GPUs: Engines for Future High-
Performance Computing

John Owens
Assistant Professor, Electrical and Computer
Engineering
Institute for Data Analysis and Visualization
University of California, Davis




Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display acurrently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLEAND SUBTITLE

GPUs. Enginesfor Future High Performance Computing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Electrical and Computer Engineering, I nstitute for Data Analysis and
Visualization University of California, Davis

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM 001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance Embedded
Computing (HPEC) Workshops, 28-30 September 2004. , The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION OF

a REPORT
unclassified

b. ABSTRACT
unclassified

ABSTRACT
c. THISPAGE uu

unclassified

18. NUMBER | 19a. NAME OF
OF PAGES RESPONSIBLE PERSON

31

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



GPUs as Compute Engines

10 years ago:

* Graphics done in software

5 years ago:

* Full graphics pipeline

Today:

* 40x geometry, 13x fill vs. 5 yrs ago
* Programmable!

Programmable, data parallel
processing on every desktop

Enormous opportunity to change the
way commodity computing is done!




The Rendering Pipeline

Application

Geometry

Rasterization

Composite

GPU



The Rendering Pipeline

Application Compute 3D geometry
! Make calls to graphics API

Geometry

Rasterization

Composite

GPU



The Rendering Pipeline

Application Compute 3D geometry
T Make calls to graphics API
Transform geometry from 3D
Geometry t0 2D

Rasterization

Composite

GPU



The Rendering Pipeline

Application Compute 3D geometry
! Make calls to graphics API
Transform geometry from 3D
Geometry ‘090
Rasterization Generate fragments from 2D
geometry
Composite

GPU



The Rendering Pipeline

Application

Geometry

Rasterization

Composite

GPU

Compute 3D geometry
Make calls to graphics API

Transform geometry from 3D
to 2D

Generate fragments from 2D
geometry

Combine fragments into image




The Programmable Rendering Pipeline

Compute 3D geometry

Application .
Make calls to graphics API

|
Geometry |

Transform geometry from 3D
to 2D; vertex programs

(Vertex)
|

Rasterization

Generate fragments from 2D
(Fragment) geometry; fragment programs

!
Composite Combine fragments into image

GPU




NVIDIA GeForce 6800 3D Pipeline

Y
v
Triangle Setup
v

m Shader Instruction Dispatch
|,

._l —

.J .J ._l ._| .|_| .|_| -|_| H_| .|_| .]J ._| .J _J

m_ e | e ] nJ I I R A ™ ™ ™ ™ ™
O _1! _| _JI _|. —h _|I _1| _|I _|l _|I _|I _|I j _JI _|.

v
Fragment Crossbar

v VY Y B 7

——— —

|a_.n_ .0 _ _
—>|L_I a e H

7 TT5

Memory Memory Memory Memory
Partition Partition Partition Partition

Courtesy Nick Triantos, NVIDIA




Long-Term Trend: CPU vs. GPU

| |eMTris/s
1 |ACPUInt2000 (norm)
° 4
w ———
=)
o ©
EQ
o
58
= CPU
1 T T 1 1 T T 1
1997 1998 1999 2000 2001 2002 2003

Courtesy Naga Govindaraju




Recent GPU Performance Trends

32-bit FP multiplies per second

50
o’ 40 s NVIDIA NV30, 35, 40
S ems== AT| R300, 360, 420
~ 30
t‘5 emg== Pentium 4

20

10

O | | | | | |
July 01 Jan 02 July 02 Jan 03 July 03 Jan 04

Courtesy Pat Hanrahan/David Luebke




Recent GPU Performance Trends

GFLOPS

50

40

30

20

10

0

32-bit FP multiplies per second

36 GB/s
==s== NVIDIA NV30, 35, 40
==s== AT| R300, 360, 420
emg== Pentium 4
| | | | | |
July 01 Jan 02 July 02 Jan 03 July 03 Jan 04

Courtesy Pat Hanrahan/David Luebke




Recent GPU Performance Trends

GFLOPS

32-bit FP multiplies per second

- 36 GB/s $294
40 ==s== NVIDIA NV30, 35, 40
- ==s== AT| R300, 360, 420 >385
emg=m Pentium 4
20
10 $335
M
0 - ' ' : ' |

July 01 Jan 02 July 02 Jan 03

July 03 Jan 04

Courtesy Pat Hanrahan/David Luebke




Why Are GPUs Fast?

Characteristics of computation permit efficient
hardware implementations

* High amount of parallelism ...

* ... exploited by graphics hardware

» High latency tolerance and feed-forward dataflow ...
* ... allow very deep pipelines

* ... allow optimization for bandwidth not latency

Simple control
» Restrictive programming model

Competition between vendors

What about programmability? Effect on
performance? How hard to program?



Programming a GPU for GP Programs




Programming a GPU for GP Programs

* * Draw a screen-sized
| | quad




Programming a GPU for GP Programs

* * Draw a screen-sized
| | quad

Run a SIMD program
over each fragment




Programming a GPU for GP Programs

Draw a screen-sized
quad

Run a SIMD program
over each fragment

“Gather” is permitted
from texture memory




Programming a GPU for GP Programs

Draw a screen-sized
quad

Run a SIMD program
over each fragment

“Gather” is permitted
from texture memory

Resulting buffer can
be treated as texture
on next pass




GPU Programming is Hard

Must think in graphics metaphors

Requires parallel programming (CPU-GPU,
task, data, instruction)

Restrictive programming models and
instruction sets

Primitive tools
Rapidly changing interfaces



Challenge: Programming Systems

: High-Level
Programming : Low-Level :
Abstractions/ Compilers
Model ) : Languages
Libraries | |
Performance Analysis Tools »@
CPU GPU
Scalar Stream?
STL, GNU SL, MPI, ... -
C, Fortran, ... GLSL, Cg, HLSL, ...
gcc, vendor-specific, ... Vendor-specific
Lots | None

— applications — kernels




Brook: General-Purpose Streaming Language

Stream programming model
* Treats GPU as streaming coprocessor

» Streams enforce data parallel computing

» Kernels encourage arithmetic intensity

» Streams and kernels explicitly specified
C with stream extensions

Open-source: www.sf.net/projects/brook/

lan Buck et al., “Brook for GPUs: Stream
Computing on Graphics Hardware”, -
Siggraph 2004 e



Challenge: GPU-to-Host Bandwidth

~ ™~ ~ R
GPUs lack band- No one uses host
width to the host, bandwidth, so we
so we won't use it! won't optimize it!

P e



Challenge: GPU-to-Host Bandwidth

/GPUS lack band-\
width to the host,

so we won't use it!

Z— .

~ ~
No one uses host

bandwidth, so we

won't optimize it!

<

PC| 2>

EXPRESS




Challenge: GPU-to-Host Bandwidth

~ TN
GPUs lack band-
width to the host,
so we won't use it!

/

\

No one uses host
bandwidth, so we

Zz—

N—

won't opti

mize it!

PCI>>

EXPRESS

* PCI-E optimizes GPU-to-CPU bandwidth

* 16-lane card: 8 GB/s

* Scalable in future

* Major vendors support PCI-E cards now

~—<

° Multiple GPUs supported per CPU - opportunity!

* Cheap and upgradable




Challenge: Mobile/embedded market

Why? 27

* Ul, messaging/screen savers, navigation,
gaming (location based)

Typical specs (cell-phone class): FS POWERVR
> 200-800k gates, ~100 MHz, ~100 mW s

°* 1-10M vtx/s, 100+M frags/s

What’s important?
* Visual quality o Enaine

* Power-efficient (ops/W) Fﬁﬁ Aap

* Avoid memory accesses, unified shaders ...

* Low cost @
3ITIOYS




Challenge: Power

Desktop:

* Double-width cards

* Workstation power
supplies; draw power
from motherboard

Mobile:
* Batteries improving 5-
10% per year

* Ops/W most important

www.coolingzone.com




Current GPGPU Research

Image processing [Johnson/Frank/Vaidya,
LLNL]

Alternate graphics pipelines [Purcell,
Carr, Coombe]

Visual simulation [Harris]
Volume rendering [Kniss, Kriiger]
Level set computation [Lefohn, Strzodka]

Numerical methods [Bolz, Kriiger,
Strzodka]

Molecular dynamics [Buck]
Databases [Sun, Govindaraju]




Grand Challenges

Architecture: Increase features and
performance without sacrificing core
mission

Interfaces: Abstractions, APIs, programming
models, languages

°* Many approaches needed

* Goal: C programs compiling to dynamically-
balanced CPU-GPU clusters

* Academic and research community

Applications: Killer app needed!



Acknowledgements

Craig Lund: Mercury Computer Systems
Jeremy Kepner: Lincoln Labs

Nick Triantos, Craig Kolb: NVIDIA

Mark Segal: ATI

Kari Pulli: Nokia

Aaron Lefohn: UC Davis

lan Buck: Stanford

Funding: DOE Office of Science, Los Alamos

National Laboratory, ChevronTexaco, UC
MICRO, UC Davis



For more information ...

' GPGPU home: http://www.gpgpu.org/

* Mark Harris, UNC/NVIDIA
(F4GPU

GPU Gems (Addison-Wesley)
* Vol 1: 2004; Vol 2: 2005

Conferences: Siggraph, Graphics Hardware,

GP2

* Course notes: Siggraph ‘04, IEEE Visualization ‘04

University research: Caltech, CMU, Duisberg,
lllinois, Purdue, Stanford, SUNY
Stonybrook, Texas, TU Munchen, Utah,
UBC, UC Davis, UNC, Virginia, Waterloo




	Agenda: 


