FINAL REPORT

DOD AFOSR Award No. F49620-03-1-0220
Density Variations and Other Parameters from UARS Wind Measurements
30 April 2005

Research Title: Global Tidal Variations in Density and Other Parameters from UARS Wind Measurements

Principal Investigator: Jeffrey M. Forbes, Professor

Commercial Phone: 303-492-4359 FAX: 303-492-7881

Mailing Address: Department of Aerospace Engineering Sciences
429 UCB
University of Colorado
Boulder, CO 80309-0429

E-Mail Address: forbes@colorado.edu

AFOSR Program Manager: David Byers, Major, USAF

Research Objectives:

General:

• Improve neutral and ionospheric density specification and prediction; understand the processes responsible for thermosphere-ionosphere variability.

Specific:

• Translate UARS tidal wind measurements at 95 km to global estimates of winds, densities and temperatures due to tides propagating upwards from the lower atmosphere; and

20050520 012
Fiscal Year Funding Summary (SK):

<table>
<thead>
<tr>
<th>In House</th>
<th>Capital Equip. (> $5,000 each)</th>
<th>Subcontractor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$48,565</td>
<td>N/A</td>
<td>N/A</td>
<td>$48,565</td>
</tr>
</tbody>
</table>

Summary of Accomplishments:

The following tasks have been completed, and results obtained:

- A self-consistent global climatology, useful for comparing radar observations from different locations around the globe, has been created from space-based UARS horizontal wind measurements. The climatology created includes tidal structures for horizontal winds, temperature and relative density, and is constructed by fitting local (in latitude and height) UARS wind data at 95 km to a set of basis functions called Hough Mode Extensions (HMEs). These basis functions are numerically computed modifications to Hough Modes and are globally self-consistent in wind, temperature and density. We have demonstrated this self-consistency with a proxy data set, and then use a linear weighted superposition of the HMEs obtained from monthly fits to the UARS data to extrapolate the global, multi-variable tidal structure. A web site (temporarily, http://odo.colorado.edu/~asvoboda/hmes_frame.html) has been set up wherein users can obtain specifications of amplitudes and phases of diurnal temperatures, densities and winds at any latitude and longitude, and altitudes between 80 and 120 km, based on the fits to the UARS wind measurements.

- Temperatures between 25 and 86 km measured by the Microwave Limb Sounder (MLS) experiment on the Upper
Atmosphere Research Satellite (UARS) have been analyzed to delineate diurnal, semidiurnal and terdiurnal tidal structures and stationary planetary waves. These Fourier components are determined from temperatures averaged in bins covering 5° latitude, 30° longitude and 1 hour in local time. This study confirms the presence of diurnal non-migrating tides with zonal wavenumbers $s = 0, 2, -3$ [s > 0 (s < 0) implying westward (eastward) propagation] and semidiurnal tides with $s = 1$ and 3, and some components of lesser importance, that were previously determined from UARS wind measurements near 95 km. The seasonal-latitudinal and height structures of these components are now revealed, and utilized to aid in interpreting their behaviors and ascertaining their origins. New discoveries include the terdiurnal $s = 2$ and $s = 4$ components, and trapped non-migrating diurnal tides with $s = 0$ and $s = 2$. The former are likely to arise from nonlinear interaction between the migrating ($s = 3$) terdiurnal tide and the stationary planetary wave with $s = 1$. The latter may reflect the presence of a longitude-dependent local heat source, or nonlinear interaction between migrating diurnal tidal fields driven by such a source, with local fields associated with a stationary planetary wave with $s = 1$. The present results provide a rich mixture of observational results to challenge both mechanistic and general circulation models of the middle atmosphere. In addition, internal consistency is established between the MLS tidal temperatures at 86 km and previously derived tidal winds at 95 km within the context of tidal theory. Although not definitive, this result is consistent with no bias in the UARS/HRDI winds at 95 km, suggesting that source of the well-known inconsistency between winds measured from the ground and space to primarily reside in the radar wind measurements.

- Two presentations describing the above results have been made, and two journal articles have been submitted for publication.

Appendix A: In-house Activities
Instructions: Provide all information identified below for the last FY only. “Personnel” should include each scientist or engineer who contributed to the research during the year. Publication of articles derived from the research should be listed chronologically in bibliography format. Attach reprints. List only invention disclosures derived from this specific research effort. Honors may include recognition both inside and outside the academic and Air Force science & technology (S&T) communities. Extended scientific visits may include collaboration with other research programs, both foreign and US.

Personnel:

<table>
<thead>
<tr>
<th>Personnel Type</th>
<th>Name</th>
<th>Degree</th>
<th>Discipline</th>
<th>Involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Employees</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In House Employees</td>
<td>Ms. Xiaoli Zhang</td>
<td>M.S.</td>
<td>Data Analysis</td>
<td>3.0 mos.</td>
</tr>
<tr>
<td></td>
<td>Prof. Jeff Forbes</td>
<td>Ph.D.</td>
<td>Atmos. Sci.</td>
<td>0.45 mos.</td>
</tr>
<tr>
<td>On-site Contractors</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visitors</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publications:

Invention Disclosures and Patents Granted: N/A

Invited Lectures, Presentations, Talks, etc.:

Appendix C: Technology Transitions/Transfers Detailed Listing

Invention Disclosures: N/A
Publications: N/A

Instructions: Provide all information identical below for the last FY only. Publication of articles derived from the research

Appendix B: Off-Site Contractor and Grant Activities

Extended Scientific Visits From and To Other Laboratories: N/A
Honors Received (Include lifetime honors such as Fellow, honorary doctorates, etc., starting year elected): N/A
Professional Activities (editorships, conferences and society committees, etc.): N/A

A. Soboda, X. Zhang, S. Miyashita and Y. Miyoshi, presented at the Fall 2003 meeting of the AGU.
On the use of Hough Mode Extensions (HMEs) to fit tidal structures from SABER and TIMI measurements, by J.M. Forbes,

Specific research effort should be listed chronologically in bibliography format. Attach receipts. List only invention disclosures derived from this
<table>
<thead>
<tr>
<th>Performer (name, telephone, and organization)</th>
<th>Customer (s) (name & organization)</th>
<th>Research Result (scientific statement)</th>
<th>Application (technical benefit(s) and/or customer use; list and underline any military applications first)</th>
<th>Transitioned To</th>
<th>Transitioned From</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In the last three columns enter the following codes:

Transitioned From:
- AFRL = L
- Industry = I
- Academia = A

Transitioned To:
- Industry = I
- Air Force 6.2 or 6.3 = AF
- Other AF, DoD, or Government = O

Application:
- Product (New or Improved) = Pd
- Process (New or Improved) = Pc
- Other Technology Benefit = O
14. ABSTRACT
A methodology is developed for fitting determinations of tidal winds using a set of basis functions called Hough Mode Extensions (HMEs), which can then be used to estimate densities, winds, temperatures and vertical velocities, in height and latitude regimes where measurements do not exist. The methodology is validated via application to output from a general circulation model, and then is applied to actual space-based measurements. A web site has been set up for user access. The method can also be used to provide monthly-mean measurement-based tidal lower boundary conditions (at any height between 80 and 100 km) for existing and future general circulation models of the thermosphere-ionosphere system. In addition, internal consistency is established between the MLS tidal temperatures at 86 km and previously derived tidal winds at 95 km within the context of tidal theory. Although not definitive, this result is consistent with no bias in the UARS/HRDI winds at 95 km, suggesting that source of the well-known inconsistency between winds measured from the ground and space to primarily reside in the radar wind measurements.