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The solution to a differential equation of the form

ẋ = Ax(t), x(0) = x0

is the functionx(t) = eAtx0 [5]. The expressioneAt is thematrix exponential function. Examples of such equations
arise in control theory and tracking applications.

A key application is the tracking of a ballistic target usingnoisy measurements. In this case, the matrixA above
is actually a non-linear function of bothx andt. The extended Kalman filter (EKF) has been used in these tracking
applications [1, 2]. The typical formulation of the EKF usesa first or second-order approximation to the solution of
the differential equation to save operations [3]. While such implementation is efficient, it has been shown that in some
conditions the EKF may show significant bias in altitude and ballistic coefficient [6]. Under such conditions it may be
preferable to use the matrix exponential function directly.

In this paper we describe and benchmark an implementation ofthe matrix exponential function. The implemen-
tation is based on the standard technique of “scaling and squaring” from the literature [4, 5]. The major kernels in
this technique are matrix multiplication and Gaussian elimination. In the matrix multiply kernel, the implementation
makes use of SIMD vector extensions present on the PowerPC G4(Altivec) and the Intel Xeon (SSE-2). Although the
use of the matrix exponential expands the operation count ofthe extended Kalman filter substantially, benchmarks of
the implementation show that the workload is well within thecapabilities of modern processors.
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Definition
[Moler and Van Loan,2003]

The solution to the differential equation

is given by

Where       is the matrix exponential function,

Notice that if                               in general.
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Application: Ballistic Target Tracking

• Tracking of a ballistic target using noisy measurements
• Tracking accomplished using the extended Kalman filter

– “extended” means that system dynamics are non-linear
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and Q(t) is the process noise covariance.

The Extended Kalman Filter

Measurement

Estimate next state based on previous state and new measurement
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Calculation Overview

1. Choose an integer j and scale A by m=2j

2. Use a Padé approximation to calculate

3. Perform j matrix multiplies to calculate

! 

E = e
A / 2

j

! 

E
2
j

! 

Use the fact that e
A

= (e
A /m
)
m

This technique is referred to as “scaling and squaring” [4,5].

Preferred method, Padé approximation, is
only valid when ||A|| is small
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Padé Iteration Algorithm
X = A;
c = 1;
E = I;
D = I;
for(k = 1; k <= q; k++) // q=number of iterations
{
   c = c * (q-k+1) / (k*(2*q-k+1));
   X = A*X; // Matrix multiply
   E = E + cX; // Matrix scale and add
   if (k is even) // Matrix add or subtract
     D = D + cX;
   else
     D = D - cX;
}
E = D\E;  // Solve using LU factorization
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Implementation Overview

Op counts assume 6 Padé iterations

13-50%Matrix multiplyRepeated
squaring

3-6%LU and
backsolve

50-75%Matrix multiply,
scale, add

Padé iteration

<2%Elementwise
multiply

Scale the
matrix A

Percentage
of op count

OperationsStep Implementation Features
• Single-precision real or

complex float
• C++
• Uses an object for

storage
• Calls VSIPL routines
• Uses Altivec-optimized

matrix multiply
• Choose accuracy to

match limits of single-
precision calculations

void create(Matrix<T> &A,
Matrix<T> &E);

void run( Matrix<T> &A,
Matrix<T> &E);

// Allocates memory & initializes
// LU factorization
// Performs computation
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Performance

• Platform: Mercury 500 MHz PowerPC G4
• Achieves respectable performance for large matrices
• For tracking, sizes of interest are small — 6x6 matrices

– A tuned implementation could be produced for this size

Achieved Performance on PowerPC G4
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Performance Breakdown

• Performance breakdown
on PowerPC G4

• Steps based on matrix
multiply are more
efficient than other steps

• For large matrices, matrix
multiply steps still
consume most of the
execution time

• LU/backsolve is a
substantial percentage of
time despite being a low
percentage of the op
count
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The Matrix Exponential in Tracking

• Matrix exponential is a
substantial part of the EKF’s
operation count

• How many targets could a
single processor track?
– Assume 500 MHz PPC G4
– Use execution time of 6x6 real

matrix exponential
– Assume remainder of EKF

has efficiency comparable to
LU factorization (~0.04%)

– Vary track rate from 2-10 Hz
• A single processor can

potentially track many targets
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Conclusions

• Matrix exponential function is important for
tracking applications

• A large percentage of the operations are matrix
multiply functions

• An efficient implementation of this function allows
it to be used in an extended Kalman filter

• Many targets can be tracked using even a single
processor
– Using multiple processors obviously allows more

targets to be tracked
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Application: Ballistic Target Tracking

• Tracking of a ballistic target using noisy measurements
• Tracking accomplished using the extended Kalman filter

– “extended” means that system dynamics are non-linear
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The Matrix Exponential in Tracking

• Matrix exponential is a
substantial part of the EKF’s
operation count

• How many targets could a
single processor track?
– Assume 500 MHz PPC G4
– Use execution time of 6x6 real

matrix exponential
– Assume remainder of EKF

has efficiency comparable to
LU factorization (~0.04%)

– Vary track rate from 2-10 Hz
• A single processor can

potentially track many targets
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