
A Proposed Parallel Architecture for Matrix
Triangularization with Diagonal Loading

C. M. Rader
MIT Lincoln Laboratory ∗

Lexington, MA

April 22, 2004

Abstract

We are given M training samples of N -element column vectors in a matrix
X and a predefined constant λ. We want to compute the lower-triangular
matrix which is the Cholesky factor of R = XX t + λI using highly parallel
hardware, either using FPGAs or ASICs. Adding λ is called diagonal loading.
In most adaptive processing applications, diagonal loading is used to reduce
the sensitivity of the adaptation to errors due to insufficient sample support
and to slight errors in the target model.

Mathematically, we first prefix
√

λI to X and then we use N size M + 1
Householder postmultiplication, each carried out in a virtual superprocessor.
We format the computation so that each Householder operation affects the
same number of columns, but with fewer and fewer rows. Actual superpro-
cessors each share the work of two virtual superprocessors. This allows each
superprocessor to be physically identical with each other, while all are used
with 100% efficiency. Data is moved from one superprocessor to another a
row at a time.

∗This work is sponsored by Defense Advanced Research Projects Agency, under Air
Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommen-
dations are those of the author and are not necessarily endorsed by the United States
Government.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A Proposed Parallel Architecture for Matrix Triangularization with
Diagonal Loading

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
MIT Lincoln Laboratory Lexington, MA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance Embedded
Computing (HPEC) Workshops, 28-30 September 2004. , The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

26

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Most of the arithmetic operations in a Householder transformation are
simple in two important ways. They can be prescheduled, and they cannot
give unbounded results. Hence they are easily parallelized. These simple
operations are segregated into two groups. One group is dot-products and the
other group uses operations that multiply one row by a scalar and add it to
another row. Both these operations allow us to flow data with each column’s
elements moving only vertically and maintaining their order, a perfect recipe
for systolic computation. Each row is used as soon as it is transferred.

The small number of more complicated operations we need, a square
root and a few multiplications and divisions, are carried out in a physically
separate part of the superprocessor. All the floating point operations are
confined to this part of the processor. They don’t need to be fast, because
we can keep the multipliers and adders 100% occupied by working on several
different triangularizations at the same time.

2

999999-1
XYZ 10/15/2004

MIT Lincoln Laboratory

Proposed
Parallel Architecture for Matrix
Triangularization with Diagonal

Loading

Charles M. Rader

Sept. 29, 2004

∗This work is sponsored by Defense Advanced Research Projects Agency, under Air
Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommen-
dations are those of the author and are not necessarily endorsed by the United States
Government.

1

MIT Lincoln Laboratory
999999-2

XYZ 10/15/2004

The Matrix Triangularization Problem

A common task in adaptive signal processing is as follows:
We have a set of N training vectors, each with M components.
These constitute a matrix X and we need the Cholesky factor,
T, of its correlation matrix R=XXh + λI.

Usually N >> M.

The cost of the computation is of the order of M2N. If M2N
is large, we will need some parallel computation to keep up
with a real time requirement.

MIT Lincoln Laboratory
999999-3

XYZ 10/15/2004

The Matrix Triangularization Problem

A common approach is to premultiply the N by M matrix
X by each of a sequence of Householder matrices,
one after the other. Most of the operations required are
adds and multiplies, and it is straightforward to perform
many adds and multiplies in parallel, but the algorithm
also requires a few divisions and square roots. These
interfere with the efficiency of the use of a parallel
array of multipliers and adders.

MIT Lincoln Laboratory
999999-4

XYZ 10/15/2004

The Matrix Triangularization Problem

This talk is about an architecture which might be suitable
to realize using FPGAs. We have in mind problems with
M 20 and N 100.

FPGAs are now available with approximately 100 built-in
multipliers and with the capability to create a similar
number of adders. Hence about ten FPGAs should be able to
perform about 1000 multiply-adds in parallel.

Our architecture should use these 100 multipliers and adders
with near 100% efficiency and we desire that all the FPGAs
be identical (and, indeed, might later be replaced by custom
ASICs.

≈ ≈

MIT Lincoln Laboratory
999999-5

XYZ 10/15/2004

Steps to triangularization
using unitary matrix premultiplications

…

MIT Lincoln Laboratory
999999-6

XYZ 10/15/2004

Steps to triangularization
with diagonal loading

…

first column typical columnx jxλ σ=
ijt

MIT Lincoln Laboratory
999999-7

XYZ 10/15/2004

The Math of Zeroing a Column

,

, 1 /
1

()

h h
j j

ii

x x x x

t

φ φ

ξ φ λ µ ξ

θ
ξ ξ σ

= =

= = + =

=
−

'

j j

j j j

ij j

x x x

t

β θφ

β

µφ

=

= −

=

N operations per column

N operations per column

1 operation per column

1 operation per column

MIT Lincoln Laboratory
999999-8

XYZ 10/15/2004

The Math of Zeroing a Column
Opportunities for parallelism

,

1
()

h h
j j

ii

x x x x

t

φ φ

ξ φ λ

θ
ξ ξ σ

= =

= = +

=
−

'

j j

j j j

ij j

x x x

t

β θφ

β

µφ

=

= −

=

N multiplications at once
conj(xi) • xij ; i=1,…,N

(times the number of columns)

N multiplications at once
βj • xi ; i=1,…,N

(times the number of columns
minus 1)

MIT Lincoln Laboratory
999999-9

XYZ 10/15/2004

Front End Processing
Φ-processor computes Φj

x1

x3

x2

x4

x6

x5

x8

x7

x1j

x3j

x2j

x4j

x6j

x5j

x8j

x7j

*
1 1 jx x
*
2 2 jx x
*
3 3 jx x

*
4 4 jx x
*
5 5 jx x
*
6 6 jx x
*
7 7 jx x
*
8 8 jx x

Σ

Φj

MIT Lincoln Laboratory
999999-10

XYZ 10/15/2004

Skewed Front End Processing
Computes Φj

x1

x3

x2

x4

x6

x5

x8

x7

x1j

x3j

x2j

x4j

x6j

x5j

x8j

x7j

*
1 1 jx x

*
2 2 jx x

*
3 3 jx x

*
4 4 jx x

*
5 5 jx x

*
6 6 jx x

*
7 7 jx x

*
8 8 jx x

Φj

+
+

+
+
+
+

+

MIT Lincoln Laboratory
999999-11

XYZ 10/15/2004

Series-parallel Front End Processing

x1

x3

x2

x4

x6

x5

x8

x7x3j

x2j

x4j

x6j

x8j

x7j

*
1 1 jx x

*
2 2 jx x

*
3 3 jx x

*
4 4 jx x

*
5 5 jx x

*
6 6 jx x

*
7 7 jx x

*
8 8 jx x

Φj

+
+
+x1jx5j ac

c
ac

c
ac

c
ac

c

MIT Lincoln Laboratory
999999-12

XYZ 10/15/2004

Computing ξ and θ

• These are needed before output processing can begin.
• They are relatively complicated computations and will be

computed slowly.
• Our aim is to organize the algorithm so that the slow

computation of ξ and θ can be buried.

1
()

iit ξ φ λ

θ
ξ ξ σ

= = +

=
−

Saved as part of the answer

Used in output processor

MIT Lincoln Laboratory
999999-13

XYZ 10/15/2004

Output processor

For each column

'

j j

j j j

ij j

x x x

t

β θφ

β

µφ

=

= −

=

Compute and broadcast to all multipliers

One complex multiply per element.
The first column was saved and the
current column streams by.

MIT Lincoln Laboratory
999999-14

XYZ 10/15/2004

Output Processor

φj βj

x1

x2

x4

x3

x8

x7

x6

x5

×

×
×

×

×

×

×

×
+

+

+

+

+

+

+
+x8j

x4j

x6j

x5j

x1j

x3j

x2j

x7j

µ

×

×
θ

tij

x1j

x2j

x3j

x4j

x5j

x6j

x7j

x8j

MIT Lincoln Laboratory
999999-15

XYZ 10/15/2004

Overview of the column elimination

• There are M columns. The process that eliminates column i
accepts M-i+1columns in their normal order and spits out
M-i columns.

• Elements move only horizontally and are involved in
arithmetic only with other elements on the same horizontal
level.

• Sums propagate upward -- ξ , θ, and βj are computed at the
upper edge of the processor.

• βj must travel upward from the bottom edge to where it is
needed by a multiplier.

MIT Lincoln Laboratory
999999-16

XYZ 10/15/2004

Many Processors

• Let us define a virtual super-processor. Its job is to zero out one
column.

• Let τ be the time separation between successive columns
presented to the processor input.

• τ is also the time required to do the multiplies needed for Φj and is
the time multiply x by βj.

• Then the time that column j spends inside the virtual super-
processor is K τ and most of this is waiting for the computation of
ξ, θ, and βj. (We’ll determine K later.)

• We desire that the virtual super-processor whose job is to zero
out column i+1 be ready for column j as soon as it is computed by
the previous virtual super-processor.

