
HPEC 2004 Abstract Submission Dillon Engineering, Inc.
www.dilloneng.com

An Efficient Architecture for Ultra Long FFTs
in FPGAs and ASICs

Tom Dillon
Dillon Engineering, Inc.

This presentation outlines an architecture for efficient Ultra Long FFTs for use in FPGAs
and ASICs. Analysis of accuracy, performance, cost and power consumption are
presented.

FFTs are at the heart of many real time signal processing applications and Ultra Long
FFTs are quite often used for frequency analysis and communications applications. As the
processing requirements increase, the use of FPGAs and ASICs become the logical
choice for implementing real time FFTs.

This presentation describes and efficient framework for implementing the Cooley-Tukey
algorithm for Ultra Long FFTs using minimal external memory. Typically for lengths
over 16K the memory resources of the FPGA or ASIC are exhausted and external
memory is required. The architecture is implemented using two shorter length FFTs
(lengths N 1 and N 2) to calculate an FFT of length N=N 1×N 2 . This architecture
is optimized for continuous data FFTs, minimizing the external memory requirements
and offering flexibility so that it can be used for many different applications.

The N 1×N 2 -point FFT can be computed as

X [k 1N 2k 2]=∑
n1=0

N 1−1

[e
− j

2n1k 2

N ∑
n2=0

N 2−1

x [n2N 1n1]e
− j

2n2k 2

N 2 ]e
− j

2n1k 1

N 1 .

Computing this for 0k 1N 1−1 and 0k 2N 2−1 results in

X [k]=∑
n=0

N−1

x [n]e
− j

2nk
N for 0kN−1, as desired. This leads to the following

high-level architecture:

The input data is re-ordered by performing the equivalent of a matrix transposition. The
next step is to compute N 1 FFTs, each of length N 2 , followed by the second matrix
transposition. The re-ordered data set is multiplied by the twiddle factors, and N 2

FFTs, each of length N 1 , are computed. The final step is to perform the third matrix
transposition so the output data is in the correct order.

1 of 2

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
An Efficient Architecture for Ultra Long FFTs in FPGAs and ASICs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Dillon Engineering, Inc.

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

HPEC 2004 Abstract Submission Dillon Engineering, Inc.
www.dilloneng.com

The external memory requirements can be reduced by using QDR synchronous SRAM
and an addressing sequence to allow a single bank of memory to be used for each matrix
transposition. This presentation describes details of this addressing sequence. SRAM is a
requirement because data needs to be read and written on every clock cycle and the
addresses are usually not consecutive. QDR allows writing and reading different locations
simultaneously, thereby removing the requirement for two banks of memory at each
matrix transposition.

The potential data growth in longer length FFTs makes numerical analysis a necessity. A
finite word length analysis will be presented for both fixed and floating point FFTs which
will show that either floating point or fairly wide fixed point FFTs are required to
maintain the precision required for most applications. These wider word lengths affect
the memory architecture because wider word lengths require more memory bandwidth for
the matrix transpositions. The trade-offs between word length requirements and memory
architecture are discussed in the presentation.

This architecture can also function as 2D FFT by simply bypassing the twiddle multiply
and removing the first Matrix Transpose.

A variable length FFT engine can be built form the same architecture by using variable
length N 1 and N 2 FFTs and modifying the Matrix Transpose blocks. Often a run
time length selection is desired so that the resolution can be adjusted.

Accuracy, component cost, and power consumption data will be presented for a system
implemented in a single FPGA and three QDR SRAM ICs computing 512K FFTs on
continuous data at 200MSPS.

2 of 2

N
1
 FFT

Twiddle
Mult

Ext QDR Ext QDR Ext QDR

N
2
FFT

Matrix
Transpose

Matrix
Transpose

Matrix
Transpose

In Out

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

An Efficient Architecture for Ultra Long
FFTs in FPGAs and ASICs

Architecture optimized for Fast Ultra Long FFTs
Parallel FFT structure reduces external memory bandwidth
requirements
Lengths from 32K to 256M
Optimized for continuous data FFTs
Architecture reduces the algorithm to two smaller manageable
FFT engines

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

Ultra Long FFTs

An FFT length that exceeds the internal memory requirements of the
FPGA or ASIC
System cost can be reduced in moderate length FFTs in designs
where the FPGA/ASIC size is driven by the memory
requirements.
This architecture puts most of the storage for the FFT off chip in
relatively inexpensive SRAM, reducing the system cost.
Ultra Long FFTs have a similar structure to 2D FFTs
Cooley-Tukey algorithm
Minimizes external memory IC count and bandwidth

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

What Ultra Long FFTs Need

The following shows the execution unit (logic) and memory
requirement for continuous data FFTs of two lengths:

The logic requirements for a 1M FFT are only double a 1K FFT,
while the memory requirements are 1000 times.
Logic for 1M FFT easily fits into large FPGA
Memory requirements exceed what is available even in a large
FPGA

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

Computing N = N1 x N2

The N1 x N2 FFT can be computed as:

Computing this for:

and

Results in:

for as desired

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

N = N1 x N2 Architecture

N1 FFT
Twiddle
Multiply

Ext QDR Ext QDR Ext QDR

N2 FFT

Matrix
Transpose

Matrix
Transpose

Matrix
Transpose

In Out

Three banks of external QDR Memory (single copy each)
Two continuous data FFTs (N1, N2) inside FPGA
Twiddle Multiply provides vector rotation between N2 and N1
FFTs.
Final matrix transpose for normal order output.

