
OMG Data-Distribution Service (DDS): Architectural Overview

Gerardo Pardo-Castellote
Real-Time Innovations, Inc. (RTI)

Phone: 1-408-734-4200, x106
Email: pardo@rti.com

Topic Areas Software Architectures, Reusability, Scalability, and Standards
 Middleware Libraries and Application Programming Interfaces
 Fault-Tolerant Hardware and Software Techniques

Summary

The OMG Data-Distribution Service (DDS) is a new specification for publish-subscribe data-
distribution systems. The purpose of the specification is to provide a common application-level
interface that clearly defines the data-distribution service. The specification describes the service
using UML, providing a platform-independent model that can then be mapped into a variety of
concrete platforms and programming languages.

This paper introduces the OMG DDS specification, describes the main aspects of the model,
compares it with related technologies, and gives examples of the communication scenarios it
supports.

This paper and presentation will clearly explain the important differences between data-centric
publish-subscribe and object-centric client-server (e.g. CORBA) communications, along with
the applicability of each for real-time systems.

The OMG DDS attempts to unify the common practice of several existing implementations
enumerating and providing formal definitions for the Quality of Service (QoS) settings that can
be used to configure the service.

Publish-subscribe networking is a key component of the Navy Open Systems Architecture (Navy
OA) initiative. This talk will also highlight practical publish-subscribe implementations in Navy
systems such as LPD 17, SSDS, and DD(X).

Background

The goal of the DDS specification is to facilitate the efficient distribution of data in a distributed
system. Participants using DDS can “read” and “write” data efficiently and naturally with a
typed interface. Underneath, the DDS middleware will distribute the data so that each reading
participant can access the “most-current” values. In effect, the service creates a global “data
space” that any participant can read and write. It also creates a name space to allow participants
to find and share objects.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
OMG Data-Distribution Service (DDS)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Real-Time Innovations, Inc. (RTI)

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance Embedded
Computing (HPEC) Workshops, 28-30 September 2004. , The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

28

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

DDS targets real-time systems; the API and QoS are chosen to balance predictable behavior and
implementation efficiency/performance. We will note some of these tradeoffs in this paper.

Data-Centric versus Object-Centric communications models

Central to understanding the need for this new standard is an examination of the fundamental
architectural differences between a “data-centric” and “object-centric” view of information
communicated in a distributed real-time system.

DDS provides a natural counterpoint to the existing well-known CORBA model in which
method invocations on remote objects are accessed through an interface defined in the Interface
Descriptor Language (IDL). With CORBA, data is communicated indirectly through arguments
in the method invocations or through their return values.

However, in many real-time applications the communications pattern is often modeled as pure
data-centric exchange where applications publish supply or stream) “data” which is then
available to the remote applications that are interested in it. Of primary concern is the efficient
distribution of data with minimal overhead and the need to scale to hundreds or thousands of
subscribers in a robust, fault-tolerant manner. These types of applications can be found in C4I
systems, distributed control and simulation, telecom equipment control, and network
management.

Comparison to Distributed Shared Memory

Additional requirements of many real-time applications include the need to control QoS
properties that affect the predictability, overhead, and resources used. Distributed shared
memory is a classic model that provides data-centric exchanges. However, this model is
particularly difficult and “unnatural” to implement efficiently over the Internet.

Therefore, another model, the Data-Centric Publish-Subscribe (DCPS) model, has become
popular in many real-time applications. While there are several commercial and in-house
developments providing this type of facility, to date, there have been no general-purpose data-
distribution standards. As a result, no common models directly support a data-centric system for
information exchange.

The OMG Data-Distribution Service (DDS) is an attempt to solve this situation. The
specification also defines the operations and QoS attributes each of these objects supports and
the interfaces an application can use to be notified of changes to the data or wait for specific
changes to occur.

Comparison to existing OMG Notification Service

This paper will examine the fact that, while it is theoretically possible for an application
developer to use the OMG Notification Service to propagate the changes to data structures to
provide the functionality of the DDS, doing this would be significantly complex because the

Notification Service does not have a concept of data objects or data-object instances nor does it
have a concept of state coherence.

Comparison to existing High-Level Architecture (HLA) Run-Time Infrastructure (RTI)

HLA, also known as the OMG Distributed Simulation Facility, is a standard from both IEEE and
OMG. It describes a data-centric publish-subscribe facility and a data model. The OMG
specification is an IDL-only specification and can be mapped on top of multiple transports. The
specification address some of the requirements of data-centric publish subscribe: the application
uses a publish-subscribe interface to interact with the middleware, and it includes a data model
and supports content-based subscriptions.

However, the HLA data model supports a specialization hierarchy, but not an aggregation
hierarchy. The set of types defined cannot evolve over time. Moreover, the data elements
themselves are un-typed and un-marshaled (they are plain sequences of octets). HLA also offers
no generic QoS facilities.

Applications

This paper will describe the successful implementation of data-centric publish-subscribe
communications in distributed modeling and simulation (M&S) as well as deployed Navy
systems (pending release permissions). The presentation can include examples (depending on
audience interest and familiarity) such as:

Ship: Raytheon/Lockheed Martin LPD-17 Program
Ground: CLIP/LINK tactical communications Program
Air: F-35 JSF EW Subsystem
Space: NASA Robonaut Program

Data Distribution Service

Gerardo Pardo-Castellote, Ph.D.
Real-Time Innovations, Inc.

© Real-Time Innovations.All Rights Reserved.

DDS Standard
Data Distribution Service for Real-Time Systems

• Adopted in June 2003
• Finalized in June 2004
• Joint submission (RTI, THALES, MITRE, OIS)
• API specification for Data-Centric Publish-Subscribe communication
for distributed real-time systems.

RTI’s role
• Member of OMG since 2000
• Co-authors of the original DDS RFP
• Co-authors of the DDS specification adopted in June 2003
• Chair of the DDS Finalization Task Force completed March 2004
• Chair of the DDS Revision Task Force
• Providers of a COTS implementation of the specification (NDDS.4.0)

© Real-Time Innovations.All Rights Reserved.

OMG Middleware standards

DDS
Distributed data

• Publish/subscribe
• Multicast data
• Configurable QoS

Best for
• Quick dissemination to many nodes
• Dynamic nets
• Flexible delivery requirements

CORBA
Distributed object

• Client/server
• Remote method calls
• Reliable transport

Best for
• Remote command processing
• File transfer
• Synchronous transactions

DDS and CORBA address different needs

Complex systems often need both…

© Real-Time Innovations.All Rights Reserved.

More Complex Distributed Application

Temp Sensor

Socket Connections

• New nodes are not dynamically “Discovered”
• Socket connections needed for each path
• Future upgrades require “re-design”
• App SW must perform endian conversion

Solaris

Windows

App SW

App SW

App SW

RTOS

App SW

Linux

© Real-Time Innovations.All Rights Reserved.

The net-centric vision

Vision for “net-centric applications”
Total access to information for real-time

applications
This vision is enabled by the internet and

related network technologies
Challenge:

“Provide the right information at the right place
at the right time… no matter what.”

© Real-Time Innovations.All Rights Reserved.

Challenges: Factors driving DDS

Need for speed
• Large networks, multicast
• High data rates
• Natural asynchrony
• Tight latency requirements
• Continuously-refreshed data

Complex data flows
• Controlled QoS: rates, reliability, bandwidth
• Per-node, or per-stream differences
• Varied transports (incl. Unreliable e.g. wireless)

Dynamic configurations
• Fast location transparency

Fault tolerance
• No single-points of failure
• Transparent failover

© Real-Time Innovations.All Rights Reserved.

DDS

Provides a “Global Data Space” that is accessible to
all interested applications.

• Data objects addressed by Topic and Key
• Subscriptions are decoupled from Publications
• Contracts established by means of QoS
• Automatic discovery and configuration

Distributed
Node

Global Data Space

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

P

P
PP

P

P

X

P

P

© Real-Time Innovations.All Rights Reserved.

Data object addressing: Keys

• Used to sort specific instances

• Do not need a separate Topic for
each data-object instance

• Topic key can
be any field
within the Topic.

Example:

Topic

Address in Global Data Space = (Topic, Key)
Multiple instances of the same topic

Lo
c

1,
 G

PS
 P

os

Lo
c

2,
 G

PS
 P

os

Lo
c

3,
 G

PS
 P

os

S2S1

1
2
3

1
2
3

1
2
3

4

Data
Reader

Subscriber

struct LocationInfo
{

int LocID; //key
GPSPos pos;

};

© Real-Time Innovations.All Rights Reserved.

DDS communications model
Track

Offered
QoS

Requested
QoSListener

Failed to
produce

data

Listener

Failed to
get data

Publisher declares information it has and specifies the Topic
• … and the offered QoS contract
• … and an associated listener to be alerted of any significant status

changes
Subscriber declares information it wants and specifies the Topic

• … and the requested QoS contract
• … and an associated listener to be alerted of any significant status

changes
DDS automatically discovers publishers and subscribers

• DDS ensures QoS matching and alerts of inconsistencies

© Real-Time Innovations.All Rights Reserved.

DCPS Entities
Topic

DomainParticipantPublisher

DataWriter

Subscriber

DataReaderPublisher

DomainParticipant ~ Represents participation of the application in the communication
collective

DataWriter ~ Accessor to write typed data on a particular Topic

Publisher ~ Aggregation of DataWriter objects. Responsible for disseminating
information.

DataReader ~ Accessor to read typed data regarding a specific Topic

Subscriber ~ Aggregation of DataReader objects. Responsible for receiving information

© Real-Time Innovations.All Rights Reserved.

Domains and Participants

1

2

31
2

3

1

1

DomainParticipant NodeDomain

Domain Domain

Node

© Real-Time Innovations.All Rights Reserved.

DDS Publication

Domain Participant

Topic

User Application:
• Creates all DDS entities
• Configures entity QoS
• Associates DW with Topic
• Provides data to DW

Data
Sample

S

Data
Writer

Publisher

© Real-Time Innovations.All Rights Reserved.

Example: Publication
Publisher publisher = domain->create_publisher(

publisher_qos,
publisher_listener);

Topic topic = domain->create_topic(
“Track”, “TrackStruct”,
topic_qos, topic_listener);

DataWriter writer = publisher->create_datawriter(
topic, writer_qos, writer_listener);

TrackStructDataWriter twriter =
TrackStructDataWriter::narrow(writer);

TrackStruct my_track;
twriter->write(&my_track);

© Real-Time Innovations.All Rights Reserved.

DDS Subscription Listener

User Application:
• Creates all DDS entities
• Configures entity QoS
• Associates DR with Topic
• Receives Data from DR using
a Listener

Listener
DATA_AVAILABLE

Domain Participant

Topic

Listener
DATA_ON_READERS

S

Data
Reader

Subscriber

Listener:
read,take

S

© Real-Time Innovations.All Rights Reserved.

Example: Subscription

Subscriber subs = domain->create_subscriber(
subscriber_qos, subscriber_listener);

Topic topic = domain->create_topic(
“Track”, “TrackStruct”,
topic_qos, topic_listener);

DataReader reader = subscriber->create_datareader(
topic, reader_qos, reader_listener);

// Use listener-based or wait-based access

© Real-Time Innovations.All Rights Reserved.

How to get data (listener-based)
Listener listener = new MyListener();
reader->set_listener(listener);

MyListener::on_data_available(DataReader reader)
{

TrackStructSeq received_data;
SampleInfoSeq sample_info;
TrackStructDataReader treader =

TrackStructDataReader::narrow(reader);

treader->take(&received_data,
&sample_info, …)

// Use received_data
}

© Real-Time Innovations.All Rights Reserved.

QoS Contract “Request / Offered”
QoS Request / Offered:

Ensure that the compatible
QoS parameters are set.

QoS:Durability
QoS:Presentation
QoS:Deadline
QoS:Latency_Budget
QoS:Ownership
QoS:Liveliness
QoS:Reliability

Offered
QoS

Requested
QoS

X

QoS not
compatible

Communication not established

Topic

Subscriber

Data
Reader

Data
Writer

Publisher

Topic

© Real-Time Innovations.All Rights Reserved.

QoS: History: Last x or All

Data
Writer

Keep All

KEEP_LAST: “depth”
integer for the number of
samples to keep at any one
time

Data
Reader
Keep all

Publisher Subscriber

Topic

S5S7 S2S4 S1

KEEP_ALL:
Publisher: keep all until delivered
Subscriber: keep each sample
until the application processes
that instance

S7

S5
S6

S4
S3
S2
S1

S7

S5
S6

S4
S3 Data

Reader
KeepLast4

Subscriber

S7

S5
S6

S4

S3S6

Data
Writer

KeepLast 2

Publisher

S7
S6

Topic

S7 S6 S5 S4 S3

© Real-Time Innovations.All Rights Reserved.

QoS: Deadline

Topic

Publisher

Data
Writer

Subscriber

Data
Reader

DEADLINE “deadline period”

deadline

Commits
to provide
data each
deadline
period.

Expects data every
deadline period.

S X S S S S S

Listener

Failed to
get data

© Real-Time Innovations.All Rights Reserved.

QoS: Liveliness – Type, Duration

Domain
Participant

Data
Writer

Topic

Publisher

LP S LP LP

lease_duration

X

Data
Reader

Subscriber

Listener

Liveliness Message

Domain Participant

Type:
AUTOMATIC = Infrastructure Managed
MANUAL = Application Managed

Failed to
renew
lease

© Real-Time Innovations.All Rights Reserved.

QoS: Time_Based_Filter

Domain
Participant

Data
Writer

Topic

Publisher

SS S S S

minimum separation

Data
Reader

Subscriber

Data Samples

“minimum_separation”: Data Reader does
not want to receive
data faster than the
min_separation time

SS

Discarded
samples

© Real-Time Innovations.All Rights Reserved.

QoS: Quality of Service (1/2)

QoS Policy Concerns RxO Changeable

DEADLINE T,DR,DW YES YES

LATENCY BUDGET T,DR,DW YES YES

READER DATA LIFECYCLE DR N/A YES

WRITER DATA LIFECYCLE DW N/A YES

TRANSPORT PRIORITY T,DW N/A YES

LIFESPAN T,DW N/A YES

LIVELINESS T,DR,DW YES NO

TIME BASED FILTER DR N/A YES

RELIABILITY T,DR,DW YES NO

DESTINATION ORDER T,DR NO NO

© Real-Time Innovations.All Rights Reserved.

QoS: Quality of Service (2/2)

QoS Policy Concerns RxO Changeable

USER DATA DP,DR,DW NO YES

TOPIC DATA T NO YES

GROUP DATA P,S NO YES

ENTITY FACTORY DP, P, S NO YES

PRESENTATION P,S YES NO

RESOURCE LIMITS T,DR,DW NO NO

OWNERSHIP T YES NO

OWNERSHIP STRENGTH DW N/A YES

PARTITION P,S NO YES

DURABILITY T,DR,DW YES NO

HISTORY T,DR,DW NO NO

© Real-Time Innovations.All Rights Reserved.

DDS targets applications that need to distribute data
in a real-time environment

DDS is highly configurable by QoS settings

DDS provides a shared “global data space”
• Any application can publish data it has
• Any application can subscribe to data it needs
• Automatic discovery
• Facilities for fault tolerance
• Heterogeneous systems easily accommodated

Summary

Distributed
NodeGlobal Data

Space

Distributed
Node

Distributed
Node

PP
P

P

Thank you

References:
OMG DDS specification:

http://www.omg.org/cgi-bin/doc?ptc/04-04-12
General material on DDS and RTI’s implementation:

http://www.rti.com/dds
Comments/questions: gerardo@rti.com

	Presentation:
	Abstract:
	Agenda:

