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GPUs as Compute Engines

10 years ago:

* Graphics done in software

5 years ago:

* Full graphics pipeline

Today:

* 40x geometry, 13x fill vs. 5 yrs ago
* Programmable!

Programmable, data parallel
processing on every desktop

Enormous opportunity to change the
way commodity computing is done!
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The Rendering Pipeline
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Rasterization
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Compute 3D geometry
Make calls to graphics API

Transform geometry from 3D
to 2D

Generate fragments from 2D
geometry

Combine fragments into image




The Programmable Rendering Pipeline

Compute 3D geometry

Application .
Make calls to graphics API

|
Geometry |

Transform geometry from 3D
to 2D; vertex programs

(Vertex)
|

Rasterization

Generate fragments from 2D
(Fragment) geometry; fragment programs

!
Composite Combine fragments into image

GPU




NVIDIA GeForce 6800 3D Pipeline
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Long-Term Trend: CPU vs. GPU
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Recent GPU Performance Trends

32-bit FP multiplies per second
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Recent GPU Performance Trends

GFLOPS
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Recent GPU Performance Trends

GFLOPS

32-bit FP multiplies per second
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Why Are GPUs Fast?

Characteristics of computation permit efficient
hardware implementations

* High amount of parallelism ...

* ... exploited by graphics hardware

» High latency tolerance and feed-forward dataflow ...
* ... allow very deep pipelines

* ... allow optimization for bandwidth not latency

Simple control
» Restrictive programming model

Competition between vendors

What about programmability? Effect on
performance? How hard to program?



Programming a GPU for GP Programs
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Programming a GPU for GP Programs

Draw a screen-sized
quad

Run a SIMD program
over each fragment

“Gather” is permitted
from texture memory

Resulting buffer can
be treated as texture
on next pass




GPU Programming is Hard

Must think in graphics metaphors

Requires parallel programming (CPU-GPU,
task, data, instruction)

Restrictive programming models and
instruction sets

Primitive tools
Rapidly changing interfaces



Challenge: Programming Systems

: High-Level
Programming : Low-Level :
Abstractions/ Compilers
Model ) : Languages
Libraries | |
Performance Analysis Tools »@
CPU GPU
Scalar Stream?
STL, GNU SL, MPI, ... -
C, Fortran, ... GLSL, Cg, HLSL, ...
gcc, vendor-specific, ... Vendor-specific
Lots | None

— applications — kernels




Brook: General-Purpose Streaming Language

Stream programming model
* Treats GPU as streaming coprocessor

» Streams enforce data parallel computing

» Kernels encourage arithmetic intensity

» Streams and kernels explicitly specified
C with stream extensions

Open-source: www.sf.net/projects/brook/

lan Buck et al., “Brook for GPUs: Stream
Computing on Graphics Hardware”, -
Siggraph 2004 e
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Challenge: GPU-to-Host Bandwidth
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GPUs lack band-
width to the host,
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* PCI-E optimizes GPU-to-CPU bandwidth

* 16-lane card: 8 GB/s

* Scalable in future

* Major vendors support PCI-E cards now

~—<

° Multiple GPUs supported per CPU - opportunity!

* Cheap and upgradable




Challenge: Mobile/embedded market

Why? 27

* Ul, messaging/screen savers, navigation,
gaming (location based)

Typical specs (cell-phone class): FS POWERVR
> 200-800k gates, ~100 MHz, ~100 mW s

°* 1-10M vtx/s, 100+M frags/s

What’s important?
* Visual quality o Enaine

* Power-efficient (ops/W) Fﬁﬁ Aap

* Avoid memory accesses, unified shaders ...

* Low cost @
3ITIOYS




Challenge: Power

Desktop:

* Double-width cards

* Workstation power
supplies; draw power
from motherboard

Mobile:
* Batteries improving 5-
10% per year

* Ops/W most important

www.coolingzone.com




Current GPGPU Research

Image processing [Johnson/Frank/Vaidya,
LLNL]

Alternate graphics pipelines [Purcell,
Carr, Coombe]

Visual simulation [Harris]
Volume rendering [Kniss, Kriiger]
Level set computation [Lefohn, Strzodka]

Numerical methods [Bolz, Kriiger,
Strzodka]

Molecular dynamics [Buck]
Databases [Sun, Govindaraju]




Grand Challenges

Architecture: Increase features and
performance without sacrificing core
mission

Interfaces: Abstractions, APIs, programming
models, languages

°* Many approaches needed

* Goal: C programs compiling to dynamically-
balanced CPU-GPU clusters

* Academic and research community

Applications: Killer app needed!
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For more information ...

' GPGPU home: http://www.gpgpu.org/

* Mark Harris, UNC/NVIDIA
(F4GPU

GPU Gems (Addison-Wesley)
* Vol 1: 2004; Vol 2: 2005

Conferences: Siggraph, Graphics Hardware,

GP2

* Course notes: Siggraph ‘04, IEEE Visualization ‘04

University research: Caltech, CMU, Duisberg,
lllinois, Purdue, Stanford, SUNY
Stonybrook, Texas, TU Munchen, Utah,
UBC, UC Davis, UNC, Virginia, Waterloo
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