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

QDR SRAM

Simultaneous read/writes (separate address/data bus) allow
single bank of memory per memory transpose.
DDR Style I/O so dual clock edge transfer with FPGA results in
narrower data path.
Single copy can be kept at each stage while maintaining
continuous data flow.
Special address sequence employed so data isn't overwritten in
continuous data application. Reduce IC count.
QDR with Virtex II Pro I/O up to 150MHz (read/write)
QDR II with Virtex II Pro I/O up to 200MHz (read/write)

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

CORDIC For Twiddle Factors Generation

Almost N/2 twiddle factors required.
Very large ROM for FPGA or ASIC.
CORDIC a natural fit, use coordinate product as input.

n
1

n
2

Coordinates

FN
2
[n

1
,n

2
]

CORDICMultiply

Complex
Multiply

CORDIC produces the sin/cos terms for angle input.

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

Matrix Transpose Address Sequence
Allows single copy for each matrix transpose.
Operates on continuous data, one point read/written per clock cycle.
Reduces memory IC count.
Simple logic for sequence generation.
Works for square or rectangular matrices.
Sequence repeats after log2(N) sets.
Write always follows read.
Simple N = N1 x N2 = 8 example:

First and last matrix transpose go left to right in table, second right to
left.

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

Fixed vs. Floating Point

Numbers in radix-2 FFT can grow by log2(N), or 1 bit per butterfly
rank.
A 1M FFT can have 20 bits of growth. With 16 bit inputs results
would be 36 bits.
Scaling always required in fixed point versions.
Fixed point scaling should be limited to every to every other rank,
so 10 times for a 1M FFT producing 26 bit results from 16 bit
input.
Floating point FFT maintains precision without overflowing.
Floating Point FFT uses approximately 8 times the logic of a
similar precision fixed point version.

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

Virtex II Pro Performance – 512K FFT

80MHz Continuous Data
1K FFT Engine – 4 butterflies
512 FFT Engine – 4 butterflies
FFT Engines at 160MHz
QDR memory at 80MHz
Real 14 bit input, complex 24 bit output
Virtex II Pro – Device Usage

Slices - 12,500
BlockRAM - 144
MULT18x18 – 88

Fits in XC2VP40

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

Other Uses of Architecture

2D FFT – Remove first matrix transpose and twiddle multiply.
Variable Length – Use variable length FFTs and dynamic matrix
transpose blocks.
Mixed Radix FFTs – Substitute other than radix-2 for 2nd FFT.
Performance increases easy with parallel input radix-2 FFTs and
multiple paths to SRAM.

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

Other Dillon Engineering Resources

ParaCore Architect (parameterized core builder)
DSP Algorithms

Mixed radix FFTs
2D FFTs for image processing
Fixed or floating-point FFTs
Floating point math library
AES Cryptography

System level DSP
OFDM Transceivers
Radar Processing on single FPGA
Image Compression/Processing

Hardware/Software SOC
High speed Ethernet Appliances
Linux Based SOC in FPGA
MicroBlaze application

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

An Efficient Architecture for Ultra Long
FFTs in FPGAs and ASICs

Architecture optimized for Fast Ultra Long FFTs
Parallel FFT structure reduces external memory bandwidth
requirements
Lengths from 32K to 256M
Optimized for continuous data FFTs
Architecture reduces the algorithm to two smaller manageable
FFT engines
Key Features

Uses 2 short manageable FFT engines (N = N1 x N2)
QDR SRAM, reduce IC count, simultaneous read/write
CORDIC to generate rotation twiddle factors
Matrix transpose address sequence
Structure similar to 2D FFT or mixed radix FFT

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

Computing N = N1 x N2

The N1 x N2 FFT can be computed as:

Computing this for:

and

Results in:

for as desired

Copyright © 2004, Dillon Engineering Inc. All Rights Reserved.

N = N1 x N2 Architecture

N1 FFT
Twiddle
Multiply

Ext QDR Ext QDR Ext QDR

N2 FFT

Matrix
Transpose

Matrix
Transpose

Matrix
Transpose

In Out

Three banks of external QDR Memory (single copy each)
Two continuous data FFTs (N1, N2) inside FPGA
Twiddle Multiply provides vector rotation between N2 and N1
FFTs.
Final matrix transpose for normal order output.

	Precis:
	Agenda:
	Abstract:
	Poster:

