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Abstract

We are given M training samples of N -element column vectors in a matrix
X and a predefined constant λ. We want to compute the lower-triangular
matrix which is the Cholesky factor of R = XX t + λI using highly parallel
hardware, either using FPGAs or ASICs. Adding λ is called diagonal loading.
In most adaptive processing applications, diagonal loading is used to reduce
the sensitivity of the adaptation to errors due to insufficient sample support
and to slight errors in the target model.

Mathematically, we first prefix
√

λI to X and then we use N size M + 1
Householder postmultiplication, each carried out in a virtual superprocessor.
We format the computation so that each Householder operation affects the
same number of columns, but with fewer and fewer rows. Actual superpro-
cessors each share the work of two virtual superprocessors. This allows each
superprocessor to be physically identical with each other, while all are used
with 100% efficiency. Data is moved from one superprocessor to another a
row at a time.

∗This work is sponsored by Defense Advanced Research Projects Agency, under Air
Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommen-
dations are those of the author and are not necessarily endorsed by the United States
Government.
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Most of the arithmetic operations in a Householder transformation are
simple in two important ways. They can be prescheduled, and they cannot
give unbounded results. Hence they are easily parallelized. These simple
operations are segregated into two groups. One group is dot-products and the
other group uses operations that multiply one row by a scalar and add it to
another row. Both these operations allow us to flow data with each column’s
elements moving only vertically and maintaining their order, a perfect recipe
for systolic computation. Each row is used as soon as it is transferred.

The small number of more complicated operations we need, a square
root and a few multiplications and divisions, are carried out in a physically
separate part of the superprocessor. All the floating point operations are
confined to this part of the processor. They don’t need to be fast, because
we can keep the multipliers and adders 100% occupied by working on several
different triangularizations at the same time.

2



999999-1
XYZ 10/15/2004

MIT Lincoln Laboratory

Proposed 
Parallel Architecture for Matrix 
Triangularization with Diagonal 

Loading

Charles M. Rader

Sept. 29, 2004

∗This work is sponsored by Defense Advanced Research Projects Agency, under Air
Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommen-
dations are those of the author and are not necessarily endorsed by the United States
Government.

1



MIT Lincoln Laboratory
999999-2

XYZ 10/15/2004

The Matrix Triangularization Problem

A common task in adaptive signal processing is as follows:
We have a set of N training vectors, each with M components.
These constitute a matrix X and we need the Cholesky factor,
T, of its correlation matrix R=XXh + λI.

Usually N >> M. 

The cost of the computation is of the order of M2N. If M2N 
is large, we will need some parallel computation to keep up 
with a real time requirement.
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The Matrix Triangularization Problem

A common approach is to premultiply the N by M matrix 
X by each of a sequence of Householder matrices,  
one after the other. Most of the operations required are 
adds and multiplies, and it is straightforward to perform 
many adds and multiplies in parallel, but the algorithm 
also requires a few divisions and square roots. These 
interfere with the efficiency of the use of a parallel
array of multipliers and adders.
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The Matrix Triangularization Problem

This talk is about an architecture which might be suitable 
to realize using FPGAs. We have in mind problems with 
M        20 and N       100.

FPGAs are now available with approximately 100 built-in
multipliers and with the capability to create a similar 
number of adders. Hence about ten FPGAs should be able to
perform about 1000 multiply-adds in parallel.  

Our architecture should use these 100 multipliers and adders
with near 100% efficiency and we desire that all the FPGAs
be identical (and, indeed, might later be replaced by custom 
ASICs.

≈ ≈
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Steps to triangularization
using unitary matrix premultiplications

…
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Steps to triangularization
with diagonal loading

…

first column typical columnx jxλ σ=
ijt
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The Math of Zeroing a Column
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The Math of Zeroing a Column
Opportunities for parallelism
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Front End Processing 
Φ-processor computes Φj
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Skewed Front End Processing 
Computes Φj
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Series-parallel Front End Processing 
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Computing ξ and  θ

• These are needed before output processing can begin.
• They are relatively complicated computations and will be 

computed slowly.
• Our aim is to organize the algorithm so that the slow 

computation of ξ and  θ can be buried.
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Output processor

For each column
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Compute and broadcast to all multipliers

One complex multiply per element.
The first column was saved and the 
current column streams by.
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Output Processor
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Overview of the column elimination

• There are M columns. The process that eliminates column i 
accepts M-i+1columns in their normal order and spits out 
M-i columns.

• Elements move only horizontally and are involved in 
arithmetic only with other elements on the same horizontal 
level.

• Sums propagate upward -- ξ , θ, and βj are computed at the 
upper edge of the processor.

• βj must travel upward from the bottom edge to where it is 
needed by a multiplier. 
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Many Processors

• Let us define a virtual super-processor. Its job is to zero out one 
column.

• Let τ be the time separation between successive columns 
presented to the processor input.

• τ is also the time required to do the multiplies needed for Φj and is 
the time multiply x by βj. 

• Then the time that column j spends inside the virtual super-
processor is K τ and most of this is waiting for the computation of 
ξ, θ, and βj. (We’ll determine K later.)

• We desire that the virtual super-processor whose job is to zero 
out column i+1 be ready for column j as soon as it is computed by 
the previous virtual super-processor.
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When do columns get where?

virtual 
superprocessor

first column enters column j enters last column enters

1 0 (j-1) τ (M-1) τ

2 (K+1) τ (K+j-1) τ (K+M-1) τ

3 (2K+2) τ (2K+j-1) τ (2K+M-1) τ

i ((i-1)K+(i-1)) τ ((i-1)K+j-1) τ ((i-1)K+M-1) τ
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Super-processor sharing 

virtual 
superprocessor

first column enters column j enters last column enters

i ((i-1)K+(i-1)) τ ((i-1)K+j-1) τ ((i-1)K+M-1) τ

M+1-i ((M–i )K+(M-i)) τ ((M-i)K+j-1) τ ((M-i)K+M-1) τ

These two virtual super-processors together process M+1 
columns, independent of i, so it is tempting to combine them 
into one actual super-processor. (M/2) actual super-processors
are needed for the whole triangularization.
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Make Super-processors Identical
virtual 
superprocessor

first column enters column j enters last column enters

i ((i-1)K+(i-1)) τ ((i-1)K+j-1) τ ((i-1)K+M-1) τ

M+1-i ((M–i )K+(M-i)) τ ((M-i)K+j-1) τ ((M-i)K+M-1) τ

When actual super-processor i accepts its last column from actual super-processor i-1, in 
the next interval it is ready to accept the first column from actual super-processor i+1, but 
that must be from an earlier triangularization problem. The M/2 super-processors begin a
new triangularization problem every (M+1) τ.

If that column is to be ready, we require ( 1) ( )( 1)i K M M i K− + ≡ − + modulo M+1

(2 1) ( 1) 0K i M K+ ≡ + ≡ modulo M+1
or

So we choose K to make 2K+1 = M+1,       K=M/2
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Column Timing

1 2 3 4 5 6 7 8 8super-processors 1 and 8

super-processors 2 and 7 6 7 85432 7 8

6 7 83 4 5 6 7 8
super-processors 3 and 6

4 55 6 7 8 6 7 8super-processors 4 and 5
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A Dose of Reality

• Problems with word length and scaling
• Problems with input and output
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Problems with word length
and scaling

The N elements of input column i have the same total energy 
as the i elements of the final output for that column, so some element
might have dynamic range expansion of up to     .N

So we might need floating point. (This is not a result of the 
architecture – it is intrinsic to the problem.) FPGAs come with 
efficient built-in multipliers, but not built-in floating 
point. We don’t know how many floating point multipliers 
and adders we can get in a single FPGA.
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Problems with input and output

Our architecture has negligible internal control, but requires
that data arrive from multiple problems at just the right
time, including skewing.

Several problems are active at once and late t-elements 
from one problem get delivered to the customer after the early 
t-elements from later problems.

So we will need an interface that transfers data for
several “customers” to and from the processing array.  
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Summary

We’ve presented principles for an architecture suitable for realizing
matrix triangularization with highly parallel use of multipliers and 
adders. Identical parts are used and internal control is negligible.

Parallelism comes from working on many independent problems 
at once. The waiting time for square roots and divisions is buried
and does not reduce the efficiency of the use of multipliers.

The architecture will only become practical when FPGAs can
realize large numbers of floating point adders and multipliers.
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