
whereas Stapp (Ref. 18) has claimed a velocity change of
17.25 ft/sec. had no serious effects on a hog subject (Run 49)
but full information on this test is not available.

If the lower value of spinal frequency (226 rad/sec.)
is accepted, the influence on the model output for impulsive
inputs can be visualized, since the maximum accelerations
produced for two different frequencies is in the ratio of those
frequencies for a given .duration time. A lower frequency
value implies less overshoot and higher tolerable input
accelerations. In the plateau region, a reduction in
frequency means a raising of the tolerable input level due to
the increase in overshoot when studying the experimental results

which have a finite rise time.
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8.3

The tolerance line for durations greater than those
contained in the plateau region has been sketched in as
shown on Fig. 23. The slope has been taken as - 1, since
the two degree of freedom model has indicated that this is
the right order and might even be greater, depending on the

relevant mass ratio (see Section 4.5).

Transverse Backward Data

When the direction of the accelerating force is at right
angles to the body and towards the rear of the body it is
termed backward. This type of acceleration is encountered
during deceleration when the occupant of the vehicle is in
the forward facing position. It was found that more informa-
tion existed on this direction than any other, but evidence
was again sparse in the impulsive region. Fig. 25 summarizes
the available, usable data on a plot presenting vehicle

acceleration against duration time.

The original Eiband tolerance curve did not show a plateau
because of the lack of data, but a reasonable value for the
maximum input acceleration in this region appeared to be 40 G,
Using this value, the information contained in point D.E and
the expected slop of - 1, gives a value of 33 rad/sec. for the
equivalent system frequency. However, using the point S26E,
the frequency obtained is 134 rad/sec. Point D.E is based on
accident (fall) evidence and should be well within the end
point region, whereas S26E was obtained from Stapp's hog
experiments where the acceleration values were taken from
an instrument mounted on the seat bottom. The acceleration
obtained does not agree with the measured velocity change,
which appears to be fairly reliable, and is probably an over
estimate.  Thus, from a first evaluation of Eiband's results,
it was decided to use W = 134 rad/sec. in obtaining the

equivalent rectangular input. Kornhauser (Ref. 30) has
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suggested a critical velocity change of 80 ft/sec. and

assuming a Gp(max) of 80 gives a frequency of 32 rad/sec. This
line is shown in Fig. 25 and coincides with that based on
accident data, which is not surprising. However, the
Kornhauser figure is based on survival data, which involves

a more severe tolerance criterion than that used here,

As further data became available and was analyzed by
the Eiband method (points E’), it was apparent that this method
of analysis indicated a lowering of the tolerance level in
the plateau region (approx. 35 G). One particular end point
experiment from the Holloman data (H67SE’) did not appear
to fit into the general pattern and indicated a very low
tolerance level. However, the subject used in this test
had an abnormally long torso and a very tight shoulder strap
arrangement had to be used. This pre-stressing of the spine
in a direction at right angles to the acceleration appears to
have lowered the tolerance limit, and this test should be

discounted.

When the equivalent rectangular input analysis was
applied to the data in an attempt to standardize the criterion
and take account of the rise time effects, most of the points
in the plateau region were moved to the right into the long
duration regime as shown in Fig. 25. This meant that a new
plateau tolerance level had to be determined, and this was
deduced to be about 45 G. The impact points were also moved
to the right and the points of S26S and S27S controlled the
position of the tolerance line in the impulsive region.
(Note S26S was calculated from acceleration data measured by
the accelerometer placed on top of the seat, which correlates
with the velocity change and corresponds to the lower point
$26E” in Fig. 25). [The most reasonable value for W was
found to be approximately 95 rad/sec. Continuing the iterative

process was considered to be unnecessary as the position change
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introduced is not greater than the accuracy of the original
experiments. The impact velocity change corresponding to

¢ = 95 rad/sec. is 30.5 ft/sec. A tentative tolerance curve
is shown by the full line in Fig. 25.

The tolerance lines of Fig. 25 are presented, in the manner
used by Kornhauser (Ref. 30), in Fig. 27. The lines represent-
ing duration times in Ref. 30 were found to be in error and
have been recalculated for use here. Good agreement between
the two sets of results is evident, except in the impulse
region (O - 0.02 sec.) where Kornhauser accepted a greater

permissible velocity change than that used in this report.

Transverse Forward Data

The available data from experiments performed with the
acceleration vector in the transverse forward (or sternumward)
direction is given in Fig. 26. Very little evidence exists,
none of which is deemed as particularly reliable. Some tests
at Holloman A.F.B. have been conducted with the subject in the
rearward facing position (acceleration forward) but as
comparatively low G values. Experiment H.335 is of particular
interest since it represents a definite end point and even on
the equivalent rectangular input analysis the point appears to
indicate a much lower tolerance level than for other input
directions. Other tests under similar conditions (e.g. Run 332,
peak G's 37.5 and Run 337, peak G's 39.0) indicate near end
point conditions, but unfortunately the acceleration traces for
these runs are not available. An explanation for this low
tolerance level might lie in the fact that the subjects were
inclined at 10° to the direction of the acceleration, giving
an upward component that might have a strong influence on the
body organs. In experiment S39S5, the subject (a chimpanzee)
received no injuries but obviously suffered pain and hydraulic

effects would be difficult to determine,

61




85

If it is assumed that the frequency involved is the same
as that for the backward direction, the impulse region can be
defined by the lines shown in Fig. 26, the position depending
on the value of G_ (max) used. The equivalent input analysis
(using;cu = 134 rad/sec.) was applied to the data and the end
point experiment S383 was found to lie beyond all the tolerance
lines and so does not help much in the final choice of line.
If experiment H.335 can be ignored as a statistical fluctuation
it appears likely that the tolerance limits are similar to
those for the backward direction, but enough evidence does not

exist to draw even tentative tonclusions.

The Stanley "static"drop tests (Appendix L) in which the
force was in the forward direction, showed that velocity
changes of up to 28 ft/sec. did not produce any signs of an
end point, which indicates equivalent spring frequencies of
w = 80.5 (Gp max = 70), & = 92 (Gp max = 80) and
(73]

injuries were incurred, the allowable velocity change might be

fl

103.5 (Gp max = 90) radians per second. Since no

higher, which would reduce the frequencies quoted above. Due
to the attenuation system extending the pulse duration in these
tests, and the inaccuracies of the recording instruments, some
difficulty is encountered in positioning them on the tolerance
curve, but they appear to be on the border of the impulse and

plateau regions and cannot be considered as concrete evidence,

Multi-Directional Accelerations

Although the study of the influence of multi-directional
accelerations on the human body is not part of the program
described here, a brief description of the experimental results

obtained at Stanley Aviation is of interest.
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A large number of drop tests were carried out in support
of the B-58 escape capsule development program. These
included capsule drops from moving trucks and experiments
performed with a monorail facility that enabled a known
vertical and horizontal velocity to be imparted to the capsule.
A yielding metal attenuator was used to minimize the impact
forces experienced by the occupant, and accelerometers were
mounted on the seat to record acceleration inputs in the
three major directions. The tests which are of particular .,
interest in assessing tolerance levels are listed in

Appendix L.

Because of the nature of the tests, the capsule occupant
experienced high accelerations in the transverse, spinal and
lateral directions. When each direction is considered
separately the results obtained are shown in Figs. 23, 25 and
26, but this analysis is not considered valid in view of the
multi-directional nature of the applied accelerations, and
the points are included for their interest value only and
have not been used in determining the tolerance lines. The
effects of multi-directional inputs on human tolerance are of
extreme importaunce, since these inputs are often encountered
in practice. A research program is presently underway to
determine tolerance criteria for this type of input based on
the magnitude and direction of the resultant acceleration
experienced by the capsule. The results of this study will
be published at the completion of the program under Ref. 31.

Tentative Tolerance Criteria

Because of the sparse evidence available, it is impossible
to give firm recommendations for the values of the coefficients
to be used with the dynamic model. The equivalent rectangular
input concept has been introduced in an attempt to standardize

the presentation of experimental tolerance data and to take
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account of the effects of different rise times encountered
in the tests. This method of analysis is not ideal and

can be criticized on various counts, but it represents an
improvement on existing methods. The application of this
analysis has transferred many of the experimental points to
the longer duration region, resulting in less evidence in the

important impulse and plateau regimes.

The analysis of spinal headward accelerations has shown
that the maximum plateau input acceleration can be taken as
4O ¢ with some degree of confidence. The selection of an
equivalent spinal frequency is not so well defineé and
because of the shortage of resuvlts in the impulse region,
the most reliable evidence can be taken from the critical
velocity change deduced from Swearingen's drop tests which

gives a value for & of 225 rad/sec.

Most of the data analyzed concerned the transverse
backward direction, although most of the experiments concerned
relatively long durations. The plateau tolerance line falls
at a value of 45 G for the input acceleration and the most
sensible position for the impulse tolerance line corresponds to
a frequency of 9% rad/sec., which is somewhat higher than the
value suggested by the evidence from accident survival. The
adoption of the more pessimistic tolerance line appears
justified since it satisfies the few sled test points available

and accident cases usually represent extreme end points.

No satisfactory conclusions could be made from tlie transverse
forward data, but a frequency of 95 rad/sec., as for the back-~
ward case, is sugpested. From a physiological stand point
the plateau tolerance level might be lower than that for the
haclzward direction because of the position of the spine relative
to the internal organs, There is some exverimental evidence

to support this fact and until more relevant tests have been
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conducted, it is suggested tha£ the allowable peak input

acceleration is taken as 35 Q.
Tentative values suggested for use with the single
degree of freedom, undamped dynamic model are, therefore,

as follows:

Headward Direction

frequency 225 rad/sec.

maximum allowable mass acceleration 80 G

Backward Direction

frequency 95 rad/sec.

maximum allowable mass acceleration 90 G

Forward Direction

frequency 95 rad/sec.

maximum allowable mass acceleration 70 G

The impulse or impact regions based on these criteria
represent duration times from zero up to 0.009 sec. (headward),
and 0.02 sec. (backward and forward). The end of the plateau
region corresponds to duration times of 0.09 sec. (headward),

0.06 sec. (backward), and approximately 0.08 sec. (forward).

It should be remembered that these values are applicable
to the undamped model. Damping will introduce changes in
the tolerance levels as explained earlier, but these are
considered to be small enough to be ignored at this stage,
in view of the accuracy of the available experimental data.
Also, if the Eiband type analysis is being used, the tolerance
areas defined by the points E’ in Figures 23, 25, and 26 are

applicable.
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10.0 The Need for Further Work

Research requirements in the field of human tolerance to

short duration accelerations are considerable and only

suggestions arising from the particular aspect described in

this report will be mentioned here. The following broad

suggestions are made:

1.

Experimental work should be planned with the complete
acceleration-time spectrum in mind to insure adequate

coverage of impulse, plateau and hydraulic regimes.

More attention should be paid to experimental detail of
individual experiments from the point of view of planning
input acceleration programs that are more amenable to
simple analysis and to the measurement of relevant
experimental quantities and cross checking results by

alternate instrumentation.

Where possible, more than one test to be carried out under
a given set of conditions ~ giving reproducibility of

results.

Standard objective, medical examination procedures should
be devised to estimate degree of tolerance in experimental

work.

More cooperation between experimentalists, theoreticians
and persons with applied experience in the field, in the plan-

ning of experiments.

The theoretical and practical investigation of the influence
of restraint systems on human dynamic response should be a
matter of priority and the optimization and standardization

of restraint systems used in tests should be agreed to.
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7. More experimental data in the impulse region is essential -

this could be achieved by simple, controlled drop tests

which are reasonably inexpensive and give reliable results.

8. Human tolerance levels applicable to multi-directional
acceleration inputs should be investigated using theoretical

and experimental techniques.

9. Analytical studies should continue with the aim of
producing more comprehensive models and more reliable

values for the appropriate coefficients.

10. Experimental methods for the direct measurement of
physical and mechanical characteristics of the body under
dynamic conditions should be extended, and the correlation
of human and animal response should be investigated to
ensure the correct interpretation of experimental results

using animal subjects.

It is only fair to point out that some of these suggestions
are already being complied with in the acceleration stress
field, and what is hoped for here is,a more universal acceptance
of an agreed policy in attacking the many problems that still

exist.

Conclusions

The research program reported here has developed a single
degree of freedom dynamic model, consisting of a spring-mass
analog of the human body, that can be used to predict human
tolerance to abrupt accelerations. Variations of the basic
model can be used to predict the quantitative effects of
restraint systems and seat cushions, but more work is required
in this field. Two and three degree of freedom models can be

used for a better representation of the human body, but the
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full significance of this approach will depend on further
research. There is still a lack of reliable experimental
data, but coefficients that can be used with the undamped
single degree of freedom model have been suggested for the

headward, forward, and backward acceleration directions.

The analytical solutions developed for simple input
forms can be used in limited applications and for quantitative
studies, but digital or analog computers are required for the

analysis of complex acceleration inputs.

The analytical approach to the problem of acceleration
stress and consideration of the dynamic response of the human
body when subjected to short duration accelerations can make
significant contributions towards a solution of the many
problems involved. It is emphasized that cooperation amongst
the persons engaged in the study of.various aspect of accelera-
tion phenomena will provide the surest means of obtaining a

complete understanding of the overall problem.
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Table 2, NOTATION USED IN EXPERIMENTAL ANALYSIS *
Symbol | Subject Initial | Reference| Number| Final | Type of
Letters Letter| Analysis
le) Bear H Holloman B Original
A.F.B. Eiband
Analysis
S Ref, 18
a Chimpanzee ;
SA Ref. 19 | Refers B Eiband Type
to Analysis by
G Ref. 6 Test Stanley
A Human ‘ Number Aviation
D Ref. 29
S Equivalent
Rectangular
ST Stanley Input
O Hog Aviation Analysis

Full Shading
Half Shading e.g.
No Shading

e.8.

e.g.

A
A
VAN

- end point

- near end point

- no injury

* Except Figures 2 and 3, where Eiband's original nomenclature has
been used.
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Deceleration - G's

10

20

10

2

[»]

Time i

zone of fatal injury

Ref.27
zone of safety

zone of safety

1 ' )1 i I} A -4

.03 .10 «30 1.00 3.00 10.00 30.00

Duration - /\t seconds

Fig.4 Allowable Short Duration Accelerantions (HIAD)
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¥ (mass acceleration ¥

or output acceleration) p
m m __j
1Y 1Y
2K
k (spring stiffness) k (K=damping
. — constant)
ch (input acceleration) ch
(a) single degree of (b) single degree of
freedom model freedom model with
damping
Vs Ya ¥,

m | o [ = |

(c) two degree of (d) three degree of
freedom model freedom model

input

Fig. 5. Dynamic Models of a Human Subjected to Acceleration
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Fig. 6. Dynamic Response of a Single Spring-Mass System
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T critical damping ratio —»

Li L] L) L)
.02 ol .06 .08 1.0
{(a) Comparison of Maximum Outputs

200"

v [
Yp/ot (~ total force) w

2
- === w3y (~ spring force)

CNTRE

and

1,07

T /o ™ wt

(b) Time Histories of Response

Fig. &. 1Influence of Damping on Response of Single Degree of
Freedom System for Step Input
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1.0 -1 rapidly damped out
o+
2, transient
5 . \ response (w )
] I 1 IR ¥ L ] . | Y
5 R u 217 Y 41 51 ¢ n 8
B (A)~
]
o
—l.OJ
ﬂ = OS w
1.0 4
-] steady
B state (1)
B response
o A
e ':'é T —7T LI v
£ h / o)) 2 3 417
2y
5
o nee
~1.0
1.0 -
» resultant
‘é response
R (— Q)
-3 5‘ T T T T T v ! v
@ m 7 T,
Jg £ m, 3, A
_pl
]
2 0%
"100 T
Fig. 12. Response of Single Degree of Freedom System to Sinusoidal Input
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tolerable acceleration (G)

tolerable acceleration (G)

=
(@]
{

(a) Low frequency modes

=~ N !/ 1C cps mode
(Method 1)

Ref. 16

/// three curves
coincident

5 cps mode

10 7

(Method 1) e
/
/’
10 cps mode
A 5 (Method 2)
T T L T T =T
20 4o 60 80 100 120

input frequency(rad/sec.)

15% critical damping in spinal mode
30% critical damping in 10 cps visceral mode

- — - 35% critical}

g all curves

damping in 5 cps
visceral mode

————— - 30% critical
——— 25% critical

v LI ¥ ¥ T T
20 Lo 60 80 100 120
input frequency (rad/sec.)
(b) High frequency mode

Fig. 17. Tolerance to Sivusoidal Input Accelerationst Comparison of

Three Degree of Freedom System Results with Experiment
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Test Data
Source: Holloman A.F.B.
Run No: 390
Subject: Bear
Direction: Headward
Frequency: 278 rad/sec.
Injury: Spinal fracture
Analysis: IBM 1620
max allowable
80 ) mass acceleration
input
and 6 _~ output
output
accelera-
tion
(G)
Lo
input
20
O L T T T T
0 .01 .02 .03 .Oh .05
time (sec.)
Fig. 18. Typical Digital Computer Analysis
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INAUT ovrror
SCAL f,' INPLT SCALE
GJ 2 ‘\ r és
60 7 ourPUT /00
40 - - 80
30 1 [ 60
20 1 " 40
/0 1 - 20
0 J T T A | ¥ - o
analog frequency: 278 rad/sec.
ke .02 57C »
(a) Response to Step Input
NPT oyrPUT
SCALE SCALE
6’5 65
0 /- wruT - 100
40 4 . - 80
30 - 4 - 60
204 \ - 40
_ ovTPUT
/104 : - 20
o N L NV
Test Data

Holloman Run No. 389(Bear)
Headward direction,
Analog frequency:

fe—— 02 50— 278 rad/sec.

Injury: spinal fracture
(b) Analysis of Sled Test Data

Fig. 21. Typical Analog Computer Analysis
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INPUT ouTPIr

SCALE SCALE
GSH > X1
50 - . \ INPUT /00
L0 J - 80
30 . L g0

W
201 i ovrpPUr - 40
/0] T 20
o | . L O

e——o02 s:c.—>|

(a) Analog Presentation for Rise Time 0.027 sec.

theoretical analysis

2'0:}' +4 + results from
Analog Computer

frequency: 278 rad/sec,

lo

¥ T L ¥ T T T T ¥

o 010 020

(b) Comparison of Theory and Analog Results

Fig. 22 Rise Time Effects (Analog Computer)
96




(°998) SWT} UOTIBRIND

! €

BB UOTJBJISTI00Y pIempesy Tejusuriadxy jo sisAreuy

10

ogz o3

t

o~

“

) PAIND 3IUBISTOZ

T
@ : H €
A e == =% "
“ wvvn “ M b _wmm/m/ //» ~9es/ped QL2 = { .
e : N T LRG8EH - - T S
IR S i C LA WA ,
R S LA L I B Bt IRZ ’
g - 7 (oT578wy STL) TUSS NONFO T
M T X . .mﬂwm’/ t/ . m

: hﬁmm.’ . DT 5 ” ool
4 R NG

D) UOTIBILTI00® 3nduf

o

(

, .
i HB N
A |
v 4 i ce e
; : e
i g I !
H i H [
H ! : ; _
T [ T — — B
N . i
i
; i
. i : . :
] . .
' i i . ol .
T T H M 1 9
. : . o H
i : : N N
- : - 3
' _ i : \
i . - 1
T T
: 1 T

o

97



‘Gp(max)

acceleration

G (max
p

Gc(max

analytical

output

— input

acceleration

time

k4
Av = jﬁ;ol{’
[}

experimental

output

input

time

G (max)p — — — —
P
ol
)
-
T | e
£
2 _‘equivalent
S — rectangular
- input
—.—A;:-_ time
Av = C-,LAt
analytical
G (max) [~~~ 7
p
G (max)

c
5
)
]
+
a
o
A equivalent
o ‘,,————"’?ectangular
s input

At time

Fig. 2h4. Criteria Used in Analyzing Experimental Data
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APPENDIX A

NOTE ON MATHEMATICAL METHODS AND ANALYTICAL TECHNIQUES

SYMBOLS
h arbitrary function of time
L denotes '"the Laplace transform of"

-! denotes 'the inverse Laplace transform of"

P the independent variable in the transformed
equation

t time

%« . function of p such that Lh(t) = (p)

x, value of § at t = O

x, value of § at t =0

;c input acceleration

g .8,’5‘ deflection, velocity (rate of change of

’ deflection), acceleration (rate of change
of velocity) of spring

w frequency of oscillation of the motion of
the spring and mass

Al




The object of the mathematical analysis of the dynamic response
of a model represented by a spring-mass system when an acceleration
input is applied to the system is to determine the motion with
respect to time of a particular mass within the system, which is
influenced by the input acceleration and the subsequent vibration
of the springs themselves.

The first step is to evaluate the the forces developed in the
system in terms of the characteristics of the system (spring stiffness,
damping etc.) and to determine the algebraic sum of the forces acting
on that part of the system which is of interest. If the part of the
system under consideration is at rest, a condition of equilibrium
exists where the sum of the forces is zero. If some resultant
force acts on any mass however, motion results that can be described

by Newton's second law of motion which gives
force = mass x acceleration

The forces acting are usually determined in terms of the spring
deflection or the spring velocity (rate of change of deflection), so
an equation involving one or both of these quantities results. If

the deflection is & , the spring velocity is i‘it (8) which is

written 8 and the spring acceleration (rate of change of spring
velocity) is dz{u}(é) or 8. . The input acceleration, usually

denoted éﬁ; is assumed known, and this is related to the spring
acceleration and the resultant mass acceleration, so that the input

can be introduced into the equation. Thus, for the single spring-mass
system with no damping present, discussed in Appendix B, the eguation

governing the motion of the mass turns out to be

g = w‘5+5
C

where W is the frequency of the system.
This equation is referred to as the equation of motion of the system
and it contains the ingredients necessary for evaluating the way that
the mass moves with time. Written out fully, the above equation is
o_ﬁ:_‘éc = w8 + °.£§
oL £ o t?
A2
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The equation of motion has to be solved to give the spring

deflection at any time, which can in turn be related to the resultant
mass acceleration. The equation of motion can be solved to give an
analytical or closed form solution only for certain simple accelera-
tion input forms, e.g. step function, ramp, impulsive inputs, but
these cases are of considerable interest. When more complicated
inputs have to be analyzed, the equation of motion must be solved
either numerically in a step-by-step fashion, usually with the aid

of a digital computer, or with the aid of an analog computer.

The method of analytical solution adopted in this report uses
the Laplace transform or operational calculus technique, which is
readily applicable to linear differential equations with constant
coefficients. This method has the advantage that it is direct and
does not need the evaluation of complex arbitrary constants. This
convenient method of solving differential equations is easy to use as
it is subject to strict rules. Mathematically a function, say'/glt)

is transformed into another function X ( P) by the operation

Y
-PE o /1
Py = Pf-e ML) ol
o]
This is usually written
x(p) = L R(E)
where L stands for '"the Laplace transform of."

All functions appearing in the differential equation are transformed
by the procedure specified above. The value of JC(#’ for a variety
of functions A(t) are tabulated in standard texts so no integration
labor is actually involved. In all cases an inverse transform

exists denoted by
L" X’(P) = /R—(t>

The procedure for solving a differential equation is to arrange the
terms in such a way that known transforms exist, and after consulting
the transforms and applicable theorems, to solve for the new variable,

The inverse Laplace transform is then consulted, which gives the

A%




solution in terms of the original variable directly. Thus the
solution of differential equations is reduced to a matter of

consulting particular transformations in a table of transforms.

As an example, take the equation cited above and let

Then, consulting the tables of tranasforms

Lz_:ts; = —F!.-F"-xo-#';‘lx

where X, and X, are the values of & and & at t = 0, also
LX) (L) [ X ]
w8 = WX and i 4§, = oot L(Jc = Y

The transformed equation of motion, for the simple case where
§=& =0 att =0, is

bzx + wix = Y,

8o that as
9.

prew

The inverse Laplace transform of the right hand side is Z‘%“- ("'M“’ts

x:

hence

- "ﬂ'c - st
§ = =( )

It should be noted that in some texts the Laplace transform is
defined by o

x(p = f e Prr(ey L
o
which results in a different set of transforms but, of course, gives
the same answer. The first definition is used throughout this
report. Further information on Laplace transforms can be obtained
by consulting the references given at the end of this appendix.

ALk




Having deduced the spring deflection, & , from the equation of
motion, it is usually required to investigate the conditions uhder
which the deflection or related resultant mass acceleration attains
a maximum value. This is done, where possible, by the standard
procedure of examining dé&jyr - O which gives the time at which
turning points exist, and the conditions for L2E /At 1 be
negative indicates when § is a maximum. In this way the peak
deflection or peak mass acceleration can be determined and used as a
criterion for determining human tolerance to acceleration, as

described in the main text.
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APPENDIX B

GENERAL THEORY OF A LINEAR, UNDAMPED,

™ X

SINGLE DEGREE OF FREEDOM MODEL

SYMBOLS

spring force

spring stiffness
unloaded spring length
Laplace transform

mass

time

duration time of particular input
acceleration

coordinate, velocity, acceleration of
mass mp relative to fixed datum

coordinate, velocity, acceleration of
spring base relative to fixed datum

constants appearing in input functions
deflection, velocity (rate of change of
deflection), acceleration (rate of change
of velocity) of spring

initial (static) spring deflection

spring frequency




General Theory of a Linear, Undamped, Single Degree of Freedom Model

In this Appendix, the dynamic model in its simplest form
(Figure B.l) will be treated; that is, a single degree of freedom
spring-mass system with a linear response and no damping effects.
The mathematics governing this basic model is fundamental to an
understanding of the various modified dynamic models and should serve

as a good introduction to the subject.

y_ (mass or output

acceleration) spring in motion

and compression

" )
P o ///
(wass) linear

(frequency)
- response -¥—-. - Y,
v (displace~
(force) (unloaded meni
lengtj from
——-—-—}%—i--—hdatum)
. 8 (deflection)
y  (input
acceleration)
(a) (b) (c)

Figure B.1l

A spring that has a linear response is one that has equal

increments of deflection for equal increments of force, and a plot of
force against deflection produces a straight-line. The force (F)

is related to the deflection (§ ) by the expression

F = kR6§ B.1

-



This force, developed in a spring, produces an acceleration of
the mass, relative to the datum, and can be expressed by Newton's

second law of motion (Force = mass x acceleration), as follows:

F = R& = ml’g'r
When a given acceleration (or force) is applied to the base of
the spring, a force is developed in the spring in accordance with
Equation B.1l, which produces the mass acceleration given in B.Z2.
It is desired to express B.2 in terms of the input, which is the
known quantity in. the problem, and the argument proceeds as follows:
The deflection in the spring is equal to the unloaded length (£),
minus the loaded length (yp—yc). Adopting the coordinate system
shown in Figure B.1l (c), this leads to
§ = £-(4.74.)
The spring velocity (which can be interpreted as the rate of

change of deflection, i.e. the velocity of the mass relative to the
point of application) and acceleration (which is the rate of change

of the spring velocity) are obtained by differentiating B.3 with

respect to time, once and twice, respectively. Thus

8 = Iéc.- gP
and .o v na
§ = Y.- ‘3’?

Substituting this value for yp in B.2, gives

RE = mMp(y,~8)
or e ex
kg - 4-8

mMp
The natural fregquency of the spring-mass system is related to the

spring stiffness by the expression
’h
w = |-
Mp
80 the above equation can be written

§ =uw8+§

This is the equation of motion o the system, and relates the

input acceleration to the spring frequency, the deflection and the
acceleration produced in the spring. Equation B.5 is a differential

B.3

B.2

B.3

B.4

Bos



equation of standard form that can be solved for simple inputs to
give a solution representing the deflection (&) at any time. The
deflection can be used to obtain the spring acceleration (§ ) that

can then be related to the mass acceleration (yp), by B.k. The

mass acceleration will be used to denote the acceleration of the masas
relative to the fixed datum line and is the resultant of the applied
input acceleration and the spring acceleration due to the spring
deflecting.

Solution for a Step Input

For the initial analysis, a step input will be assumed, i.e.,
one which rises instantaneously to a given value and remains at that
value for some time, which is considerably greater than the period
of, the system. The input function will be denoted as follows:

e

9 =7
and B.5, when written out fully, becomes
:%S; +urd = o B.6
The Laplace transform method of operational calculus will be
used to solve this equation, although any standard technique can be
employed. The Laplace transform method reduces the solution of a
differential equation to a matter of looking up a particular
transformation in a table of transforms. Reference to standard
texts (e.g. Refs. B.1, B.2, B.3, B.4) will clarify the procedure.
If L denotes ''the Laplace transform of," then

L 8(‘:) = 2( P\
In terms of X , B.6 becomes

P1x+ Wiy = K

.

for the initial conditions &§ « O, and § =0 at t = O.

Hence,

B.k




The inverse Laplacian transform gives

A . wk
= 2 { -~ CoA
8 !:).( } 8.7

This is the solution of the equation of motion, and gives the value

of the deflection at any time t for a step acceleration input of value X ,
Differentiating witli respect to time gives the spring velocity (rate
of change of spring deflection)

) d .
ZLun wt
§ = =4 B.8

and a second differentiation gives the spring acceleration

*s

8§

Thus, from B.4, the expression for the mass acceleration becomes

]

oA tes Wb B.9

gr = o (|- ces wt) B.10

The output given by B.1lO is sinusoidal in nature and has the form
shown in Figure B.2

Accelerations | 1. Step Input 4. Linear Ramp Output

Ip and y, 2. Step Output 5. Parabolic Input
3. Linear Ramp Input 6. Parabolic Output

¥

“3’&‘324"
w

0y 4 4
w? w

0 M e
5‘-" Figure B.2 .3{, : "':': time, t

If there is some initial deflection in the spring given by &5 , the

Laplacian equation takes the form

_})’xo—k})"l. rwtXx = 6~

R.5



%‘ -

where X = & the value of & at t = O. Then,
A + Pl’x—o

pr+ w?

X =
The inverse Laplacian transform of this expression gives
§ = 2 (I-coawt) + 85wt
w)-

and

§ = ok ek - w8, s wt

so that, in this case, the mass acceleration can be represented by

‘3 =d0_wwt)+w‘5’sco—swt B.11
P

Solution for a Linear Ramp Input

A linear ramp input is one that has a constant aslope, i.e., its
value rises linearly with time and may be represented by (4" -/3!: ’
where 3 1is the slope.

|

Yo
(input
acceleration)

t (time)
Figure B.3

The equation of motion can be written

(!.:_8 1L - t
e R

The Laplace transform of this equation for § = O, 5 =0at t = O gives

’;,’*3(_4—00"1 = /3

—

p
B.6




and . < A
T pepre?d

The inverse Laplacian transform gives

) E
§ = &, (b-2akh)

which represents the deflection at any time t < t,, and the gccelera-
tion obtained by double differentiation is

’S': @Smwt
(78]

giving the mass acceleration by the expression

grzﬂ(f:-’“t,wt)

The output corresponding to this expression is also plotted in
Figure B.2.

If the input can be represented by a ramp function until time
t,, and then assumes some other form, the mass acceleration may be
represented by B.13 until t = t,, thereafter the equation of motion
must be solved using the conditions existing at t = t, as the new
starting conditions.

Solution for a Parabolic Input

In this case, the input has the shape shown in Figure B.4,
and can be represented by the equation gc = b'ta .

(input

acceleration) c Yo=Yt

s t (time)

Figure B.h4
The equation of motion is now

O_L.zg +w’$ :a’t’.
At

B.T

B.13

B.14




The Laplace transform for & =0, § =0 at t = O is

';"x_'-i- wix = 2
PI-
so that
N = ZX = 2._'_é/ — -2-'--3:—
Plpret) P T wi(prew)

The inverse Laplacian transform results in

§ = .I {tl—-z’ (- th)}
w* w*
-and the acceleration is given by

¢ = W (1- wawt)
w*

and the mass acceleration from B.4, can be written

% Y (\-cc5u>t)
(AJZ

(ér» = th—'

The mass acceleration given by this expression is illustrated in

1%'15

Figure B.2.

Peak Accelerations

In aprlying tolerance criteria to the model, the quantity of
main interest is the value of the maximum acceleration (or output)
achieved by the mass. When a maximum occurs in the output due to the
mass acceleration overshooting, it can be found analytically. The
usual procedure is to differentiate with respect to time the equation
representing the mass acceleration at any time, and equating to zero.

For the step input from B.10,

CL_%P = AWSmwt = 0
dt

The solution of this equation gives any turning point which might

represent a maximum, minimum, or a point of inflection. In the

above equation, A is finite, and sinwt must be zero, which occurs

B.8




whenwt = 0,7 ,2W etc, A second differentiation gives the

condition for maximum or minimum.

2 .
d ¥ | xwreeswt
d e
When wkt = , 30 etc., the second differential is negative, indicating

a maximum. Thus, the mass acceleration is a maximum for a step

function input, when

— S “" -
£ = n/w)?,nw)s/wek
and has the value

'.é‘f{"““‘) = A (1-awt) = B 516

Thus, if there is no damping present, the peak mass acceleration
can be twice the input acceleration. This is the case of 100%

overshoot.
The linear ramp and parabolic inputs show no maxima or minima, only
points of inflection. These facts can be seen by consulting

Figure B.2.

Square Wave Input

The square wave input case is of particular interest, since,

in practice, the input is applied for a short finite time (t,) only.

The mass continues to move after the removal of the applied
acceleration, so that the maximum acceleration experienced by the mass
is usually obtained at some time greater than t,. Equations B.6
through B.10 hold up to time t,, but thereafter, since the input is

removed, the equation of motion reduces to

L2 s -
e B.17

In this case, the initial conditions to be applied are those pertaining

to £t =%, . The Laplace transform of B.17 is

_’P:;c, ~p2xo+ PN 4w =0

B.9




where
X (1-cot wkty)

ok t=0 e X =5
Xo* © from B.7
and * d . t
x at E20 e ;s 2 S ob,
Ve 8 ! Lo from 508
He . %4
nce, P'“ " Px‘ . x.( Pi‘, K.P’

A’ * p? + w? P e
The inverse Laplace transform of this expression gives
. 3 iy
x x [ > .
§ » 2H{(3)+ W “antwer$

x
where tan d - ")x_"

Substituting the values for X, and X, , leads to
x.‘ Y, .
3 {(;,)n.}} it +@)

1}

Y,
AY imtob, + .“_‘: (- mwt.\"} aintot +3)
w

o

it

H

\, .
o (oim‘wt, +! +m"wtg‘1mwl’.) ampk+¢)
w’-

and since sinwt, t crt*wit,) = 1

§ = A (2-2w0wt) hin(wt+3)
w

From B.2,
g = WS
P

so the maes acceleration for time greater than t, is given by

\
Y, = x(2-2eswt) Taomlat+ ) B.18

where time is now measured from t = t,

B.18 is examined for maxima by differentiating with respect to time

and equating to zero, i.e.,

L4 ‘ }
‘.{.:g_!’ - oo (22wt Tempot ¢ P) = O
dt

B.10




3T,
Turning points occur at (WE+@) = /) s

”WQ
.. I’ )
‘i'igr = —olu)l(z-ZGodboE.) ‘M\(wt+¢) B.19
oL >
— s-
and this expression is negative when (wE+g )y . "o AR so

that maxima occur at these values. The peak mass acceleration is

given by y
gp(mu) = ot (R ~ eea b))

Thus, for a given amplitude, the maximum output attained depends on

the pulse duration and frequency, as shown in Figure B.5,

P
rectangular input
input
output
ratio
04" (max) max. occurs
« 1.0} before t ,
A A A -
[ T 30 0 51
b % 4 "
wt,
Figure B.5

B.11
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APPENDIX C

THEORY OF A NON~LINEAR, UNDAMFED, SINGLE DEGREE OF FREEDOM SYSTEM,

SUBJECTED TO A STEP INPUT

SYMBOLS

spring force

acceleration due to gravity
apring stiffness

unloaded spring length
mass

o8

olt

time
time at which 5 =0
time at which &§ = O

coordinate, acceleration of mass m
relative to fixed datum P

coordinate, acceleration of spring base
relative to fixed datum

initial acceleration at t = O

step function input acceleration
deflection, velocity (rate of change of
deflection), acceleration (rate of change
of velocity) of spring

initial (static) spring deflection

1. R

=wn= ?Y—’P

spring frequency (n=1)




The basic model to be studied is shown in Figure C.1(a).

spring in
motion and
compression
¥ (mass or ! }
m poutput input i
P accelera~ ’
(mass) - tion) 1
. o unloaded sp
(AW Ye | ¥ ™ length _
(freq- (input Yy
uency) accelera- ‘ ‘ ¢
¥, (input tion) t3me (¢ ’ displace-
acceleration) ment from
(a) (b) () datum
Figgre ) C °..,.].‘.

The approach used is gimilar to that given in Appendix B, except that
the force-deflection characteristics of the spring are assumed to be
non~linear. Thus, the force developed in the spring during
compression or extension must be represented by a relationship of

the form.

h
F = kad c.1
n
where & denotes some power of & and Rn is the corresponding value
of spring stiffneas.

The influence on the F versus & curve of various values of n is shown

in Figure C.2.

F
(force)

Rtww
8§ (deflection)
Figure C.2.

c.2

-




Although this forumula does not give a completely general
representation of the system shown in Figure C.1, it enables a
reasonable approximation to be made by selecting an appropriate
value of the exponent n. This assumption allows us to prove a
number of valuable theorems without complicating the mathematics
too much.

Generally, from Newton's second law, the force developed in

the spring causes an acceleration in the mass which is given by
n

F - mg,r = hhg c.2
Hence, ..
Sh = Mpde
R

and since ;a,can be written in terms of the frequency
(W), viz, Wa = 5%: =G, (say), the deflection is given by

]
"0 .F\
§ = (!") c.
T, Ce3
The equdtion of motion of the system can now be written down |

for a given input since the resultant force on the mass is that
developed in the spring, less the normal gravity force (its weight
for the vertical direction). This force causes a mass acceleration

.0

aﬂ’ s0 that
e n
The deflection § is the distance through which the spring deflects

when loaded, and is the unloaded spring length minus the loaded
length. Using the coordinate system shown in Figure ¢.1(c)

S = /e"U#F"%c>

Taking the second derivative with respect to time, the spring
acceleration due to the deflecting of the spring is given by

.o

§ = 4. -4y,

C.3




which is the difference between the applied acceleration and the
actual resultant acceleration experienced by the mass relative to

the origin of the system (datum), and

Substituting C.5 in C.4, the equation of motion in terms of the
input acceleration 9@ is obtained

"‘Pc‘gfg) +Mpg = kn§"

or

'Y

j+g =55 +0

n

where %L = j¥b) is a function of time.

Effect of Constant Acceleration g = K
(-5

If the input acceleration rises instantaneously to a value X
and then remains constant (i.e., a step function), an expression
for the maximum value of the resultant mass acceleration (Y, ) can
be derived. For convenience, the following substitution is made

. . & o
- Rey ., LS
so that the equation of motion (C.6) becomes
95 458" wrg
and transposing terms and integrating, the following expression is
obtained

j=0 S max
n
f%% = [[c«+9 —QS]OLS
1:0 SS
The limits of the integration are as indicated, because at time
t = O the velocity ( & = q) is zero when the deflection is S} (the
static deflection, due to some steady state force, usually the weight

of the mass), and when the deflection is a maximum ( Swmax ), the

velocity is again zero.

C.h

C.5

c.6

C.7



The left-hand side integrates to ?Fﬁz s which is the kinetic
energy per unit mass, and for the limits given is zero, indicating
that all the kinetic energy of the system appears as potential
energy stored in the spring at maximum deflection. This is simply

a statement of the conservation of energy (kinetic energy plus
potential energy = O). At maximum deflection, é' is zero so that
all the kinetic energy is converted to potential energy. These
physical facts, described mathematically above, are illustrated
graphically in Figure C.3.

Figure C.3

The change in the sign of the ?CL1 curve at t, is due to the fact
that the acceleration reverses its direction at that time. The

two equal shaded areas show that the kinetic energy gained by the
mass is gradually destroyed and stored as potential energy in the

system.

Integrating the right-hand side of C.7 and equating to zero,

gives

gnsmu -—(o(+3 )SM g 8 (O(+3,)8

'\+‘ 008

The initial acceleration é{s from C.3, can be represented by

E;s B g;\éi:

C.5




so that C.8 becomes

gé;i__@x+g)5mu )) b - d+3)}

A+ | h +li
If the initial deflection was zero, & =0 and § = O and the weight

is ignored, so the above equation reduces to
R
= n+
G 8 = K(N+D)

h ’e
Remembering that C,,SMM = (élma.x) y» from C.2 the following simple

expression for the maximum resultant mass acceleration is obtained.

gr<MM3 = (n+1) &K
which, for a linear spring (N =1), gives %.g““) =2 & in agreement

with B.16.

General Solution forn = 1

If it is assumed that n = 1, equation C.9 can be written
2 2 _ e .
C S ~R(F+ P Emar = Y = RY (X
2
Adding (X +9 ) to each side and factorising gives
% - 2

(¢85} = [§, -+9)]

Thence,
- ‘A +G) —
C 8 = R(*+9)~ Y

Now when n =1 , S’S,M,ﬁ WSy = ig;,,(md/l% therefore

Yymax) = R (==

For zero static deflection, C.1l1l agrees with C.10 for the case n = 1.
Equation C.11 shows that if (35 is negative, as might occur in a

negative "G'" field, we have the worst physiological effects.

C.6

.10

C.11



APPENDIX D

THE SINGLE DEGREE OF FREEDOM SYSTEM

CEE NS

[ d

= ko
qn (- T;"')

SUBJECTED TO AN IMPULSIVE INPUT

SYMBOLS

spring force
spring stiffness
unloaded spring length

laplace transform

nass of system

time

duration time of particular input
acceleration

oeritiocal duration time for impulsive
inputs

coordinate, velocity, acceleration of
nass .P relative to a fixed datum

coordinate, velocity, acceleration of
spring base, relative to fixed datum

defleotion, velooity (rate of change of
deflection), acceleration (rate of change
of velocity) of spring

referred to as the "frequency squared" of
the aystem

referred to as the "frequency" of the system
frequenoy of system (ns!)

velooity

the velocity change, due to an impulse




In this Appendix it is intended to develop further the analysis
of the response of the simple single degree of freedom system.
Short-time duration accelerations will be considered, which, in the
limit, reduce to impulsively applied accelerations, The model
shown diagrammatically in Figure D.l (a) will be studied

Y. (mass or spring in
output accelera-~ motion and
: tion) compression
(mase) | m * impulsive //
» type input /
w " :
(frequency) Ve _ : Yp
(input
accelera-
¥, tion) ?yc
(input i A
acceleration) t(time) gisplacement
: , from dat
(a) (b) (c) o carm
Figure D.1 S

The equations of motion of the non-~linear system have been

established in Appendix C. Thé equation of motion with no initial
loading, from C.6, is

Mp (§-8) = kn8" D.1
and with an initial load Mp Y |

rp (G + G5 ) = RaS" D.2
Defining gé = ‘éc +lé, y the equation can be condensed to: D.3
the form of D.1

Mpl Yz —§) - ka8 D.b

Rearranging terms and dividing throughout by mp, Yields the equation

of motion in a more usable form
*e h *e
s + gns = Ye ' ‘ D.5

where &, = E" = Wa and W, is the "frequency" of the system.
r

D.2




Before proceeding, it is worthwhile discussing the spring force

given by C.2
h

D.6

If n is even, the force F does not change direction with change of
sign of & (that is, in changing from compression to extension). 1If
our conclusions are limited to a compressed spring only, however, even
values of n can be allowed. If n is odd, F changes sign with & and
no difficulty arises, since the force F is always directed towards the
point of equilibrium.

In general, it is not possible to solve explicitly the
differential equation given in D.5, but the energy equation can be derived

from which several useful results may be obtained. From D.5

é"‘" gnsf\= QE

Now multiplying through by é s the above equation becomes

L]
. oo

§S8 +§h8h8‘ = ‘éas

which integrates with respect to time to give the energy equation

LR A
)

= QEZS + K

A%
+ G
s " n4d D.?7

Vi

for a constant gé « K is an arbitrary constant of integration (since
the integration was not carried out between definite limits) which
may be evaluated from the initial conditions.

Attention will now be confined to a motion started from rest by
a constant acceleration ge y applied from time t = O to time t = ¢,
and solutions are required of the equation of motion or energy
equation for times less, and greater than t,.

If 0£&t £ t, the energy equation is
1 5% 4 Sa 8™ = G Sk D,8
2 N+

and the initial conditions, expressed in mathematical form, are that

at t =0, § = § =0. On substituting these conditions in equation

D.R®, it follows that K = O.

D.3




When t > t,, the above conditions hold up to t = t,, when the
constant acceleration is removed) thereafter, the motion is
considered using the initial conditions, § = &, and & =e§. , then
$2 + a8 s = 4. §+k
h+\ « D.8(a)
Now for t 2 t,, QC = 0, 1.e., ga = Qs s 80 the general form of

the energy equation is

Nl-

“l‘ éz + g'\.s = (dss+ K
e h+l D.9
Nowat t =t,, § =8, and 8 = é. so that from D.9, K ia given by
n+i
_i é;l + gh SI - %&4‘ k ]
2 n+1 D.10

From D.8 and D.10
ld 45*335 = gsé + I
Hence, .
K = ‘écg
so that from D.9, the required form of the energy equation for t > t,
is

hAtl . .

t ¢c? t;hs - § + (é S,
- + =
2 S Y ds €
or
N+ N L)
gn_g g S ) 5‘ - —, S
~ Y = Y.
Py Z D.11
Since 8 is always positive, and &, has some fixed value for a given
(dc and gs , the R.H.S, of D, 11 is a maximum when 3 0; i.e.,8
has its maximum value when S 0, and
h+l . .
gh SMQK - gsgm“l ‘+' ch| . D.la
N+1
Impulsively Started Motion (without initial loading)
Since %S = 0, the equation yielding 8 max y in this c¢ase is
N .
gy\ SM&)L - ‘écg, ’ D.13

n4)

D.k




The basic motion equations state that (velocity)% = & (acceleration
x distance), hence the velocity of the base of the spring is given

by

J- 2 - ar 8
2V e D.14
Combining D.14 and D.13 gives |
, hel V2 n+t
S = (52 ¥)
max ( 2, c D,IB
. v "
Since yP(mM) = C,, Smex  (see Equation C.2), the maximum acceleration
of the mass is ‘ h
v n+' v3i)as
[ trox) = g, (% E,\) |
P D.16

It is of interest to establish the input duration time At. below
which the inpu{: can be regarded as an impulse. The impulse region is
defined as pertaining to duration times that are short enough that full

overshoot is not attained, and to determine the limiting duration, the

relationships for 03‘9““) relevant to the impulse duration region, as
defined above, and to the full overshoot region (long duration times)

can be equated.

It has been shown in Appendix C that for a long duration input,

the peak mass acceleration is from C.10.

Glmey = (n+1) 4, D.17
The peak mass acceleration for an impulse type input is given by
D.16, and putting V = 'J At in Equation D.16, the following
relationship is obtained

o2 2 N
- _ hel y. AL JnHi
‘jp('“u) = gn( 2 T ) D.18
so that on equating D.17 to D.18 at the critical duration time At
we have
) 2. n
.. ht P
(ne)yY, = S (5 '4;_(_,,_ )h“
D.19
NGy
vhich yields ( et | )'i.l . T
At, = J_Z_ 4 9.
D.20

D.5



Confining attention to the particular case of n = 1, (linear spring),
the following expression for the peak mass acceleration is obtained
from D.16. .y

Q&“” €% = wv

D.21
and the duration limit for an input to be regarded as an impulse or
spike is from D.20
gL R

AtC = El/). - — D022

D. 21 may be written in the form
gp(mm = wVv = wy AL

or if the accelerations are measured in G units

G,P(mu) s G.w AE D.23

This equation holds for a linear spring in the impulse region

where At < &
w

Spinal Headward Accelerations

It has been suggested that the maximum tolerable velocity
change, AV , produced by an impulse, is about 11 fps., and from
Ruff (Ref. D.1), the maximum permissible deflection of the spine is

approximately .05 ft. Thus, from Equation D.15

g* n+! AVZ

-

= hel
2’ 'gﬂ\al
from which the following values for C are obtained:

n-1

n S’ (radz/secz/ftn—]) gyz(rad/sec/fzgl) Sm;—%— §y2(rad/sec)
1 48,400 220 220
b 1.45 x 106 1.205 x 103 270
3 2,87 x 107 6.22 x 103 311
L 9.78 x 108 3,13 x ]0’+ 350
D.6




From Equation D.20 '

Ak, = lz (,’}H)z“ gb'

A reasonable value for yc at the critical time can be taken

>

l

h

»

at 40 G from the curves presented by Eiband (Ref. D.2), and using §
as computed above, it is found that the value of [Stc is approx-

imately 0.009 sec. for all values of n.

D.7




REFERENCES

No. Name Title, etc.
D.1 Ruff S. "Brief Acceleration - Less than-

One Second." German Aviation
Medicine, World War 1I, Volume 1,
P.584. Department of the Air Force,
Washington. 1950.

D.2 Eiband A. M. "Human Tolerance to Rapidly Applied
Accelerations. ‘A Summary of the
Literature." ,
NASA Memo 5-19-59E. June 1959,

D.8




i B T B

o

‘o, Ry

R Ba

i

APPENDIX E

THE INFLUENCE OF DAMFING ON A
LINEAR SINGLE DEGREE OF FREEDOM SYSTEM

SYMBOLS

amplification factor (sinusoidal ingputs)
damping coefficient

force

impulse (force x time)

force developed in spring

force developed in damper

spring stiffness

damping constant

time

critical duration time for impulsive input
velocity

mass acceleration relative to fixed datum
input acceleration

amplitude of sinusoidal input acceleration
steady (step) input acceleration
deflection, velocity (rate of change of
deflection), acceleration (rate of change of °
velocity) of spring
Dirac impulse function
phase angle

spring frequency
hmwfmwmq(wzﬂwucl)
sinusoidal input frequency

constants used in reducing Equation E.23
to partial fractioms



Damping 4s always present in a mechanical system, and the human
body is no exception. Physically, this means that vibrations set up
4in the body will gradually die out, and the peak values cbtained will
be reduced. The basic model can be modified to include the influence
of damping, as shown in Figure E.1, where the overall damping effect
is represented by a "dash pot" mechanism, which mey be regarded as a
loose fitting piston moving in an oil-filled cylinder that introduces
a viscous frictional resistance, proportional to the velocity.

¥_(mass or output
mass n acceleration)
D
(spring damper (damping constant 2K)

frequency w )

?c (input acceleration)
Figure E.1

When the mass moves relative to the datum, a force develops in
the damper which is equal to the damping constant x spring velocity, i.e.,

Fi = 2K$ E.1

The damping constant has been taken as 2K simply for convenience when
handling the equations that govern the motion of the system.

The force developed in the spring due,to compression,is that
described in Appendix B, and is given by
FS = RS E.2
These two forces act on the mass, resulting in an acceleration

given by
mi = k6 +3k6
P

As shown in Appendix B, gr = gi - S » and the above equation becomes




, and setting £§P = C, the equation

2
Remembering that W a FRP

of motion of the system can be written

y = WS +2ck « 8 E.3
c

It should be noted that when damping is included in the system,
the total force developed is not just that in the spring, but has an
additional component, due to the damper. This means that a tolerance
criterion could be based on the total force- (or mass acceleration) or
the spring force (or§). 1In either case, E.3 has to be solved for § ,
and to simplify the mathematics, a step input of the form

I3

%C=O(
will be assumed.

Again making use of the Laplace transform method in solving the equation
of motion, L &) - X(pP), and E.3 can be transformed to

Wrx + Repx + pra = K

for § =0, § =0at t = 0, which assumes the spring has no deflection
or velocity at zero time. Then,
(v &
X 7 ——
p* + Lcp + W™
A direct inverse Laplace transform exists for the denominator, and three
solutions are obtained depending on whether wtis greater than, less than,

or equal to c*.

If001=01, the effect of the damping is such that, when the forcing
function is removed, the displacement (or deflection) of the mass
approaches zero asymptotically, without oscillating about the & = 0

position.

Under these conditions, the system is said to be critically damped.

For this case, the solution of E.3 is

-ct

§ = E&{‘“_e, (|+ct)}

-, %
Whea W < C , the damping is so great that, when the forcing

E.3




function is removed, the deflection returns to zero slowly with a
dead beat motion. The solution is

a -mt -nt
s=-3{-2 (% -% )3
(75}

n-m - m

where (-m), (-n) are the roots of the equation p> + Recp +w' .0

When W™ Cz’, the case most applicable to the human body results
since it represents a system where the damping is small, but not
negligible. The deflections of the mass are periodic, but with the
output amplitude less than the zero damping case. In this case,
the oscillations would gradually damp to zero. When w*> ct s the
motion is described as sub-critically damped. The solution of the

equation of motion in this case is

_ ol _w ek
g = ;1{4 De M(wuuw}

E.b4
vhere W = W*-c' , and tan @ = =
Writing .
Aa(WE+P) = A Wok ot G + Cot ot aim @

and using the fact that sin @ = g° , and cos @ =£ s E.4t can be
written

-« ~ct, e - [

== {I—- e (l:,oww,,t+ce4 W )} B.5

Differentiating with respect to time gives

. -ct 1 .
s =-{°a£;e cezwot-géwwwot

. -ct
Lo a0 o b — 0 & e wat |
w* w*

so that
. Y cr :
§ - R amwe (5,0%0)

Z F
and since Cr+wg = W

E.4




A further differentiation with respect to time gives the spring

acceleration

5

[{]

-ct -ct .
g (woe ey wob-C e .,wvxwot.-)
o

ol Q.CC(M wok "{g Mwot)
[+]

Making use of the ¢ relacvionships, E.6 can be written
Y - t .
§ = -¢e ¢ w A&hﬂﬂot‘¢$)

.

Since “ = - 8§ , the expression for the mass acceleration is
P ¢

. -ck
g = d{'*’.'f-,e M(wol:-d?)g

P o
An alternative expression for the mass acceleration can be derived

from E.6, viz.

b=

g'r - d{'_e—Ct ccdwot'—go,&(-/\« Uot)}

When the damping is removed, ¢ = 0, and W, =W , and E.9 readily
reduces to the undamped case discussed in Appendix B. (See equation
B.10)

3:» = d(l—mwt)

The maximum value attained by {1',, for a step input will now be
determined. Differentiating E.9 yields

U -cl ~et
d’g'& - —d("woe CMN(,L‘ -—C¢ mwct

- 1 ek
dt _c€Cerot + ?’Z) e “aimwet?)
[+

-
-

R 1 .
« €°F {&c coatopt + L2 > 4 ""°t§

o

The turning points are obtalned by equating this expression to zero,

-t
and since € °Fis positive for all values of t,

2_,2 A
Reemwet = -(______wow“)wwot'
o

so that 2
cw,
$am Wb =

wE-c*

E.5

E.6

E.7

E.8

E.9




27
The expression J_%P must now be investigated, and

E
. ok
C.L_.gf = o({ Rcre bouz woeb - Qewee Mwol_
E* ct
. (W= e Cn wok +(a-c™)€ Mwot}
Wo )
- e ¢F 2 con ot — CB3wd-c? A«Mwot}
: {(we-3) wi
Now, if tan wot = - 2cwe M)
wl cl
+ 2 Cot Loot =300
Aon Wobt = o __..E...“_)." ) & =% e

w"-
and the sine is negative when the cosine is positive, and vice versa.

Hence,

2
Y . e Cf 2ol 3l wer e 4 Zc‘CSw 2@wi-en)
d t?

gf‘ is a maximum when this expression is negative, and evaluating
the terms inside the bracketa gives

+ ( Wit +c* +2 Wocx)
- "
2y
The expression within the bracket is always positive, so _t-‘é'f
o
is negative when the sign outside is negative, and the peak mass

acceleration occurs when

- = 4 AWoC  ond e,a-/.swt:..-(“"¢>“"3
A ot = ¥ = o E.10

Substituting the values of E.10 in E.9 gives an expression for

the peak mass acceleration

grtmu) = k[t~ et { —(——‘*’i;cl) - 25:}]

Therefore,

-ct
.. - e
%P(ma,x) O((H' ) E.11

-1 e W,
where t = tan ( - %)
(0o wy;-¢

Note that if ¢ = O, t = | , and E.11 reduces to

SE‘MM) =z Rol




as predicted by Equation B.10. Figure E.2 shows how the output of

a system is influenced by the choice of damping values

damping ratio ¢
w
o (1)
1 0.2 (2)
0.5 (3)
output to
input ratio
T
&
¥ v Awt
27 y
Figure E.2

Impulsive Input

The Dirac impulse function will be used in solving the equation
of motion. Such a function is zero everywhere except at t = O, when

it is infinite, in such a way that

fAO(Zt) dt = 1
-0

where O (t) is the Dirac function. The equation of motion is

wr$ +2c6+ 8 = gc = rEv‘: AR = v Al)

E.12
where Fo is the impulse (force x time) applied at t = O. The
Laplace transform for & = O, é =0at t = 0 is as follows:
W + Repx + praw = pVv
where V is the velocity achieved by the system. Hence,
pv
TP 2ep ot
The inverse Laplace transform gives
ve °t
S = = A Wl E.13
o]

E.T.



’_ .
where w: = Wt s and E.13 holds for wryre $ 1.e., the sub~
critically damped case.

The maximum deflection is obtained by investigating the turning
points of E 13,

. .et |
d‘.._..s = 5 Ce ctwo'w W ~Ce M/v\wo‘:)
[}

olt
equating this expresaion to zero gives
¢ E.14
This implies two conditions since the angle might be in the positive
or negative quadrant. A second differentiation gives
2 ot
% 5 (- € F Wdaim Wt —C & WtatdE
o X g
- Ce-ct)o coaloglt + cre  aonm M)&t) ‘
E.15

For a maximum deflection, this expression is pegative. From E.1}4,

; =+ e = 3 €
Sw Wk = (wg-}c‘)‘l" ) Coa ok (wo"-!'c-‘)‘h

the sign depending upon the quadrant that contains w,t . Substituting
these values in E.15 gives

{

d?s -ct .
= =-¢t VvV wa-ct). ek + RWC Caw, kb
ol ¢ wo{( ) A Lo ° ot}

S A ey T
Wo L7 (oave™y's  (wase)™

which leads to

&S
At

Y (W) E for Siniagk, coaiinE dve

-CE ) )
€7V (wareer) T fov Stn Wob ) GrAWet —ue

-ct 2
Since € is always positive, j%éi is negative when the angles are in
the positive quadrant; i.e., a maximum occura under these conditions.

From E.14, the maximum occurs when

= ;‘) hM-l %o E.l‘l(a’
0
E.8




Now, since 9,_ = 0, and gp = gz_ -5, 4 =-& , so that the mass

‘ acceleration for maximum deflection is

o _ ) V2
léP - e Ctv (L\]°&+C1)
but w: = W CL. s0 w
. - 9 fm,\'l('ZO)
'y [+]
™M S) =z vwe
(ép Cmax E.16
and the mass acceleration at any time is given by
1 o ~-ct .
Ld’ = £ © Yy {(wc}_cl)m Wek + Qwocmw"bg
‘ r wo
|
Now the maximum mass acceleration does not occur when the
deflection is a maximum (since damping is present). To investigate
this condition, Equation E.1l3 is used
-ct
S = Y% Ammwgt
Wo
and
§ = Y& (woeenwok — ¢ smiek)
Wo
which can be written in terms of a phase angle ¢ as
! S = .Y{thim}n(wol: *'4’)%
| We
} . —We
where sin ¢ = Wo y AP = -C y Al ¢ = 2
(o2+c®H (log+c™
(This can be proved by expansion of the sin (ot + ¢ ) term, using
the sine and cosine values given above).
Again, by similar reasoning
§ = Yen {wow(worw)—cwcwo“"’)}
We
VIR wmiw(wohw)}
Wy
|
Now § = - & and therefore
o = =8
.. L el . E.17
ié,h = -Y e ¢ w"m(wo't"*‘ld')

Wo




The turning points of E.17 are given by OJ‘.‘-{P =0

i.e.,

ﬁf_’ _.v ,_‘th"{wom(wot+2¢) - c_,wv\(w.,t+2¢)} = 0
ot We
iueo’ when

= We
fun (Wot +R6) = 7 £.18

:‘l
Evaluating 3_?1? gives
" _ .
X . v ‘*wtz(w,}-c’ Y anm(Wot +28) + R wol cos(Wok + &)
Ak o
From E.18

' Wo N +2 = .._C_..
Aot +2¢) = s Cm,)l,_ , cod(Wok + L+ ) (wol.g.c")"’

The sign depending on the quadrant as before. The above expression
is negative when the sine and cosine are negative. (This can be
shown by evaluating d'zyp/d_tl as was done in deriving E.15).

Hence, the peak mass acceleration is given by

.. ~ct
gﬁ(mu) = Ywe E.19

where t = & { paw{(2°) -24

When ¢ = 0, E.19 reduces to
g(mu) = Yw
‘o

which agrees with the non-damping case of Equation D.21.

It can be seen from E.18 that as the damping coefficient is increased,
the time to reach maximum mass acceleration is reduced, and will occur
at t = O, for damping coefficients greater than a critical value Cc.
When t = O

4-»»»2(}5“-"%,0

and evaluating tan 2¢ in terms of tan$ (tan ¢ = -‘é"’)

w w
_— =R eor C,= =
Ce. €2

E.10




> 2 the maximum occurs after t =

w
and for A

It is of interest to show how the damping term influences the
duration time for which the impulse theory is applicable. From E.19

_c_t|

%(Mu) ld E,we

where t, is the critical duration. The mass acceleration for a system

subjected to a long-duration input is given by E;ll as

ct)

gpnu) =y (1+€

The critical’ duration time occurs when these two expressions are equal

as suggested in Appendix D.  Hence,

-ct
b,EfCE': i+ €

w

Expanding the exponentials gives

_Cl:_.,czl:"_ 2w e n ¢

——

- et _ L., ) = L o+d
b (1-ct, e ) oo B 3w

If terms in C are ignored the undamped condition t, m % is obtained,
2 , w '
and neglecting C terms gives

t,-c,l‘_’,z = R-ct
ws

solving this equation gives
wela- ct))
PR S - —
P

‘Now from E.10

wt = HM"( &woc

and §f the damping is small,

to.t = Hv\"(" onc_o)

80 that

Il
w, Wo (for small angles where tan & = &)

E.11




Using this value in the expression for t, , the following is obtained

e f2-0 (5~ 38)

E,:_'i('_ %)

RC

Now, W," = wr-¢* - w* for small damping effects, and a
solution for t, is obtained by expanding the expression under the

root sign

)"

w

Since the negative part of the root is relevant in this case,

(the smallest value of t, is required)

gciz—CCE‘gQ}
aew

: 2 _¢ /0 _Rc
* 2-2(i-%)

t, =

2
and again neglecting € terms,

—

t|=

ci
ok

Slp

Sinusoidal Input Acceleration

In this section an acceleration of the form

%(_ = QCOA(M_QE

is considered, which represents a sine wave of amplitude %L° and

frequency {2 .

w

T T_Q
('_ uci'k-CCfJ'%u) )Vl___ ,_Rciz—cc—'.:o 5’3}+....

E.20

The equation of motion for a damped, single degree of freedom system is,

from Equation E,3

£+ ek curs = et

The Laplace transform of sin £2t is

Qp
pre 2

E.12

E.21



and so, for the initial conditions & =& = 0 the Laplace transform

of Equation E.21 is

) n
> : = __E
( p*+Rep+w?) x ‘éco_p,+nz £.22
Therefore
x = . gco -Q-P
(b’+2cp+ w‘)( P‘+-ﬂ-") E.23
To perform the inverse transformation, the right side of Equation E.23
must be expressed in partial fractions.
Let
5~ = 'g' n{dtp +ﬂl + (X:.P'*ﬁl' 3.23(‘)
co PI‘_ ch.'.wﬂ- k;_.__n:

Combining the terms in this Equation gives

{ PP+ D 44, 0% dap” +(2¢d>*ﬁa)b’+(w’°‘1“°ﬁ‘)"*ﬁlw }
x-gco (Pi*zcr+w1)(k’,*nl)

and equating coefficients of powers of p in E.23 and E.24 gives the
following aset of equations for &« and A

A +Ay = O (a)

By +RCX3 + A2 = O (v) E.25
ol 14+ Wikt Ref = 4 (¢)
/3,.0.*4—/3-_.,(0’ = 0 (d)

Substituting for &, from E.25 (a), E.25 (¢) gives
(W -0¥oly + ¢k = L
and forﬂ, of E.25 (d) into E.25 (b) leads to
QX +(I-%§),€,= o
These two equations are rewritten

(w*- ) % + RS,
2cN*, =(w*-0')

[}

\
o

E.13




Crout's formula is now used to solve this pair of simultanecus
equations when the following values of . and > are obtained

~(wi-0a7) = w*-n* E.26(a)

oly
~(r-n? Y- heta? (w2- Q> +uernr

' 2 - RC .Qz = 2cn?
ﬂi -((.o‘-_nl)"— uc:.n'l ((«J“‘-.D.")‘ -H+c’.0.‘ 3.26(b)

Values for ™%, and /3, then follow from Equations E.25(a) and (4)

- n;,_ w:\. .
(- 02 + kcro’ E.27(a)
2 cw?* E.27(b)

pl = - (w—"-- .ff)‘ + I N>

Substituting for the %'s and AR's in E.23(a) gives

‘=. ié'co'n' {(ﬂt" w?) P - Rew* + (wl—n,)h +Rcn? }
(wh.n.‘)’-mc‘.ﬂ’ pr+ Rep + w? p2+ 02

The inverase Laplace transforms (Nos. 50, 51, 11 and 40 of
Ref. E.1l) are used to give

‘éu F - wor)e” Mwot —Zc{l-‘:’e MM(Wot+¢)}
(w‘-.ﬂ’)z"' L et

PN N N YO Y E e 2k} ] E.28
o

gco [~c'-' ) .
Lo €T sl 4+ 2L0 pnn(wot+P)
(w" D)4 peant Wo ° Wo (0o }
2 N
+ - a0k - Ecmnt]
where ¢ = tan"%“ and 3, =<N1-—C")V"

The solution for § has two distinct parts, one part

Yeo 2 ‘Ct{(ni_w‘t)w Wok + RCW. A ot +¢)}
W, {( wi-a*)*, lo-C’Jl"}
with a frequency (“o) dependent upon the parameters of the system, the

second part

'E’co {(w‘—ﬂ"7&}nﬂt -2 m.ﬂ.t}
L

(WD ) r 0t

with the frequency (¥2) of the forcing function. The first and

E.14




second parts of the solution are known as the Transient Solution

and the Steady State Solution respectively. The transient solution

-tk
has a factor €& ¢ » 80 that as t increases so the amplitude of this
oscillation decreases and this motion is eventually damped out, leaving

only the steady state solution.

Although the absolute maximum usually occurs while the transient
solution is still significant, the steady state solution is of great
importance for long duration inputs of an oscillatory nature, and

this case only will be investigated.

The phenomenon of resonance is well known and will be demonstrated
with the use of this model.

The steady state solution is

- ‘Jco (wl___n})mnt -2cL) MA.D.&}
-(w' i'n’,)l_"qcﬁnl

4

E.29

which can be written
- 9eo
frnryrecny

where ¥ = +am"_Z;C__{}_
oi-n>

A (QE-Y)

This solution is a sine wave, out of phase with the input acceleration
and of amplitude
deo

{(m_ 02+ kel

The ratio A of output to input amplitudes is the Amplification

factor and can be written

)
- {(w‘hn‘)ﬁ l+c=.0.‘}v"

which must be maximized with respect to fl to obtain the largest ratio

A

of output to input accelerations.

E.15



A maximum or minimum occurs when
{
.(fl_' D = o
dw {(w"—.f).‘§1+ uc’-ﬂ-}
7
By {c w0 rexn’ 377 - kn (W) +8ein} =0
2

so that either

(wr-n*)+ ketn® =0

or

il

- (w‘—ﬂ‘)m +»e” °©

or
n =0

The first expression is the sum of two squares and so for real w, ’
tw and C cannot be zero except for the trivial case (no motion)
Wy = W =C = 0, The third expression is a statement that the
forcing function is zero at all finite time, again trivial. The

second expression gives

0* = wi-Ret E.30

for which the following value of A is obtained

! [}
A = \ -
{(’Z.c")l 4 Lerd w'*_'Zc’*)} l { el 4l crwr—8c* ¢ th-

! |
2e (e 2 cWo E.31

1
. 182 ; =
Now {("‘Jl‘f‘}) -+ L,{cl_()_*g has a maximum when
(Lolv—_()_")" + et has a minimum since the latter expression
if positive for all real values of the variables, so the latter

expression need only be investigated.

6%“ ({Cm‘«._o.‘)‘JL + q.c‘.n‘} = - 40 lw-0) + 8N
’ * * 1y 2.0 + 8

—c—t— {(LO“‘--Q‘) +4—c".£1_§ = - hwr+t +

oL



The condition for a maximum or minimum from E.30 is Qr= w?-2c*

so that using this condition in the above expression gives
= g(w*- 201)

So if w’ -2 is positive, a maximum occurs in the expression
-1
{(wz_n’)‘+ t\-c’:n‘} .

-l,.m1+42,(w‘-'-2c‘)+8c‘ = fwr =lbe*

and the amplification factor has a maximum value (for the steady
state case) when 2%z W'_ 2¢> and has the value

}
R We

Almax) =
where L, = w*-c*
It can be seen that the zero damping case implies infinite
nagnification, but when any damping is present finite values result

that are smaller for high frequency systems and high damping
coefficients.

E.17




REFERENCES

No. Bame Title, etc.
E.l Pipes, L. A. "Applied Mathematics for Engineers

and Physicists," New York,
McGraw-Hill Book Co., Inc. 1946.

E.18




ATFPENDIX F

EJECTION OF ESCAPE CAPSULE OR SEAT

amplification factor dp Mox

Ye max
applied force
=F for steady applied force
™

spring stiffness
mass of occupant

mass of capsule

(mc + mp)
oS
dE
time

velocity
velocity from rigid body theory
velocity from separate mass theory

acceleration of mass m relative to
fixed datum ¢

scceleration of magss m relative to
fixed datum p

initial acceleration at t = O

deflection, velocity (rate of change of
deflection), acceleration (rate of change
of velocity) of spring

initial (static) spring deflection

spring frequency (n = 1)

*
= Wy



During the ejection of an escape capsule or seat, the initial
phase consists of an acceleration up the ejection rails, caused by a
tocket supplying a force F. Large positive spinal accelerations arve
imposed on the occupant, and it is important to determine, at the

design stage, whether the accelerations are physiologically toleyable.

I P man-mass
acceleration

mass of Ny
occupant
frequency

w
mass of me ] 'y‘c input acceleration
capsule or )
seat

a T F

Figure F.1

Using the simple model of Figure F.l, where mp and m, are the
occupant and capsule (or seat) mass respectively, the equations of
motlon can be obtained by applying Newton's second law. Considering
the occupant, the accelerating force is that developed in the springs

hence

by Gy = k8"

where a non-linear spring has been assumed.

Remembering (see Appendices B and C) that
%P_%c: -8

th= nmbove equation becomes

' h o
% :E.."S + 8
[ Mf’
2 .
anid ndopting the notation of Appendix C, that W, = ;i,= gn this
egirntion can be written

j =658

n

F.2

F.1l



Considering the mass m. the resultant force acting is the difference

between the applied force and the "reaction'" developed in the spring.

Hence,
h
) or _ _k S
Mc %c e F n
s0 that
v F _ kaS"
yt’ Me¢ Mg
and since
ky\ - kh MP _ g h’\r
o U n Mc

it follows that

L o P
9. = me  ™Me

Equating F.1 and F.2 gives the equation of motion

. h m _ F
S +§h8 (|+;..-:) - r';\

[

Constant Force Application

As in Appendix C the substitution q = 5 is made;
therefore, S =9 d@’ , and F.3 can be written

(;gg’»fghg (“*”)*-;\c = f (say)

mn
where ;;: has been replaced by M for convenience. Transposing and
integrating yields ° Swux

[yaq = J{g-6870nm} s
o )

The integration limits have been taken from 85 s the static deflection,
to gnmx s the maximum deflection, which corresponds to a range of q
from zero to zero, as explained in Appendix C. The static deflection
could be due to some initial g field at time t = O which can be
included in the quantity fﬁ The left hand side is zero for the

limits shown, so L/\Suu |

{$-C8"0}fus =0

F.3

F.2

F.3




Integration gives

£ (S

5,) -5l g2 87 [ =0

h+| Fo"“
Since the initial acceleration can be written
) = Sh
Ys Cnbs
F.l becomes . n+!
— . n
1+M) na (‘és)" M de)T L
\{.smu {ht"'\g‘“ ‘f t+n ('ds n./"
F.5
Again, the peak mass acceleration lg,{"\a") is given by
o h
%P(M‘“‘) = gngmax
so that
(%F(max))
Max
and F.5 becomes nat
Yplmar) t+™M AT
f[‘d ] (%S> Yn
l+n g,
F.6
1f & = 0, equation F.6 reduces to
AT
j‘ = -—E = ' Me %b(ma*)
™Me I+n
or N
F(n+t
(mary = F (120 ) = FCne
‘éP Mo ™ 1+ 2e (Mc+mp) F./
If n =1, (linear spring), the peak (man) mass acceleration
is given by
Y (max) = i
P mC+mP Fog
E

Note that g;;:;; is the acceleration obtained when regarding the
two masses as a '"rigid body," and the result is identical to that
given in Equation B.16. The conclusion is, that for a long duration
step input, the acceleration history obtained by taking the occupant

and capsule as a rigid mass, can be used to assess tolerability.

F.b



It is possible to define an amplification factor given by

peak acceleration on occupant
=
peak acceleration on capsule

The peak acceleration of the equivalent occupant's mass is given by
F.8, and the peak capsule acceleration is attained when the force
developed in the spring, in opposition to the applied force, is zero.
Hence

g(mu) = £
c ™me

- 2F  ™mMc _ 2me o g1 — 2k
A MetMp = et Mp ( MP4M¢>

Thus, the lighter the capsule in relation to its occupant, the lower

is the relative acceleration amplification. However, the peak

occupant acceleration is always twice the value which would be

calculated if the capsule and occupant were regarded as a combined

rigid mass.

Impulsive Input

In the present context, an impulsive input would be a force F
which lasts only for a short period, At, so that the spring does not
deflect significantly (the force developed is small). Newton's law

glves

siving a velocity change
=
“ _ A E
Av, = Atgc"— ™Me

which is greater than that calculated from rigid body theory. After
the spike input has been removed, the motion of the spring continues

and the velocity change given above constitutes an initial condition

for the subsequent motion. The equation of motion is now

S + C.8"(1+™M)=0 F.9

F.5



F.9 has to be integrated between certain limits which must be
ascertained. The velocity change due to the spike input gives a
velocity Ve = 8 to the spring at t = O, when it can be assumed
the deflection § is zero, and when the maximum deflection & max
is reached, the velocity is again zero, Thus, substituting

q =6, as before, §.$$§md

q:0 ' Smax
n
gdg = = [£E (+™M)
4=V d10
which gives
[q‘]o - [ (l4M)gh+l]$mal
- - (4+n
2 ve o
ioeo
] ™M h‘f\v
Ve - c (l+ )
— = h t4+n MmMax
2
giving .
8 - h+l V:’ n4
Max 2 g1+ (4 ™M)
and since g’gvnu) e 5, S
. n4+t % g }F&'t
™
Yfmar) = [ M+l) F.10
Now, using rigid body theory, the initial velocity change is given by
Fak
AVR = e+ Mp
whereas
F O
Av, =
Me
Therefore, .
AVC AVR L'.“c*MP) - AVR('-"M",
Me
.80 that F,10 becomes
4 2 g
. N4t n+t
YLEme) =% & ve) F.11
F.6



If F.11 is compared with D.16 of Appendix D, it can be seen that the
two equations are identical (initial deflections have been ignored

in deriving F¥.11, but could easily have been included). Hence, it
can be concluded that, employing the spring-mass analogy of the human
body, a man-capsule system subjected to an impulsive input can be

analyzed by the rigid body theory.

The results of the analyses described in this Appendix might
appear somewhat negative, but it has been possible to demonstrate

mathematically that the dynamic model of a two mass system can be

treated as a rigid body in calculating the peak acceleration output

-----

F.7




THE EFFECT OF A LINEAR CUSHION ON TOLERANCE LIMITS ~ EQUIVALENT SYSTEMS

APPENDIX G

(]

=

SUFFICIES

SIMBOLS

damping coefficient

energy absorption capacity of qushion
spring force

spring stiffness

damping constant

mass

time

duration of input acceleration

duration 1imit for impulsive theory
velocity

mass acceleration relative to fixed datum
input acceleration

steady input acceleration

deflection, velocity (rate of change of
deflection), acceleration (rate of change
of velocity) of spring

spring frequency

=k - oW
g 2
h). wl.

man

cushion

conditions at bottoming of cushion

initial (static) conditions
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When a cushion or other form of elastic restraint is placed in
series with the human body, the system can be represented as in
Figure G.1. The presence of the dampers complicates the problem
considerably, since the proportion of the resultant force transmitted

by damper or spring depends on the mechanical characteristics of each.

Y. (mass or output
_T P acceleration)

m
p
ke, MAN
(spring ﬁ 2K,
stiffness) (damping constant)
Ky, CUSHION
(spring Hf:l 2K,,
stiffness) (damping constant)
¥, (input acceleration)
Figure G.1

If either the dampers of the spring are removed, each system
can be reduced to a simple equivalent spring or damper. This
simplifies the mathematics and, although not a complete representa-~
tion of what actually happens, will give some insight into the

influence of the various components on the occupant.

‘Equivalent Spring System

In the static case, a force F would produce deflectiomss,and N

in the man and cushion springs, respectively, so that

G.2

G.1



F = k\81= hlgﬂ-

If the two springs are replaced by a single equivalent spring,
the deflection would be & and the force-deflection relationship
is

F=-RE = hzsl“'s‘\ a.2

Hence, the equivalent stiffness is given by

k F - F hl kl
= S48 T F F kvt Ra
N "N -

The equivalent natural frequency ) J?%P follows from G.3, and

i

G.3

can be represented by

. Wt wy = wy

w = w |;+ k)ll- ‘-:\-__-r)_ G . u

e ™
where Q) = ‘ﬁ‘,: R
W,

ks

Equivalent Damper System

For two dampers alone in series, it can be argued similarly
that

F = 2K|V| + Zkﬁv)-

and

F = aKv = &K[Vﬁ-\/x}

Hence, the equivalent damping constant is given by

F - Kl K-z_

- -

2vitV) K +ka 6.5

and the equivalent dampirg coefficient C = E;P

becomes

CiCa

. G.6
CitCa

c =

G.3




Model with Zero Damping

If the cushion-man system is now represented by a single
equivalent spring of frequency &/, the solutions already deduced
apply. Thus, for an impulsive input, the peak mass acceleration

is given by D.16, and for a linear system (n =1 ), this becomes

Gna* (f
) |+-ﬂ G.7
The duration thc which limits the impulse theory is from D.22

‘h
Akg = =2 {1+
W
Now, since V = ECAL’ , employing G.7, the following ratio

can be formed
%(m¢a) _ WAL

o At < At

= \
;3.4 (H'—n-\h' G.8
For times greater than Zktc, the ratio given in G.8 becomes 2,
since for an undamped system the overshoot of the ouput is 100%.
Hence,
Yimed | o0 g AE > Ak
9e
It follows that although a cushion does not reduce the severity
of a long period acceleration, it can be beneficial in the impulse
region. This conclusion is based on the fact that the cushion
does not bottom. The influence of the cushion can be seen from
the relationship
v
max (with cushion) W VY - y G
y (Vs - (FaY™ 9

% max (N0 cushion) 0

This ratio is plotted in Figure G.2, which illustrates the fact

that for a non-bottoming cushion, the attenuation of the input

is greater for large values of £2 = Ri/k, i.e., for low cushion

frequencies.

Gk




non~bottoming cushion

ratio of

y (max) <
yP

witl.x cushion
to 5p(max)
without
cushion

Li

T 1 ¥ T
2.0 k.o 6.0 8.0
spring stiffness ratio :-:-' G8)
¥ 3

Figure G.2
Cushion Bottoming

Bottoming of the cushion occurs when the deflection of the
cushion spring has a value 813 (say). At this instant, the force

in the spring is
FB = kzsza = hISIB

so that
Sip = 13'33
(1 h.

. r 5
Just before bottoming, the kinetic energy of the system !, Mp av

where Av is the velocity change of the application point due
to the impulse, is distributed as potential energy and kinetic

energy of the various parts of the system. When bottoming occurs,
the lower spring retains its potential energy only. Since an
impulsive input is under consideration, the mass does not move its
position initially, although the spring (R,) may have velocity é. .
due to compression. As shown previously, the maxi.mum deflection

of R, will be attained when the spring velocity 5 is zero, &oO

that the surplus energy is given by

~1Rr,; S
\ 2
- "1P‘AV 1920

G.5




- 4.e., total kinetic energy of the system minus the potential energy
retained by spring R, will appear as potential energy stored in
spring h.. Hence,
2 2
'21 RiSimu = ilmPAvl";hl Sae

and 2 2
AV’I.' - w."& MoK 4 Wy 823

Now, W8,.3 Y. (max) 'k, S
ow, ' Oimix Jp (max) and 5 R29, is the total emergy
absorption capability of the cushion (Ec)' Hence, G.10 can be

rewritten
{ (max)
AV?* = ..__2'EC + ..%_f(
th UJ?
so that the peak mass acceleration is
v
v QLE N\
by
Y mex) = w, (BY*- "——mp)

If allowance is made for some initial deflection 5} in the springs,
(.10 becomes

Av® = wi (8= 8%) +wr( Sag=Sas)

and G.11 takes the form

..

2 2 2 e h
%r(mcut) = {(H—.ﬂ) gs +w (v %"%p)}

where gs = WS, = i Sss

The condition for bottoming is that the available kinetic energy

must be equal to, or greater than thepotential energy storing
capacity of the system, i.e.

Jphvt > LR (S Si) + 4 kalSia Sis)

- where the suffix B implies conditions prevailing when spring ka

" bottoms. When the two sides of the above expression are equal, the

yelocity change that will just cause bottoming of the cushion can be

deduced, viz,

- LLE- 8 z 2]
AvE = %Ec 9 L RSB _ oy

G.6

G.10

G.11
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k2
and since S = Slb'E‘v
e e 2
sz = _2_5_(_: _ g; + h'srs — _S..
B Me ws ™Mp wi*
or ‘,
13 AN\ (x>
Avy = {%—i(‘*n) ds o= .13

.

When 'g'.s = 0, G.13 simplifies to

I’_’.
Av‘ _ iZEC (I+.D.\} G.14
8 = MP ﬂ
G.1h is plotted in Figure G.3 to show the influence of cushion

stiffness on the bottoming velocity ratio.

4

3.0 1

Ave increasing Yo

(?_.EZ)""
Me

1.0 A

v T L] Al ] T
2.0 4,0 6.0
Figure G.3

Thus, for a low value of kl,’(i.e., a weak spring), the bottoming

kg
A

velocity is small, whereas a lar ek, also implies a low bottoming velocity
since the spring deflects only a small amount and cannot store

large amounts of energy. This latter point has important implications
when considering the direction of application of the impulse, since the

natural frequency of the body (“th) is different for each direction.

The attenuation of the input acceleration for non-bottoming velocity

changes is given by G.9. For values of AV >AOVg from G.11
2 E¢ }V,

gfému') = o AV CPMPAV‘

G.7




80 that

mplAv

yb max (with cushion) - (‘ _2E 1)'/7'
gp max.  (no cushion)

G.15

In this case, the energy absorption capacity of the cushion is
important, but the stiffness ratio (£1) does not enter the expression.

Equations G.9 and G.1ll show that, in impact cases, the presence

of a cushion is always beneficial.

Long Duration Input

If the cushion does not bottom, the usual 100% overshoot will
occur (no damping). The general solution of the equation of motion
has been deduced in Appendix B. From B.7

- - '
§ = Za(1-cmwk) G.16

which refers to the equivalent spring. Now, the equivalent spring

deflection must be the sum of the individual deflections, so

§ = Sl + 8,
and since from G.1, R,§, = R, 95,

)
$ :6,+8, = s,(w%*:) 5 (1+5) 617

[l

8\23 at t = tB and from G.16

o
;;1("“4“’&5) .18

Using the value of W given by G.4 gives
w28, = o« (1—crawkp)

Now bottoming occurs when 82

§ = Sza('*fﬁ)

it

If the acceleration needed to bottom the cushion is defined by

9'8 = Wi Sap G.19
and from G.18
cos Wta . K=Yy G.20
1+ A

G.8




Differentiating G.16 gives the spring velocity at bottoming

Sg = a,oimwtg

8o that ,
z X+ +—Q-7 o WiEB
Sp W, (1 4..0.)

Remembering that 4im6 + 4428 =1  ang uging G.20, the above

equation becomes

' v .o
§, = (2 (2afiy- 43 2 )%

G.21

Equations G.18 and G.21 give the values of the equivalent spring
deflection, and velocity at bottoming. Subsequent motion will
affect only the spring R, » and the equation of motion can be
solved using G.18 and G.21 to provide the initial conditions,

o.

]

i.e., taking t 5 as the new t

The equation of motion is

d25 | 2§
ol t*

and the Laplace transform of this equation is

n

ol

-va—szO*P‘x‘*“’z" =%
where Xo =& ot E=0(Ep) ord ¢ = S at E=0(EB)

Hence, -
k4 Pt PP KX pao P

pre o™ Pror  w(pew) P

N =

the inverse Laplace transform gives

§ = & (- conwob) + 3 pimwk + Xocoak
Nl

Substituting X, = SnB and X%, = a3 gives
S - ~(.-$ )cmwt«ksm am wE
- w‘\- k) 2% G.22

Where & is now @, , since spring Ry is fully compressed.

Using the values of 81;5 and é;a of G.19 and G.21, the above

expression becomes
18 = K~ (0( 98ﬂ3w3a0t+0+ﬂ3 (20(5 lj’-)o«w\w,t

G.9




and wW;é= gp + The above equation can be rewritten, including
phase angle ﬁ‘ viz.
- o - { (- 4, 0y U+ 2y - 9;3} m(w t+3) 023
where sin ¢ = k- gg , Coddh = (lhﬁ)hfadg 5&
{ (- g n)+ (luﬂ(ldys g@ _{ {[a(— yﬁﬁ).q.(nn)(nugb g‘)}

(This step can be shown by expanding sin (wit+P ) 4n Equation G.23).

The turning points of g occur when ‘lgp/d!:— O, i.e., vhen (wWit+¢ )
has values of “/-:. )3“/2 etc. For maxima, d 59/4(4: is negative,

i.e., when (WEk + @ ) has values 30A > 14  ete.

Hence, the maximum mass acceleration after bottoming has occurred is

given by

Yy
. I Pt - 0>
y‘(’Mu) - ol + {0(1"’ 30‘55'9‘3('*"1 Lo \% G2k

Note that if ‘35 = 0, i.e., the cushion is already bottomed, G.2h

reduces to the usual expression
gpcmm = 2o
For the condition
'y Y S - b1
R ot~ Yy (1422 Yy o
or 2
24 5 1+ -0
ds

the overshoot is greater than 100%, which means that, under these
conditions, bottoming during a long duration input can have serious

consequences.

.. A plot of the ratio peak mass acceleration to input acceleration
( Ym0y against £) is given in Figure G.4, for various values of
gs o« The graph illustrates the fact that decreasing the cushion
stiffness is advantageous when bottoming can occur. All the curves
are above 9f™*)4 =% , since no damping is present, and the pulse

duration is long enough for full overshoot to have been obtained.

G.10
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APPENDIX H

REBOUND IN A LINEAR SYSTEM

SYMBOLS

k ' spring stiffness

mp mass

';) mass acceleration relative to fixed datum
'y.c input acceleration

t time

t, duration of input acceleration

t, time when restraint becomes active

3 step function input

) é s deflection, velocity (rate of change of

deflection), acceleration (rate of change
of velocity) of spring

AN

phase angle

spring frequency

SUFFICES
1 man
2 restraint




A linear single degree of freedom system (Figure H.1) will be
used to investigate the magnitude of the acceleration imposed on a

human during a rebound process.

) k,

" (spring
step input (X
p input () stiffness)
y_(output)
¥, K, D
(input (sori
accelera- Spring
tion) stiffness)
- (input) ¥
t e P yc
t, (time) t=0 t =t
Figure H.1

The occupant of a seat or capsule is represented by the spring k. .
and R, is analagous to some restraint device which might be a

harness (in extension) or a shock absorber (in compression). A step
function input (& ) of duration t, is applied to the base of the
spring k, , which causes the spring to compress. At t, the input is
removed and the spring returns to its original position ( §, = 0), but
with a velocity é' . Up to this point in time (t, , say), the spring
R, has been inactive since the restraint only acts when the

occupant leaves his seat. For t 2, , R, is inoperative and Ra

deflects.

Up to t = t; the equation of motion of the mass takes the form

derived in previous appendices, viz.

g Sk = wW2S+E H.1l
c
The solution of this equation is developed in Appendix B (Equation B.7).
When €.7t 7t , the equation of motion is

w28 +8 =0 H.2

which also has been solved in Appendix B, using § and § (trom H.1)

Hl2




at t = t,, as the initial conditions. (See B.17 and B.18). One

form of the solution given is

2 D5
& = {(é'. +x°} Aot +§) .3

where X, and X, are the initial values of § and & s respectively.

x
tan § = Wi%o | go that sin@ = _iXe and cos @ = ! .
X (GPXITR) ? orxma

s0 that expanding the sin ( WE+P) term of H.3, and substituting

these values, leads to
5, = 51 {m w,t—m[t‘t;)wl} H.b
(]
where time is now measured from t = t,.

During the rebound phase, starting at t,, the equation of motion is

wi§+§ =0 H.5
since there is no applied input. Now, at t = t5, 8§, 2820
and the solution of H.5 is similar to that given in H.3, but with X =0
i.e. $=0, hence

- X E
62 = g s H.6

and the acceleration is obtained by two differentiations with respect

to time, viz.

Sz = _x'wlsuww)t H.7
where time is measured from t = tp

To insure that t in these equations is always measured from true zero,

H.? is rewritten as

..

82

and similarly H.4 as

-, Wy A w, (E-E2) H.8

i

& f ety - oot}

8, H.9

80 that the value of X; in H.8 is, from H.9

Ay = é, = -E(-). {WVJutz'M(A,(trtb}

H.3



Using this value, H.8 becomes
Sz - -k c%)“ {S&M Wity — 8m W U—‘).‘b'\z ainm wa(E 'tl)

This expression wilt have its maximum value when sinto, (k-£.) =

so that

Syfmax) = - o Wi {M W ks — A, LEx- t:.‘)}
0,

H.10

For a very short pulse, use is made of the fact that the sine of
a small angle approaches the value of the angle (in radians).
Hence, H.1l0 becomes

A oWy s X W,k

S maxy = o> * for small t
and

g (max) = S, (max) = - o ak,

Ypme) 2(max) H.11
This expression is similar to that derived in Appendix D (c¢f., D.23)
except that W, replaces w,
Note that H.l1lO itself has a maximum value for a certain coJ](«:input
duration). Writing H.10 in the form

S;(MM) = = o %L{Ou\w|tiét”mw‘t))+ww|tl mw‘t‘z
] - -
this expression is a maximum when cos ot = O or ot = ",_)S'V;_ etc.,
and when sinw b, = - ev Wk, = 3@3--' etc., so that
y(‘mel) = - ok L R am w, s
(7o)

which has an ultimate maximum when (>, C; (v start of rebound) has
the value '72 etc.
Hence

y Max) = - 20( L_k_))'

‘é"n( ) IAY H.12

The result resembles the standard box 100% overshoot case, except that the
expression H.1l2 contains a frequency ratio. The application is quite
general in that 7Y, and (3, can be regarded as equivalent frequencies.
Thus, the effective contribution of the spine can be included in W2

and a seat cushion spring in &, . The equations show that considerable

amplification is possible if the restraint system is stiffer than the

system receiving the initial impulse,

H.h



APPENDIX I

THE INFLUENCE OF RISE TIME

SYMBOLS
g acceleration due to gravity
L denotes "Laplce transform of"

denotes "inverse Laplace transform of"

mp mass of the system

n an integer, takes the values 0, 1, 2, 3 etc.
t time

tr rise time of the input acceleration

”c input acceleration

§p acceleration of the mass m

/g rate of onset of the input acceleration

§ deflection of the spring

w frequency of the mass-spring system

I.1




The fact that rate of onset influences human tolerance to rapidly
applied accelerations has been recognized by early workers in the
human factors field., As explained in the main text, a more useful
parameter to consider is the rise time (tr) which is the time

elapsed before the peak or plateau acceleration is obtained, as

illustrated in Figure I.1.

4 A : Yp(mass
plateau G's ~peak G or

a output

3 accel.)

o . m .

© Yo P

5 . (mass)

o (input w
s esSoncs
4
9 t .

s ul - - ‘ - 1‘yc(:‘mput _
t=0 t_, time t t., time accel,)
r .
(a) Figure I.1 (b) (e)

A linear ramp type of acceleration, followed by a continuous
constant acceleration (Fig. I.1 (a)) is more amenable to mathematical
analysis and will be used to illustrate the influence of rise time on

the resultant mass acceleration.

The equation of motion of the spring-mass system (Fig. 1 (c¢)) is

derived in the usual way {see Appendix B) and can be written

S ..
4;é +w*S = Y.
d I.1
where the input acceleration jr'c has the values

gc:ﬁ& for o ¢k € kv I.2(a)

and
gc Bt  constant for L> by 1.2(b)

I.2 (a) describes a ramp function and I.2(b) a constant input function,
both of which have direct Laplace transforms (e.g. transform numbers
78 and 79 of Ref. I1.1) which are

2(1- e ) -pt, "

for the ramp function

I.2
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and

-ty
Al Ffor the continuous function

These two can be added so the Laplace transform of Equation I.l can
be written

~tvp
= é C"'e )
P

’,13(_ +

that -ty
so tha a(i-e p) ]
b( p+ @™ PPHE™  pLp 4t

A -Evp

- €

I.3
where the initial conditions & = 8 = 0 at t = O to apply.

The inverse Laplace transform of the first temm is

L p( pr+wt) = P(ﬁl-l‘:ﬁmw‘:)

and for the second temm

- st

b P o)
(Theorem VII applied to transform 47 - Ref. I.1l)

-« bt ot}

Hence the spring deflection is given by

S = /‘-&fj_ 53{th-,y¢“w[t-t‘03

Applying the basic addition theorem of trigonometry to this

expression gives

t _t : Evy
s - &% "53{2“’“’“ Le) oo g} 1.b

Since g; A » the mass acceleration is represented by

N .23 ‘ o o Wiy
P TS Y

Turning points exist when

d_g_:P: 2/3 {Mw(t‘%v)/“.ﬂ\ WEY} =0

2
dt
i.e. when
. ¢ w(t_ev)r hT
/M w(e—'ir) =0 ov ¥

where n is an integer.

I.3




A2y

The maximum value of gh exists when £ZZ1P is negative, and

20 .

Y - Rpw{mw(t-iv)wwﬁvg
At > *
Substituting the turning point condition obtained above yields

20 . )
d Y - * 2/300.40n wky 1.6
dE> % )

depending on the guadrant of cot (+vt forn =0, 2, 4 ete.
-ve forn=1, 3, 5etc.) Thus the sign of I.6 depends on the sign
of sin WE, and the value of n. The condition n = 0 is of no interest

and when n = 1, equation 1.6 is negative when sin wtr ig positive,

P
i.e. when
& —
o ¢ &
so that
N
t < =
r must be o
If n = 2, 1.6 is negative when sin wty is negative, i.e. when
2
T w € -
7] £ Xeor < R

S .2'
so that t, lies between R1/w and 4TM/w

Summarizing these conditions, the mass acceleration is a maximum

if €.€ 215' forn = 1, and if o € €y € W' for n = 2 etc.

The peak mass acceleration can then be written

‘e n .
= Aky = (=) 2 amwby
yrtmuy ﬂ y = ) S 5 1.7
which satisfies the conditions deduced above.

Now /3ty is the plateau acceleration input, and the following ratio

can be formed

foi A IO il
ﬂty —UJ__FY I¢8

&

which forn = 1 and t¥ = O reduces to

"(MMO
LA}

AL

I.b




(max)/ 3ty

Ip

.o

|

Oufput to input_ratio

Girn Y

”

TwEv

since in the limit, as t, approaches zero, approaches unity.

2
This agrees with the case of a step function input (Equation B.16)

which corresponds to a zero rise time.

Equation I.8 is plotted in Figure I.2 and since the location is
in non-dimensional form, the result is applicable for any value of the

variable parameters.

L3 v A4

L ] L \ |
i 3i FigurgﬂI.Z K en wty 77

3 o

These results indicate that for very short rise times full

100% overshoot can be attained, but as the rise time increases the

overshoot is reduced and higher input acceleration can be applied
before the level becomes intolerable, Rigse time should not be

confused with duration time. Both parameters influence the peak

mas acceleration attained, but in the present study the influence
of duration time has been eliminated by assuming a continuous (long

duration) input.
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APPENDIX J

THE TWO DEGREE OF FREEDOM SYSTEM

SYMBOLS

constants used in solving the problem,
see Equations J.31 and J.32

= % the damping coefficient

force

damping constant

spring constant

denotes "'the Laplace transform of"

mass

Laplace variable corresponding to time (t)
time

duration of input acceleration

velocity arising from an impulsive
input acceleration

displacement, -velocity and acceleration
of some point of the model

deflection, velocity (rate of change of
deflection), acceleration (rate of change
of velocity) of spring

resonant frequency of the coupled system

frequency of an uncoupled spring-mass
systen

J.1




SUFFICES

relates variable or parameter to the
point C in Figure J.1 (c)

relates variable or parameter to the
upper mass-spring damper system

relates variable or parameter to the
lower mass-spring damper system

denotes sum of components of quantity
denotes maximum value of variable

used to distinguish between the resonant
frequencies of the coupled system

J.2



The next step towards a better mathematical representation of

the human body subjected to acceleration stress is to extend the

spring-mass concept to include two spring-mass systems in series, with

associated damping elements. Such a system is shown in Figure J.1

and represents a two degree of freedom model. " The mathematics involved
in the investigation of this model is much more complex than that
associated with the single degree of freedom system, but the basic

principles are similar.

A .
A
. _m
yc gP :
dy
ATHATT 7T T
L b
G -
(a) (b) (¢)
Figure J.1

The forces acting on each mass are evaluated and the equations of
motion determined in terms of spring deflection, spring acceleration and
the particular input acceleration. The equations of motion are then
solved to yield the spring deflection which is used to determine the
resultant mass acceleration. The peak mass acceleration is then
investigated by maximlzing the relevant equations. This latter process
involves complex algebraic terms and a digital computor has been used

to facilitate the analysis.

Derivation of the Equations of Motion

The forces developed in the springs (assumed linear) can be

répresented as follows:
Spring b FP: h’f’ 5‘5
Spring (1/ F1 = h?/ S‘L

J.3
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where hq, and. k?— are the spring stiffness values associated with
the springs. The forces developed in the dampers (of constants 2k

and 2K$) are

Damper P ?P= 2'KPSI"
. J.z
MMmm'i F1= 2K$S¢

The Equation of Motion of the Mass mP

Only the spring and damper of constants h—r and 2K, are
attached directly to the mass mp so that any force transmitted to the
mass m_ due to an acceleration applied at C must be transmitted through
the spring R+ and damper 2Kp . Hence, for some given deflection

and rate of change of deflection ‘SF s the force on mp is given by
FPT = FP +FP

. Jo3

on using the values for F} and‘?i given in Equations J.l and J.2

respectively. Newton's second law of motion states that this force,

Flﬂ s 1s equal to the product of the mass p and its acceleration
So, in symbols this statement is written

Mp§p = RpSp +2p8p

which is the equation of motion for the mass mp.

The Equation of Motion for the Mass @q

It will be demonstrated now that the equation of motion for

the mass mq is
My Yy = 2Ke8y + RSy ~(20p8p+ ky Bp)
The R.H.S. of this equation states that the force Fﬁr acting on the

mass m_ is the force produced in the spring and damper, h$ and 2Kgq,

respectively, less the force FFT transmitted to the mass mp.

J.h




Consider the spring kp and damper 2Kp . These are attached
directly to the mass Mg so that any force generated in them is
transferred directly to the mass mg. The force generated in the
spring kl’ and damper 2Kp 1is given by Equation J.3

FPT = h...SF +‘2.K,.Sr

This force FPT is trying, for positive SP (compression), to push
the masses further apart so that the force on Mgq is equal and opposite to
that on M, .

The forces in the spring h$ and damper 2K$ are given in
Equations J.1 and J .2. The total force due to this spring-damper

system is
F = 2Ke8q + Re84 3.5

and its direction, for positive 81, y is such that it tries to force
hfla' closer tom, , that is, in the opposite direction to the force
on Mg due to the spring h.. and damper 2Kp . The total force acting
on the mass Mgq is then
= F-Fpr
Far b
and applying Newton's second law to mass Mq gives
v ¢ — (RuSp+2KpSp) J.6
after substituting for Fpr and F from J.3 and J.5 respectively.

In order to introduce the given input acceleration into the equation

of imotion it is necessary now to express _Apand yi in terms of

I3

Sp, 5¢ and Y. the input acceleration.

The original (uncompressed) length of the spring h’-‘} is Ygo (Fig. J.1(a))
and from Fig. J.1(b) its length at some time during the motion is

gq = Y4~ G J.7
The difference in these two lengths ‘é%, -g'} is the compression
in the spring 81‘ 80

Jd.5



but

‘Jo' = ‘41”‘45
80 J.8
Ygo 9s* Ye

s 2
<«
i

or
Yg = Y= 89+ Yg0
Equation J.8 is now differentiated with respect to time to yield the

velocities

.
*

Yo = Y~ 51 3.9
because %ﬂ;o is a constant for a given spring so that it does not
change with time, i.e. dggo/d.t = O, Differentiating J.9

with respect to time gives the acceleration of hﬁg in terms of the

input acceleration and spring acceleration (rate of change of rate

of change of deflection)

(14 e

%’(} = gb_ 87’

An expression relating Sf"éh and Y, is obtained similarly. The
unextended length of spring t{p is seen to be from Fig. J.1l(a)

%po = %Po‘- y?o Jn.Ll
From inspection of Fig. J.1(b) it is seen that the compressed
length of the spring h? is

Y = Yp~ Y4 J.12

Again, the difference between undeflected length and the deflected
length is, by definition, Sf, hence,

S', = gpo- g"
= Ypo Ygom YT s

or Ye = Y47 Sp+ Ypo~ g0 Je13
Now both Y, and g$° are constants, so that on differentiation with
respect to time, both quantities yield zero. Differentiating J.13
twice with respect to time gives

Yp= Yq-Sp J.1b

J.6




But, from Equation J.10

yg R 8$
Substituting this value in J.14 gives an expression for the

acceleration of ™Mp

gp = gc'&;_gb J.15
Now, using the results of J.10 and J.15 by substituting for ;p and yé,
the equations of motion of the mass mp and mq can be rewritten
as follows

For the mass m_

(1] s0

For the mass m

J.17
Dividing J.16 and J.17 throughout by mp and mq respectively gives
e .o ve hb S 2K'. .
- - = +
Y, -S4 -Sp o MPSP J.18
and
v e gkwé +_h$5 _(QKPS+bj é )
- = e — —— P
AR mg "t Mgt T mg P Mg J.19

Adopting the definitions used in previous appendices some of the

above quantities can be written in terms of frequency (W), which each

spring-mass system would have if vibrating alone, viz.

2
Rp-wz, Be-w?  Rewp
Mp mq, Mal,

and associated damping coefficient (¢&)

Ke .
EP = CP N \S_q’ = c'l, ) -—F - CP‘P
P . m@ Mn‘,

so that J.18 and J.19 become

and e . . 1 )
Y —S‘ir = (4)1181"" 2C181‘(2CP§P+NP$SP

J.7




The terms are now rearranged to give the equations of motion in the

desired form

e o .

id'c = SP+S$+w;8, +Rcp 8 3.2

and

. 2 S , 2
y, = 81+ w.,_sr} 2%&} (2 Cnsp + wmsp) .21

Analytical Solution of Equations of Motion for the Special Case

of Zero Damping

Analytical solutiéns of the equations of motion, including the
damping terms are possible, but it is considered, at this stage,
that it is acceptable to avoid too much mathematical complexity in an
attempt to preserve physical significance. Also, the errors
introduced by ignoring damping effects in the human body are not

excessive,.

When the zero damping case is considered the equations of motion

become

b 2 (R ] - [ 3
S',*“’OPSP*S‘}‘ e Je.22
and

L 1 - [
~ Oy Sp+ 89 +wgBq = Ye J.23

General Case of s Rectangular Input

If Xp and Xg are the Laplace Transforms of 8,. and 51
respectively and 'jc has some constant value fromt = O to t = At,
Equations J.22 and J.23 transform into
. - pAt 2\, 2
5' (1-¢ P ) = (prawp)xp + bPixg J.2k
¢
and

Y by (e Xy

g (V-

for the conditions §,,8.,8¢ and & =0att =0

J.25
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Equations J.24 and J.25 are simultaneous equations in SP and &‘1

and can be solved by use of a standard technique. (Crout's Method
e.g. see page 69 of Ref. J.1). _pat

Y - ") (prewd) - Py (1-e )

TP R (P wd) P

x',=

- " -p AL
gr_u-cbehuwg)i-w,’;?gc(c.-eP )
(Prwd)(prewd) + b gy

113

'I"hevse expressions may be simplified by evaluating the terms inside

the btackets and regrouping
o _pm;) m%
gc( I-€ 1

Ay =
b pU+ prlwg+ (»d%«&»wé_) + W2 we 7.26
. -PAE 2 2
x G, (1-€7) (P2 wi w0y
$ - p* + p3( w; +w.;.+ w;:})_,+ w;w; Je27
The denominator of Equation J.26 and J.27 can be factored and written
as
2 %
(Fl‘*’ﬂ)'. ) ( P '{‘"ﬂl) J.28
where N a 2 2, . ol )z_ o w;i'/,)
_n,’“:—'i(w.,«rw%+u>m-{(wp+w$+ k9 p g
| 1), ‘an‘Jl»g‘k) J.29
V(0 ¢l -+ Wi, Wl g + Wi ) T p W
_(')_: =3 (“-’p +lg -+ Wy {( ptq (27 7.3

L), , and ), are, in fact, the resonant frequencies of the system and

are termed coupled frequencies., They may be regarded as the frequencies
of two equivalent spring-mass eystems that may be combined to describe

the motion of the two degree of freedom model.
2 2 2 .
Now since Wp,Wq and Wpg are always positive quantities
1, \
2 a3 A 2 \a)h
{(wpz+w;+w;$)"-uwpw¢ } £ {(w;-l-w;'l'b\.lri)}

i.e. L . a a2
We + W
(wiawjtip,)t —hopwg & Wp T TR

But, the term 2 a2
[ Cuogs o waagy Voo bt

J.9




can be expanded to give L 2 2 3}
{w"u,_m,i‘,,w:?+'z.w,,‘w{j+2.w.z‘wpt*wr W, =l wp g

2 1,.2
= {wP“4kJ¢":4(\)::"—2,“);(&)%1-{-2”‘:00'3%. —?,w;'wp1’-+|+wp N”}

¢ {(wi-oj- gt + wwpl ]

which is a positive, real quantity since Uopz) bo;'* “%z, are real

and positive. It follows that the original expression Z(W;W’;“\’;}):‘ "‘“’:“’; a
must also be real. Now W7 + Wwq + w;; is real since each 1%
term is real and has been shown to be greater than i(“’:‘“";‘ ‘*’;;Y"*:"Pw%}
Therefore, the difference Wi+ +Wpy = § (Wt +i0g+0py)* - huwpwy }>

of the two quantities and their sum, which appear in Equations J.29

and J.30 respectively, are real and positive, hence <2¢ and 13

must be positive, real quantities. Reverting now to Equations J.26

and J.27, these may be expresssed in partial fraction form by letting

-pAl:) { Ap+B Cp+D }

X, = g(,("t pr+ 022 pr+Na J.31
and - -
. -pak AprB Cp+D
X = g (-¢ ) { oy P‘*‘“’z} J.32
i.e. 1 A2
. SPAE ((apaB) Pe0h) +Ep DI (PO
xp = §l-e ) i( ’ZP’-‘-}-Q?)(P‘*-QD } J.31(a)
o, SPAR C(Rp4 B)(P+OY) +(Cp+DYCP-07) }
Xq = 4, 0-¢ ) { (D) Cpred J.32(a)

Now, the expression for Xp and Xy in Equation J.31(a) and J.32(a)
must be identical to Equations J.26 and J.27 so that the coefficients
of powers of p may be equated. From Equations J.31(a) and J.26, the
following set of equations for A,B,C, and D are obtained.

A+ C =0

B+D =0

AD + €0 -0

Bn;+b-ﬂ?’ =w;
Hence

A=C=0

J.10



and

2%
D= _ %%
—Clla . S)-:
Ba - Wg
Nr-n;3

Similarly, the following equations are

obtained for A, B, C, D, by

equating the coefficients of powers of p in J.32(a) and J.27.

I + 5 =
E + ]-) = 1}
R_ﬂ,z' + E_Q} = 0
Bas +Da? = W+ 6091"
Hence
A=C=0
2 1
Rl Gl s A
_n?—.n: nr-03
2
Ba Whtr-Ni o o -wy
n; Sl-l -n:. ‘n:
since from Equations J.29 and J.30
QF+0) = WE WY+ WA
Now these quantities are asubstituted into Equations J.31 and J.32 to
yield
) {25 (mn) * o )
xp = §(-e )3 e ()t Sha (e
and 2 a2
b {w&—_n;( L) 4y
xq = Yl N e Tares

These equations are
exist and using No.

the inverse Laplace

p:'&ﬁ)}

now in a form for which direct Laplace Transforms

40, and sppiying Theorem VII of Reference J.1,
transforms obtained are for £ > At

. C ar

Sp= -2y Y {MQ'% o (E-28) - BB Tl o (k- 4F

3 -‘Ql“n-;- Fx zm\ﬂ.( 1) n-;,———MM a( i )} 3.33

Sy = 24 5 J:_I_I?MQ;ACMQ e-ar)- - JuMﬂLAhlﬂ‘lx(t*M)}
onn} ( af J.3h

J.11




and for t < A ¢t .
Sp = Wy 4. {l—-a«s.ﬂ.t _ (-M.n,t}

-

_Q,‘—_Q.’i Moty S).;'_ J.35
re . 1 z
§, = 3 z*i—-*w 203 (1 coa k) 4+ D105 (1- s st
VT oo @ k) + —=r ( ? >} J.36

Equations J.,35 and J.36 also represent solutions of the equations of

motion for a continuous step function input acceleration, since this

is the limiting case when A t approaches infinity.

Thus by solving the equations of motion describing the two degree
of freedom model, expressions for the deflection of each spring has
been obtained in terms of the coupled and uncoupled frequencies,

input acceleration and time.

Impulsive Acceleration Input

As in Appendix E, use is made of the Dirac Impulse Function in
solving the equations of motion when an impulsive input is applied to

the system. Equations J.22 and J.23 are then transformed into
, 2
Vp = (pr+wedxp + PTXq
and

2 B+ W
vp = -WpyXp + (BT )%

where v is the velocity achieved by the system.

Equating the right hand sides of these equations gives *¥p in terms
of'xg,so that the equations can be solved to give
2
Xp = V bty . N
(pr4 WP +0q") + pHiopy J.37

e o VPP tey)
VT e (g + b wpd

It can be seen that these equations are similar to J.26 and J.27, except

J.29

that VP replaces i;i((l—ﬁ_km:) in the numerator. Remembering this

J.12




fact, equations similar to J.26 through J.32(b) can be used, and
J.31(b) take the form

xp = VR4 {-£ 4 i }
pran?  pren:

n2-0n3 J.39
- VY 2_ At P 0 2 P }

The inverse Laplace transforms of these equations can be written down
(Transform No. 11, Ref. J.1), allowing Sp and §q to be expressed

as follows

S

N i e 4L oim.ﬂxt‘}
L, L1y

-O-?"'-O-a.

S v {wz-ﬂ: 'nz:-r-ﬁ-.l-wz . .D.t}
1 ook 'f%if"""unﬂ 1 ——]i:—jilMA~ 2

Application of the Two Degree of Freedom Model

There are two possible criteria for determining the permissable
input acceleration. One, a limit on '}j,, (and g‘v ) has been used
previously, the other, based 6n the strain developed in the
spring putsa limit on § 'gmu) and Sqfmax) . Since a linear system
without damping is being used, it is permissable to use the results
of Ruff's work, Ref. J.2 to determine Sg!wx) and.sgﬁ“““) if applicable,
since, in both cases, all the forces within the system are generated
by the deflection of springs. Instead of maximizing s p and 6:;, as
has been done in previous appendices for 9} y & digital'computer
program has been written to evaluate and plot 5pband Sg against time.
If a sufficiently small interval of time is used the maximum values
cf ‘SP and 5}, may be obtained from inspection of the plots of these
deflections. The results obtained from application of this model

is discussed in the main text.

J.13
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APPENDIX K

THE THREE DEGREE OF FREEDOM SYSTEM

SYMBOLS
constant introduced to assist in obtaining
the steady state solution of Equation K..43
constant, see Equation K.27
damping coefficient in uncoupled mode
damping coefficient in coupled mode
force
defined by £%= -1
damping constant of damper
denotes "Laplace transform of"
denotes "Inverse Laplace transform of"
length of the spring
mass
independent Laplace variable
amplification factor
time
duration of a rectangular input
velocity due to an impulsive input acceleration
dependent Laplace variable

displacement coordinate, velocity, acceleration
relative to a fixed datum

constants used in Equation K.28
deflection, velocity (rate of change of
deflection), acceleration (rate of change of

velocity) of spring

constants defined by .+ tv = A




-1

¢ phase angle tan

[

4

'ﬁht ol

phase angle = tan”

1}

L2 coupled frequency of undamped system

0 coupled frequency of damped system

w uncoupled frequency

A(E) Dirac impulse function

0 relates symbol to conditions at time t = O
or independent of time

1,2,3 relates symbol to appropriate sub-system

of Figure K.1(a)

C relates symbol to point C of Figure K.1(a)

and (b)

K.2



As explained in the main text, the three degree of freedom model
was introduced in an attempt to establish a model that would include
the main structural (as opposed to hydraulic) effects of accelerations
on the human body. The three degree of freedom model allows the
dynamic response of at least three parts of the body to be determined
simultaneously, and modes of widely different frequency responses may
be studies, e.g. low frequency body effects together with the high
frequency spinal mode. The model consists of three sets of spring-

mass systems with damping, as illustrated in Figure K.1(a) and (b).

J M

] =], 7 i

Py
B

K 2% Ry 21K ™
3 3;
4, I — I . ™ b
Jor R, '1[12K’ c Igr.
(a) Figure K.l (b)

Evaluation of the Forces Acting on Each Mass

The analysis of the forces acting on the three masses of the
system is similar to that described in Appendix J for the two degree

of freedom model, and will not be discussed in detail here.

The forces F, and F;, due to the associated springs and dampers,

acting on the masses m, and my are
F, = kS, + 2K, S, K.l
and

NP
FS hg; 373 K.2

K.3




for given spring deflections 82, and 8§, . Forces F, and F; act on
mass ™M, 1n addition to the force developed in its own spring-damper

combination, but in the opposite direction. So
F, = RS +2K58,- Ra8.-2K:8, - R385 -2K3 5,

Newton's second law of motion is used to give the equations of motion

for the three masses m,,Mm,, M3 These are

m"é: = h"sl +2klél' klsz'zk;é; - h'583 - 2—K3é3

o K'
Mj%, = kg_svz +2'K18; 3
Myy; = RaS; + %363
The output accelerations gl, g:’gs must be expressed in terms of
§ 0 §“ :3'3 and gc the input acceleration in order to solve the
equations of motion. Now, from Figure K.1(a), the undeflected
length /£1° of the spring k; is
ld:lo = 5o>.- 30| K"L’
and the deflected length £, is
4y = 91‘5. K.5
The deflection, 82, in the spring hg is, by definition
Sz s /(,10”»(.-)_
K‘6
= yol. %tﬂ 32 +'d'l
Equation K.6 is differentiated twice with respect to time to give
81 = 3(31 K.7
since ‘dm. and go‘ are constants and hence
ljo). = ‘?'0\ =0

Similarly, (since the masses ™M, and M3 and their spring-damper

systems may be interchanged without loss of generality)

§; = Y - 33 K.8
The undeflected length of spring R, is (see Fig. K.1(a)) y_
and the deflected length '3|— Ye

K.h




So, by definition

Sl = 30.' 3|*'jc. : K.9
which, after differentiating twice with respect to time, yields

§ = Y. Y, k.10
since Y is a constant and so 96‘ = 0.

The three equations K.7, K.8 and K.10 may now be solved to give
g, ,51 and g; in terms of §,,8,,8; eand g‘

Equation K.10 is rearranged and so giving

Yy, = Y4 -8, K.11
Equations K.7 and K.1l1l are now used to give an expression for 9;

gi = g,—'sz (from Equation K.7)
But, § = g - §, so that on substituting for §, above, the

required form for Y, is obtained.

o= G -8 -8, K.12

Similarly, the expression for 95 is obtained by using Equations K.8
and K.11 to give

33 =Y -8 -8 K.13

The expressions for gl, gz and 53 are now used in the set of

Equations K.3 to give the equations of motion in a form consistent

with that used throughout the appendices. The equations of motion

become

m(§-8) =R +2K,8, - Ra 51~ 2 Ka$,- Ra 83 - K3y

. - K.14
h‘h(ggsl»-sl) = R.S: +2K,8,
malo§i-8,) = ks S5 A3 8s
These equations are now rearranged and divided through by the
appropriate mass to give
C 2K, ¢ R Ka ¢ R, 2K3 ¢ R3 = Y
+ A2 + 2§ -22>6,-%28 ~c3g 23§
5 ™, S by ! o ey Mag3 W, *3 d K.15

4 g Ka ¢4 Ra -
§ + 8§, +2 %‘1824_ 'm',gl =Y,

Xy .. . k -"
S, + 853 +2 ‘—:;-?383“' 53383 "(dc.

K.5




Certain parameters of the system can now be defined as follows

. 2 .
hL - K{ _ec. L= 1,2,3
my = A my ] > K.16
where W; is the uncoupled frequency of the appropriate spring-mass
system and C is the damping coefficient.
Note that
ki = Ml koM 2 J=n3
m; M Mmoo M
and
Ki .mu Ki _ M.
—. - _. - - - L
so that using these parameters (K.16) in the equations of motion
gives . . .
m ™ .
9, +2¢,8 +wl8, - 2 T Cab, - v'g‘x'wisz-zi €38, - '%7«,;83: Y.
S, +8, +2cp8, +wlS; = U, K.17

‘S. + 33 + 2C31§3 +w;83 = zé.c_

These are the equations of motion of the system for which a solution

is required using the Laplace transform method.

Solution of the Equations of Motion

There are two distinct input accelerations of interest and for

which experimental results exist. These are:

(a) short duration input with duration times, less than
one second (Ref. K.2)

(b) long (seconds or minutes) duration sinusoidal inputs as
reported in Ref. K,1

The solution for case (a) will be obtained by the use of the Laplace
transformation, as in previous appendices. The method used for

case (b) will be explained during the solution.

K.6



(a) The General Case of the Rectangular Input

In this case the solution follows along lines similar to that of
previous appendices. It will be remembered that the Lapléce transform
for a rectangular input acceleration, of the form g "= constant
fromt = 0 to t =A t is (see Appendix J or Transform 78, page 136,

Ref. K.3). atp
g (1-e )

Then, for S = 5, =0at t = 0, Equations K.17 transform readily

into
o ~-pAL - m 2 - 2 .
y‘(l-eP =(pr+2c, p+wi)x, F‘T(zczp+w1)x3 ?,-q,?(?csF“"a)"s

K.18(a)
" (I-C_Mk) = PrX, + (p*+2Cap +w3)X
ge = b 2P+ )2 K.18(b)
. - pAt 2
y G- PAky . prx, + (24 2Gh +13)%s K.18(c)
The second and third Equations K.18 may be rewritten to give
X, and X3 in terms of X, and p as follows
x, = G U-ePaE) -,
2 =
F1+‘2C-‘-P+w}' K.l9(a)
oo e POEY _ Lax
Xy = Y (-€7 ) =P K.19(b)

B2+ RCyp + w3
The expressions for X, and X3 from Equation K.19 are now substituted
in Equation K.18(a) to give the following equation for X,

- pat - (b? ug G (1-ePAE). p2x,
y (1-€ 7)) = (p*+2e¢p+w)x, -7 (2c prei)( b +Reap + )} )

- M3 L ek 1-ePOSy_pax
™, (2C3krw3 )( ycp("«- 2CJP?H":; '

K.20

This expression is now multiplied throughout by

( ‘51.'- ZC;F-&M:}) C P1+.2C3P +(«)32)
to clear the denominators, and the terms inside the brackets are

expanded and regrouped.

In the first instance, only the terms independent of X: will be

collected and transferred to the right side of K.20, so
. . O -PAL— L 2z 2 i ¢
Right side = Y (i-e ) {(P +2Cp +w2 )b *‘7“:3[’*““’3)

+ ':“_Y": (Reap+ W) (peResp )+ E:(‘chp fudi)(t&f‘zczp vwp)
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= %’(c—e.'*"“){ P"‘+P3(232+ZC3+2"2C;“‘232C3)
[ ] ]
2 2 1 e Ma 2 ams ) om m
-+ P (L)1+L03 “+ L4 CyCy *V—Vh [ATY -V.','_" L3 "'r-;".'l*clc3+ _"_1-.3 §pexey

2 2 ™ S 2 2
+ 20107 +Qealdr 4 M2RLHWT +M3 B w05 +M2 20303 + T3 20,103
" ( 2293 jtoa = 3 an 3 + m'2€3 a ™ 2 )

4 Wwr + Maglwod +Ms wiw; } K.21
L a 1 m,
=G (- e"“‘){ pea[i+ 2 Yeu + (1422 )eg] 3
+ [(I*T’)w " <'+ "'B)ws 4 l+<l+ "'\)4— MB)C;C:] P
™2, m 2] 2
+ 201+ ;"4-.&3')((:1&«73 +c36~a)p + (1+ -,;,f“'?,:) w;w;}
The terms containing % are now collected on the left side
G {(prezce *‘*")(P‘*Rzk“f“})(l"*Usl**“’ﬁ+"“(2c:p+w§)P‘(|="+2czP +wi)
3 (2 cgp+w3);>‘( pi+ 2Cap + W ) }
=x, {p +(‘7.c.+2c;*2¢33|° + (W + P4k GG+ H Gl FCE) Y
+(2C1h.>; +2C3w;‘ +2c'w;+ 263(0.1* T3] +?C|Uz + 8C,C:C!) P
4 (Wiwk+wind + LIl bae wi+ bl W 4+ Ulsd, wi) p
4 (20wl +Re, Wi wr+2e3 WAL) b + Wil w3
K.22

+ Mz[;_c P -J-(l«}}; ll-C;C;)fa -&2(‘2»;403&)})‘;;4- w;w; P:.
+ Ms [263# +(Wwi+beyc3) ,,~+2.(c3co, +C2d)p + Wy Wy p]}

m m ; m
+[w.‘+(l~ ;:,)wz oy ,,,3,) 05t it 4 (10 24 T ey 4 tege]
2
+2,[(l+ 'g\*. r%ﬁ)(t;w;#ngi') + e wi+ el el a Cuy "’“Ct‘—zcz) b .
. 2
+ 2,32 4wt ol (1+M2 M3Vl s uec W CiCs wti C a2 R 23
(STt A DY 3 M+ ( ™ ‘;‘)N; 3 a3+ CC5 s*’“C3t|LJ‘]P
'

+2[c v+ win? 4y w,‘fwf]‘, + w}w:w_{}
When K.21 and K.22 are combined, an equation results that gives X

in terms of p, ¢ andW. Remembering that X is the Laplace transform

of & , such an expression must contain information on the three

natural modes of the system and by standard practice must factor to

give the frequencies and damping in the modes. The system has

three degrees of frecdom and there are three ways (modes) in which
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it can vibrate when considered as a combined system. Let £2 . be the

undamped frequency and C the associated damping of each mode. The
damped frequency of vibration is therefore given by

-2 2 -2

N, = 0O -€;
which represents the sub-critically damped case of Ci < 04 (compare

Appendix E). K.23 may now be expressed as
- . - 2 - 2
NP+ REp+NT) (Pr+ R, Pp+.0Q7) (PP+2T3p+0N3) K.2h

which follows from similar reasoning to that used in Appendix J in
obtaining Equation J.31(b) from J.26. This expression may be
expanded and written in descending powers of p as follows
x, { P‘+2,(a.+51+23)t,5 4+ (..QT*I).:_*'.Q’:; 44 8\Ca 4 kEiCa + 4632|)‘,“
- - L3 -
22( £, 054805 +2.05 + 6100+ 507+ Ty 4 LCETS) pD
= K.25
. > = 2
+ (D20, + 03054030} 44505 + 4SO+ 50T P
- - - 2.2 3
12(E 0,08 + G0l + TN, 03) p + 010503

Now, if K.24 is expression K.23 factored, then K.23% and K.25 must

be identical and so the coefficients of powers of p may be equated

to give the following equations for Wi and Ci in terms of i and Ci.
e +(i+WmYr(1+BYe = Ciw Cu+Cy K.26(a)
w}‘+("ﬁf7°~>§ +(|+aﬂ:)w;+hc.cl.+ ‘*('*'??\1,'* ":‘::)CJ-CS +leyc, = n;‘+_n;+n;,¢.uz,c'1+ué@5+ T (b)‘
1+ Yeatls sl) +Cutd) + Cuuote P+ CA3 +40, 020y = B, 05 ¢ TN +E,0) + 5024 T, 004805 +4EETS  (c)

2
b ; - - - - Y — -
w" u): -b-w; W(1e ’a‘l g-'?hs.)w:ui + uc,c,w§ 400 WM 4L, w? =n?o,+.n‘,n,,+_rz§n',‘ €y + kG (3 QT 4 bC3C-M1a (d)

- 2 = 2 '1.. 3 24
Col Wy + CipW, +6Ww] = 6,030 + Curly 0y + 8302003 (e)

1]

WEOIWr = O NOIO3 (£)

i)i and EL may be obtained from test data e.g. from Ref. 1 and

Ref. 2, and an iterative solution of Equations K.26 can be obtained.

To avoid tediowscalculations, an IBM 1620 digital computer has been
programed to obtain a solution to Equation K.26 for assumed mass
ratios. The solution gives values of W¢ and € which refer to

the individual characteristics of the component mass-spring systems.
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X, may now be expressed jn terms of known quantities and p from
Expression K.21 and K.2h as follows, since the right and
left hand sides of Equation K.20 regrouped

x, =Y (-€M)PteBpir B +Bpr B K.27
(P28, p 400 ) (p+28: pr0d ) pr2Gsp +023)

where B3 = a{([+ gt)cz + (l+ ’Lx‘)cg}
B, = ('H—?n‘l)w: +(|+’£‘3|)w3‘+ “('*%‘,*"ﬁ\’.)“%
B, = 2(1+52+ '.2\3')(c,w3’+c3w§)

Ma . m3 LR R
B, = (|+M.+_ﬁ")w2w3

from K.21 and the €; and W; are known from K.26. In order to

proceed with the solution, the right side of Equation K.27 must be

expressed in the form of partial fractions, so let

X, = §,0- e PhY g; n i.g f',r o P:ilzt_;ﬁ,,}l; * P‘E‘f;:—ﬁin;)s K.28
The &, and /3; are evaluated by combining the terms inside the
curly bracket of Equation K.28 and equating the coefficients of the
powers of p so obtained, to those of Equation K.27, since this is
the condition for the two expressions to be identical. Thus, K.28
becomes ( 1-e-PoEy ) i

= G (e sap 1 aD) (Pt b 100 (P25 p v 0d) s end ) p 28 p a0 .20

(o p -&/.;D(P’q,n?:zl-, + 03 )( P +2C,p+02) W3 p .p,)q,uzz,‘,-rn;’)( P2426:p4+07)
v —ba& ’
X, = SC_Q_'_F_'_Lt) {(du«w(z +3) p5 +[ﬂ,*ﬂ)+ﬁg +24, (€2483) + 2ty (€3 +€1)) + Rty (&+T)]) p*

b -5 - .. s - -
+[ (0] 4034 1E,23) +00, (07407 +85E) + L3 (D203 +LEE) +2p, (€2+83) 423, (834C)

+24,(€,42,)] B> + [Ri(n 2603 +4.8:55) 4+ 5, (03024 1E,2) tpa(atals )
+ o, (50 + 26,032) + %3 (28;02428,03) + oy (28,03 +2E4, 02| P K. 30
2 - - - w - b g .
+[r>(.~fl;~ﬂsi + a(:_n;‘};‘+ «y‘x.‘.ﬁh Qp.(c,_n§+c3,n§) +2ﬂ‘(c3’a',"'ctng)*2/33(5..&;*(:107) “)
+ﬁ, -Q-i nl ?ﬁ:z. :1-'5—0..1 “'_ﬂi nra,t ) *
where D = (P4+22,p+03) (pra2Ep + 02 p*+ 23, p+<23)
Equating coefficients of powers of p in Equation K.27 and K.30

gives the following equations
ol + oly + A3 =Q K,}l(a)

/34*‘,"'31 t/33 2ok (T4E) 4‘)yl(55r&,\+1§lg(é.+513 = (v)
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&, (03403 +48,8y) + %2 (DF+01+1 8, E,) + L3 (DM +4EE) K.31(c)
+ RA(E216) + 28, (T3t 8 + 33(E,+EY) = By
BilD3+0] 14 0,05) +/31(.Q;'+_nl=\* e t B3O 07 +048,2,)

-~ — 2 — 2 - kY -
+ ol ( RC,.03+ 2Z,00) +oa(2 B30T +2E,03) +o4(25,05428:07) = B2 (g)

o, 203 + oy a5, + Az nin] 243, (£, 03+C3.n3)

+ sz(ésnh g,a3) + 2{3%(5'—“;* &01) B, (e)

A0} + 4, 0300 +A30000 = 8 (f)

These equations can also be solved with the aid of a digital computer

to yield values for the «'s and fA's.

Returning to Equation K.28 and applying transforms 50 and 51,
pages 133 and 134 of Ref. 3, the solution of the problem may be
written in terms of &, /_&L s L1, and c. . For convenience, the

transforms are written here and combined, the case of -Cli.z> C:

is considered.

(_"____t.s____ = gct LLE

Fl-+’25‘;+.0..‘ A
-ce -

i UL} {(wf_}e /JW\(-D-L’+¢)§
bz*zéfn_n} o> L '

o oped A ot m A 0 fe+ )

= % e Cainite %H__e o

PL'*"Z‘EP*'D} Q. n? 0.

where 0
ﬁ = = -nl- é’- > h/"\ ¢ —:

Combining this result with Theorem VII gives for t 7> & t

L"Pﬁf;_eq’(\ue:bds - ge“zt/u}m_.’lt-‘- {l‘—— 'CL ) (D_t:fcp)}
S ep rd

a3
- E .
- ﬁc(L f:v}“ﬂ(t NG -% %n-_e Avn[_—a(t at) ¢]}
and for t £ At

- dP B ((
pr+2¢ p*-ﬂ-"

. _ . k. =
) e pimit + @3 3I*Q€LM(—Q‘:+¢7}
nr £

i
Difg
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The }3 notation is now introduced in order to abreviate the equations.
On inspection of Equation K.28 it is seen that the right side of the

equation consists of three terms of the form

. - pat o(!':-fﬁ
-€ Sl N

for which the inverse Laplace transform has been obtained above.

The solution now follows

t> At i
' - D(‘ 'E": EE ol At - s l _Ak)§
8 = gZ[-.—‘ e " {M-ﬂaf-—ﬁ 4 L1 CE K.32(a)
c S
i=t - i
+ B e“c‘bie‘“f'@h(,aLLt-At\-+¢L>’M(n¢“¢l)l]
J\fh
and for t < At
. i! ,‘ = — L Lri ‘th . -
5« 53 [& e Burs Br f1- 3¢l (B 100} ) o)
1Y) bt
where ¢‘ e {}c
L c
and

ar-ni-ct

Since the terms involving damping have been retained, the spring
is no longer the sole means of transmitting force and the limitation

on_&  cannot necessarily be used to determine limiting g's.

Total force exerted on the mass by its associated spring-damper

system, will be used as a tolerance criterion in the spinal mode,

considered here. This force is given by
F = m,(w,lgl+zc,$;‘,)
or written as an acceleration
o= wiSie Re, S, K.33

the acceleration that the mass ™, would experience if masses m., and
m; were detached. An expression for ‘S] must be obtained from

Equation K.32 in order that 5. may be evaluated.

Differentiating Equation K.32 involves differentiating expressions
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such as = (E-AE)
e © m fD(E-aE) + $]
K.34

where C, £ y Dt and ¢ are independent of time.

The well known formula

d ) = vdu L udyo

olt ot el K.35
~-clEe-AD

is used to differentiate Expression K.34. Replacing 4 by €

and U by sin {8 (t - A t) + @} in K.35 yields
A (et Lace-an)+ 81

_ _Ele-AR), -cle-Ab) - =
:M[ﬁza—m)«»qﬁ] [-ce J+¢ 0 ces [Q(E-0E)+ D]
~5“=‘AD{:€M (D(e-a)+@f+Drem §.8 (-2 +6}

-1 0
T therefore

But @ = tan
. () _ 0

A @ = faner™ O

c é

Co = . c

¢ {ﬁl cLz 2. n

. = 2 =9
since N1 =.0-C

therefore
=AY,
C%:(e M{Q(bAeMﬁ) o i wsfl(t—Ak)*d%]
:ne-E(E—Ak)[.m¢nw{n[t’At\+¢}+M¢ g
K.36

-c -Ak —
et ,,\Z-A,\n(e’AH

on application of the identity

Using this result in differentiating K.32 gives
for t 2 &t ' L. .
S, = gcE[r—;‘—L::QLé-CLC{EAqu«(ﬁL(k-AH- ¢)_ .M(Q.Lt_@f
it )
c;t{““'““flif - e “m (ﬁ;(e-atv}]

+ /_E‘; ¢
£
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and for t € At

. . . R __E;’t' . - 3L -C
buo-hp § AL S ik 00)- S

A program for the IBM 1620 digital computer has been written for the

o SIS
L/»unflitg
evaluation of the quantity gﬁ so that its maximum value may be

obtained by inspection of a plot of gb against time.

Since the step input acceleration (continuous) case is the

limit of the rectangular input case as A4t ~»0 the above solution

of 8, for t ¢ At is also the splution for the step input.

Impuslive Input Acceleration

The Dirac impulse function (see Appendix E) is used again to

obtain a solution for the impulsive input case. If v is the
velocity change within the system due to the applied acceleration,

then the Laplace transform of the input acceleration is-

vp
The transformed equations of motion (Equation K.17) for gc = vA (t)
(A (t) is the Dirac impulse function) is then

i

Vp = (P+Repr?)®) + (R (acap o), - pCE TR RES

Vp = PP+ (pre2aprwi)a
vp = PP +(pr+2e3prwg) X3

The set of Equations K.38 is the same as the set K.18 with vp
e YN
replacing Y, (1 - € PAEy 2nd the solution of X, from the

set of Eguations K.38 may be obtained from K.27 by replacing
i4e (1 - €~ pat ) by Vb . Hence

. =V PS+ B:&P“—‘-B:_PE"'BiPl*BBP
‘ CP+23 p+2T ) (P e20p + O (P +REp03)

K.39 is expressed in partial fractions (c.f. Equation K.28)

¥, = { 9(_'2_"'_/3_'_. + E‘__"_b*ﬂ’- & 31833 %
I P"“‘"E'P*n?' FL+'22'1 p+—ﬂ.: b'z*zz,ép_s_nsl‘

K.1h

K.38(a)
(p)

(c)
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. _bAE
The results of Equation K.30 are used, with Y. (1-¢€ P ) replaced

by V since only V is taken outside the brackets, so that the
coefficients of powers of p may be equated. The following set of

equations is obtained (c.f. Eqguation K.31)

o, + Ky + {3 = 1 K.#l(a)
St par iyt ot (Crtl ) * 90(1(5-3*51\ +20l3(6463) = B3 (o)
o ( FoXs -ﬂfl;”—&-axc_z) + oo (.Q;‘f-flh" 4C3C,) +oly (024 LLE,Ez\)

2R +8) + RAa(E3¢8) #2A3(8+T) = Ba (c)

. s A b qr WEE) 4 f3(0M 0 1 EE)
ﬁ!(ﬂv}fﬂg Al 628y + fa (O3 v P hC3C) A (; trah

- - - 026, 0%) = By
+ (25,0143 02) +slaBanp 2807 ) e (38 ALREAT) = Bi g

A Q7 0y + Q3L+ o3 QM0+ 2R3, (G0 + 8y 0d)

+Rp, (Egﬂ?“‘ Z.0.2) +2p (&0l +&0.0) = B (e)

2 > =
Ar0das + 420508 + B3 071 © (£)
where By through By are obtained from Equation K.27.

The inverse Laplace transforms used for the previous case are applicable,
so the solution may be obtained from K.32(b) by replacing Y, by V

Thence ;.4

0(' _E‘Lt. - . . CJ.’ —-
Sl = V}—\[ - e A Db+ E.L {"‘ J—E—-L £ /MM(-Q'LL“H#L)}
'LaL Noln RN K. 42
L=t
where
-1 Qi

¢p = b o
and

-2 2 = >

oM = N ~C;

Differentiating K.42 once with respect to time gives

=3
O S . . _C:k
§.=-v) {L“P“ € aon(lb- )+ 2 e
izt Q‘L 00

/,u}v\.hi.t}

The technique and computer programs developed for the general
rectangular input are used to maximize 9| s the acceleration that the

mass ™M, would experience if uncoupled from the system.

K.15




(b) Sinusoidal Input Acceleration

The equations of motion for this case are obtained from
Equation K.17 on putting
‘dc B 5co'm wk
where gco is the amplitude and (v the frequency of the input

acceleration. The following equations are then obtained

Py . . M2, ¢ y a2 R ¢ 2 u P
Ger ShwS -2 R, 8, -M2 w8 L0 MIe 83 - M 28, = 4y B
3|+ Ci 3y A\ m, 193 m, i ) 373 ™ 303 ch,
S' + 31*20151*“0'}51 = lé,acavv\ Wi K. b3

e .. .‘ 1 L .
) - + S = 1
S( + S-% + ‘,{C_:’ 83 33 (}L’-oum tdt

The input acceleration is now written as the "Imaginary Part of"
90cﬁiu,t , where " = -1, since e costot 4+ L sinwi .
The damping in the system will, after a sufficiently long time,
attenuate all motion except that with a frequency W (see Appendix E).

This part of the solution is known as the "steady state'solution.

If the solution represents an oscillation of frequency &) then

. Lol .
it can be represented by AJ€ where AA is some complex constant
to be determined and } = 1, 2, 3.

-

Lt o Lk . .
“Y and 5téCL are substituted for 8* and . sinwt

A;e“
4 .
respectively. &} and <§; can be obtained by differentiation and
Lk . {wt Llw
since dzlteLw = Lwe R £°Y will be a factor of each term
of each equation. Making these substitutions in K.43 and dividing
throughout by ptwt gives

(_wm+ch¢Q+¢m13A,—??(chuo+wﬁ)AL~E?(chsm+w£)A3azgac
I )
~WE A, F (et FLR0W P A, = Yeo K. b4

T AR IE YR S

Since complex numbers have been introduced, the constant Ay is

complex and, in order to continue with the solution, the real

K.16




constants M and ¥V are defined as follows
i V) = A

The above substitution for Aj is made and real and imaginary parts
separated and equated on each side of each equation of the set K.4h4
(-ur+e e 0 +o}) (/u.,—tl'\’,)— r_g:[t-'l‘l,,k)*‘d:)(/‘z*‘:v:) . .
- E?‘ (ineswrwd) (pat V) = Yoo

S V) H W 2 G s wR) (Matie) =,

- w(/u,u‘v,) 4 (-4 L% W+ ) C/ua-f-i\)g) =Y,

On equating real and imaginary parts of each equation, the following
set is obtained.

2_ 0 M2 32, My 42, D +Mage,wY, +M3 cwv-:"
(‘O, w)/’ll Th’ wn/‘/‘z ™, wa/A3 2 ,Nv‘ _'_r"z b} 2 m‘z 3 3 gCO

Reywm -m -3 W)Y -3V, ~M3 02 Y, = 0
' /A' F\Tzclw/"z V—hlzcswﬂa |” )' m, 32 my 3v3

-w}u, + (wat- w*)/uz -Re WV =Y, s
2z - WY, +(WF-w) P = 0 .
—wiuy o+ of-w)pg - ey w0V = Yeo

Aego g = WPV, +og-w)Vy = O

The solution of these equations can be obtained numerically
using a digital computer to give//fj and \& , since Lﬂ},d&
are known from K.26.

The ratio R of the output or response amplitude to the
input amplitude is now obtained

. 2 )
R/J = E:il = (/“‘.'}T"'VJ >/2 K.46
g""’ %Co
and the phase angle
L= V)
¥j =
Me
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APPENDIX L

This appendix summarizes the

connection with the dynamic model

received wide publication.

Most

performed on the Daisy Track sled

SUMMARY OF RELEVANT HOLLOMAN A.F.B. AND
STANLEY AVIATION TEST RESULTS

experimental data, used in

analysis, that have not previously

of this data concerns experiments

at Holloman A.F.B. during a program

to investigate the effect of short duration accelerations of up to

80 G on human and animal subjects (Task 78503).

still being carried on.

This test program is

Four experiments are also reported that

were carried out at Stanley Aviation using a monorail facility, as part

of a comprehensive series of tests to evaluate the landing characteristics

of the Stanley B-58 escape capsule.

The Holloman data are given in the following table (see also
Refs. L.1, L.2 and L.3).

the body relative to the direction of the accelerating force, which is

assumed acting from 0°.

The angle quoted indicates the position of

TABLE L,1
Rate Total
Run | Subject | Peak | of Dura- | Velocity | Dirn.
No. G Onset tion Change of Medical Report
G/sec | (sec) (ft/sec) | Accel
335 Human 41.8 | 21ko .05 48,1 80 Shock, lost conscious-
fwd. ness. Severe paid
L.2 to coccyx.
3h4 Bear bz,2 | 1660 .09 Lb7.3 100 Check out, no autopsy.
back-| No injuries(?)
ward
289 Bear 55 3980 .03 b7,2 0 Compression fractures
head- of thoracic vertebrae.
ward Fracture of rib and
pelvis. Internal and
external hemorrhage.
390 Bear 55.3 | 4200 .05 k6,1 0 Fracture of vertebrae
head- | T.5 & T.6,4th rib and
ward gelvis.Multiple
, emorrhage.




T
Rate Total
Run | Subject | Peak | of Dura- [Velocity| Dirn.
No. G Onset |[tion Change of Medical Report
G/sec |(sec) |[(ft/sec)| Accel

66). | Human | 34,0 | 942 .08 L6.4 100 | Cervical spine pain.
back~ | Partial loss of vision.
ward Beginning syncope.

665 | Human | 27.0| 775 .08 Ly,9 100 | No injury
back~
ward

667 | Human | 30.5 | 942 .08 k5.9 100 | No injury
back-
ward

674 | Human | 33.5 | 1036 .08 45,3 100 | Cervical spine pain
back-
ward

675 | Human | 34.0 | 1080 .08 46,0 100 | 8light shock. Compression
back~ | fracture T.5. Fracture of
ward L.5

677 Human 29.0 | 1100 .09 43,5 100 No injury
back-
ward

In the experiments carried out at Stanley Aviation, the subjects
were seated in an escape capsule with full restraint, and dropped
from a monorail with forward and vertical velocity. Impact forces
were alleviated by a yielding metal attenuator and accelerations in
the three major directions were measured by accelerometers mounted on
the rigid seat back. The seat cushion of General Tire 1205
polyurethane was about 90% bottomed by the occupant's normal weight.
In all, 34 tests with bears and humans were performed and the results
reported in Table L.2 are of particular interest in that some form of

injury occurred.

L.2




TABLE L.2

Peak G
_ Transverse
Run | Subject | Spinal | Forward Lateral | Velocity Medical Report
No. Transverse Change
kg Human | 19.5 hs,3 7.8 35 ft/sec.| Slight discomfort,
foot- T.3 and T.4, gone
ward in 24 hours.
50 Human | 37.4 37.4 11.7 36 ft/sec.| Compression fracture
head~ T.3
ward
51 Human | 28.8 86.6 17.7 |33.5 ft/sec| Severe shock (pallor
foot~ and trembling).
ward .
58 Human | 20 63.3 27.5 |37.6 ft/sec| Occipital headache,
head- pain in T.hk.
ward

Other drop tests carried out at Stanley Aviation have included
62 static tests (i.e. no forward velocity) and 49 drops from a
moving truck. These experiments covered a range of heights up to

12 ft. (transverse position) and no injuries were reported.
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“The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of haman knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the vesults thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with 2 NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities .

and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results -of individual
NASA-programmed scientific efforts. Publications include conference
proceedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Details on the availability of fhese publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546