MIT Lincoln Laboratory
999999-17

XYZ 10/15/2004

When do columns get where?

virtual
superprocessor

first column enters column j enters last column enters

1 0 (j-1) τ (M-1) τ

2 (K+1) τ (K+j-1) τ (K+M-1) τ

3 (2K+2) τ (2K+j-1) τ (2K+M-1) τ

i ((i-1)K+(i-1)) τ ((i-1)K+j-1) τ ((i-1)K+M-1) τ

MIT Lincoln Laboratory
999999-18

XYZ 10/15/2004

Super-processor sharing

virtual
superprocessor

first column enters column j enters last column enters

i ((i-1)K+(i-1)) τ ((i-1)K+j-1) τ ((i-1)K+M-1) τ

M+1-i ((M–i)K+(M-i)) τ ((M-i)K+j-1) τ ((M-i)K+M-1) τ

These two virtual super-processors together process M+1
columns, independent of i, so it is tempting to combine them
into one actual super-processor. (M/2) actual super-processors
are needed for the whole triangularization.

MIT Lincoln Laboratory
999999-19

XYZ 10/15/2004

Make Super-processors Identical
virtual
superprocessor

first column enters column j enters last column enters

i ((i-1)K+(i-1)) τ ((i-1)K+j-1) τ ((i-1)K+M-1) τ

M+1-i ((M–i)K+(M-i)) τ ((M-i)K+j-1) τ ((M-i)K+M-1) τ

When actual super-processor i accepts its last column from actual super-processor i-1, in
the next interval it is ready to accept the first column from actual super-processor i+1, but
that must be from an earlier triangularization problem. The M/2 super-processors begin a
new triangularization problem every (M+1) τ.

If that column is to be ready, we require (1) ()(1)i K M M i K− + ≡ − + modulo M+1

(2 1) (1) 0K i M K+ ≡ + ≡ modulo M+1
or

So we choose K to make 2K+1 = M+1, K=M/2

MIT Lincoln Laboratory
999999-20

XYZ 10/15/2004

Column Timing

1 2 3 4 5 6 7 8 8super-processors 1 and 8

super-processors 2 and 7 6 7 85432 7 8

6 7 83 4 5 6 7 8
super-processors 3 and 6

4 55 6 7 8 6 7 8super-processors 4 and 5

MIT Lincoln Laboratory
999999-21

XYZ 10/15/2004

A Dose of Reality

• Problems with word length and scaling
• Problems with input and output

MIT Lincoln Laboratory
999999-22

XYZ 10/15/2004

Problems with word length
and scaling

The N elements of input column i have the same total energy
as the i elements of the final output for that column, so some element
might have dynamic range expansion of up to .N

So we might need floating point. (This is not a result of the
architecture – it is intrinsic to the problem.) FPGAs come with
efficient built-in multipliers, but not built-in floating
point. We don’t know how many floating point multipliers
and adders we can get in a single FPGA.

MIT Lincoln Laboratory
999999-23

XYZ 10/15/2004

Problems with input and output

Our architecture has negligible internal control, but requires
that data arrive from multiple problems at just the right
time, including skewing.

Several problems are active at once and late t-elements
from one problem get delivered to the customer after the early
t-elements from later problems.

So we will need an interface that transfers data for
several “customers” to and from the processing array.

MIT Lincoln Laboratory
999999-24

XYZ 10/15/2004

Summary

We’ve presented principles for an architecture suitable for realizing
matrix triangularization with highly parallel use of multipliers and
adders. Identical parts are used and internal control is negligible.

Parallelism comes from working on many independent problems
at once. The waiting time for square roots and divisions is buried
and does not reduce the efficiency of the use of multipliers.

The architecture will only become practical when FPGAs can
realize large numbers of floating point adders and multipliers.

	rader.pdf
	Proposed Parallel Architecture for Matrix Triangularization with Diagonal Loading
	The Matrix Triangularization Problem
	The Matrix Triangularization Problem
	The Matrix Triangularization Problem
	Steps to triangularization using unitary matrix premultiplications
	Steps to triangularization with diagonal loading
	The Math of Zeroing a Column
	The Math of Zeroing a ColumnOpportunities for parallelism
	Front End Processing Φ-processor computes Φj
	Skewed Front End Processing Computes Φj
	Series-parallel Front End Processing
	Computing ξ and θ
	Output processor
	Output Processor
	Overview of the column elimination
	Many Processors
	When do columns get where?
	Super-processor sharing
	Make Super-processors Identical
	Column Timing
	A Dose of Reality
	Problems with word lengthand scaling
	Problems with input and output
	Summary

	Presentation:
	Abstract:
	Agenda:

