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Abstract

With the advent of smart materials, the concept of semi-active control or dynamic
control of stiffness and/or damping for vibration control of structures has become practical
and has seen limited use. Semi-active control has advantages over active and passive con-
trol methods, since it provides almost as much capability as active control while requiring
much less power. Its main disadvantage is its inherent nonlinearity, greatly complicating
engineering design. The purpose of this research is to extend semi-active control vibra-
tion isolation tools and methods, considering applications for space launch and on-orbit

systems.

After surveying the literature, variable stiffness using a general on-off control law with
constant damping is examined in several contexts. First, the single degree of freedom prob-
lem is solved in exact form and approximated for the initial value problem. Results include
development of an optimal control policy for all possible variable stiffness settings and a
large range of viscous damping settings, guaranteed stability regions, and new possibilities
for fast settling time even with an overdamped system. Second, the sinusoidally forced
problem was approximated and a near optimal control policy was formulated. Third, the
results of the initial value problem were extended to two multi-degree of freedom problems.
The problems examined are representative of a cross section of a simple space telescope
structure and of a variable stiffness beam. Besides providing new engineering design
tools and insight into the nonlinear behavior of variable stiffness concepts, the results open

several future research possibilities.
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ENGINEERING TOOLS FOR VARIABLE STIFFNESS VIBRATION
SUPPRESSION AND ISOLATION

1. Introduction

With the advent of smart materials, the concept of controlling stiffness and /or damp-
ing in a structure for vibration control of structures has become practical. These concepts
together can be loosely called semi-active control methods. They are currently being
researched by many industries including the automotive, building, and space industries.
Some automotive applications are shock absorbers and engine mounts. Building industry
applications include earthquake protection and damping of wind induced vibration. Space
applications include isolation of payloads from rocket stages during launch and isolation

of mirrors in space telescopes. These are just a few of the many possible applications.

Vibration control has typically been accomplished using passive, active or a combina-
tion of passive and active control systems (hybrid control). In the last 10 years, there has
been much research on developing semi-active control, which performs better than passive
control, but not as well as active control methods. In some situations, semi-active control
might be a better choice than active control because it typically requires less energy than
active or hybrid control. However, semi-active control is more complex to analyze than
passive or active control methods. The complexity exists in part because the damping and
stiffness characteristics of a vibrating structure are dynamically controlled using measure-
ments of the structures’ vibration, which is inherently nonlinear. The problem becomes
even more complex because the smart devices that are capable of changing stiffness and /or
damping exhibit nonlinear behavior as well. Hence, the well known linear techniques used
to design many passive, active and hybrid control systems cannot be used or must be

modified.

The purpose of this research is to extend semi-active control vibration isolation tools
and methods considering space launch and on-orbit systems. After an extensive survey of

the literature, the work begins with analysis of a single degree of freedom (SDOF') lumped
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parameter model and eventually works up to multi-degree of freedom (MDOF) lumped
parameter models, taking advantage of the knowledge gained from the SDOF problems.
This work concentrates on dynamically controlling stiffness of a structure using a general
control law and both confirms and extends previous work to include constant viscous
damping. While the literature was reviewed to develop a link to real variable stiffness
and variable damping devices, this work is restricted to analysis using a simplified abstract
variable stiffness device. However, the results of this analysis could assist in choosing a real
variable stiffness device to meet desired performance criteria. Because variable stiffness
systems are nonlinear, the behavior from one disturbance type provides no information
about how it will behave with another disturbance type. Hence, the initial value problem
and the sinusoidally forced problem were examined separately, since they are representative

of real disturbances such as those caused by shocks and rotating machinery.

Finally, various mathematical tools were used in the analysis. For the initial value
SDOF problem, it was possible to solve the nonlinear equations exactly. However, the
exact equations could not be written in an explicit closed form, so they were approximated
with a linear equation. On the other hand, the exact solution for the sinusoidally forced
SDOF problem could not be found, so a perturbation method and an ad hoc approach
was used. For the MDOF problems considered, linear analysis methods could be used in
conjunction with the SDOF approximation results because these results are linear. This
allowed some insight to be developed into how these larger systems behave. In all cases,

simulation was used to help validate the analytic and approximate results.

Chapter 2 begins with a survey of the literature. Vibration control, its application
to space, and models of systems and smart materials are discussed. In the literature, much
work was found using semi-active devices with vibration absorbers. Much less information
was found that discussed vibration isolation. Further, almost all of the literature uses
either variable stiffness devices or variable damping devices, rarely combining the two
methods. This can be attributed to the difficulty in analyzing these kinds of systems.
A survey of control laws used with variable stiffness and variable damping devices is also
provided. The survey concludes by noting there is a need to better understand control

schemes using nonlinear control devices.
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Chapter 3 provides in depth analysis of an initial value SDOF system using a general
on-off control law. The system contains both variable stiffness and constant viscous
damping. The nonlinear equation of motion is solved implicitly in exact form for the first
time. Because of the form of the nonlinear solution, an explicit solution could only be
found in approximate form. An optimal control law was found and guaranteed stability
for the system was found. It was discovered that the system can be switched between
overdamped and underdamped states using the variable stiffness controller, creating fast

settling behavior that cannot be achieved using a passively controlled system.

Chapter 4 provides analysis of a sinusoidally forced SDOF system using a general on-
off control law. The system contains both variable stiffness and constant viscous damping.
Since an exact solution could not be found, system behavior was approximated using an
ad hoc direct method and by using a perturbation method. The results were compared
with simulated results and much of the nonlinear system behavior was captured, though
not all of it. The approximate solutions were then used to develop near optimal control

laws.

Chapter 5 extends the work of Chapter 3 to MDOF problems. It shows that it
is possible to take the SDOF approximate results and extend them to more complicated
systems, with some restrictions. Two problems are considered. The first problem is a
large mass with any number of equal masses attached in parallel with each other. Fach
attachment is assumed to consist of a variable stiffness element and a constant viscously
damped element. The isolators are assumed to be the same for each attachment. This
model could structurally represent a cross section of a space telescope. The other problem
considered is a large number of equal masses connected in series with each other. This
problem might be representative of a variable stiffness beam, if enough masses are provided.
On the down side, the problem is difficult to solve analytically for systems with more than

3 degrees of freedom.

Chapter 6 ends this work by identifying major conclusions and identifying future
research. As research is being carried out, new research opportunities are identified. It

was found there are many directions for future research expanding on all of the previous
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chapters. Besides providing some new engineering tools for semi-active systems, this work

opens the door to several new research opportunities.
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2. Background

2.1 Introduction

Research in removing unwanted vibration in applications is extensively documented
in the literature. This chapter provides a broad and representative look at the state-of-
the-art in vibration control, emphasizing semi-active control. The goal was to concentrate
on vibration isolation problems, but other types of vibration control such as vibration
absorption and vibration suppression are discussed, since these areas seem to have more
extensive semi-active control documentation than vibration isolation does. Research was
limited to those of space applications, though developments for other application areas are
discussed where it appeared to be useful for future space applications research. This review
expands on a recent review of current state of the art in vibration isolation technology by

Winthrop and Cobb [1].

First, vibration control is defined. Using the literature, vibration absorption, vibra-
tion isolation, and vibration suppression, which are three well known types of vibration
control are defined. Then, passive, active, hybrid, and semi-active control, which are four
methods of achieving vibration control are discussed. This is followed by a review of vibra-
tion control in space applications, along with some information on how vibration control
devices have been used. Next, some models used for vibration control are discussed as
identified by the literature. The discussion continues with a look at semi-active devices,
used to change either damping or stiffness of a system. Models of some of these devices
are reviewed and some discussion of these models is provided. A discussion of isola-
tion performance criteria is provided. Finally, semi-active control strategies are reviewed,

concentrating most heavily on energy minimizing methods.

2.2  Vibration Control

Types of Vibration Control.  Vibration control is an attempt to reduce unwanted os-
cillations in a structure [2]. Vibration isolation, one type of vibration control, occurs when
compact, resilient connections are placed between a vibrating structure and a sensitive

structure. If the connections are placed between a vibrating source and the surrounding
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structure, it is called source isolation or force transmissibility. If the connections are
placed between the vibration sensitive structure and the surrounding structure, then it is

called receiver isolation or displacement transmissibility [2], [3].

Vibration absorption, also referred to as tuned mass damping, dynamic vibration
absorption, vibration neutralization, or tuned vibration absorption, is another type of
vibration control [], [5]. A vibration absorber is a device added to a structure that
minimizes vibrations to the host structure. It typically consists of a reaction mass, a
spring element, and a damping element. It can be used both to control narrow-band or

tonal vibrations and to control broadband vibrations [4].

A third kind of vibration control, vibration suppression, occurs when damping and
stiffness of a system are changed, often through the use of feedback control or active
control (which will be better defined in a following section). The goal of such control is
to remove unwanted disturbances applied directly to the sensitive structure. This differs
from vibration absorption since no device is being placed between the disturbance and the
body to be kept quiet from vibration. Rather, actions are taken to damp out vibrations

directly [6].

In Section [2.4] vibration suppression and vibration isolation models will be reviewed.
Because this research focuses on suppression and isolation, vibration absorption will not be
explicitly discussed. However, vibration absorption applications are referenced throughout
this work since vibration absorption devices can also be used for vibration suppression and

isolation applications.

Classifications of Vibration Control. Vibration control systems can be classified
as passive, active, semi-active (adaptive-passive), or hybrid [7], [§]. A passive isolator is
defined as a compact connection that receives no external energy or information [9], [7] and
behaves like a low pass filter [10]. The compact connection consists of a resilient stiffness
member and an energy dissipation or damping member that either absorbs vibrations or
loads the vibrational path [3]. Advantages of passive systems are simplicity, guaranteed
stability [I1], reliability, and no required power [7]. However, passive control has many

limitations for vibration isolation in space applications: 1) inability to practically achieve



isolation at very low frequencies, 2) trade-off between resonant peak and high-frequency at-
tenuation, 3) trade-off between base motion isolation and disturbance rejection, 4) inability
to adapt to changes in structural parameters over time resulting in reduced performance,
5) inability to optimize the design for varying excitation frequencies, 6) may amplify low
frequency vibrations, and 7) may require structural off-load mechanisms to survive launch

and ground tests [10], [3], [12].

Active control is a method of loading a vibrational path using force actuators that
require external energy and information as inputs [§], [9]. Active isolation has many advan-
tages over passive isolation: 1) it removes trade-offs between low-frequency amplification
and high-frequency attenuation, 2) it removes the base motion isolation and disturbance
rejection trade, 3) and allows intelligent and a fast response to disturbances [10], [7]. The
disadvantages of active isolation are: 1) it requires relatively high power, 2) it can create
instability in the system, 3) may require complex control laws and components, and 4)

failure of the control system results in no isolation at all [7], [3], [12].

In practice, active isolation and passive isolation are combined into what is sometimes
referred to as hybrid isolation. Advantages of hybrid isolation are it: 1) allows transmis-
sions of static loads through the isolation system [9], 2) reduces the external power required
in comparison to a purely active system by reducing the bandwidth needed by the active
portion [3], [12], and 3) allows some vibration isolation if the active element fails [7]. Dis-
advantages are 1) a risk of instability created by the active element [7] and 2) a risk of

degradation due to detuning of the passive element.

Semi-active control or adaptive passive control implements a tuning scheme to change
tunable parameters of passive elements of stiffness and/or damping. Advantages of this
method are: 1) it requires low external energy (or no external energy [13]), 2) cost less
than active systems [3], 3) provides passive isolation if the semi-active portion fails, 4)
can be nearly as effective as active systems [I4], and 5) has guaranteed stability when
just the damping element is varied [I5]. It has been demonstrated however, that varying
the stiffness element can cause instability in a system [16]. Physically, this is because
changing the stiffness causes work to be performed on the system. The variable stiffness

element can be visualized as a constant stiffness element and an active force element [17],
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[4]. Hence, semi-active control differs from hybrid control in that hybrid control employs
additional actuators to implement the active control and hybrid control does not attempt

to change the passive portion of the control, once it is designed.

2.8 Space Applications of Vibration Control

Vibration control is being used or being considered for a variety of different space
applications. Because of the nature of space systems, unique challenges exist which do not
exist in other industries. For example, vibration control for payloads on launch vehicles
must consider the effects of large changes in mass, since large amounts of burned propellant
is expelled. Parts of satellites on orbital platforms may be constrained to displacements
smaller than the wavelength of visible light. For all space systems, weight, cost, and power
are critical constraints. Because of the importance of space to the United States, much

research has been devoted to finding better ways of solving vibration problems.

The background that follows presents current capabilities and lists some relevant
data that will be used in later Chapters to make assumptions and link existing systems
to the results developed. Later chapters focus exclusively on constant mass problems.
However, because of the importance of vibration control in variable mass system, it will
be reviewed in some detail. In Chapter which identifies proposed future research for
variable mass problems, an approach for developing insight into vibration isolation of a

simple variable mass system will be considered.

On-Orbit Applications. Spacecraft must deal with a variety of disturbances on
orbit. For sensitive structures, failure to reduce the disturbances to a low enough level
can either degrade or prevent mission completion. After introducing common types of
disturbances that often occur in spacecraft, several vibration sensitive space applications

are discussed.

Spacecraft Disturbances. Typical external disturbances to a spacecraft in-
clude solar radiation pressure, thermal effects, micro-meteorite impacts, atmospheric drag

and gravity gradients [10], [18]. Internal disturbances in a spacecraft can include attitude



control components such as reaction wheels or control moment gyros, cryogenic coolers
and solar array gimbals [12], [I9], [20]. When the spacecraft is manned (such as the
International Space Station), additional disturbances arise such as pumps, compressors,
electric motors, fans, impacts, and astronaut motions [I0]. There has been much effort to
empirically model these disturbances. A standard reference [2I] describing and providing
data on many types of disturbances is available from the National Aeronautics and Space
Administration (NASA). Some specific studies have examined reaction wheels [22] and
cryocoolers [23]. For manned platforms, in depth models have been developed and are

being improved for use in vibration environments [24], [10].

Space Telescopes. The current trend in space based telescopes is to build
increasingly larger aperture mirrors, since larger apertures allow higher resolution in Earth
observation applications and allows dimmer objects to be seen in astronomy. However,
there are limits on aperture size due to difficulties in creating a single large optical surface
and because of existing launch vehicle shroud volume constraints which limit aperture
size to about 5 meters [25]. Larger aperture sizes also require more massive optics,
requiring larger launch vehicles and increasing costs. Hence, one research trend is to
create proportionally lighter optics. However, lighter optics are also less stiff than more
massive ones, which increases susceptibility to lower frequency vibrational disturbances.
This in turn, creates a trade-off of control architectures, where lighter structures require

lower frequency active control than heavier ones [20].

A second research trend is in the development of space interferometers. The concept
of interferometers in space, which typically consist of sparse aperture arrays, is a method
of combining the light from two or more separated telescope apertures to create an image
with the same resolution as a single aperture with a diameter equal to the separation
distance between the smaller telescopes [27], [28]. This overcomes the volume constraints
of launching the hardware, but requires more stringent six axis control. In fact, control
must be sufficient to keep errors below nanometer and nanoradian levels for each mirror
[29], [30]. For example, the HST has been compared to the NGST (now called the James

Webb Space Telescope) [31]. Essentially, the HST is heavier and more rigid allowing



the entire satellite to be pointed at a target of interest. The NGST is lighter and more
flexible and requires complex cascading control loops and the isolation corner frequencies

are significantly lower than for HST.

Powers et. al. developed a preliminary design for a sparse aperture array telescope
with six mirrors. Their design identifies a total mirror mass with support structure of
883.4 kg while the mass of the rest of the satellite is 2533 kg. Hence, one mirror with
support structure would have a mass of about 147 kg [29]. More recently, the Air Force
Research Laboratory has developed a ground based sparse array space telescope testbed for
demonstrating key technologies such as control nanometer control of the primary mirrors
[32]. Using system identification methods, a model of the different modes found in the
three mirrored system was developed. A multi objective MDOF control system was
successfully developed and demonstrated to isolate the mirrors, reject disturbances, and

properly point the mirrors [30].

A third trend in space telescope research is investigation of the supporting structure
for the telescopes. Due to launch vehicle constraints, large optics must be deployable.
However, due to low vibration tolerances, the support structure must be stiff [33]. As a
result, small, otherwise unnoticed nonlinearities (called microdynamics) of the structure
become large problems. One important nonlinearity called microlurch has been identified
and is believed to be caused by a sudden release of strain energy built up due to frictional
effects in joints and latches of a structure. The latches and joints are traditionally used
to make the structure deployable. A microlurch tends to excite high frequency vibrations

that fall well outside the bandwidth of typical active control systems [34].

There seem to be two novel approaches for developing better support structure for
deployable telescopes. One approach is to create much stiffer joints, for example, us-
ing a stiff folding composite. Some testing has been performed on this concept showing
deployability similar to conventional joints though with some apparently, manageable non-
linearities [35]. The other novel approach is to almost completely mechanically decouple
satellite deployable telescope (payload module) from the rest of the satellite (support mod-
ule). In this concept, the payload module is controlled by reacting on the support module

with noncontact actuators and sensors. The support module uses external actuators to
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react against the surroundings to control the spacecraft [36]. Hence, the entire range of

structural stiffness possibilities are under consideration.

Microgravity Research on the International Space Station.  The ISS represents
one platform for performing microgravity research. The purpose of microgravity research
is to perform basic research to better understand the phenomenon in the areas of fluid
physics, combustion, fundamental physics, material science, biotechnology and other areas
[37]. Study of some phenomena is greatly improved when studied in an environment
nearly free of gravity. Vibrations also can damage these experiments and much effort is
being devoted to vibration minimization. An excellent survey of this work was written
by Grodsinsky and Whorton [I0]. A rack isolation system for experiments known as the
ARIS is being developed, capable of providing isolation to multiple experiments. Risk
reduction flights for the technology have been made [38]. Other efforts are being made to
isolate individual experiments from the ISS [39], [40], [41], [42].

Precision Pointing. A goal of commercial communications is the capability
of transmitting information to any location on the Earth. An ideal way of accomplishing
this is to create a satellite communications network where information is retransmitted
between several satellites before being transmitted to the ground. One way to accomplish
this goal is to use optical intersatellite links, which has been surveyed by Arnon [43]. An-
other use for precision pointing is on the SBL. SBL is expected to require approximately
a 10 m diameter mirror and to be able to reduce vibration by approximately 80 dB [44].
Issues with deploying optics larger than 5 m have already been discussed in terms of space
telescopes. Further, the laser has attributes similar to a rocket engine, such as combus-
tion induced vibration, and will create disturbances on the precision optics [45]. Riker
provides an overview of the risk reduction Integrated Flight Experiment to demonstrate

SBL technologies [46].

Launch Vehicle.

Shock and Isolation. The goal of launch isolation is to prevent damage to

the payload by removing unwanted structural and acoustical vibrations. Disturbances for
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launch vehicles include vibrational/acoustic loads and aerodynamic loads [47]. In small
launch vehicles, the sound level can exceed 130 dB and can cause payload damage [4§].
Methods of overcoming acoustical noise damage to the payload are not reviewed here, but

this area is well documented [49] and is an active research area.

The purposes of launch isolation are to allow 1) more sensitive equipment to be
launched, 2) reduced risk of equipment failures, and 3) reduced spacecraft bus mass with
design considerations to minimize impacts on payload and launch hardware/software [50].
Passive launch isolation has been successfully used and designed for many payloads for
specific launch events. It has been used for Hubble Space Telescope servicing missions in
the space shuttle, achieving attenuation above 8 Hz for the solar array resupply mission
[61] and has achieved attenuation above 30 Hz on a mission to replace various modules
[52]. The passive interface between the space shuttle and the payloads has been analyzed

and methods to decrease transmissibility to the payload have been suggested [53].

More recently, for small launch vehicles, two types of passive launch protection de-
vices are being pursued: 1) whole spacecraft isolation [54] and 2) shock isolation [55].
Launch isolation has been applied both to axial (thrust axis) and to multiaxial (thrust
axis and lateral axis) cases and has flown successfully a minimum of five times making this
a mature technology [19]. Shock isolation is also being developed. Vibration isolation
has been designed to attenuate frequencies above 30 Hz, while shock isolation has been
designed to attenuate frequencies above 100 Hz. Vibration isolation can isolate vibrations
at lower frequencies than shock isolation, but can also couple with the guidance, naviga-
tion and control system of the launch vehicle requiring more complex analysis to allow a
successful flight, where as shock isolation does not have this problem [50]. A more generic
vibration system for the Evolved Expendable Launch Vehicle is being developed, which
would isolate one large payload and up to six smaller payloads on the medium lift vehicle
[56], [57], [58]. The concept is also being developed for Minotaur and the Space Shuttle
[59]. A generic, adaptive passive, multi-axis launch isolation system has been proposed
for Delta II, capable of compensating for the time varying static loads the launch vehicle

applies to a payload and is envisioned for all launch vehicles [13].



Active and passive isolators have been studied, showing the improved performance of
active isolation over passive [60]. Hybrid launch isolation has been proposed and designed,
providing large improvements over purely passive isolation [53], [61], [62], [63]. Further,
adaptive control combined with passive control has been studied resulting in additional
improvements over active control with passive [64]. Finally, Honeywell has bridged a gap
between launch isolation and on-orbit isolation using a single isolation system capable of

doing both jobs [65].

Typical Payloads to be Isolated. Sutton provides a table of typical launch
vehicle masses at launch along with payload weights to 100 nautical mile orbit and to
geosynchronous orbit. Table provides the results of calculating the payload fraction
for payloads launched into a LEO of 100 nautical miles and into GEO at the instant the
launch vehicle is launched. These launch vehicles are older vehicles and have two or more
stages. Appendix [A] provides a more detailed comparison of payload and mass fractions
for various launch vehicles. The payload fraction ranges between 0.002 and 0.153 while

the mass fraction ranges between 0.847 to 0.998 at the instant of launch.

Table 2.1  Payload Fraction for Some American Launch Systems

Launch Launch Mass | LEO GEO LEO GEO
Vehicle (metric tons) | Payload | Payload | Mass Mass
(Ib) (1b) Fraction | Fraction
Titan 34D 1,091 30,000 1,820 0.012 1.663 % 1073
Delta II 6925 132 9,600 1,454 0.019 0.011
Atlas Centaur 141 6,100 1,545 0.02 0.011
Scout 21.5 500 45 0.011 [2109%107°

Isakowitz et. al. provides a more in depth summary of launch vehicle performance
[66]. The authors provide weights for various stages in a vehicle, nominal staging events
and weights for both dry and fully loaded stages. Enough information is available to
create an approximate model of how the mass of a launch vehicle decreases as a payload is
launched into an orbit [64]. A challenge to the designer is to create an isolation system

that operates optimally over this entire range.
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MDOF Vibration Control. Vibration control devices for space applications and
for ground testing are typically MDOF. Launch devices have already been discussed,
so only on-orbit devices will be briefly mentioned. For a recent review of such devices,
see Thayer et. al. [67] and Cobb et. al. [68]. Almost all devices being considered
are designed as hexapods or Stewart platforms (see Geng and Haynes for a discussion on
Stewart platforms [69]) and have been designed as hybrid, purely active, or purely passive
systems. Thayer et. al. provides an interesting summary of current hexapod devices where
comparisons were made of actuator stroke lengths, passive damping capabilities and corner
frequencies, provision for gravity off-load devices, and active bandwidth requirements. It
was noted earlier that passive damping and active control trade-off with each other [20]
and Cobb et. al. has noted that high actuator stroke lengths allow hexapod devices
to be used to steer payloads while low stroke lengths limit the system just to vibration
control. Further, hexapods have been used for vibration isolation, vibration absorption
and steering simultaneously. In closing, future research in hexapods seems to be working
towards increasing isolation capability of control systems [67] and towards miniaturizing
of hexapod hardware [20]. As already noted earlier, novel methods of multidegree control
are also being considered in the idea of contactless sensors and actuators between payload

and satellite, with a goal of substantially increasing isolation performance [36].

2.4 Modeling Vibration Control Problems (System Models)

Many simplified models of real applications have been considered in the literature.
Simple models have the benefit of being more understandable and can be analyzed relatively
easily. Unfortunately, they may not represent the real systems very accurately. More
complex models can be more representative of real systems, but the complexity makes
them more difficult or impossible to analyze. The existing models found in the literature
serve as a reference and starting point for the analysis presented later. Both linear and

nonlinear models are considered.
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Figure 2.1  SDOF Suppression Problem with Constant Parameters

FEquations of Motion for Constant Parameter Systems.

SDOF Models. Vibration control problems have been modeled in many
ways in the literature. The simplest model is the SDOF system (Figure , which is
well documented for constant parameters of mass, damping and stiffness [70], [71]. This
system has been called source isolation [2] and vibration suppression. The equation of
motion is

mi + ct + kx = @, (2.1)

where m is the mass of the system, c is the damping coefficient, and k is the stiffness

X3 Q
m

k =1 ¢
- [

Figure 2.2  SDOF Constant Parameter Isolation Problem

coefficient.

Alternatively, the vibration isolation problem or receiver isolation problem [2] is
shown in Figure when Q1 = 0. It is assumed that either Q2 or xo is prescribed and
vibration of m is to be minimized. The equations of motion (assuming zo is prescribed)
are [72]

mxi + ¢ty + kx1 = cio + kxg (2.2)
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and )9 is
Q2 =k (z2 —71) +c(i2 —21). (2.3)

However, if ()2 is prescribed, then by substituting Equation into Equation [2.2] results
in

ma; = Q2 (2.4)

and displacement x- is found by substituting the results of Equation [2.4]into Equation [2.3

2 Degree of Freedom Models. The 2 degree of freedom (DOF) model is
considered to be better for analyzing vibration isolation and has also been extensively
analyzed [2], [73] again with constant parameters. Typically, such systems in the literature
assume a fixed or moving support attached to the model with a spring and/or damper.
Since there are no fixed supports in space or in a launch application, a free-free type model

is considered.

Q Q,
| | =2,
| X c X5

_|:|_
m, m,

Figure 2.3 2 DOF Isolation/Suppression Problem with Constant Parameters

Figure [2.3] shows the 2 DOF system located in space. If we assume myg is to have
vibrations minimized, then if Q1 # 0 and Q2 = 0, the isolation problem is being considered.
When @7 = 0 and Q2 # 0, the suppression problem is under consideration. Of course,

both problems could be examined simultaneously. The equations of motion are

mid1 — g (z1,x2, 21, %2) = Q1 (2.5)

and

mada + g (21,22, &1, T2) = Q2 (2.6)
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where

g(ﬂ;’l,l‘g,il,i’g) :C(ig—fijl)+k¢(l‘2—$1). (27)

MDOF Models. A general series MDOF model has been considered by Meiriovitch
[71]. He considers a linear series system with p masses connected by p + 1 springs and
dampers with fixed connections on either side of the system. FEach mass has a force Q;

operating on it where ¢ = 1,2,...p. The general equations of motion are

P
(Mijxj + cijEijdj + kijzi) = Qs (2.8)
j=1
where
mij = 045mM;
cij =0 kij =0 G=1,2, i =242, n
Cij = —¢; kij = —k j=i—-1 (2.9)

Cij=cit+ciy1 kij=ki+tkigy j=i

Cij = —Cit1 kij = —cit1 J=i+1

and ¢ is the Kronecker delta function

1 ifi=j
5ij = . (2.10)

0 otherwise

The equations can be written in matrix form as

(] {2 @)} + [ {2 @)} + k[ {z ()} ={Q (®)} (2.11)

In general, Equation [2.11] is very difficult to solve analytically except in special cases.
Solving these equations exactly requires the the matrices [m], [c], and [k] be simultaneously

diagonalizable. These matrices can be diagonalized if and only if

[m][k] = [K][m] (2.12)



That is, any two matrices of Equation must commute in multiplication [74], [75], [76].
If the system is diagonalizable, then modal analysis can be used to solve the equations of

motion [71].

Equations of Motion for Variable Parameter Systems.  When stiffness and/or the
damping of a system can be controlled, the system is considered to have tunable parameters
[3] or is semi-active. Extensive literature exists on attenuating harmonic excitations
through the use of vibration absorbers and is surveyed by Sun et. al. [4]. Vibration
absorbers are widely used to attenuate unwanted narrow-band disturbances, but can also

be used for broadband applications [4], [3].

Vibration isolation and vibration suppression will be considered in the following
sections. Equations of motion in the literature for varying parameter systems are surveyed.
The goal is to review how vibration control problems allowing variable stiffness, variable

damping, and/or variable mass have been mathematically modelled in the literature.

M) |X |Q

Figure 2.4 1 DOF Suppression Problem

SDOF Models.  Leitmann studies the SDOF suppression problem (see Figure
and develops control laws for variable damping, variable stiffness and constant mass
(m(t) = m). Note, that Leitmann concludes variable damping should always be maxi-
mum, so varying damping is not very useful in this problem. The equation of motion he
considers is

mE +c(uc) &+ k (ux) z = Q, (2.13)

where u. and uj are control parameters that instantaneously change the damping and

stiffness of the system. The functions ¢ and k are damping and stiffness, respectively
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while @ is the disturbance function. Leitmann considers a case where u, and wu; can be
controlled independently and a case where u. = ux = u where the damping and stiffness

can not be changed independently [(7]. The problem of only varying stiffness was also

I Je
m(t)

A

studied earlier [78].

7z

Figure 2.5 1DOF General Suppression Problem

Clark analyzes the system of Figure [2.5 where element A is a piezoelectric hollow
cylinder. His analysis is similar to Leitmann’s, except by changing the type of shunt
attached to the piezoelectric, Clark is able to change the characteristics of element A,
causing it to have damping characteristics or both damping and stiffness characteristics.

Clark’s equations of motion are

mi + g (z, %) = Q, (2.14)

where g (z,2) is the force generated by element A (piezoelectric element) [79].

Q Q
X - X
L 1, c —2

My (t) / C
K

Figure 2.6 1 DOF Isolation Problem with Explicit Varying Mass Representation

The SDOF isolation problem is shown in Figure Variants of this problem have
been studied, typically with m; (t) = m; where my is constant. For example, Karnopp

uses this type of model with constant stiffness and a variable damper to isolate m; from a
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disturbance Q2. The equation of motion used is

where
T =x9— T (2.16)
and
g(x,&) = éi + kx (2.17)

is the the combined isolation device and control law [80], [15].

Figure 2.7  Quarter-Car Model

2 DOF Models. A commonly used model in the automotive industry called
the quarter-car model is shown in Figure Mass my is often called the sprung mass
(representing the mass of an automobile) while mass m; is called the unsprung mass (rep-
resenting the mass of a tire). A prescribed displacement at g represents the disturbance

of the system (road noise). Equations of motion for this system are

mity — g (z, &,t) + co (&1 — £o) + ko (z1 — 29) =0 (2.18)
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and

maoio + g (z,%,t) =0 (2.19)

where g (21, x2,%1,%2) is the the combined isolation device and control law. This type of
model has been studied by many authors using variable damping devices [14], [81], [82],
183].

b X
f—p
Q
- Q,
X1 *
T — X,
[ ! —=—

g(,x,b)

Figure 2.8 2 DOF System with an Inertial and a Relative Coordinate

Balandin et. al. has considered a different derivation of the 2 DOF problem [84].

They use one inertial coordinate and one relative coordinate using the transformations
z=um (2.20)

and

To =2+ %, (2.21)

where z is the relative displacement between x9 and x;. They define the isolator as simply
g (z,%,t) as shown in Figure Further, they consider m; () = mj to be constant and

@2 = 0. The equations of motion are

mi1Z + mso (3? + Z) =1 (t) (2.22)
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and

mo (T + 2) = g (z,4,t). (2.23)

By solving Equation for Z and substituting into Equation the uncoupled second

order equation
g(z,a,t) Q1
K mq

(2.24)

is derived, where y = nﬁfﬁ2 is called the reduced mass. Equation is a SDOF

equation describing the isolation of the system [84], [85]. Note that Equations and

[2.21]is simply a transformation of the 2 DOF problem from inertial to modal coordinates.

2.5 Semi-Active Control Devices (Device Models)

Constant stiffness elements and damping elements are well understood and examples
of elegant designs of isolation struts for use in space have existed for many years [86]. For
an overview of passive damping design (viscoelastic materials, viscous fluids, magnetic and
passive piezoelectrics), see Johnson [87]. Much effort is now going into smart materials
allowing stiffness and/or damping to be varied during operation of vibration control sys-
tems. For damping elements, research lines have considered MRF's, ERF's, piezoelectrics,
and hydraulic concepts [88]. Variable stiffness elements are also being examined, though
these technologies appear to be newer and less mature than variable damping devices. De-
vices being considered for variable stiffness include SMA, MREs, piezoelectrics and others.
Each of these will be briefly reviewed and their corresponding mathematical models will

be presented.
Variable Damping.

ERF/MRF Dampers. MRF dampers are well developed devices currently in
use in the automotive industry [89], while ERF dampers are in a prototype stage of being
studied [90], [91]. These dampers have the ability to change their damping characteristics
by application of an electric field for ERF's or by applying a magnetic field for MRFs. When
these fields are applied, micro size particles distributed in the fluid form chains. Field

strength can be increased to the point where the chains solidify resulting in a high yield
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stress and an increase in damping for MRF or ERF dampers. Removal of the field results
in the fluid returning to its original state. Changes in state occur within milliseconds [90],

[92], [93], [94].

ERFs can be easily manufactured (silicon oil and cornstarch will work) [90], but
MRF's have several advantages over ERFs. MRFs generate higher yield stresses than
ERFs, allowing MRF dampers to provide a wider range of variable damping than an
ERF damper. Additionally, MRF's can use low voltage while ERFs tend to require high
voltage. MRF dampers are insensitive to impurities in the fluid allowing less stringent
manufacturing requirements. Further, a larger number of additives can be used with

MRF's simplifying design for seals and minimization of wear [94].

There are many studies that model ERF dampers and MRF dampers that trade
accuracy for complexity. Typically, the damper is tested and increasingly complex non-
linear models are applied. Testing usually entails measuring force, displacement and
velocity generated by the damper for an input signal (random or sinusoidal) [14], [95], [7]
over a range of input currents. Models follow a hierarchy of roughly increasing order of

complexity and accuracy, are mostly nonlinear, and are not always continuous functions.

X
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c(u)

Figure 2.9  Equivalent Viscous Damping Model

The equivalent viscous damping method (a linearization) equates energy dissipation
with that of an equivalent damper, making damping a function of input current and dis-
placement amplitude [95], [96], [7]. This type of model has been analyzed by Leitmann
(see Figure in the form

F =c(u), (2.25)
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where u € [—1,1] and

[(co+c1) + (e1 — co) ] s¢1 > ¢p > 0. (2.26)

N =

¢(u) =

The complex stiffness method (another linearization) calculates storage stiffness and
loss stiffness in the form of a complex number, which will be a function of the excitation

frequency [95].

X

Cq |—.

F'fo

ANNNANNNNNN

Figure 2.10  Bingham Viscoplastic Model

The Bingham viscoplastic model adds the yield stress of the fluid (often modelled as
a frictional element), but has limitations that make its use as a control model debatable

[97], [95], [94]. Figure shows the model. The equations of motion are
F = f.signum (%) + co® + fo. (2.27)

Here, f. is a frictional force related to the yield stress of the fluid inside the damper. The
coefficient ¢g is the damping coefficient and fy can be used to account for the nonzero
mean observed in variable dampers containing a pressurized tank used to prevent fluid

cavitation. Pan et. al. has proposed that f. and ¢y vary approximately linearly as

fc:fa+fbv (2.28)

and

co = ¢cq +pV, (2.29)

where fq, f, ca, and ¢, are constants and V' is the input voltage to the damper [9§].
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Figure 2.11  Bouc-Wen Model

The Bouc-Wen model, shown in Figure adds a hysteresis element, but has some
of the same limitations as the Bingham model. It has been used in vibration isolation

applications [94], [I4]. The equations of motion for the Bouc-Wen model are
F = ot + ko (v — z0) + az (2.30)

and

= —yl|E|z|z]" 7 — B |2|" + Ad. (2.31)

The parameters «, 3, and v control the scale and shape of the hysteresis curve, n controls
sharpness of the curve as it transitions from one region to another, ¢y is the damping
coefficient, and kg is the stiffness coefficient [99]. Pan et. al. has approximated ¢y and «

linearly as

co=cq+cV (2.32)
a=a,+ oV (2.33)

where cg, ¢, o, and ap are constants and V' is the input voltage to the damper. The vari-
able xq physically corresponds to an initial displacement of the damper due to a pressurized

gas filled accumulator in the damper used to prevent cavitation of the fluid.

Spencer et. al. has proposed a modified Bouc-Wen model shown in Figure [2.12

which is able to account for fluctuating magnetic fields being applied to the MRF damper.
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The equations of motion for this system are

F=cy+k (.’L‘ - QZ()) , (2.34)
s=—yli—glz|e]" =B @ —g) 2" + Az — ), (2.35)
) = +coz + k — , 2.36
e r— {az +cot + ko (z — y)} (2.36)
€1 = Cla + C1bU, (2.38)
Co = Coa + Copll, (2.39)
and
t=n(u—-"V), (2.40)

where the parameters coq Cop, k0, Clas C1bs K1, 0, Qas b, ¥, B, 7, 1, and A (fourteen total
parameters) are determined in a nonlinear optimization problem. The variable V' is the
voltage being supplied to the damper and is assumed to cause «, c1, and ¢y to vary linearly.
The variable u is used to describe dynamics of the MRF achieving rheological equilibrium

[94].

ANNANANNNNNNY

Figure 2.12  Modified Bouc-Wen Model

As can be seen, many models have been proposed to represent MR and ER damping

devices. The choice of which model to use depends on the desired accuracy in solving a
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problem. Unfortunately, the price for accuracy is much more complexity, which can limit

the insight to be gained in analysis.

Damping with Piezoelectrics. Use of piezoelectrics for damping vibrations
in a structure has been extensively reviewed in the literature. Hagood and von Flotow
created the analytical foundation for understanding how piezoelectrics can be used for
damping. When piezoelectrics are combined with a resistor, they create damping anal-
ogous to viscoelastic damping. The piezoelectric combined with the resistor electrically
creates an RC shunt network, since the piezoelectric acts like a capacitor [100]. Maximum
damping has a stronger frequency dependence than viscoelastic materials and occurs at a
point related to the inverse of the RC time constant for the shunt circuit [I0I]. Tang,
Liu and, Wang reviewed semi-active damping and hybrid damping methods. The hybrid
method can be divided into active and passive damping abilities of the piezoelectric it-
self and active damping with the piezoelectric combined with traditional passive damping

materials [I1].

Piezoelectric

Stack

ANNNNNNNN\N

Figure 2.13  Piezoelectric Damping

Corr and Clark derive the damping force of a piezoelectric stack using linear theory
and the following derivation comes directly from their article [I02]. Refer to Figure
They consider the piezoelectric stack as IV identical layers bonded together and wired in
parallel. They begin with the one dimensional, uniaxial loading constitutive equations
[103]

D el dss E

= , (2.41)
S d33 83E3 T
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where D is electrical displacement (charge/area), S is mechanical strain, E is the electric
field (volts/meter), T is mechanical stress (force/area), €1 is the dielectric constant, ds3 is
the piezoelectric constant, and SBES is the piezoelectric compliance. The superscripts 1" and
F indicate the parameters were measured at constant stress or electric field, respectively.
The subscript 3 represents the orientation of the piezoelectric being modelled. Making

the substitutions

V = L,E, (2.42)
q1 = AD, (2.43)
X
S = I (2.44)
and
FP
T=- (2.45)

where L, is the thickness of the piezoelectric layer, ¢; is the generated charge for one

piezoelectric layer, and A is the cross sectional area results in

F, k¢ —k*¢d T
Pl = % , (2.46)
q k*“dss C, V
where
A
k= ) (2.47)
s33Lp
Al
T 3
=3 2.4
o5 =T (2.49)
CS=CF (1— ki), (2.49)
and
k33 = 433 (2.50)
33 — S%ET . .
For N piezoelectric layers,
F ks¢ —k*“d x
Pl = | e % : (2.51)
qN k50d33 (C‘;) total 4
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where k27 is the equivalent short circuit stiffness for springs in series while (C’;) total 15 the
equivalent capacitance for each piezoelectric layer in parallel. By solving the second of
Equation for V' and substituting into the first equation of Equation [2.51] and letting
QPP = q,, (applied charge) results in the equation of motion
(k;;w(k;jsﬁ)m_gg;@ o @52

p/total P/ total

Typically, some type of shunt circuit is added to the piezoelectric device which

changes the electrical charge QP. One type of shunt circuit discussed by Corr and
Clark is
1 k*¢dss

- Qw8 (2.53)
(CZ) total (le) total

where R is the resistance of the shunt circuit and L is the inductance of the shunt circuit

LG 4 RO +

[17]. Lesieutre classifies different types of shunt circuits and their effect on a mechanical
system. When L = 0, the shunt circuit converts electrical energy to heat, dispersing it from
the system. Hence, mechanical energy is converted to electrical energy by the piezoelectric
which is then converted to heat by the resistive shunt. By varying the resistance of the
shunt circuit using a control law, it is possible to vary the amount of energy damped out
by a piezoelectric. When L # 0, the shunt circuit is analogous to a vibration absorber
[101]. Energy is most efficiently dissipated when the impedance of the resister in the shunt

circuit matches the impedance of the piezoelectric [104].

Corr and Clark considered changing the damping of a piezoelectric by alternately
connecting and disconnecting an RL shunt circuit to the piezoelectric. In tests, they were
able to attenuate the third mode of a clamped-clamped beam [102]. In another approach,
Wang et. al. researched semi-active damping with piezoelectric patches attached to a
cantilever beam. One piezoelectric patch is used to create a disturbance to the beam, while
the other is used to damp out the disturbance. They formulated the equations of motion
for a cantilever beam and for the piezoelectric with a variable resistance-inductance shunt
circuit. They note that a variable resister can be created using a digital potentiometer

and variable inductors can be emulated using an OP amp circuit [105].
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k(u)

Figure 2.14  Equivalent Stiffness Element

Variable Stiffness.  The simplest model of a variable stiffness element is shown in

Figure The stiffness is

F=ku)z, (2.54)
where v € [—1,1],
ko + k
k(u) = (‘”;1) (L4 eu] 5k1 > ko >0, (2.55)
k1 — ko
_ , 2.56
= T (2.56)

ko is the smallest stiffness the variable stiffness device can achieve, and kp is the largest
stiffness the variable stiffness device can achieve. The variable u is an input variable for
controlling the stiffness device while € is a measure of the maximum variation of a variable
stiffness device. While real devices do not behave as this simplistic model suggests, it does

allow for analysis and hence is often used in the literature.

In the literature, researchers often document maximum and minimum natural fre-
quencies achieved using a device or they report the maximum and minimum stiffness
achieved by a device. Since actuating a variable stiffness device does not change the mass

of the system, a characterization parameter o can be defined as

Wmin \2 K
a:( mm) =2 (2.57)
k1

Wmax

where « is the variable stiffness ratio of a variable stiffness device, wmin is the minimum
natural frequency of a system with a variable stiffness device, and wpax is the maximum

natural frequency of a system with a variable stiffness device. The relationship between
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o and € is
l1—«
€= )
1+«

(2.58)

These parameters will be used to develop physical insight into the capabilities of different

variable stiffness devices when such data is available.

Shape Memory Alloy Models. ~ SMAs are metal alloys that recover otherwise
permanent strains when heated. Stable phases of SMAs include a low temperature phase
called martensite and a high temperature phase called austenite. SMAs have two prop-
erties which are exploited for use in vibration control called the SME and the PE. The
SME occurs when a SMA in martensitic form is deformed by a load and then heated to
austenitic form where it recovers its original shape. The PE occurs when a load is applied
to a SMA in austenitic form, which under proper conditions, can induce a phase change to
martensitic form. When the load is released, the material is transformed back to austenitic
form and recovers its original shape [I06]. Detailed discussion of SMA mechanisms are
available [107]. In addition to discussing SMA mechanisms, models describing both SME
and PE in SMAs has been extensively reviewed [108].

The SME has been used to create semi-active absorbers and isolators. In one article,
Williams et. al. used three SMAs and steel wires configured as cantilever beams with a
concentrated mass at the end to create a vibration absorber. The reported change in

natural frequency was mir = T+ resulting in o = 0.33 [109].

In another case, a novel actuator was created using a weave of SMA wires surrounding
disks with passive springs in between [I10]. The actuator uses mechanical advantage to
increase stroke length and has millisecond response rates. The actuator has been used for
semi-active control and successfully damped out impulse disturbances in 360 msec. The
problem with all of these SME concepts is the time required for SMAs to cool off, which

can be mitigated by clever design, but not completely eliminated [IT1].

Another example is an aircraft wing spar strut concept with an internal piston and
multiple preloaded standard and SMA springs on either side of the piston. The SMA

springs are inactive while in martensitic phase. Since the standard springs are stiffer than
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the SMA springs, stop spacers are used to prevent preloading of the SMA springs. When
heated, the SMA changes to austenitic phase, increases in stiffness, and becomes able to
support the preload. The result is a decrease in overall stiffness in the strut, due to clever

design [112].

The PE of SMAs has been proposed for use in place of softening springs for passive
isolation of large loads. Typically, a soft spring is desired for isolation, but a stiff spring
is needed to prevent large displacements. A softening spring can be used, but it lowers
isolator resonance frequencies and damping must be added. This in turn, degrades higher
frequency isolation. Use of SMAs might remove this trade-off. Recent work has looked at
building simplified models for SMAs [113] and has been studied for use in passive isolation

[113)], [114].

Magnetorheological Elastomers. MREs are solid polymers with dispersed
micron-sized magnetizable particles. The elastomer is cured in a magnetic field causing
the magnetic particles to align in chains and remain aligned after the magnetic field is
removed. Application of a magnetic field changes the stiffness of the elastomer [115]. The
Ford Motor Company has been researching MREs for use as variable stiffness elements
for control-arm bushings and engine mounts in automobiles. They have studied and
modelled the MRE phenomena [I16], [I17] and are developing tunable vibration absorbers.
MRE absorbers have been fabricated and both stiffness and damping were observed to
increase with increasing magnetic fields [I18]. Additionally, resonant frequency was found
to decrease with increasing input acceleration amplitude attributed to strain-softening

behavior of the elastomer [I119], making this variable spring non-linear.

Zhou notes that a primary difference between MRF's and MREs is that MRF's operate
in post yield conditions while MREs operate in preyield conditions. As a result, an MRE
should be used in a structure to change its natural frequency. Changing the natural
frequency can prevent resonance response or other coupled behavior in a structure. Zhou

studies a device made of silicone rubber and carbonyl iron particles. Zhou models the
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MRE in a SDOF system as

mi = —G(&\ZRE)S:U — B (BMRE) <\/G(BZ\2RE)SW> z, (2.59)

where G (Byrg) is the shear modulus of elasticity for the MRE, By/rp is the magnetic
induction or magnetic flux density, S is the surface area of the MRE, h is the thickness of
the MRE, §,, (Byre) is a damping factor and m is the mass of a covering plate attached
to the MRE. Note that G and f3,, are functions of By rg. Zhou determined G and j3,,
experimentally by fitting experimental data to Equation [2.59] The author concludes that
G (Bure) is a linear function and f3,, (Byre) is a constant.  Zhou found he could vary

the natural frequency of his system from 1397.6 to 1773.5 radians/second [120] or o = 0.62.

In another experiment, Albanese and Cunefare tested silicone mixed with several
different percentages of iron particle concentrations. They concluded that at 35% iron
content, as much as a 400% change in frequency could be made by applying a magnetic
field. In their conference briefing, they concluded 30% iron content could cause a nearly
900% change in frequency. Their results are reported in terms of a~2 or equivalently,

they tested several devices in the range 0.11 < o < 0.91 [121], [122].

Piezoelectric Models.  Stiffness of piezoelectrics can be varied by connecting
them to a capacitive shunt circuit. This and other methods of shunting piezoelectrics for
vibration control was reviewed by Lesieutre [I0I]. A simple method of varying stiffness
of piezoelectric devices is to switch it between open and closed circuit conditions. This
has the effect of changing the electrical capacitance of the piezoelectric device and varies
the stiffness between its highest and lowest stiffness values. The equation of motion for a

SDOF problem discussed by Kurdila et. al. is

ma-é_i_<k5c+W(l_A)>m_W(l_A)xO—F(t), (2.60)
Cp Cp

where k¢ is the short circuit stiffness of the piezoelectric, dss is the piezoelectric constant,
C’}g is the constant strain piezoceramic capacitance, m is a vibrating mass, xg is the dis-

placement of the actuator at the instant the piezoelectric is switched to an open circuit
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condition, and A is either 0 or 1. Setting the control parameter A to 1 sets the piezo-
electric to its lowest stiffness while setting A to 0 maximizes the stiffness. The authors
observe that selecting a control law making zy # 0 introduces a step function into the sys-
tem. They eventually conclude switching should only occur when x4 = 0 to make zg =0
[123]. Richard et. al. experimented with this method and found superior performance as

compared to a resistively shunted nonswitching system [124].

Corr and Clark have also experimented with this concept. For their setup, they
concluded this method provided only small changes in stiffness and was not as effective as
other shunt circuits with associated control laws. Other shunt circuits experimented with

include pure resistor and resistor/inductor shunt circuits [17], [102].

In an earlier paper, Clark analyzed effective beam stiffness in the case of a piezo-
electric bonded to a cantilever. As the ratio of beam to piezoelectric patch thickness

1

decreased, the open circuit to short circuit stiffness ratio or =" was found to increase to

a maximum value approaching 2.0. That is, a — % [125]

Varying stiffness has been used to tune vibration absorbers when the resonant fre-
quency varies. Davis and Lesieutre created and demonstrated a tunable vibration absorber
that tracked a disturbance frequency. The piezoelectric stiffness element was actively tuned
using a shunt circuit ladder of capacitors allowing various discrete levels of capacitance to
be chosen. Davis and Lesieutre were able to vary the natural frequency of their system

by almost 7.5% over a range of 313 Hz to 338 Hz [126]. This translates to an « of 0.86.

More recently, Ramaratnam et. al. propose using piezoelectrics for robotic applica-
tions. They simulated both open and closed switching and the use of capacitive shunt
circuits to minimize tip deflection of a translational flexible beam. Both methods achieved
similar results. The capacitive shunt method allowed a more gradual change in stiffness
than the open/closed switching method. Their predicted equivalent stiffness for the ca-
pacitive method translates to an « of approximately 0.045. Future experimental work is

planned [127].

Other Devices.  Other methods of varying stiffness have been explored. One

approach is to place a MRF damper in series with a spring, which is then placed in parallel
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with another spring, creating a three parameter isolator. Varying the MRF damping then

changes the apparent stiffness of the isolator [128], [7].

Two mechanical concepts for varying stiffness have been discussed in the literature.
One concept is a vibration absorber that consists of a mass attached to helical spring with
a spring collar dividing the spring into two parts. The spring collar isolates part of the
spring from the rest of the absorber and the number of coils used in the absorber can
be changed by rotating the spring [8]. Another concept is to connect two leaf springs
in opposition to each other and use a stepper motor to increase the separation distance
between the two springs. In this concept, the authors report a change of stiffness of

a~! = 62 in a nonlinear range and o~ = 45 in an approximately linear range. The linear

range where o = % = (.02 corresponds to a value for € very close to its largest possible
value [129].
Summary. Table summarizes the results of these calculations for some

proposed hardware values for ¢ and a found in the literature in order of reported ability
to change stiffness from highest to lowest. These devices offer a wide range of choices for

the control system designer, with a potential wide range of achievable performance.

2.6 Semi-Active Control Strategies

It is clear from the previous discussion that passive and hybrid control concepts have
often been used operationally in space applications and are well documented. On the
other hand, no examples of semi-active control have been found operationally in space
applications, though numerous studies (both space and non-space) on the subject exist.
Further, most studies concentrate on vibration absorption and suppression problems with
very little found on vibration isolation. Studies can be divided up into studies using
only variable stiffness, using only variable damping, and using both variable stiffness and

variable damping.

Sun et. al. provides a review of ATVAs through 1995. Tuned vibration absorbers
only function for set conditions which may vary with time. ATVAs overcome this by using

a control system to tune them automatically as conditions vary [4]. Manual tuning of a
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Table 2.2 Parameter Values for Proposed Variable Stiffness Devices in the Literature

Source Year Device o €

Albanese and Cuefare [122] 2003 | MRE 30% Fe 0.01 | 0.98
Walsh and Lamancusa [129] 1992 | Leaf Spring 0.02 | 0.96
Albanese and Cuefare [121], [122] 2003 | MRE 35% Fe 0.05 | 0.91
Albanese and Cuefare [121], [122] 2003 | MRE 25% Fe 0.11 | 0.80
Albanese and Cuefare [121], [122] 2003 | MRE 40% Fe 0.19 | 0.68
Albanese and Cuefare [121], [122] 2003 | MRE 10% Fe 0.31 | 0.53
Williams, Chiu, and Bernhard [109] | 2002 | SMA 0.33 | 0.50
Albanese and Cuefare [121], [122] 2003 | MRE 50% Fe 0.35 | 0.49
Clark [125] 2000 | Piezoelectric Patch | 0.50 | 0.33

on Cantilever (On-

Off)
Zhou [120] 2003 | MRE 27% Fe 0.62 | 0.23
Albanese and Cuefare [121], [122] 2003 | MRE 0% Fe 0.83 | 0.10

Ramaratnam, Jalili, and Grier [127] | 2003 | Piezoelectric (Ca- | 0.91 | 0.05
pactive Shunt)
Davis and Lesieutre [126] 2000 | Piezoelectric (Ca- | 0.93 | 0.04
pactive Shunt)

vibration absorber with a large tuning range (1375-2010 Hz) was demonstrated using a
magnetostrictive device [I30]. Davis and Lesieutre were able to automatically tune an
ATVA in discrete steps using a capacitive shunt piezoelectric device [126]. Franchek et.
al. has also designed a tuning scheme, which was experimentally verified on a subscale

building [§].

The control law idea of maximizing or minimizing an element has also been used in
variable damping devices. For example, Yao et. al. designed this type of controller for
an automotive shock absorber [14] and used a nonlinear function of velocity to switch the
damping. The control law used is called the skyhook damper and will be discussed further

below.

However, study is not limited to this type of control law. Spencer et. al.’s develop-
ment of better MR damping models opens the possibility of improved vibration control [94].
Oh, Onoda, and Minesugi simulated an improved control as compared to on-off damping
with an ERF damper used to isolate reaction wheel disturbances. While the improved

control law used on-off control, the damping was not always maximized or minimized at
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all frequencies tested, which decreased the effects of harmonics created by instantaneous

on-off switching [I31], [132].

Wang and many associates have examined several different kinds of semi-active con-
trol laws.  Sliding mode control has been studied in depth with multiple semi-active
dampers to remove vibrations of a simply supported beam [133], [03], [I134]. Wang et.
al. have also considered using energy based control laws similar to those described in the
next section. They mounted two piezoelectric patches to a cantilever beam near the fixed
support and used one to disturb the beam while using the other to damp out disturbances.
The piezoelectric damping out disturbances was connected to a shunt circuit with a vari-
able inductor and variable resistor. An energy based control law was created to vary the
resistance, inductance and the rate of change of the inductance in the shunt circuit. The

system was simulated and disturbances to the beam were attenuated [105].

Almost no results were found on semi-active control where both stiffness and damp-
ing are varied. Kidner and Brennan used a fuzzy controller to vary both stiffness and
damping of a vibration absorber, allowing both improved performance and tuning of the
absorber [I135]. Kimbrough discusses bilinear systems and develops a method for control-
ling stiffness, damping or both. The method results in a nonlinear control system and
was applied to variable damping suspension systems for automobiles [136]. Jalili explored
a combined semi-active/active combination where the semi-active system is tuned, the ac-
tive system is changed adaptively, or both systems are changed together [I37]. Finally,
Jalili has also considered semi-active control for vibration isolation for a SDOF system [3].
He reviews the possibility of tuning a vibration isolation system by varying the natural

frequency of a system [138].

Minimizing Energy Change through Variable Stiffness. Vibrations in a structure
can be damped out by varying stiffness in the absence of damping and has been developed
for suppression problems. Leitmann formulates a simple though not necessarily optimal
on-off control law considering both variable damping and variable stiffness for the SDOF
suppression problem and finds that setting damping as high as possible removes the most

energy from the system [77]. This variable stiffness control law has also been considered

2-33



by others, and is briefly discussed, though this control law is not necessarily an optimal
law [78], [139]. Rearranging and multiplying Equation through by & and then making
use of Equations and the change in energy, the rate of work, or the power of the
system is found by taking

B (e, up) = mid = —c (ue) & — k (up) 2 + Q. (2.61)

To make E (uc,uy) as negative as possible, it is clear that ¢ (u.) should be maximized

(c(uc) = Cmax) and
ki (=1) = b if 23 < 0
k(ug) = (2.62)
k(1) = kma if 23 > 0

where kmax is the maximum stiffness the variable stiffness device can create while ki is
the lowest stiffness the variable stiffness device can create. The energy of the system can

be found by integrating F (u,,uy) over time resulting in

ma? k (uy) z2

B (teyug) = "o = =% +/Ot (—c(uc)x'2—|—Qm')dT. (2.63)

Hence, E (u., ux) represents the kinetic energy of the system due to the motion of the mass.

Douay and Hagood developed optimal control laws for the variable stiffness problem
with no damping. They conclude the optimal control delays switching time, having the
effect of increasing equivalent natural frequency while decreasing equivalent damping ratio
of the system. The control law increases energy dissipation more than the simple control
law. An explicit form for the control law is not developed, but is shown graphically from

numerical simulation [139].

Kobs and Sun developed optimal control laws for the variable stiffness problem also,
but realized that real systems cannot switch instantly, as assumed by on-off type control
laws. They created a continuous control law that accounts for both tuning range and
rate of change for a variable stiffness device. They showed the continuous control law
dissipated less energy than a on-off control law, but conclude a continuous control law is

more representative of reality [140)].
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Crespo and Sun also developed optimal control laws for both the variable stiffness
problem and the variable stiffness problem with constant damping. They used a numerical
method called simple cell mapping to develop solutions to these problems. Their method

allowed them to graphically present an optimal on-off control law of the form
up = sgn [(Mz + &) (Aot + )], (2.64)

where A1 and Ay are parameters implicitly chosen by their optimization method. This
control law seems to have first been proposed by Onoda, who found the optimal settings
for Ay and Ay for a SDOF suppression problem with no viscous damping [I41]. Crespo
and Sun observe that "analytic" solutions in the form of numerical simulations exist in
the literature to the variable stiffness with no damping SDOF problem. They further
note that neither analytic nor numeric solutions to the variable stiffness constant damping

problem appear in the literature [142], [143].

Minimizing Energy Change through Variable Damping. A review of the literature
credits Karnopp et. al. with first discussing the concept of the skyhook damper and the
following discussion is derived from their article [80]. Consider a free-free 2 DOF system
(see Figure with spring constant k and a viscous damper with damping coefficient ¢

isolating the two degrees from each other. The isolator can be described as
g(x, &) =c(ig—a1) + k (x2 — 1) . (2.65)

This is a typical passive system with many limitations already discussed in section [2.3

Karnopp et. al. cites linear optimal control theory to conclude that the ideal isolator is

g(x, &) =cio+ k(xg —x1). (2.66)

Physically, to realize this ideal control law, the damper must be connected to an
inertial reference. This is impossible for many systems, so the idea of a skyhook damper
is to create the same forces a damper connected to an inertial reference would create.

This can be accomplished through active control and can be partially created through
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semi-active control. The force of a damper Fy will dissipate energy only when

Fy (i — 1) > 0. (2.67)

The nonlinear control law for the force of the semi-active damper is

F;=ciy, if @9 (ig — jﬁl) > 0. (268)

A damper cannot create a negative damping force when

Fy (i‘z — .fl) <0 (2.69)

since the damper has no capability to add energy to the system. Active control has this
capability. To most closely approximate an active system, the force of the damper is set

as low as possible, or ideally,

Fy=0 if @ (#9 — &1) < 0. (2.70)

Karnopp discusses two special cases when &y (29 — 1) = 0. If 29 = 0, the Fy = 0.
When (&2 — %1) = 0, the semi-active damper can ”"lock up” the system. These cases
happen rarely, and usually for a finite amount of time before the system returns to another

condition.

2.7 Some Conclusions on State of the Art

A review of some of the space applications for vibration control technologies shows
immense challenges. Some of these challenges are being met today using passive, active,
and hybrid control concepts. However, these technologies may not be able to achieve
all future challenges identified in their current forms. While many of these technologies
are mature, much opportunity for research exists in semi-active control, though it is not
clear if these technologies can meet all of the future challenges. The literature shows that

smart materials have been and are being developed that make semi-active control concepts
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physically viable. Research opportunities exists in the realm of smart materials in creating
better analytical models for use in vibration control applications. Much work has been
found showing how smart materials can be applied to the vibration absorption problem,
and this area is clearly an area rich in research opportunities. It also appears gaps exist
in the literature in that limited information was found on semi-active vibration isolation
as opposed to vibration absorption where much more exists. Hence, semi-active vibration

isolation may have even more opportunities for research than vibration absorption.

A review of semi-active vibration control literature shows semi-active control prob-
lems are inherently nonlinear. Several authors have identified the need to gain a better
understanding of control schemes using nonlinear control devices [3], [II]. Unfortunately,
the nonlinearity makes analysis both difficult and time consuming. Because of the nonlin-

earity of variable damping and variable stiffness devices, analysis is even more difficult.

In order to begin developing new insights and engineering tools for this challenging
field, a model that could be analyzed and provides some insights into how a real system
would behave was needed. It was decided to begin where the literature stops by choosing
a relatively simple problem, which provides some knowledge of real systems. One such
model is Equation 2:13] Since varying damping greatly complicates the analysis and is
not as helpful as using constant damping for initial value vibration suppression SDOF
problems (see Section , damping was made constant. Hence, the equation of motion

considered is
mi (1) + ¢ (1) + 1 (ks + ko) + (bt~ ko)u (M2 (0 = Q) (271)

where

u (A1, A2) = sgn [(Mz + ) (Aot + )] (2.72)

Understanding Equation [2.71] represents an incremental improvement over the cur-
rent state of the art since past analysis has considered problems with no damping. Further,
while past analysis has made use of the proposed two parameter control, the analysis is

somewhat incomplete. In practice, it moves analytic understanding of semi-active control
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problems closer to experimental real world research which has been going on over the last

decade.

Hence, in Chapter [3| the initial value problem with @ (¢) = 0 is solved for the first
time exactly. An approximate solution linked to the exact solution is then developed
and both solutions are used to develop new insights. In Chapter 4] the sinusoidally
forced problem is approximated and some new insights are developed. Interestingly, the
approximate solutions that were developed in both chapters are linear. Hence, Chapter
demonstrates some instances where the linear approximations of Chapters [3] and [] can
be used to gain insights into MDOF problems, which begin to approximate the expected

behavior of real space system structures.
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3. Initial Value Variable Stiffness with Constant Damping SDOF Problem
8.1  Introduction

An exact and approximate solution to Equation [2.71] an initial value SDOF variable
stiffness suppression ordinary nonlinear differential equation (ODE) with constant damping
will be developed. Winthrop et. al. recently solved this problem for the case of no viscous
damping using a simpler control law than the one that will be used here [144]. Equation
[2.71] was selected to be approximately representative of a true variable stiffness system
which can be analyzed. The purpose of this analysis is to 1) determine the optimal
control of the system using a general on-off control law, 2) determine system stability, and
3) develop an approximate explicit solution to the exact implicit solution to develop insight
into what variable stiffness contributes. Equation [2.71]is immediately nondimensionalized
since nondimesionalizing the ODE greatly simplifies it and allows generalization of the

results to any dimensional problem.

Next, the nondimensional second order ODE is transformed to two first order ODE’s
which are related to the phase angle and amplitude of a trajectory in the phase plane.
The first order ODE’s are simpler to solve than the untransformed second order ODE.
The ODE’s were solved implicitly, treating time as though it was a dependent variable,
rather than an independent variable. In the process, different types of behavior for the

system are identified and the exact switching times for the system are found analytically.

The resulting solution to the two ODE’s was complicated and resulted in a transcen-
dental equation that cannot be solved explicitly. Hence an explicit approximate solution
was developed to better explore system behavior. The explicit solution has the same form
as a linear viscously damped oscillator, so equivalent damping ratio, natural frequency,
and damped natural frequency was found. Using the approximate and exact solutions,
an expression for guaranteed system stability and an approximate optimal control of the
system were found. Afterward, examples showing how the system behaves are provided.
Following the examples, the energy use of the stiffness device is explored. The analysis is
concluded by identifying design metrics that can be used to understand variable stiffness

devices.



3.2  Nondimensional Equations

From the literature [77], the initial value variable stiffness vibration suppression prob-
lem

1
m (R k) + (k] — k) u] 2t =0, (3-1)

was selected for study where m is the mass of the system, ¢ is the damping coefficient,
ko is the smallest value the stiffness can be, k1 is the largest value stiffness can be, x is a
reference displacement, and u is a control law to be specified later such that —1 < u < 1.
The ”*” superscript designates a variable as a dimensional variable, while variables without
the ”*” superscript are nondimensional variables. The initial conditions considered herein

are either for initial displacement or initial velocity defined as
z*(0) =z, %(0)=0 (3.2)

or

2*(0) =0, &*(0) = &f, (3.3)

respectively. Equation [3.1]can be nondimensionalized by defining the uncontrolled natural

. kR
Wo = 02m* 17 (34)

and by defining a reference length L*, such that the nonzero initial condition is unity. For

frequency (u = 0)

the initial conditions of Equation use

L* = zf, 3.5
0

while for the initial conditions of Equation [3.3| use

=20, (3.6)
0
Nondimensional time can be scaled to be
t=t"wp (3.7)



and the displacement can be scaled to be

r=—. (3.8)

When L* = 0, Equation becomes invalid. However, L* = 0 implies no initial distur-
bance to the system, resulting in the trivial solution for Equation [3.1} Equation [3.1] can

then be rewritten in nondimensional form as

Z+2uz 4+ (1 +eu)z =0, (3.9)
where
- ¢ (3.10)
= am (e 1 k) '
and
ki — ko
€= 3.11
k + kg (3:11)

Note that 0 < ¢ < 1. Further, p will be restricted such that 0 < p < 1. This was done
to allow selection of an oscillatory solution form, though it restricts the solution range
of validity. When ¢ = 0 and p < 1 Equation [3.9] is an underdamped system with an

oscillatory solution. [71]

A two parameter on-off control law is used given by

u(x,z) = sgn[( Mz + &) (Aot + )] (3.12)
where
1 ifz>0
sgn(2)=4q 0 ifz=0 , (3.13)
-1 iftz<0

and \; and Ao are real valued design parameters of the controller. In the special case
when \; = Ay = 0, Equation becomes the simple though not necessarily optimal
control law discussed by several authors [77], [78], [I39]. With a proper transformation

and when ¢* = 0, Equation [3.1] can be used to model a SDOF variable stiffness system
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with a piezoelectric actuator using a short circuit/open circuit switching device, modeled

by Kurdila et. al. The SDOF piezoelectric model used is

I R N .
m*E +<k‘ —I-CG*(l—A))x:() (3.14)
P
where k¢ is the short circuit stiffness of the piezoelectric, d34 is the piezoelectric constant,
C’Ig* is the constant strain piezoceramic capacitance, m* is a vibrating mass and A is either
0 or 1 [123]. Letting

*

k§ = k%€ (3.15)
and

(1 )’

ki =k + :
Cp

(3.16)

transforms to Equation (3.1

Equationwas proposed by Onoda et. al. [I41] and is implied by Crespo and Sun
[142] from an applied optimal control method. This control law assumes instantaneous
changes in stiffness, which is not realistic [140]. However, when the variable stiffness device
time constant is much shorter than the time constant of the actual system, Equation [3.12]is
expected to be a reasonable approximation of reality. One way to verify this is to measure
the switching time of a variable stiffness device and compare it to the reciprocal of wy
calculated by Equation In section [3.13] a more accurate system time constant will
be derived that can be used to validate the instantaneous change in stiffness control law.
Equation [3.12) was chosen because it is general enough to consider nearly any switching
policy and makes use of physical quantities that are easy to measure in real physical

systems.

3.8 Transformed Equations by Method of Variation of Parameters

Equations [3.9] and can be transformed into two first order differential equations
using the method of variation of parameters as shown in Appendix [B] The solution to
Equation [3.9]is of the form

x = ae " cos ¢ (3.17)



and the velocity is of the form

&= —ae M [pucos ¢+ sin ¢] = —x [ + 1 tan @] (3.18)

where a and ¢ are functions of time. Using Equations and the control law can

be transformed into

u () = sgn([\ — (p+¢tan @) [1 — A (1 + ¢ tan @)]) . (3.19)

where

W =+/1— 2. (3.20)

The functions a and ¢ satisfy the differential equations

b= 17(8) +cos 20)] =% (Seo? 6+ 1) (3.21)
and
% = % sin (2¢) (3.22)
where
@) =7(6) =2 +1 (323
and 2
0= % (3.24)

Because 0 < < 1, 0 < 9 < 1 implies § > 0. For the initial displacement problem, the

initial conditions are
-1 H 1
—, ag = —. 3.25

For the initial velocity problem, the initial conditions are

¢0 = —tan

(3.26)
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Both versions of the initial conditions are derived in Appendix[B] Note that ¢y 0 in the
initial displacement problem since ¥ # 0. In Equation € — 0 implies 6 — oo, and
Equations and simplify to ¢> = ¢ and % = 0. These equations have solutions
¢ = Yt + ¢g and a = ap, which when substituted into Equation yields the simple

linear underdamped oscillator
x = age " cos (Yt + ¢y) . (3.27)

Hence, v represents the damped natural frequency of the uncontrolled system (u = 0).
The parameters J and ¢ have no physical meaning when ¢ = 0. However, when ¢ > 0,
these parameters will later be shown to define if the system is underdamped, critically

damped, or overdamped in the classical sense.

Another way to interpret Equations and is to put them in polar form as
T
—=—[p+¢Ytang] = tan ® (3.28)
T

and
ae Mapy/1 + tan® @
rT =
V14 2 tan ® + tan® @

(3.29)

where @ is an angle of rotation of a trajectory in phase space or phase angle while r is the
distance from the origin of a trajectory in phase space. When p = 0, Equations [3.28 and
simplify to the standard polar coordinates transformation. Equation [3.28|is an affine

transformation for phase. Therefore, both ¢ and ® will be called the phase of the system.

3.4 Solution Strategy

Equations and will be solved implicitly using the method of separation of
variables. Equations and can be rewritten as

26d¢

W= G @ T (@) + cos 29)

(3.30)
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and
da ¢

sin (2¢) do
J (p) + cos (2¢)

Next, it is tempting to immediately integrate both equations as

(3.31)

)
t 2 dd
/0 ar =" J w@ 1 @)+ con (2] (3.32)

and

¢
“dA sin (2®) d®
/ 7 (3.33)

A ®) + cos (2P)

ao
0

where A, ®, and 7 are dummy variables of integration. Unfortunately, the integrals on
the right hand side of Equations and can have discontinuous integrands and also
have different solution forms depending on the values of J. To evaluate Equations [3.32
and [3.33] the right hand side must be broken up into sums of integrals over the intervals
of continuity and the effect of varying J (Equation must be understood.

3.5 Bifurcations and Solution Region Definitions

Applying the control law of Equation [3.12] in Equation demonstrates a number
of behavioral changes or bifurcations by varying the parameters €, p, A1, and Ay. These
changes result in rich behavior for Equation [3.9] which is common in nonlinear equations.
This behavior creates different solution regions which can be identified in the ¢ and u
plane and in the A\; and Ay plane. The next sections will derive and identify these solution

regions.

Bifurcations due to Varying Stiffness Using an On-Off Control Law. Equations
and have two different forms due to how J (defined by Equation depending
on v = £1. This bifurcation is a direct result of varying the stiffness of the system using
the on-off control law of Equation Since J (¢) is constant for a particular u, two new
constants will be defined. When u = +1, define

J(p)=Jp, 2 1+2§ (3.34)
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and when v = —1, define

J (@) =Jm=1—20. (3.35)

The subscript p corresponds to v = 1 and can be thought of as an abbreviation for "plus."
Similarly, the subscript m corresponds to u = —1 and can be thought of as an abbreviation

for "minus."

Phase Switching Angles. Next, it must be determined when a switching
events occur, in terms of the phase ¢. The phase ¢ will switch to a different function

whenever u = 0. Applying Equation switching occurs when

Ay —
tang = - H (3.36)
(G
or
1— Aop
tan ¢ = . 3.37
For convenience, the angles
_ (A
¢ = tan _ (3.38)
G
and
(1= >\2M>
= tan ! 3.39
6y = tan~t (15 (3.9
are defined where ¢; and ¢, are the principle values of the tan~! function (i.e. -5 <
¢1,$3 < 5). Then the behavior of the phase angle ¢ will change when
¢=¢1,01 + 7 Py +2m, ... (3.40)
or
¢ = ¢,y + 7, Py + 27, ... (3.41)

The Control Law Parameters A1 and Ao.  The parameters A\; and Ao can be
physically interpreted using Equation in phase space as shown in Figure When a
trajectory of the system is in the shaded area, u = 1. Otherwise, u = —1. The settings for

A1 and A2 change where control switching occurs, which changes the system performance
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(as will be shown). The phase angles ®; and ®3 can be calculated using Equations

and
MIIIJ'-.-_ £ :
L

.

Figure 3.1  w in Phase Space (Shaded area v = 1, Unshaded area u = —1)

Depending on the values of A1 and A2, and considering Equations and three

cases arise. Either ¢ < ¢y, ¢1 = ¢y, O ¢; > ¢9. The case where ¢; = ¢, implies
AtAg =1, (3.42)

making the two switching lines of Figure [3.1] collinear. The result is no switching can

occur. This is easily seen by substituting Equation into Equation resulting in:

u(z, &) = sgn [)\2 (Ao + Lb)ﬂ = sgn (A2) . (3.43)
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This case is not considered further.

The other two cases present possible switching control laws for Equation[3.12] When
P < Ppgor A\ < /\%, Equations and can be combined in order of smallest to highest

switching angles as

¢:¢1,¢2,¢1+7T,¢2+7T,... (344)

Similarly, when ¢; > ¢5 or Ay > )\—12 order of switching angles becomes

¢ = 09,01, P2 + T, P71 T, (3.45)

Figure [3.2] shows settings for A\; and Ay where this bifurcation in the solutions occurs.
The unshaded areas represent the regions where Equation applies while the shaded
areas represent the regions where Equation [3.45| applies. It is immediately apparent from

Equations and that ¢ is periodic and has period 7.

Continuous Intervals for ¢ and a Bifurcation in As. Equation [3.44] and
define phase angles where a switch in u occurs. Between these switching angles are
continuous intervals where no switching occurs and v = £1. In this section, the settings
for A1 and Ag for a particular value of w in a continuous interval are determined. In the

process, a bifurcation due to the parameter Ao is identified.

When A2 # 0 Equation [3.19| can be rewritten as

AL — 1—A
u(¢) = sgn < L— A tan d>> sgn (A2) sgn ( 28 _ tan ¢>> (3.46)
(0 A2t
or recalling Equations and

u(P) = sgn (A2) sgn (tan ¢, — tan ¢) sgn (tan ¢y — tan ¢). (3.47)

When Mg = 0,
u(¢p) = sgn (tan ¢; — tan @) . (3.48)
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Figure 3.2  Bifurcation due to Varying ¢; (A1) and ¢, (A2). (A1 < i Unshaded Area,
A1 > /\1—2 Shaded Area)

A bifurcation point exists at Ay = 0 because changing As < 0 or Ao > 0 immediately

changes the sign of u(¢). Suppose ¢; < ¢y and ¢ € (¢p; + nw, Py + n7), where n =
0,1,2,.... When Ay > 0, u = —1. When A2 < 0, u = 1. Now, suppose ¢; > ¢y and
¢ € (¢ +nm, ¢y +nmw). When Ay > 0, u = —1. When \y < 0, u = 1. Notice it is
impossible for A2 = 0 and ¢; > ¢, since it requires A\; — oo, which will at best, make
¢1 = ¢9. DBesides being unrealistic to implement with real hardware, ¢; = ¢4 implies
Ao = 1, which creates a nonswitching variable stiffness system. As previously discussed,
the solution to the nonswitching variable stiffness system is a simple viscously damped

linear oscillator, which is already well understood.
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Bifurcations due to Damping and Variable Stiffness Strength: Underdamped, Criti-
cally Damped, or Overdamped. For ease of analysis, the properties of J2, and Jg are
examined in preparation for solving Equation [3.2I] These parameters mathematically
define what the solution form will be for Equation [3.21] By examining the original dif-
ferential equation of the system (Equation for a value of u, it is possible to label in
a classical sense whether the system is underdamped, critically damped, or overdamped.
Correlating physical insight with the solution form for Equation defines what type of

system is being analyzed.

When u = 1, Equation is valid and it is clear that J, > 1 since 6 > 0. The
characteristic values of Equation are s = —pu+1i4/1 4 € — p2, which are always oscilla-
tory for 0 < e <1 and 0 < pu < 1. Therefore, the system is always underdamped when

% = 1 and no bifurcation exists.

When v = —1, Equation is valid and it is possible for J2, < 1, J2, = 1, and

J2 > 1. Depending on the value for .J,,,, the system will either be underdamped, critically

damped, or overdamped. Table summarizes how J,, varies for settings of pu and e.

The characteristic value of Equation [3.9] was correlated with the possible values for .J,,

to develop physical meaning. Figure [3.3] graphically depicts the three different regions of
Table 3.1] where

fierip = V1 —¢ (3.49)

is defined as the transition between regions and defines when the system is critically
damped. When ¢ = 0, the system is underdamped for p < 1. This is the behavior
of a simple linear oscillator with viscous damping. When ¢ = 1, the system can never be

underdamped.

Since the system switches between u = +1, it is possible for it to switch between
two underdamped systems, an underdamped and critically damped system, or an under-
damped and an overdamped system. For convenience, a system that switches between
an underdamped and a critically damped system will simply be called a critically damped
system. Similarly, one that switches between underdamped and overdamped will be called

an overdamped system. With these definitions, it will be seen later that it is possible to
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Table 3.1  Variable Stiffness Constant Damping Problem Conditions for Underdamped,
Critically Damped, or Overdamped System

J2, Value | Damping/Stiffness | Eigenvalues System Property
Relation

J2 <1 Popiz < b <1 s=—p+t \/,uQ —p2,, | Overdamped

J2 =1 = fhepit S=—u Critically Damped

J2 > 1 0 < p < fhepir §=—pu=x i\/ﬂgm — p2 | Underdamped

have an oscillatory response for underdamped, critically damped, and overdamped systems,

with the proper settings of the control law wu.

Solution Forms for Phase and Amplitude.  Equations and are rewritten

as
/tUd — 25/U de (3.50)
T=ty—tr=— :
- veHET Y J u (J + cos (29))
L
and
aw A " sin (20) do
sin
2 n(ay) -1 _ [ SmiER) A% 51
/aL A n(au) —In (ar) /J+Cos (2@) (3:51)
oL

where the intervals (¢, ¢1), (tr,tr), and (ay, ar) are continuous intervals. From the pre-
vious discussion on bifurcations, the intervals of integration and the solution to Equations
and varies by changing A1, Ag, i, and . The solution to and will be a
summation of these continuous intervals identified by the phase switching angles. The so-
lutions to all of the integrals in this section were found using standard integral tables.[145]
To simplify writing the exact solution, the actual bounds of integration will be considered

later. Only the solution form is studied here.

Solution Forms for Phase. The right hand side of Equation has four
solutions, depending on whether v = +1 and the settings for p and €. The following
solutions make use of Equations and Additionally, the constants

op =V +e (3.52)
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0z

0.1

and

: 2
Om = 0 if M= Herit = ‘w o 6‘
Ve—v9" i pigy <p <l
are defined to simplify the solutions. When u = 1, the solution is
25 (v dd 1
— — = — |tan! E tan ¢y | — tan™? E tan ¢y,
Y Jg, Jptcos2® oy op op

F¢p (¢L> ¢U) =

Underdamped Region

0.1 0.2 0.3 0.4 0. 06 0.7 0.2 09

Figure 3.3  Overdamped and Underdamped Regions

¢2*5 if 0§M<:U’cm't
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When u = —1, the solution is

275 Py dd
Y Jg, Jm+cos2®

1 tan™ (Um QSU)

Ly, (01, 00) (3.55a)

if 0< H< Hepit

| —tan~? (ﬁ tan )
= 7 ANOL (3.55b)
- i [cot ¢y — cot ¢ ] i = freri

1 Ytan gy tom Ytan g —om .
_mln [(wtalﬂﬁgfam) (¢tan¢>i+am>:| if it < B < 1,
which accounts for the three possible damping conditions of Table when v = —1. Note

that all forms of Equations and use the tangent function which has the identity

tan (¢) = tan (¢ + nmw) where n = 0,1,2,.... This result is used later to simplify answers.

Additionally, in using Equations [3.54] and [3.55b] care must be used when calculating the

arctangent function to make sure the value returned is in the correct quadrant. For

Equations [3.54] and [3.55b] to evaluate correctly, they must always return a nonnegative

™

real value, to be physically realistic. One way to force this to happen is to add ;TT, or -

to the results of Equations [3.54] and [3.55b], respectively, whenever the function evaluates

to something less than 0. This is only done for the functions that use the arctangent

function.

Solution Forms for Amplitude. The right hand side of Equation has
two solutions, depending only on v = £1. The following solutions again make use of

Equations [3.34] and [3.35] When u = 1, the solution is

sin (29) d® §+ cos? ¢, Y? +ecos’ g
Ly 5 = T o (00 5+ cos by, P2+ ecos? ¢y
) aﬁ/ Ty +cos(20) [ G+costay ¥ +ecostay
L

When u = —1, the damping conditions of Table have no effect on the solution. The

solution is
Pu 2
r (6.0 )_/ sin (20)d® | |§—cost¢, | [4?—ecos?oy
Am L»YU) — Jm—I—COS 2(1) —C082 ¢U ’(/}2—€C082 ¢U.

br
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Considering Equations and Equation [3.51]| can be simplified since it is written in
terms of the natural log function on both sides of the equation. Depending on whether

u = £1, Equations [3.51] , [3.56] and [3.57] can be rewritten as

2
U ay (6 00) = \/ Fr \/w ey (3.58)

ar, §+cos2dy | ? +ecos? gy

or

2
W — (6100 = \/ Docosdn _ ¢ Ve (359

ar, §—cos?dy | ¢ —ecos? oy
Both Equations and use the square of the cosine function which has the identity

cos? (¢ + nm) = cos? (¢) for n =0,1,2,.... This result is used later to simplify answers.

3.6  The Range of the Phase Angle

The range of ¢ can be found by studying Equation|3.21l The purpose of understand-
ing the phase is to determine when ¢ increases without bound or when it is bounded by
a constant. This is important to allow better understanding of the solutions of Equation
m When ¢ is bounded, the control law of the system (Equation may not switch at
all. Without switching, the system behaves like a simple damped linear oscillator, which
defeats the purpose of using variable stiffness. Hence, it is important to understand where

no switching occurs, to properly design a control law.

Critical or Stationary Points.  When gb = 0 in Equation ¢ becomes constant
and the control law is no longer switching. Hence, ¢,,;; will be defined such that ¢ = 0.

From Equation @erir €xists only when v = —1 and implies

€082 Py =0 (3.60)
or
Om
tan @i = i?v (361)

where only the principle values of the tangent function are used to define ¢,,.;. Notice

™

—5 < Goip < 5 and ¢y # £5 since § > 0. The only time ¢,;; can exist is when

3-16



0 <6 < 1. It was previously shown that when 0 < & < 1, the system is overdamped
and when § = 1, the system is critically damped. Since ¢,,;; does not exist when § > 1,
settings making the system underdamped implies Equation [3.19) will always switch at

regular intervals.

Critical Points for Phase Angle. Next, it will be proven that when ¢,,;; exists,
0o < b Recall that ¢y is the phase of the system at time ¢ = 0 and is defined by

Equation [3.25| or [3.26] To prove ¢ < ¢, the following Lemma is required.

Lemma 1 When ¢, exists, i — oy > 0.

Proof. By definition, 0 < & < 1 which implies

1—¢>0. (3.62)

Adding and subtracting 2 on the left side of Equation and recalling Equations
3.20] and 13.53] results in

pr—e+l—pt=p*—(e—y?) =p*>—02 >0 (3.63)

Note that since ¢,,,;; exists, then by Equation 02, = 0 when the system is critically
damped and 02, = ¢ —1? when the system is overdamped. Factoring Equation results
in

(w+om)(w—om) > 0. (3.64)

Since p+ 0, >0, u—0,, >0. W

Now it can be proven ¢, < ¢..;;- The proof is given for the initial displacement

problem and the initial velocity problem.

Theorem 2 When ¢,,;; exists, ¢y < Pppit-

Proof. Because i1 + 0,,, > 0 when ¢,,.;; exists,

g

<:|:7m
(4

_ % (3.65)
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which implies

T —tan ' B < tan 1 I = Derit (3.66)

2 (0 (0
Note that —g < —tan_lﬁ is true because 0 < ¢ < 1 and p < 1. The two terms on

the left hand side of Equation [3.66] are definitions of ¢, for the initial velocity and initial
displacement problem (Equations and respectively). Then ¢y < ¢ppir- ®

Effects of Control Law Tuning.

Boundedness and Increasing/Decreasing Criteria for Phase. Substituting

®erir into Equation when u = —1 implies

P‘l - (,U, + ¢taﬂ (bcrit)] [1 - )‘2 (/’L + T/Jtan ¢c7‘it)] <0. (367)

Substituting Equation [3.61] results in
M= (wton)l[l—A(pton)] <O. (3.68)

Solving Equation [3.68| results in

M >p—o, and Ao > (3.69)

Bt om

or
1

M <p+o, and A < .
H—=0m

(3.70)

The shaded areas of Figure illustrates the regions where ¢,.;; exists in the A; and
A2 plane. It will be shown that in the regions where ¢, exists (shaded regions), ¢ is
bounded and where ¢,,;; does not exist (unshaded regions) ¢ is not bounded. The fact
that there are regions where ¢,,.,; does not exist means it is possible to design a system that
switches between underdamped and overdamped or underdamped and critically damped

states. This result will be examined in more detail, later.

First, the criteria when ¢ is an increasing function and when it is a decreasing function

will be identified. Understanding the behavior of gb will make it possible to understand
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Figure 3.4  Regions where ¢,,;; Exists (Shaded Area)

what ¢ is bounded by. Letting u = 1 in Equation results in ¢ = (% cos? ¢ + 1) >0

since both ¢ > 0 and § > 0. Hence, when v =1, ¢ > 0.

In the case when u = —1, it is possible for ¢ > 0 and ¢ < 0. Substituting u = —1
into Equation results in qu =1 (—% cos? ¢ + 1). Then, ¢ > 0 when

cos’ ¢ < & (3.71)

and qb < 0 when
cos? ¢ > 0. (3.72)
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Regions where Variable Stiffness Switching Stops. Regions in Figure
where ¢ is bounded by ¢,.,.;; will be identified. When ¢ reaches ¢, ¢ no longer changes
since ng = 0. Variable stiffness switching stops because ¢ never increases enough to
reach the next switching phase angle. The next theorem identifies the regions where ¢

approaches ¢, for ¢; < ¢5. Although not shown, when ¢; > ¢y such that \y > p— oy,

1
H—om’

and Ag > then ¢ will also approach ¢,,;;. This proof is omitted since it is similar

to the case where ¢; < ¢.

Theorem 3 The conditions u = —1, ¢..;; exists, and ¢; < ¢ < @iy < ¢o tmplies

1
H—O0m

M < p—0py and Ag < Further ¢ is an increasing function.

Proof. Substituting Equations [3.38] [3.39, and [3.61] into the inequality ¢; < ¢ <

Gerit < G results in

_ )\1—/1) —10m -1 <1_>\2N)
tan ! <¢p< —tan - — < tan . 3.73
< (0 =¢ (0 A2t (3.73)
Simplifying results in
1
M < Ytano+pu< p—op < oV
2
Then
A< n—0m (3.74)
and
1
Ao < . (3.75)
H—=0m

Now it is shown that ¢ is an increasing function. It is sufficient to show Equation [3.71]is

true when ¢ = ¢;. Since Equation is true,

M <p+om (3.76)

is also true since o, > 0. Then

M—p+on) M —p—0om) >0 (3.77)
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or

M —2\p+p?—o2, >0, (3.78)

Recalling Equation and because ¢,,.;, exists implies pz.;; < p < 1 or 02, = ¢ — 2,
M—2M\p+1l-e>0 (3.79)

since p? + 1?2 = 1 by Equation Rearranging and multiplying through by 2,

2 2
. v (3.80)
€ A —2Mp+1
Recalling Equations [3.24] and [3.3§ results in
§ > cos® ¢. (3.81)
]
Figure summarizes the regions where ¢ — ¢.,;;, when ¢,,.;; exists.
Corridors of Rapid Variable Stiffness Switching or Chattering. Next when
u = —1, values of A\; and Ay where qb can be negative are determined. Rewriting the defin-

itions of ¢; and ¢y (Equations and [3.39)) in terms of cosine functions and substituting

into Equation [3.72| results in

2 2
cos? ¢y = 2w— > ¥ (3.82)
)\1 — 2)\1/1/ +1 9
and
242 2
A
cos? ¢ = 21/}—2 > zp— (3.83)
A5 —2Xou+1 €
Solving for A1 and As results in
p—0m <A\ < p+0om, (3.84)
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Figure 3.5  Regions (shaded) where ¢ — ¢,,;; when ¢,,.;; exists

and

(3.85)

The fractions in Equation [3.85] can be reduced to a more recognizable form by multiplying

the left fraction by “=2™ and the right fraction by 4=
Htom H—0m

Then, by recognizing p? — o2, =
p? —e+1? =1—¢, (which is true only when ¢,,., exits), Equation can be rewritten
as

<A < .
Mt Om H—0m

Equations and define the two "corridors" seen in Figure When ¢; < ¢, and
Equation holds, letting ¢ = ¢; in Equation makes ¢ negative. The same result
applies for Equation when ¢; > ¢ and ¢ = ¢,. In the previous section, regions

(3.86)
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were defined where ¢ — ¢,,.;;. Some of these regions overlap the "corridors" defined by
Equations and In these overlapping regions, ¢ cannot reach ¢; when ¢; < ¢,
or reach ¢y when ¢; > ¢, since ¢ must cross through ¢ = ¢,.;; to do so. At this point,
q'b = 0 and ¢ becomes constant. Hence, ¢ < 0 for Equation only when A1y < 1.
Similarly, ¢ < 0 for Equation only when A1\ > 1. The shaded areas of Figure

show the regions where ng < 0 occurs.

Figure 3.6  Rapid Switching or Chattering Corridors

The result of being in one of the regions is ¢ increases until it reaches either ¢, or ¢,
depending on which region. When ¢ = ¢; or ¢ = ¢, ¢ becomes negative, causing ¢ to
decrease. Since ¢; and ¢, are switching angles, the control law switches when ¢ decreases
until it is less than ¢; or ¢4. At this point, ¢ > 0 and ¢ increases again. This switching

cycle repeats endlessly, resulting in rapid switching or chattering of the variable switching
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device. In running simulations, the switching time is extremely rapid, but the number of
switches is finite. For example, there can be as many as 5 switches in 0.1 nondimensional
time units. From a practical standpoint, real hardware can only switch at a finite rate and
a finite number of times before the hardware fails. Further, examples of slightly better
performance was found by moving away from this region. Hence, it would seem desirable

to select A1 and Ay to prevent qb < 0 and risk possible premature hardware failure.

3.7 Solution to Initial Displacement Problem

The previous two sections discussing bifurcations due to the parameters Ay, Ao, u,
and ¢ and identifying the range of ¢ were critical to understanding how to write the solution
to Equations and Understanding the bifurcations not only provides physical
insight into different system behaviors, but mathematically determines how to break up
the integrals of Equations [3.32] and [3:33] Understanding the range of ¢ for any particular
parameter setting identifies where the solutions to Equations and are valid.

It is now possible to write the solution to Equations and The solution to

Equation [3.21] is in the form

t(9) =ty (@) + tmi (¢) + te (@) (3.87)

and the solution to Equation is in the form

a (¢) = apUp (¢) Amgi (Qb) Qe (¢) (388)

where the subscripts b, mi, and e are abbreviations for beginning, middle, and ending in-
tervals, respectively. The beginning interval provides a solution from the initial condition
to the first switching time. The middle interval provides a solution for any number of
complete switching phase angle periods which occurs in 7 intervals. Finally, the end-
ing interval provides a solution when between switching events, but not in the beginning

interval. The following sections define the terms in Equations [3.87] and [3.88]

Implicit Solution for Phase in terms of time.
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Solution for Phase from Initial Condition to First Switching Angle.
Equation the goal is to define ¢ (¢) with initial condition ¢, defined by Equation

Recalling

Depending on settings for A\; and A, six possible solution regions exist when integrating
Equation from ¢, to the first switching angle. Table details the six initial starting

conditions and identifies the six different possible regions. For convenience, a new variable

Reg, is defined where the subscript » = 1,2,..6 identifies the region of interest. Figure
depicts the regions where each condition occurs.
Table 3.2  Variable Stiffness Controller Solution Regions
Region | Condition | A\, A2 Settings | Interval | u
1 ¢0§¢1<¢2 0§A1<>\i2 Regl +1
2 P1 < ¢y < Py )\1<0<,\% Regs -1
3 ¢1<¢2<¢0 )\1<%2<0 Regg —1
4 G0 << ¢1 | 0< 5 <\ Regy | +1
5 ¢ <dg <1 | 3, <0<\ Regs | +1
6 $r < ¢1 < ¢p | 35 <A <0 Regs | —1
Then
( .
Ty, (60,0) i Regi A& < &y
Ly, (09, ¢) if Rega A < &y
Ly, (¢0,0) if RegsN¢ <o+
to(¢) = Ty, (¢, ¢) if Regan o < ¢y (3.89)
Ty, (90.6) if Regs Ao < ¢
Ly, (0o, ¢) if Rege N <+
tswo otherwise

is the solution to Equation [3.30| until the first switching angle is reached. The first six
entries represent time as ¢ increases, until reaching the first switching angle. After the
first switching angle is reached, t;, = tgy, Where tg,, is the first time the variable stiffness

device switches. It is possible that the first switching angle is never reached as ¢ may be
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Reg, | Reg,

e .

Figure 3.7  Solution Regions for Variable Stiffness Constant Damping Initial Displace-
ment Problem

bounded as was discussed previously. Equation [3.89] can be simplified somewhat as

Ly (dg,¢) if [¢ < 1 A(Regi V Regs)| V [¢ < ¢y A Rega]
th(0) = T, (60,0) if [ < dy A Rego] V[¢ < ¢y + 7 A Regs] V [¢ < ¢y + 7 A Reg
tswo otherwise
(3.90)

where "V" is the boolean symbol for "or" and "A" is the boolean symbol for "and." Because

the form of solutions for F¢p and 'y, have a period of 7, Cases 1 and 5 and Cases 2 and
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6 of Table are the same upon passing the first switching angle. That is

( .
F¢p (¢, p1) if Regr1 V Regs

r , if Regs V Re
- 6 (90, P2) 92 g6 (3.91)
Fqﬁp (0o, ¢1) if Regs

[ T¢,, (90, 02) if Regy

where tg,, is the first switching time for the variable stiffness device.

Implicit Solution for Full Period Switching.  Since ¢ is periodic, it is possible
to find ¢ (¢) for ¢ having passed through an entire period. Recalling Equation m,
a period begins at ts,, and u switches from either negative to positive or positive to
negative, depending on what it was initially as defined in Table An entire period is

completed when v has switched twice. Then,

v20 [To,, (61 + BT, 6+ k) + Ty, (61 + km by + k)| if Regy
Z;é —F% (g +km, ¢y + ki) + Ty (P1 + k1, g + km)} if Rego
10 [T, (61 + kam, 65 + kum) + T, (65 + ki, 6y + hom)| - if Regy
v20 Do, (62 + BT, 61 + k) + T, (61 + ki + kam)|  if Regy
i :F¢m (@1 + kT, ¢+ kam) + Ty (D9 + kam, by + klw)} if Regs

v20 [To, (0 + w61+ am) + Ty (61 + I, 6y + kam)| - if Regs
(3.92)

Ui <¢) =

is the time for an entire period of ¢, where n (¢) is the number of complete periods ¢ has
passed through, ky = k+1, and ko = k+2. Sincel'y, and F¢p are 7 periodic, the periodic
constants added to ¢; and ¢, can be dropped. This allows considerable simplification of
Equation [3.92] to

tmi (¢) = n(¢) Dy (3.93)

where

Ly, (¢1,09) + g, (¢2,01) if RegiV Regy V Regs V Rege
F¢>p (61, 02) + Ly, (¢g,#1) if Regs V Rega

(3.94)
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and

floor (45_7;1)1) if Reg1 V Regs
floor <¢;¢2) if Rega V Regy
n(¢) = ,n > 0. (3.95)
floor <¢7q;177r) if Regs
floor <<Z>— Tf_ﬂ) if Regg
Alternatively,
n (¢) = floor <j: - 96> ,n>0 (3.96)
where )
ol if Reg1 V Regs
1 if Regs V Re
PR e g2 ¥ e (3.97)
™1 ¢+ if Regs
¢y + m if Regs
Solution for Partial Periods. Finally, the solution when ¢ falls between

periods is found that occurs after the first switching angle. A partial period could begin
at the first switching angle or some multiple of 7 of the first switching angle. Again Table
[3.2] can be used and once again, u switches from either negative to positive or positive to

negative at the first switching angle or at multiples of 7 of the first switching angle. The
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solution looks like

Ly (¢1,9) if Regi N ¢y +km < ¢ < ¢y +kmr
Ly (d1,02) + Ly, (po,0) if Regi Ny +km < ¢ < ¢y + ki
Ly (¢2,9) it Rego N\ g +km < ¢ < ¢y + ki
Ly (02.01) + T, (¢1,0) if Rega Apy+kim < < g+ km
Ly, (¢1,9) if Regs A @1 + k1w < ¢ < ¢y + by
b (6, k) = Ly (¢1,02) + Ty (dg,0) if Regs Ay +kim < ¢ < ¢y + kom (3.98)
Ly (¢g,9) if Rega AN g +km < < ¢y +km
Ly, (¢2a¢1)+r¢p (p1,0) if Rega Ny +km < ¢ < g+ Ky
Ly (¢1,9) if Regs Ny +km < ¢ < g+ ki
Ly (61,09) + Ty (92.0) if Regs A gy +kam < ¢ < ¢y + kam
Ly, (69, ) if Rege N\ ¢y + k1w < ¢ < ¢y + by
Ly, (02,01) + Ty, (01,0) if Regs N ¢y + kam < ¢ < ¢y + ko,

where the periodic constant has been omitted from I'y ~and Ly, - Although not shown,
Equation [3.98] can be simplified slightly since Regions 1 and 5 and Regions 2 and 6 are

similar, except for the conditions of when they apply.

Switching Times.  When switching occurs, the exact switching times can be iden-
tified, using Equation As was discussed previously, switching occurs at = multiples
of ¢; and ¢,. The first switching time is defined by Equation [3.91] Switching occurs
when

towe (M) = tswy + 1Dy (3.99)

or

Ly, (¢1,¢2) if Reg1 V Regs
Ly (¢g,¢1) if Rega V Regs
Ly (01,02) if Regs
Ly (@9, ¢1) if Regs

tswo (1) = tswy +nDg + (3.100)

where gy, is defined as an even number switching time, ¢4, is defined as an odd number

switching time, and n = 0,1,2,.... Using Equations [3.99 and [3.100] the switching time for
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even and odd times can be combined to create one equation defining all switching times

in the order they occur as

I % ([1 n (—1)’“} tswe <§> n [1 - (—1)’“} tswo <k;1>> (3.101)

where k =0, 1,2, ... is the k** time the stiffness device has switched since time 0.

Solution for Amplitude. Development of the solution for the amplitude of the
system is simpler than the development of the solution for phase ¢. The solution uses the
same boundaries of integration as the solution for ¢, but amplitude is only affected by the
change in variable stiffness (Equations and . Since development of the solution
for amplitude follows the same logic as the solution for ¢, the solution is stated without

discussion.

ap (69, 9) if [p < ¢y A (Regr V Regs)] V [¢ < ¢ A Regy]
ap (9) = a0 am (dg,¢) if [ < ¢y A Rega] V [¢ < ¢1 + 7 A Regs] V [¢ < ¢y + T A Regs

Q5w otherwise

(3.102)
ap (¢g, ¢1)  if Reg1 V Regs
am (g, if Rego V Re
G = @0 (60, P2) 9o g6 (3.103)
ap (¢o, #1)  if Regs

A, (d)O? ¢2) if Regy

i (¢) = D) (3.104)

am (1, P2) ap (o, 1)  if Regi V Rega V Regs V Rege

Do = ( (3.105a)
ap (¢1, @) am (¢2,91) if Regs V Regy
?—¢ cos? 2 1€ cos? .
\/2328 cos2 z;;gz2+s cos? ¢2§ if Regi V Rega V Regs V Regs
= (w2+5 cos?2 ¢1)(¢276 cos2 ¢2) . (3]_05b)
(P reco 0,) (oot gy) 1 1693 V Fega
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am (61, 0) if Regi Ny +km < ¢ < g+ km
am (@1, $2) ap (¢2,0) if Regi A gy +kr < ¢ < ¢+ kam
ap (¢q, @) if Rega A\ g +km < ¢ < ¢y + kam
ap (P2, $1) am (¢1,0) if Rega Ay + kam < ¢ < ¢y +
A, (01, 0) if Regs ANy +kim < ¢ < g + ki
a0 (6, ) = am (91, $2) ap (92, 8) i Regs A dy + kam < ¢ < ¢y + komr (3.106)
A, (G, @) if Regs N g +km < ¢ < ¢y + km
am (D2, 01) ap (¢1,0) if Rega Ny +km < ¢ < dy + ka
am (P71, 9) if Regs N ¢y +km < ¢ < ¢+ k1
am (01, 02) ap (P2, 9)  if Regs N gy + kam < ¢ < ¢y +
A, (G, @) if Rege N\ g + k1m < ¢ < ¢ + ki
[ am (P, 01) ap (¢1,0) if Regs A ¢y + kam < ¢ < §g + ko
3.8 Solution for Initial Velocity Problem
Implicit Solution for Phase in Terms of Time. The solution form for the initial

velocity problem is the same as the initial displacement problem (Equations and
3.88]). Recalling Equation the goal is to define ¢ (¢) with initial condition ¢, defined
by Equation [3.26] Depending on settings for A1 and A, four possible solution regions
exist when integrating Equation [3.30]from ¢ to the first switching angle. Table [3.3] details
the six initial starting conditions and identifies the six different possible regions. Again
for convenience, the variable Reg, is defined where the subscript » = 1,2, ..4 identifies the

region of interest. Figure [3.8 depicts the regions where each condition occurs.

Table 3.3  Variable Stiffness Controller Solution Regions (Initial Velocity Problem)

Region | Condition | Aj, A2 Settings | Interval | u
1 By < b M< 3 AXN>0] Regi | +1
2 Dy < @y %2</\1/\)\220 Regs +1
3 b1 < g M <3 AXN<0] Regs | -1
4 by < Py 3; <AMAXN<O0| Regy | -1

Development of the solution is the same as for the initial displacement problem, the

solution is presented with little discussion. The solution form is simpler than for the
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e Sl

Figure 3.8  Solution Regions for Variable Stiffness Constant Damping Initial Velocity
Problem

initial displacement problem since ¢y = —F and does not change as a function of u as in
the initial displacement problem. The solution for the beginning portion of the solution
is
F¢p (—%,qf)) if Regjpm N < 1V Rega N ¢ < ¢y
th(¢) =1 Ty (~=%,4) if RegsA¢ < ¢V Regi A < ¢, (3.107)

tswo otherwise

where
Ty, (~5.61) if Regy

Ly, (<3.0s)  if Regs
P¢m (_%7 ¢1) if Regs
Do, (~3.02)  if Regy

(3.108)

tswo =
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is the first switching time for the variable stiffness device.

Similar to the initial displacement problem,

F¢m (¢17 ¢2) + F¢p (¢2, ¢1) if R@gl V R€g4
Ly (01,02) + Ty, (d2,01) if Rega V Regs

and
floor <¢—7r¢1> if Reg1 V Regs
floor ( — 2) if Rego V Regy
Alternatively,
n(¢) = floor <¢ - 96> ,n>0
T
where

1) ¢ if RegiV Regs
¢y if Regs V Regs

Equation [3.111]is the same as Equation but 0. is defined differently.

The solution for a partial period is

;

(01,0) if Regi N ¢y +km < ¢ < ¢y + km
Lo, (01,02) + Ty, (99,0) if Regi Ay +km < < ¢+ ki

(¢q,0) if Rego A gy +km < ¢ < ¢y +km
Ly, (¢2,01) + Ty (01,0) if Rega Ay +km < ¢ < ¢y +km
b1, ) if Regz N ¢y +km < ¢ < ¢y + km
G1,02) + Ty, (d2,0) if Regs Ay +km < ¢ < ¢y + krm
6, (92, 0) if Regs A ¢y + k< ¢ < ¢y + km
Ly, (&2, ¢1) + Ty, (#1,0) if Rega Ay +km < ¢ < ¢y + ki,

!

Pp

r1
<

3

(
(
(
| Ts, (

where k1 = k + 1.

3-33

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)



Switching Times.  Switching times are defined the same as for the initial displace-

ment problem except

Ly, (¢1,09) if Regy
Ly, (62,¢1) if Regs
Ly, (¢1,09) if Regs
Lg, (¢2,01) if Regy

tswo (1) = tswy +nDg + (3.114)

where gy is defined as an even number switching time, ¢4, is defined as an odd number
switching time, Dy is defined using Equation [3.109, and n = 0,1,2,.... Switching times
in the order they occur are defined using Equation

Solution for Amplitude. The solution for the amplitude is similar to the initial

displacement problem and is given without discussion.

ap (—5.9¢) i Regi AN < ¢V Rega A < oy
ap (9) =9 am (—3,0) if Regs A ¢ < ¢ V Rega A ¢ < ¢y (3.115)

tswo otherwise

where
ap (—g, qbl) if Regy
-z, if R
g = 4 7 (=3.02) il Rego (3.116)
am (_ga ¢1) if Reg?)

| am (~5.65) if Regs

Am (¢17 ¢2) ap
Qp (;517 ¢2) am

¢9,01) if Reg1 V Regy
¢9,¢1) if Rega V Regs

(3.118a)

N DI N P,

(
2 —¢ cos? ¢y ) (2 4ecos? ¢ .
\/szs cos? ¢, E¢2+€ cos? 2% if Reg V Rega b
= 3.118
(7,[)2 +ecos? ¢ (211275 cos ¢2) . ( )
(¢2+€ cos2 ¢>2 (1/12*8 cos2 ¢ ) if Regz V Regs
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am (P71, ) if Repp Ny +km < ¢ < ¢y + kmr
am (01, 02) ap (2, 8)  if Regi Ny + kT < ¢ < ¢y + ka
am (Bg, @) if Rega Ny +km < ¢ < ¢y +km
0o (6,F) = am (62, 01) ap (¢1, P) ?f Rega N ¢y +Em < ¢ < ¢g+ kam . (3.119)
ap (¢1, ) if Regs A ¢y +km < ¢ <y +km
ap (91, P2) am (B2, ) if Regs A\ g +km < ¢ < ¢y + kymr
ap (¢q, ) if Rega N\ g +km < ¢ < ¢y + km
ap (P2, $1) am (¢1,0) if Rega Ny + km < ¢ < ¢y + Fa

3.9 Approximate Explicit Solution

Unfortunately Equation [3.87] is a transcendental equation which cannot be solved
explicitly for ¢. The system can be solved exactly between switching events explicitly, but
this type of solution is both tedious to develop and not useful since it is too complicated
to allow adequate understanding of the behavior of the system. However, an approximate
solution can be written by considering the long time behavior of the system. The long term
approximate behavior of the system will then be used to gain insight into the performance
of the system for use in engineering design. The approximate solution can always be

checked against the exact solution, if desired.

The long term behavior for the system can be approximated for both ¢ and amplitude
of the system. First, an approximate solution for ¢ is found using Equations [3.87 and [3.96]
or [3.111] When u is switching, ¢ will increase without bound. One way to approximate
¢ (t) is as a straight line. This can be done by neglecting ¢, by assuming t,,; dominates

the solution in the long term in Equation [3.87] and approximating n as
n (¢) = floor <¢ - 06> R~ $_ 0. (3.120)
T T

Equation [3.120] is exact at even switching times. Combining Equations [3.87] and [3.120)

results in

L=ty + i =ty +nDy =t + <¢—96) Dy (3.121)
T
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where t; is constant since the long term behavior of the system is being considered. Equa-
tion [3.121] can be solved for ¢ resulting in

T
¢~ D—¢t +C (3.122)

where C' absorbs all of the constants of Equation [3.121] Selecting C' = ¢, is convenient
in Equation [3.122] since it forces the approximate solution to pass through ¢, when ¢ = 0.
Hence, an approximation for ¢ is

™
~ 3.123
o D, + ¢ ( )

where Dy is defined by either Equations or [3.109

Using the same approach, Equation [3.88| can be approximated. Assuming a. is close

to unity results in

t
£+
D
a4~ AQswyUmi = A0Gswy Dl & A0Gs1wy Da * (3.124)
. . . Ina . .
where various constants are absorbed into C. Selecting C' = — 7% will cause Equation
a

to pass through ag when ¢ = 0. The approximate solution is

¢ In aswg

D In Dg
a = aghswy Da

t 7lnasw0) In D, ll’lDat
= ape

:aoaswoe<D¢’ n Da Dy " (3.125)

where D, is defined using either Equations [3.105a] or [3.118a] and as,, is defined using
Equations [3.103] or [3.116]
Finally, substituting Equations [3.123]| and [3.125| into Equations and results

in an approximate explicit solution for displacement and velocity. The equations are

wDa ),
T = aoe( e “> cos <7Tt + qﬁ()) (3.126)
Dy
and
(lr}jﬂ*u)t ™ s
T = —age\ ? [u Cos <t + gb0> + 1 sin <t + gbO)] . (3.127)
Dy Dy
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8.10 Mapping Phase to Time

With the exact solutions known and an understanding of the range of ¢, it is now
possible to understand the effects on time t. When ¢, does not exist, continuous
switching occurs and ¢ is unbounded. When ¢ — oo, t — oco. The reason this is true
can be found in Equation [3.87 When ¢ — oo, t, (¢) is constant and t. (¢) does not exist
since no finite value for ¢ is ever reached. This is another way of stating that t,,; (¢)
dominates all other terms. Realistically, a stable real system will not switch for all time
since the displacement and velocity of the system will become too small to be sensed by
real hardware. At this point, the displacement and velocity has effectively been damped

out and switching is expected to cease.

Next, consider when ¢ is bounded by ¢,,;;. This only occurs in the regions shown in
Figure [3.5] and only applies for the critically damped or overdamped situations. Further,
¢erip Was found to exist only when w = —1. Since ¢ is bounded by ¢..i, tmi (¢) = 0.
Then all that is left is

t(¢) =t () +te (¢) (3.128)
Recalling Equation consider ¢y — ¢, for the critically damped case. The result
is

1 1
d)Ulifgcm Ly, (61, 0y) = v [cOt Gy — cOt P ] = % [i;i — cot ¢L:| = +oo (3.129)

since o, = 0 when the system is critically damped. Since time cannot be negative, the
system must reach ¢,,.; = —tan~! (%) and it takes an infinite amount of time to do so.

Similarly, when the system is overdamped, the result is

1

) — wtanqu-t—kam) (wtanqu—am)]
1 T , =—1
¢U—1>I£cm‘t Om (¢L ¢U) 20'm N |:<1/} tan (bcm’t —O0Om 1/} tan ¢L + Om

i 1n[<iam+”m> (Wan%_amﬂ — +oo. (3.130)

20m +o, —om Ytan¢r + om

Again, the conclusion is the system takes an infinite amount of time to reach ¢..;; =

—tan~! (Ui), since negative time is impossible.

m
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8.11  System Stability

Corless and Leitmann demonstrated at least one on-off control law exists that can
make a variable stiffness system with viscous damping unstable [16]. Kurdila et. al.
proved Equation is stable when ¢* = 0, Ay = 0, and Ay = 0 [123]. With the exact
solution available for a damped variable stiffness system, it is now possible to provide more
insight into the stability of a more general type of system than shown in the literature.
The parameters A; and Ay for particular € and p that make the system stable can be found
by solving

lim z(¢) =0 (3.131)

t—o00

for A1 and Ay. Substituting Equation [3.17] into Equation [3.131] results in

lim a (¢ (t)) e * cos ¢ (t) = 0. (3.132)

t—o0

Since in general, cos¢ (t) # 0 for all ¢, only the amplitude functions determine system
stability. Then
lim a (¢ (t)) e ™ = 0. (3.133)

t—o00

Next, consider only the systems with oscillatory response or systems where ¢,..;, does not
exist. The systems where the variable stiffness device does not switch are simple linear
oscillators with well known stability characteristics. ~When ¢,,,; does not exist, ¢ — oo
implies ¢ — oco. Hence

lim a (¢) e %) = 0. (3.134)

¢—00

Substituting Equations and into Equation and realizing that the terms

te (¢) and a. (¢) do not exist since they can never be reached results in

lim ap (¢) ami (@) e Ho@Fmi] — (3.135)

¢$—00

3-38



for stability. Recognizing ay (¢) and ¢ (¢) are constant as ¢ — oo, Equation [3.135| can be

simplified as

Jim a (¢) e Htmi(®)  — Jim D) g (@)Dy (3.136a)
= ¢lim @) 0 Da g=pun(9) Dy (3.136b)
= Jim " (@[ImDa=uDs] _ (3.136c)

Then the system is stable when

InD, — puDgy < 0. (3.137)
By similar reasoning, the system is marginally stable when

InD, —pDy =0 (3.138)

and is unstable when

In D, — Dy > 0. (3.139)

Incidentally, analysis of stability for the approximate solution (Equation has pre-
cisely the same stability behavior as the exact solution. Equation [3.138]is transcendental
in A1 and Az, but can be solved numerically for specific settings of u and . Figure [3.9
shows some marginal stability curves when ¢ = 0.8. When A; and Ay are tuned to fall
on a marginal stability curve, the variable stiffness device is adding the same amount of
energy the viscous damper is dissipating from the system. Depending on the strength of
u and g, it is possible to identify marginally stable and unstable systems even for some

overdamped oscillatory variable stiffness system.

Equation will always be satisfied or the system is guaranteed stable when

InD, <0, (3.140)

3-39



Figure 3.9  Marginal Stability Control Law Tuning when € = 0.8

since Dy > 0. This is because Dy < 0 implies negative time in Equation which is
impossible. Considering Equation the SDOF system can be stable when In D, > 0,
since the viscous damping is dissipating energy and might dissipate more energy than the
variable stiffness device is adding to the system. In effect, the variable stiffness device is
fighting or conflicting with the viscous damper. However, it makes no sense to use the
variable stiffness device to add energy to the system when the goal is to dissipate as much

energy as possible. Therefore, in practice, it is preferable to restrict the control law using

Equation rather than Equation

Equation [3.140] is solved by first solving
InD, =0, (3.141)

which defines when the variable stiffness device is neither dissipating nor adding energy
to the system. When p = 0 and € # 0, Equation [3.141] also defines when the undamped
variable stiffness system is marginally stable. Hence, Equation will be called the

zero-energy boundary of the variable stiffness device. Regardless of initial conditions and

regions (i.e. applying Equation [3.140| or Equation [3.118a)) and applying Equations |3.105a)
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and results in
cos? ¢y = cos? ¢y (3.142)

or
P D
M _2xap+1 A —20u+1

(3.143)

Solving for A\ results in

2#)\2 -1 1
Al=—"T"—o0r A\ = —. 144
1 )\2 or A1 )\2 (3 )

The case \; = /\% is a nonswitching case and is stable. However, the other case is the
settings for the controller where the variable stiffness device does no work on the system.

Equivalently,
AAg —2puXe +1 =0. (3.145)

Thus, the system is guaranteed to be stable or the variable stiffness device is removing
energy from the system when

A Ay — Q/L)\Q +1>0 (3.146)

and the variable stiffness device is adding energy to the system when
A1Ag —2pAe +1 < 0. (3.147)

Figure identifies guaranteed stability regions for the variable stiffness system and
identifies the regions where the system is either conflicted or unstable. A conflicted
variable stiffness system will be defined as one where the variable stiffness device is adding
energy to the system which is still stable due to dissipation from the viscous damper.
Interestingly, the dynamic capability of the variable stiffness device (the range of €) has

no effect on the guaranteed stability region.
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Figure 3.10  Regions where the Variable Stiffness System is Guarranteed Stable

3.12  Optimal Control Law
To maximize damping of the system, it is desired to select A\; and Ay for any fixed

values of p and € such that Equation [3.137]is as small as possible. This is found by finding

(3.148)

in (In Dy — pD
min (In Do — 1Dg)

which can be found by solving
V(a(g)e ™) =0 (3.149)

where a (¢) is defined by Equation and V defines the gradient operator with respect
Equation [3.150] is transcendental in A1, Ay and ¢ requiring

to the parameters A\; and Ao.
it be solved numerically. Additionally, in V (a (¢) e_“t) the parameters A\; and Ao cannot
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be separated from ¢ making A1 and Ao functions of ¢. However, the approximate solution
(Equation can be used to estimate an optimal control where A; and Ay are constants.
Considering only the amplitude term of Equation the estimated optimal control
should minimize the argument of the exponential function. Since time can be separated
from the rest of the argument, the optimal control law need only satisfy the equation

InD, -
\Y% < D, — u) =0 (3.150)

where V defines the gradient operator with respect to Ay and Ao. Further, the solution
to Equation [3.150] is constrained to only those choices of A\; and Ay where the system
is stable and where the system produces oscillatory responses (i.e. the variable stiffness

device mathematically switches an infinite number of times as t — 00).
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1 \li 5
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Figure 3.11  Variable Stiffness Constant Damping Candidate (Unshaded) and Non-
Candidate (Shaded) Optimal Control Regions
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The unstable and conflicted regions of Figure [3.10] are not candidate regions for
optimal control for underdamped, critically damped, or overdamped systems. Further,
in the critically damped and overdamped case, additional regions can be ruled out as
candidate regions. In the "finite switching" region, the system demonstrates classical
overdamped behavior after switching possibly only one time resulting in slow settling time.
In the "Chattering Corridor" the system switches extremely fast, resulting in possible
premature hardware failure. Figure depicts a combination of unstable regions and
overlays Figure showing the regions where the number of switching events is finite or
extremely fast. Hence, only the unshaded areas of Figures and are considered to

be candidate regions for optimal control in the critically damped or overdamped systems.

v
Douay aind Hagood Optimal Control Example
0 0.1 0.z 03 0.4 0.5 0.6 07 0.s 0.9 1

4

Figure 3.12  Variable Stiffness Constant Damping Optimal Control Policy (A2 = 0)
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Equation was solved numerically and graphed in Figure |3.12] In all cases,
A2 = 0 while A\; varied with respect to p and €. The same result was found by Onoda
et. al. for the case p = 0.[I4I] Attempts to find solutions where Ay # 0 resulted in a
control law that can be transformed back to the case where Ao = 0 and A\ varies. Hence,
it appears the control law of Equation can be simplified. It should be noted that,
because these results were developed using numerical simulation, it can only be strictly

concluded that Figure [3.12| represents a local minima.

The solutions in Figure [3.12] are linear for small values of p.  For larger values
of u, the values are linear for small £, but the optimal solution changes form for € near
1, creating curvature. The change occurs because A; cannot be set any lower without
entering the chattering corridors. Hence, \; = 1 + o, in these regions. In practice, to

prevent chattering of the variable stiffness controller, set A1 > u + op,.

The curve found for 4 = 0 appears to exactly match the optimal control curve found
by Onoda et. al. [I4I] The point highlighted in Figure is the same optimal control
policy used by Douay and Hagood [139], found using optimal control theory. By selecting
A1 = 0.124, € = 0.386, and p = 0, a sample result reported by Douay and Hagood can be
recreated. It has been noted in the literature that past work has considered control laws
that are either "nonintuitive" and optimal such as the one reported by Douay and Hagood
or has considered control laws that are intuitive and difficult to prove to be optimal in a
conventional optimal control formulation.[140] While this difficulty still remains, the fact
that Douay and Hagood’s example matches the control law proposed by Onoda, Sano, and

Kamiyama (Equation [3.12)) suggests the two methods are equivalent.

Figure [3.13] shows the optimal exponential decay coefficient for the approximate
solution. To maximize system damping, high values of i and € should be selected. Of
particular note is the decay coefficient can be less than —1. In a passive system, setting
the decay coefficient less than —1 results in a classical overdamped response. However, the
benefit of variable stiffness is overdamped behavior is changed and the system no longer
provides the slow settling time behavior of the classical overdamped problem. Now, it

creates an oscillatory response which is much faster than the classical overdamped behavior.
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Dovay and Hagood Optirral Control Esxzample

Decay Coefficient

Figure 3.13  Variable Stiffness Constant Damping Optimal Exponential Decay Coeffi-
cient

3.18 Approzimate Equivalent Viscously Damped System

The classical second order viscously damped system
&+ 2wpd + Wiz =0 (3.151)

where ( is the damping ratio, and w, is the natural frequency of the system. With
initial conditions z (0) = dp and & (0) = v, this system has the following solution for the

underdamped case

z (t) = age” "t cos [wat + 6] (3.152)
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where

\/d%w?i + (&0 4 Cwnzo)?
O pr—

Wd

doCwn
0p = —tan~! <W> , (3.154)

a

: (3.153)

and
wag = wnpy/1 = (2, (3.155)

which is called the damped natural frequency. Comparing Equation with Equation
3.126] allows the long term behavior or an averaged equivalent natural frequency and equiv-

alent damping ratio of the variable stiffness system to be estimated using the equations

InD,
—C(wy, = — 3.156
Gon = (“pt =) (3.150)
and
T
= —, .1
Wy D, (3.157)

Solving the two equations for ¢ and w,, results in

(In Dy — Dype)

(=-— .
\/7r2 + (In D, — Dyp)?

(3.158)

and

\/7['2 + (In D, — Dgp)?
Dy

(3.159)

Wp =

Equation [3.158 matches the theoretical damping ratio found by Douay and Hagood calcu-

lated using an energy method when A\ = Ay = = 0.

Comparing Equations [3.151] and [3.9] suggests that

14 cu v w? (3.160)

n

and

o Cwn,. (3.161)
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The ” «~ 7 is used to mean the quantity on the left hand side of the relationship is replaced
by the quantity on the right hand side. The quantities of the relationship are not equal.
In fact, since the variable stiffness device does work on the system, the quantity on the
right hand side of Equation is a combination of the equivalent damping due to this
work and the viscous damping. Solving Equation for ¢* and applying approximate
Equations [3.160] and [3.161] to Equation [3.1] suggests the original dimensional differential

equation can be approximated as

m*E* + e, + kL at =0, (3.162)
where

Coq = 2CwWnVm*k*, (3.163)

and
ki, = k'wp (3.164)

with

kT + kg

k* = % (3.165)

Equations [3.163] and [3.164] define an approximate equivalent damping coefficient and stiff-

ness coefficient, respectively, for the variable stiffness constantly damped SDOF problem.

It is only valid for the initial value problem.

The coefficients of Equation [3.162| can be used to define two time constants. One

time constant is based on the natural frequency of the approximate system which is

m* 1 m*
T =, | — = —A\ 7 1
" k:;‘q wn V k¥ (3.166)

The other is based on the damped natural frequency of the approximate system and can

be calculated to be

1 /m* 1
T = —) — ——. 3.167
d W, o+ /1 _ <2 ( )

Equation represents the period of the approximate system with viscous damping.

Equation [3.167] can be compared with the time needed to switch between stiffness states

3-48



of a variable stiffness device. If the time to switch between stiffness states is much faster
than 777, then the on-off control law assumption made at the beginning of this analysis
should be valid. If the two time constants are close to each other, the assumption of

instantaneous stiffness changes will not be valid.

Because of Equation[3.162] it is also possible to find an approximate switching control
law. Since u in Equation [3.160|is an exact switching control law and w? is an approximate
natural frequency, replacing u with u., allows Equation [3.160| to be solved to determine

an averaged switching law. The solution is

2
1
Ueg = %T (3.168)

Figure 3.14  Variable Stiffness Constant Damping Optimal Equivalent Damping Ratio
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Figure 3.15  Variable Stiffness Constant Damping Optimal Equivalent Natural Frequency

Figures 3.14] [3.15] and [3.16| are graphs of Equations [3.158] [3.159| and |[3.157] respec-

tively. All graphs were created for optimal settings of A; and Ag. Figure [3.14] shows the
equivalent damping ratio increases with increasing ¢ for low values of y. The damping
ratio seems to nearly match the optimal damping ratio found by Douay and Hagood [139].
For high values of u, the damping ratio reaches a maximum and then slowly decreases.
Because this problem is a nonlinear problem, the natural frequency of the system also

varies as 4 and € vary.

Figure [3.15| shows the equivalent natural frequency always decreases when pu = 0
for increasing e. When g > 0, the natural frequency can increase to a maximum then
decrease, at least for ;4 < 0.4. For high values of u, the natural frequency increases to a

maximum, decreases to a local minimum, and then increases again. Comparing Figures
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Figure 3.16  Variable Stiffness Constant Damping Optimal Equivalent Damped Natural
Frequency

and with Figure [3.13] shows a trade-off between equivalent damping ratio and
natural frequency. For low values of u, the variable stiffness device behaves more like a
viscous damper, since most damping is due to an increasing damping ratio. However,
for high values of u, both damping ratio and increasing natural frequency are working
synergistically to increase damping of the system. In fact, the damping ratio begins to
change very little as € changes, but the natural frequency increases dramatically. This
effect is perhaps more clearly observed by considering the damped natural frequency of
Figure For low values of i, wy decreases as e increases. However, for higher values

of i, wg reaches a minimum and then increases.
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3.14 Control Law FEffects

The effect of varying A1 on system performance will be considered. Since the optimal
control policy always makes Ao = 0, only varying A\; was considered. Figure [3.17] shows
the effects of varying A\; for equivalent natural frequency, damping ratio, damped natural
frequency, and damping coefficient. For damping ratio and damped natural frequency,
increasing Aj increases the frequency, though the effect is bounded. On the other hand,
the damping ratio is maximum when A; = 0. Because frequency is shifted by changing
stiffness, the optimal damping coefficient occurs when A1 > 0, which confirms previous
discussion. Although not shown, the same basic trends were found as p was increased.
However, as p is increased, \; is restricted since setting it too low results in the variable

stiffness chattering or non-switching conditions discussed earlier.

3.15 Sample Results and Validation

Sample results (found on pages through for the variable stiffness constant
damping initial velocity problem will be presented to demonstrate the behavior of the
system and to validate the analytical and approximate solutions. Although not shown,
the same types of plots can be made for the initial displacement problem. For each result,
graphic representation of the control law is provided followed by time response plots of
the phase angle ¢, the amplitude of the system, and the displacement. Simulated, exact,
approximate solutions, and switching times are shown on these plots. The displacement
plots also show a settling time envelope (d = 0.05) to make comparing plots simpler. Some
of the time response plots show the same system with no variable stiffness (¢ = 0) showing
the effects of the variable stiffness device. Additionally, the system is shown in phase space

along with switching lines calculated using Equations [3.28], [3.38] and [3.39] For some plots,

an additional line is added representing ¢,,;; (when it exists) which is calculated using
Equations and In all cases, the exact and simulated solutions were found to
match. The simulated solution was calculated using the standard adaptive Runge-Kutta
routine in Mathcad version 11. The exact and approximate solutions use the various
equations discussed earlier in this chapter. The approximate solution is only valid when

the system is switching. When the system is not switching it is a simple viscously damped
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system and no approximate solution is needed since it can be found using standard linear

Figure [3.18] shows several response plots of an optimally controlled underdamped
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the literature, the variable stiffness device is effectively suppressing vibration.

system with no viscous damping. The plot of the A\; and Ao plane graphically marks the
tuning of the control law on a plot similar to Figure As previously demonstrated in

Both the

phase ¢ and amplitude of the system have oscillatory behavior. The scale for the phase ¢

was divided by m making it easy to see the length of a period is 7. The approximate solution



predicts first order behavior for phase and amplitude, but is missing the oscillatory behavior
of the true solution. For long time behavior, however, the error between approximate
and exact solutions gets progressively smaller, as demonstrated by the amplitude, time

response, and phase plane plots.

Figure [3.19) shows a sample underdamped system with viscous damping. The same
basic trends can be seen showing the oscillatory behavior in all plots and showing the
approximate solution becoming more accurate for the long time behavior of the system.
Clearly, the variable stiffness device has increased the damping of the system, since it
performs much better than the equivalent system with no variable stiffness. As expected,

the settling time for Figure [3.19] is lower than the settling time for Figure [3.18

Figure [3.20] shows the slow behavior of a suboptimal overdamped system. In the A\
and Ao plane plot, boundaries lines that are functions of ¢, and u are graphed. These
boundaries were also graphed in Figure[3.11]and make it easy to identify which region. The
controller was tuned so that ¢.,; exists and ¢ asymptotically approaches this boundary.
In this case, the controller switched the stiffness device one time and then never switched
again. The phase plot shows the trajectory following the line defined by the angle ¢,,.;.
A viscously damped system has much better behavior than this system does using the
variable stiffness device. Designing the system with this type of controller would result in
undesirable response and should be avoided. The exact solution is not completely plotted
as compared to the simulated solution since it requires selecting successive values of ¢ closer
and closer to ¢,,;; to solve for larger time values, since ¢ asymptotically approaches ¢,,.;;.
While this could be done using an appropriate function, it provides no new information

and was not done.

Figure shows another suboptimal overdamped system. The variable stiffness
controller begins in a stable configuration and then switches. After that, it switches very
rapidly and never slows down. Despite the controller instability, the system itself is stable.
In this case, ¢ oscillates about ¢, at a very rapid rate and the oscillations are very small.
The switching was omitted from the displacement plot because it would have blotted out

the other plots. The behavior of the system is much better than in Figure but the
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Figure 3.18 Sample Optimal Underdamped System with no Viscous Damping (A1 =

266, Ao =0, p =0, £ = 0.8)
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controller chattering has the potential of damaging hardware. Therefore, this tuning of

the controller should be avoided.

Figure shows an optimal overdamped system. The setting for Ay is only slightly
beyond the region where the controller becomes unstable, resulting in a response like Figure
[B:21] To be safe, Ay may need to be increased more to account for modelling uncertainty.
The response of this optimal system shows good settling time and has avoided the controller
instability. The phase plot of this system is very similar to Figure but it does not

have the oscillatory switching behavior.

Figure[3.23|shows the results of selecting the controller to make the system marginally
stable in a classical sense. For a system with no damping, the settings for A\; and Ao that
create a marginally stable system can be found exactly using Equation With
damping added, finding the point of marginal stability requires solving Equation [3.138
using numerical methods. Essentially, this is one point on the curve p = 0.2 of Figure
3.9] where the energy the variable stiffness device is adding to the system is equal to the
amount of energy the viscous damper is dissipating. As expected, a viscously damped
system with no variable stiffness will behave much better than a marginally stable system
since the variable stiffness device is cancelling out the viscous damper. Finally, the phase
plane shows the orbit trajectory the system follows. The approximate solution provides

an excellent first order approximation of the orbit by creating an ellipse.

3.16 Energy Usage

From the literature, changing the stiffness of the system does work on the system [4].
Switching the variable stiffness device requires energy and is the system input that can
cause marginal stability or instability. Because the exact switching times for the variable
stiffness device are known, it is possible to calculate the exact work going into the variable
stiffness device used to suppress vibration. Theoretically, it is also possible to calculate the
work the variable stiffness device is applying to the system. Finally, with expressions for
work out and work in, one could be divided by the other to create an efficiency factor. In

practice the actual analytic calculations are too complex to provide much insight. Hence,

3-58



Legend

— Exact Solution

e Simmlated Solution

- Switching (Not to Scale)
------- Approximate Solution

Viscous Damping Only (Time Plots) or Phi Crit (Phas

No Switching
Zero-Energy Boundary

® % % Control Law Tuning

Time

0.8

0.6

Amplitude

0.4

(=]
[
= :'.::
=
o

10 12 14

Figure 3.21
A2 =0, p=0.6,ec=0.28)

=}
n

Displacement
o

Velocity
& © °
tn - = Th

&
o

=

3-59

o
(3]
b
=
-]
—
=
—
(%)

14

-1 075 0.5 025 0 025 05
Displacement

078 A

Sample SubOptimal Overdamped System Controller Instability (A; = 0.75,



Legend
— Exact Solution
--------- Simulated Solution
& Switching (Not to Scale)
---=-+ Approximate Solution
Viscous Damping Only (Time Plots) or Phi Crit (Phas
—— No Switching
----- Zero-Energy Boundary
x x> Control Law Tuning

1.5
o ! 5
o
0.5 =
R
&)
0
5
03 g 2 4 5 ] 10 12 14
Time
13
1
O 0.8
"% 2
= o
= 06 =
= o
o -
0.4 ’7
* Ra

=}
in

=

=
[
Ln

&
(35
Lh

>

&
o

=

=]
(3]
B
=
-]

10 12 14
Time

-1 075 0.5 025 0 025 05 075 1
Displacement

Figure 3.22  Sample Optimal Overdamped System (A; = 1.01, A =0, u = 0.6, € = 0.8)

3-60




Legend
— Exact Solution
""""" Simulated Solition
& Switching (Not to Scale)
-----=- Approximate Solution
Viscous Damping Only (Time Plots) or Phi Crit (Phase Plot)

—— No Switching

---- Zero-Energy Boundary
® % % Control Law Tuning

i

1.5

=

b ]

g =

&

|
0
q

03 0 2 4 6 8 10 12 14
Time

2
15

Amplitude
Velocity

| 1 ]|

3 8 10 12 14
Time

o
(%)
=y

=2 “BS 4 W5 06 05 1. 45
Displacement

()

Figure 3.23  Sample Orbit in an Underdamped System (A; = —3, A2 = 3.566, u = 0.2,
&k = 0.8)

3-61



this efficiency factor is probably best calculated numerically for specific systems. The

following discussion provides detail of how to calculate both types of work.

Work In.  Work is defined as

Wi, = Pt (3.169)

where W is the work done by the variable stiffness device, P is the average power expended
by the variable stiffness device during time ¢, and ¢ is the time the device uses power. Since
the variable stiffness device switches between two states, the power needed for each state
must be known and the time spent in each state must be calculated. The power to switch
the variable stiffness device can be found by measuring the energy input to the variable
stiffness device and has been done on various devices in the literature. Determining
the time spent in each stiffness setting requires making use of the exact switching times

(Equations [3.99 [3.91} [3.100} |3.108| and [3.114] depending on initial conditions). Only the

energy used for the initial velocity problem will be discussed, since the initial displacement
problem is similar. Further, only the long term behavior will be considered. That is, the

work for a partial period of ¢ will be ignored.

To begin, define P, as the power used by the variable stiffness device when u = 1
and P, as the power used when u = —1. It is likely that P,,, = 0, but this is not required.

Next, the interval of time where u = 1 is defined as

Dy =Ty (¢1,02) if Regy

;= qu - Fqu (¢2, ¢1) if Regs (3 170)
p = .

Ly, (01, P2) if Regs

F(bp (¢2,01) if Regy
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and the interval of time where v = —1 is defined as

Ly (f1,92) if Reg

T , if Re

t = bn (92:01) 1 Regy (3.171)
Dy — Fqsp (¢1,07) if Regs

. Dy — Fqﬁp (¢, ¢1) if Regy

Because initial conditions make it possible to start in the middle of a switching cycle, the
initial time is

Ty, (d0:61)  if Regy

to =9 Ty, (00, ¢2) if Regy (3.172)

0 otherwise

when v = 1 and )

to =94 Ty, (0o, ¢2) if Rega (3.173)

0 otherwise
where u = —1. The total work done on the system due to the variable stiffness device is
Win = (Wp + Win)n + Wyo + Wino (3.174)

where W), = Ppt,, Wy, = Pptm, Wpo = Ppotpo, Wimo = Ppotmo and n is defined by

Equation [3.110} The normalized energy used by the system is

o W= Wi = Wi _
A A

(3.175)

Using Equations [3.123] and [3.120] the work and normalized energy needed to achieve a

desired settling time can be estimated as

ts
W = (Wp + W) ( + @ — e> + Wyo + Wino (3.176)
Dy T
and
ts ¢0
E~—+"—= -0, 3.177
5+ (3.177)
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where ¢4 is the desired settling time.

Work Out. The exact work the variable stiffness device performs on the system
can be found by solving Equation [3.9|for #, multiplying through by 2, and then integrating

from time 0 to a desired settling time. The work is

ts ts ts
Wout = / Taxdt = —2#/ iIth - / (1 + E’LL) rxdt. (3178)
0 0 0

In theory, substituting Equations [3.17], [3.18] 3.30] and [3.87] into Equation [3.178] and then

integrating determines the work the variable stiffness device performs on the system. Un-
fortunately, performing the integrations is very difficult and probably should only be per-
formed numerically for a specific system. Alternatively, the approximate work done by

the variable stiffness device can be computed as

ts ts ts
Wout = / iidt = —2Cwy, / i?dt — w? / widt. (3.179)
0 0 0

Substituting Equations [3.126] and [3.127] into [3.179 and performing the integration provides

the approximate work the variable stiffness device performs. This is much easier to do,
but tedious and creates a complicated analytic expression. Once again, it is probably

easier to complete the integrations numerically for a specific system.

3.17 Variable Stiffness Design Metrics

As a result of this analysis, design metrics will now be identified and summarized.
Theoretically, using the previous section, % can be defined, which is an efficiency factor
that could be used to compare variable stiffness devices with each other. Clearly, it is
preferable to make %f;f as close as possible to unity, making the variable stiffness device
as efficient as possible. Another important metric is the decay factor shown graphically in
Figure[3.13] which identifies performance of a variable stiffness device in this system. Here,
it is preferable to make the decay coefficient as large as possible. This is accomplished by

maximizing € and p. The parameter ¢, identified in Table roughly links real variable
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stiffness devices to system performance. Since € should be made as large as possible,
Table can be used to select an appropriate variable stiffness device. Finally, Equation
defines the period of the system, which can be used to validate the instantaneous
on-off control law assumption in any particular real system. This may limit which variable
stiffness device can be chosen using Table since this analysis is only valid when the
system time constant is much larger than the time required to switch the variable stiffness
device from one stiffness level to another. These metrics with supporting analysis represent

a set of tools for selecting and using a variable stiffness device in a real structure.

3.18 Conclusion

A SDOF variable stiffness constantly damped system using a general on-off control
law has been studied. For the initial value problem, both an exact and an approximate
solution were developed. The approximate solution was found to provide a good estimate
for the long term behavior of the system. In the process, insight was found about how
tuning the system changes the behavior of the system. It was found that the control
law could be tuned to create conditions ranging from no switching to extremely rapid
switching. It was also possible to make the controlled system stable, marginally stable,
or unstable.  The control law was optimized creating the most damping possible for
any possible variable stiffness strength and for a given viscous damper. The energy use
of the variable stiffness device was analytically estimated. Finally, four metrics for
understanding variable stiffness systems were identified. The results provide a new set of

engineering tools for selecting and designing variable stiffness compensators.

In the next Chapter, the same SDOF variable stiffness problem with the same two
parameter control law will be analyzed, except a sinusoidally forced version of the problem
will be considered. Because of the nonlinear nature of variable stiffness, the results found
in this Chapter for the unforced problem do not apply when other forcing functions are
used. It will be seen that the optimal control policy for the forced problem is quite different

from that of the unforced problem.
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4. Variable Stiffness SDOF Sinusoidally Forced Problem
4.1 Introduction and Problem Statement

The forced problem is significantly different from the unforced problem because the
forcing function adds new complexity to the control law. The unforced problem could be
solved exactly because an exact expression for the switching could be developed. Finding
the switching times analytically for the forced problem proved to be very difficult. Hence,

approximation approaches were used instead.

Three different approaches were tried to gain insight into the forced problem and
compared to the simulated system. The first method is a direct approximation approach
which compares the exact equations of motion with a viscously damped system. An
equivalent stiffness and damping coefficient are calculated for the viscously damped sys-
tem. The resulting linear equation is easily solved and allows generation of frequency
response plots as well as phase for the system. In a second method, both the solution
and switching control law were expanded in a Fourier series. The switching control law
used only the first oscillatory term in the solution. The control law Fourier series coef-
ficients were written in terms of the solution Fourier series coefficients which generated
nonlinear algebraic equations. Unfortunately, these equations were so nonlinear the co-
efficients could not be solved for in analytic form. This method will not be presented
since it became intractable. The third method tried which will be presented is to use
a perturbation method. The results of the perturbation method and the direct method
were very similar. Hence, the perturbation method provides insight into the region of
validity for the solution and represents a systematic approach for improving the accuracy
of the resulting approximate solution. On the other hand, the direct method is more phys-
ically based than the perturbation approach which clearly identifies the work the variable

stiffness device performs on the system.

Both methods provide reasonable accuracy when ¢ is small. However, for large ¢
both fail to capture other nonlinear effects. The main reason for the poor performance is
because the methods fail to capture harmonics associated with the true nonlinear system.

Because of the type of control law being used, the harmonics change both the solution and



the switching times for the control law. In theory, the Fourier series approach could have
captured these effects. However, because the nonlinear algebraic equations could not be

solved analytically, the ability to develop insight with this approach was severely limited.

The forced problem will be defined as
1
mrE* + Tt + B [(k] + k) + (k] — ko) u] 2™ = A* cos (w*t™), (4.1)

where w* is the forcing frequency and A* is the amplitude of the forcing function. Similar
to the discussion in Chapter [3.2] when the right control law is used, Equation can be
used to represent a variable stiffness system using a piezoelectric device. Equation [4.1] can

be nondimensionalized to become
&+ 2put + (1 + eu) x = cos (wt) . (4.2)

The nondimesionlization is accomplished using Equations [3.4] [3.7 and [3.8] while letting

A*
L= s (4.3)
m(JJO
and
w*
= 4.4
w o (4.4)

The initial conditions for the problem will be discussed later.

4.2 Direct Approzimation

To gain insight into the solution of Equation the viscously damped system
o 4 2o + w2xe = cos (wt), (4.5)

will be defined so Equations [£.5] and [4.2] behave in a similar dynamic way by selecting

an effective damping coefficient p, = p, (w, A1, A2, i1, €) and an effective natural frequency



We = we (W, A1, A2, ,€). The frequency we will be defined as
w? =1+ cu, (4.6)

where ue = ue (w, A1, A2, i, €) is the effective switching control law. The subscript "e" iden-
tifies the variable as the effective behavior of the true variable it represents. Subtracting

Equation from Equation defines the comparison differential equation
g+2ﬂy+(1+5u)y+2(:u_:ue)i6+5(u_ue)me:Oa (47)

where

Y= — Te. (4.8)

Ideally, p, and ue would be chosen such that y = ¢ = §j = 0. In reality, Equation [4.7) only
holds under this restriction when p, = ¢ and u, = u. However, because x. and = are
periodic functions, it is possible to find an averaged value for u, and u. so that Equation

[4.7]is true for a set of points.

Based on Meirovitch [71], the particular solution to Equation is

ze = U cos (wt + 0) (4.9)
where
U= U (w, M1, Ny f1,6) = ! (4.10)
V@2 =02 + 2uw)?
and
0 =0 (w, A1, Mg, i1, €) = —tan_l%. (4.11)

2 _

The variable stiffness term of Equation is simultaneously creating damping and
shifting the natural frequency of the system, so the damping and frequency contributions
need to be separated. The effective stiffness will be solved approximately by averaging the

control u over a period. The effective damping of the system will be found by calculating

the work done on the system by changing the spring stiffness.



Effective Stiffness.  The averaged value for u, can be found as

1 [T
Ue = T/ w(r)dr (4.12)

where T is the period of u. Calculating u. requires knowing the length of time the variable
stiffness device spends in each state as defined by Equation The switching time can
be approximated by substituting Equation into Equation and simplifying as

u=sgn[(A\ — wtan™! (wt + 9)) (1 — Xow tan~! (wt + 9))] (4.13)

t) = % (tan—1 (?;) — 9> (4.14)
ty = % (tan—l (A;}) - 9) : (4.15)

Note that 8 has not yet been determined since it depends on u., but will be found later.

The switching times are

and

Since t; and to are defined in terms of the arctangent function, ¢ is periodic and it has

period
m
T=—. 4.16
- (416)
Then the system switches when
t=1t1,t1+T,t1 + 2T, ... (4.17)
and when
t=to,ta+T,ta+ 2T, .... (4.18)

When t; < ta, then switching events will occur in order from smallest to largest time
as

t=11,to, 01 + T, 10+ T,... (4.19)

4-4



Table 4.1  Variable Stiffness Constant Damping Forced Problem Control Law Values for
One Time Period

t1 < to to < t1
)\220 )\2<0 )\220 )\2<0
u=—1 |1t <t<ts to<t<t14+T | ta<t<ity th<t<teo+T
u=1 to<t<t1+T |t1 <t<ty t1<t<to+T |ta<t<ty

and likewise, if t3 < t1, then switching events will occur in order from smallest to largest
time as

t=to t1,to+ T, t1 4+ T, .... (4.20)

From Equation the length of time that © = +1 can be found by solving the inequalities
(M —wtan™ (wt +0)) (1 — Xowtan ™t (wt +6)) >0 (4.21)

and

(M — wtan™! (wt + 0)) (1 — Xw tan™! (wt + 9)) < 0. (4.22)

Table identifies conditions and time intervals that u = &1 over one period of time T
Using Table it is now possible to solve Equation [4.12] as

(

d +ft1+Td7' ift1 <taAXy >0
Ltf dT ttH_T dr ift1 <taAXa <0
—[2dr+ [T dr ity <t Adg >0

ftt; dr — tt2+T dr if to <t1 Ao <O

(4.23)

Nl

Ue =

which simplifies to
1— 2 —¢ A2 >0
Yo = w =t ez (4.24)
+2?w|t1*t2| Ao <0

or by making use of Equations [£.14] and [4.15]

1—%)tan*1()— 1%)) %20
42 it (3) —tan (31| da<0 29

Ue =
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Effective Damping. Varying the stiffness in a system causes work to be
performed. [4] Several authors have used work to explain how varying stiffness changes
the energy of the system [17], [I39] and the same approach is applied here. The equivalent
viscous damping coefficient that matches the work applied by varying the spring stiffness
will be developed.  Multiplying Equation [£.7] by &, assuming y = y = § = 0, and

integrating over one period results in
27
/ 2 (1 — 1) 22 + € (u — Ue) Tededt = 0 (4.26)
0
where T' = 7 as before. Breaking up Equation results in

2T 2T 2T
2 (1 — pte) / i2dt 4 ¢ / UTeTedt — EUe / Teiedt = 0. (4.27)
0 0 0

Substituting Equation into Equation and solving for p, results in

- oT c [T
=+ UTeTedlt = 14 + — usin [2 (wt + 6)] dt. 4.28
pe=nt g [ et = [ usin2 t+0) (1.28)

The integral of Equation can be solved by referring to Table to determine

bounds of integration. The result is

Ti—T5 if Ao >0At < to
To—T1 if Ao <OAt <o

He = 1 + T (429)
wm To—T7 if A >0Ata <ty
T =Ty ifXd<0Aty <ty
where
2 2
w" — )\1
= 4.30
YTy A (4.30)
and
Mw? -1
= = . 4.31
2 Aw? 41 (4.31)

With u, and p, known, Equations and are now completely specified.
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4.8 Perturbation Approximation

Perturbation methods for approximating solutions are well known and are often used
on nonlinear problems [146]. The perturbation method used here follows similar reasoning
the direct approach used. The development begins the same way as the direct approach,

but diverges at Equation [£.8] It is now assumed

T =z +ey(te) (4.32)

where z is defined using Equation Ze is defined using Equation The error, x — x.,
between the true solution and the effective approximate solution is assumed to be of order
¢ (where ¢ is also assumed to be small) and written as ey (¢,). This is not strictly true,
since it is possible for e — 1. However, for small values of ¢, perturbation techniques can
provide accurate analytic approximations. The effective solution, natural frequency, and

damping of are expanded in a power series as

Te = Ty + ETey + E2Tey + ... (4.33)

We = Wey + EWey + E2Wey + ... (4.34)
and

fe = ey F Eltey T €2 Htey + o (4.35)

The error can also be expanded as
y=yo+eyr+eyz+... (4.36)
Substituting and [£.5] into Equation [4.2] results in
elij+2uy+ (L +eu)y] = =2 (p — pre) e — (1 — w2 + cu) ze. (4.37)
When ¢ — 0, the order 1 solution to becomes
2 (b — o) Fe + (1 —w? ) ze =0 (4.38)

€0
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which means

(4.39)

Substituting Equation [£.39)into Equation [£.37} dividing by ¢ and letting & — 0 results
in

ZJO + 2#?)0 + (1 + 5“) Yo = Qﬂelieo + [2("‘)61 —u (xeoaijeo)] Leg- (4'40)
The right hand side of Equation is a forcing function with unknown coefficients .,
and we,. Equation has a particular solution in the form

Yo = Aj cos (wt + Oc,) + Az sin (wt + b,,) (4.41)

where 6., is the order one expansion of Equation considering Equation Sub-
stituting Equation and into Equation results in

[(1 - w2) A+ Q[LWAQ] cos (wt + b¢,) + [(1 — w2) Ay — 2,uwA1] sin (wt + O, )

(4.42)
= Ug [—2p,,wsin (wt + bey) + (2we, — ) cos (Wt + be,)]

Taking advantage of orthogonality, Equation can be multiplied by cos (wt + 0¢,)

and by sin (wt + 6., ), then can be integrated over one period resulting in

1 —w? 2w A Lo We Z,
T : "l=w o | @ - (4.43)

Y —2uw 1—w? Ay 0 -1 Lhe, Zs

where
17 27T 2T
Z. = 3 [/ udt —I—/ ucos [2 (wt + b, )] dt (4.44a)
T T

= / udt + / ucos [2 (wt + b, )] dt, (4.44b)
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and

2T
usin [2 (wt + O, )] dt

T
usin [2 (wt + O, )] dt,

\w\»—t

U= u(Te,oe)|_g -

(4.45)

(4.46)

(4.47)

Ideally, A; and As in Equation vanish since it is desired that x, ~ . Then

and

We, = 27TZ
1
ILLel = _%ZS

Then to order ¢, the expressions for w,. and p, are

and

e=1 Ze
+27r
€
Me:/l—%zs-

(4.48)

(4.49)

(4.50)

(4.51)

All that is left is to evaluate the integrals of Equations [£.50| and [£.51] Using Table
Equation evaluates to

we=1+¢|=
14+

where

_ ﬂ’tl —t2|

2 [t — to

M —
if \a >0 +1 Qs —
if \g <0 T Q-0
Q1 — Qo

. )\10)
w24 A2

)\Qw

Q
2= )\w2+1
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if Ao >0AE <ty
A <OAE < to
if A >0A0 <ty

if Ao < 0Nty <ty ]
(4.52)

(4.53)
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t1 is defined by Equation and ¢ is defined by Equation Equation [£.50] evaluates
to the same expression as Equation

4.4 Comparisons of Approximate and Simulated Solutions

Comparison of Equation and Equation substituted into Equation [£.6] shows
the perturbation solution adds a correction term the direct solution misses. The extra

term is small as w — 0 and w — oo, but does make a correction at low frequency.

Simulation Approach. To gain insight into the accuracy of the approximate so-
lutions, Equation was simulated at various frequencies using a fixed time step Runge-
Kutta method. Since only the steady state solution was needed for comparison purposes,
a procedure was needed to separate the transient response from the steady state behavior.
Ideally, only the steady state response would be calculated or equivalently the transient
behavior would not be excited. In a linear system, the transient response can be made
zero by making the homogeneous portion of the response zero. Considering Equation 4.5

the general solution with both homogeneous and particular solutions is
z. = Ae " cos (wat + ) + W cos (wt + 0) (4.55)
where wy is the damped natural frequency of the system [71]. The velocity of the system

is

fo = —Ae M [pcos (wat + O) + wgsin (wat + 0p7)] — Pwsin (wt + 6) . (4.56)

At time t = 0, the displacement and velocity are

xe (0) = Acos (0g) + ¥ cos (6) (4.57)

and

Te (0) = —Afpcos (0p) + wgsin (0g)] — Ywsin (0) . (4.58)
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It is desired to make A = 0 to prevent a transient response from being excited. Hence,
the initial conditions should be

ze (0) = Wcos (0) (4.59)

and

Ze (0) = —Pwsin (0) . (4.60)

Since the real system is nonlinear and the initial conditions were developed for the
approximate solution, the time response was run for 20 periods as measured by the forcing
function period to ensure steady state was found. Some time response plots were inspected
to verify steady state was being achieved for the nonlinear problem with satisfactory results.
It should be noted that finding steady state for the nonlinear problem using other initial
conditions will likely require many more periods to be run, which increases the time needed
to complete the simulations. Only the last 20% of the time response was kept to identify
the amplitude of the response. Again, some time response plots were inspected and the

20% number may be overly conservative.

The amplitude of the response was determined by finding the root mean square of

the response and dividing by the root mean square of the input. The root mean square is

defined as
Z:‘L:l Zi2

rms(z) = -

(4.61)

where z is a vector of time response data and n is the number of points in z. Using the
rms smooths out nonlinear behavior such as harmonics that appear due to the nonlinear
nature of the system. Figure shows a steady state time response forced at a frequency
of 0.1. The simulated response shows high frequency harmonics have also been excited by

the forcing function, but the predominate behavior is at the forcing frequency of 0.1.

Approzimate Solution Validation.  The magnitude of response at various frequen-
cies was graphed a various frequencies for the simulated system and for the two approximate

systems to make comparisons using a plot like a Bode magnitude plot, shown in Figures

42| 3] and [£.4] on pages - [A-16] Care must be used in interpreting these plots

because the variable stiffness system is a nonlinear system and the superposition principle
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Figure 4.1  Forced Response at w = 0.1 (1 =0,e=0.1, \; =0.1, Ay =0)

often associated with these types of plots in linear systems does not apply. Changes in the
forcing function (such as adding a second sinusoid function) requires complete reanalysis

of system behavior. With this caveat, Figures and [4.4] can be considered Bode

magnitude plot equivalents.

Figure [{.2] shows a comparison of simulated results with approximate results for both
the direct calculation method and the perturbation method. The parameters Ay and Ao
were both set to 0. Additionally, it shows the effects of using variable stiffness as compared
to the same system with no variable stiffness. In this case, since damping is 0, the system
with no variable stiffness is a simple linear oscillator with infinitely strong resonance at
its natural frequency of 1. For ¢ < 0.5, the approximate results reasonably match the
simulated results. For high values of €, however, the approximate solutions fail to capture
system behavior. No difference was seen between the two approximate solutions since

both solutions are the same when A\ = 0 and Ao = 0.

Figure (4.3 shows comparisons of the simulated and approximate solutions using the
unforced optimal control of Figure and sets . = 0.1. This control policy may not

be optimal for this system as will be discussed later, but still provides much damping,

4-12



especially for the higher values of €. At very low frequencies, the variable stiffness method
provides significant attenuation that the standard viscously damped system does not pro-

vide, though apparently at the expense of less attenuation as resonance is approached.

To better understand where the low frequency attenuation comes from, consider
Equation [£.2] and let w — 0. In the limit, the system is being forced by a unit step
function or

i+ 2ui + (14 eu)z = 1. (4.62)

Assuming the control law is chosen to make the system stable, it is expected the system
will settle to a constant value as time ¢ — oco. It may be possible that certain settings of
A1 and Ay could cause limit cycle or other oscillatory behavior (which has not yet been
observed), but this type of behavior is undesirable for damping out vibration in the system
and was not further pursued. The settling value can be found by finding the stationary

point of Equation [£.62] or steady state error to a unit step function which is

1
14eu

(4.63)

€r =

Since # — 0 by definition of a stationary point, the control law of Equation [3.12] simplifies

to
u = sgn (\z?) = sgn (A1) (4.64)
since z2 > 0. Then as w — 0,
ﬁ if A1 >0
T — 1 if \=0 . (4.65)
i if A <O

or the attenuation in dB is

—20log(14+¢) if A >0
x — 0 if \q=0 = —20log[l+esgn(Ai)]. (4.66)
—20log(1—¢) if A <O
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Figure 4.2  Comparison of Simulation with Approximate Solutions (A\; = 0, Ay = 0,
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Clearly, letting A1 > 0 provides the best low frequency attenuation.

Figure [£.4] shows that even with very high damping, variable stiffness is still valuable
because of the low frequency attenuation it provides. The control law was once again set
to the same settings as the unforced optimal control law of Figure[3.12] since A; > 0 for this
policy. In the case where ¢ = 0.9, the variable stiffness device is providing approximately

5.58 dB more attenuation than a viscously damped system with no variable stiffness.

4.5  Approzimate Optimal Control Law

From the previous section, it would appear an optimal control law should have A\; > 0,
since it provides much better low frequency behavior than other settings for A;. One ap-
proach that estimates an optimal control law considering the low frequency behavior is
to minimize the area of the response curve over all frequencies. The results are limited
to being near optimal and may only be approximate local minimums, since the approx-
imate solutions derived earlier have limited accuracy. Numerical methods were used to
solve for relevant parameters because the functions for the approximate amplitude are too
complex to allow analytic methods. For the direct method, the approximate amplitude is

represented by Equation using Equations and For the perturbation
method, the amplitude is represented by Equation using Equations and

The area under the frequency response curve can be found by solving
o0
I (A1, Ao, pye) = / U (w, A1, A2, 1, €) dw. (4.67)
0
Then, the settings for A\; and Ay that minimize the peak response can be found by solving
VI ()\1, )\2, M, 6) = Q (468)

for A\; and Ao. Figure shows the near optimal values for A\; for various values of u.
The curves for 0.3 < p < 0.9 are difficult to tell apart and range between 0.32 and 0.37 for
small € and are very close to 0.46 for large . The parameter Ay was found to be 0 while

A1 > 0 as expected. A comparison between Figure and Figure shows the control
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laws for the initial value and sinusoidally forced problems is radically different. However,
two common results are that \; > 0 and Ay = 0. If a suboptimal control is acceptable for
one or the other disturbance types, it may be possible to use a single control law to meet

two disturbance rejection criteria.
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Figure 4.5 Near Optimal \; for Sinusoidally Forced Problem using Perturbation Ap-
proximation (Ay = 0)

4.6 Equivalent Damping and Stiffness Coefficients

As was done in Chapter an equivalent stiffness and equivalent damping co-

efficient can be calculated to use in the dimensioned SDOF equivalent forced system.
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Comparing Equations [£.2] and [£.5] suggests

1+euw wg (4.69)

and
B He (470)
where 7 «~ 7 again is used to mean the quantity on the left hand side of the relationship

is replaced by the quantity on the right hand side. Once again, the quantities of the
relationship are not equal since pu, is a combination of viscous damping and dissipating
work done on the system due to switching the stiffness. Solving Equation [3.10] for c¢*

and applying the approximations of Equations and to Equation [4.2] suggests the

original dimensional differential equation can be approximated as

m*i; + e an + kl,xn = A¥ cos (wW*tY), (4.71)

eqe eqe

where
Coq = 241V M*k* (4.72)
ki, = k*w? (4.73)
with
B — w (4.74)

Equation represents a well known viscously damped oscillator that can be used to

approximate some behavior of Equation [£.1]

4.7  Conclusion

Two approximate methods were developed to estimate the dominant response of a
SDOF sinusoidally forced system. The system can make use of both variable stiffness
and viscous damping to attenuate the input. Both methods were found to provide good
approximations of the response for low variation in the variable stiffness device. For high

variation in the variable stiffness, the methods did not always capture all of the nonlinear
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effects such as high frequency harmonics. The approximate solutions were used to develop
a near optimal control law, which was only near optimal due to the limited accuracy of
the approximate solutions. For certain settings of the variable stiffness control law, it is
possible to substantially improve the low frequency attenuation of the response as compared

to a passively damped system, even when the system has strong viscous damping.
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5. Variable Stiffness for Multi-Degree of Freedom Systems
5.1 Introduction

The utility of the SDOF approximate solutions of Chapter [3] and Chapter [4] for
multi-degree of freedom problems will be explored for the initial value problem and for
the sinusoidally forced problem. Because the approximate solution is linear, linear the-
ory was used to study the MDOF problems. A parallel mass lumped parameter system
representative of a space telescope structure will be examined. Afterward, a series mass
lumped parameter system that could represent the model of a continuous beam with vary-
ing stiffness will be considered. In both cases, equations of motion will be developed and
nondimensionalized. Since space applications are the focus, the system examined is one
floating in space, meaning it has no fixed constraints. Hence, the rigid body modes were
removed from the system using a center of mass transformation. In both cases, a 3 DOF
problem was selected, where one DOF is a rigid body mode. After removing the rigid
body mode, a 2 DOF problem was found with acceleration coupling in both equations. In
both cases, limiting assumptions had to be made about the masses and control law to allow
the 2 DOF problems to be solved. For the parallel mass lumped parameter system, the
assumptions were physically reasonable while the series mass lumped parameter system
was restricted enough to limit the utility of the results. The coupling in the parallel mass
lumped parameter system was weak while in the series mass lumped parameter system
it was much stronger. Hence, the results for the parallel mass MDOF model were much

more accurate than the series mass MDOF model.

5.2 Parallel Mass MDOF Model

FEquations of Motion. Figure [5.1] is one type of multi-degree of freedom model
(MDOF). It could represent a cross section of a space telescope where the satellite bus is
m] and the other masses represent mirrors. Alternatively, if there are only two masses

in the system, it could represent a simple vibration isolation problem. The equations of



motion can be written as

p
miEt + Y [ef (6 - @1) + i (oF — )| = @1 (5.1)
=2
and
miii +c; (x}k —&]) + ];);k (nr:;k —x]) = Q; (5.2)

for 7 = 2,3, ..., p, where p is the total number of masses in the system and p > 1. For the

MDOF model, mj is a mass allowed to vibrate while m} are masses to be isolated from

vibration, ¢* is the coefficient of damping for the j** viscous damper, l;:;‘ is the variable

stiffness function for the j** variable stiffness spring, Q7 is the 4t disturbance force acting
99 %99

on the 5% mass m3, and Q7 is the disturbance force on mj. As previously used, the

notation defines the variable as a dimensional variable. The initial conditions are

= it (5.3)

and
25 (0) = 2, & (0) = 5 (5.4
Q, X, Qs X, '1:\‘ Q, X,
!
* * I 1 *
m, | My | : : mp .
Li
!
1 | I Y e
g * ~ * [z
k, L=lc, ks =l Cy |k = P
1 ! * %
|
m,’ 'y
1 !
!
‘ 1
W)
Figure 5.1 MDOF Masses in Parallel Variable Stiffness Constantly Damped Problem
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Equations 5.1 and [5.2] can be transformed to separate rigid body modes by defining

P %, % P * .k * %
« _ 2ui=1 "M% _ 2 j—2 Mj%; +miai

* *
mp mp
and
25 = — 1]

J J

where

p
=2 m
i=1

Solving Equation [5.6] for 2% and substituting into Equation [5.5] results in

D * .k * 0k
. > 2 (m +mfﬁ) +myxy . L amizt
y pr - = xl —|— 7*
mp mp
or
p * %
_ox j=2"57%;
r =y "
m
T

Substituting [5.9] into Equation 5.6 and solving for x} results in

P * o

m.,
* % N JJ
Ty =2z ty .

*

T

Substituting [5.9) and [5.10] into Equations [5.1] and [5.2] results in

P * ok
Z. m*z* N
* | =% -k Jj=2""5"3 * 5k * ok )k
mj<zj+y )—i—cjzj—i-kjj—Q-

* J
T

and

m( ? ) i[ kS *}z@*
1|y c; 3% 1-

Jj=

Adding all j equations of Equation to Equation and simplifying results in

ek Zle Q:

Yy ¥
mrp

(5.5)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)



Equation [5.13|describes the rigid body motion of the system and can be immediately solved

as

gt = o /t/ ZQ dTdr + R* (t*) (5.14)

_ /0 “ ZQldT+R*( ) (5.15)

mr

where

Rt = g5t" + v (5.16)

represents rigid body modes of the system. The other term of Equation represents
forced vibration with respect to the center of mass of the system measured by the inertial

coordinate y. Substituting Equation [5.13|into Equation and simplifying results in

p * m* p m#f p
k= T T =1
k# k#j
Now, it will be assumed that m} = m*, ¢; = ¢*, and /;;; = k* = k* (1+eu),

where u is a control law for the variable stiffness device, k* is the uncontrolled stiffness
of the variable stiffness device, and £ measures the range the variable stiffness device can
achieve, defined by Equation [3.11] These definitions assume all of the masses, springs and
dampers of Figure are the same, except for mj. This is a reasonable assumption for
some systems such as a space telescope, since it assumes all masses and isolation devices

were manufactured to be identical. Equation can be simplified to be

* p

4+ k(L4 eu) 2f = Z - ZQ;‘ (5.18)
k#J

1+PY z:l

where

(5.19)




The transformed initial conditions are found using Equations and [5.6] and

are
and
By letting
E*(14+7)
0=\ —* 5.22
i L (5.22)
and defining a nonzero length (will be specified later)
L*#£0 (5.23)
Equation [5.18| can be nondimensionalized by letting
t
"= —, (5.24)
Wo
z; = L7z, (5.25)
and
m*L*wE‘)2
Q) = Q= IR, (5.26)
Hence, Equation becomes
1 p v &
Zi 4+ 2pz; + (1 = —0Q; Zp — ——— ; 5.27
4 2uz + (1 + eu) 2 1+7Qg+w;zk H,YZ;QZ (5.27)
k#j k#j
where
crwyg
= ) 5.28
2k* (5:28)
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From Equation [5.27] it can now be seen that the parameter v is a measure of the coupling
between the different masses in the system. Clearly 0 < v < 1 and as p — oo or if

mj] >>m*, v — 0, which means the coupling with all other masses in the system is weak.

To determine if v will be large or small for a space telescope, Powers et. al. was
consulted. Their preliminary design identifies a total mirror mass with support structure
for a space telescope with six mirrors as 883. 4 kg while the mass of the rest of the satellite
is 2533 kg [29]. One mirror with support structure would have a mass of about 147 kg.
Considering Equationclearly shows m* << mj so it is expected that v would typically

be small.

For the special case where p = 2, Equation [5.27] simplifies to

.. . 1
Zo+2uZo+ (14 cu) 20 = 1+7Q2— 117

Q (5.29)

which has already been solved for some cases. For example, when @)1 = Q2 = 0, Equa-
tion becomes the constantly damped variable stiffness problem solved in Chapter
Similarly, if either ()1 or Q2 are sinusoidal forcing functions, the results of Chapter (] can
be used to estimate the response. Hence, the work of the SDOF problem directly applies
to the 2DOF problem.

For p > 2, as v — 0, Equation becomes j SDOF problems. When v — 1,
m] — 0. This implies the other masses are connected to each other through their isolation
devices. Equation is very similar to Equation [3.9|found in Chapter[3] With the right
forcing function, it is similar to Equation 4.2l The main difference between Equation [5.27]
and the equations studied in Chapter [3|is the coupling with the other masses on the order
of ~.

Based on previous work, two methods of solving Equation are possible. One
way is to consider v to be a small parameter and treat Equation as a perturbation
problem. This is possible because the unperturbed problem has already been solved.
This has the advantage of allowing any settings for p and e, but limits the size of the
coupling of the system. The second approach is to develop an approximate solution using

the equivalent linear approximate solution developed in Chapter [3] This appeals to well
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known linear tools making it easier to develop, but is limited in accuracy in the short term

as € and p become large. The second approach was used.

Initial Value Problem. The solution to Equation can be approximated by

solving the linear equation
P
5+ 2wnd; +wiz =7 (5.30)
k=2
k]

where it is assumed all external forces are 0. The parameters ¢ and w, are defined

using Equations [3.157| and [3.158] and represent the equivalent damping ratio and natural

frequency, respectively, for the SDOF variable stiffness constant damping problem solved

in Chapter [3]

Linear Approzimate Solution. Taking the Laplace transform of with
Zj = L (zj) results in

p
75 — s2j0 — 4jo + 2wnZ;s — Awnzjo + woZj = > (Zes® — sz0 — 2wo)  (5.31)

k=2
k#j
or
P
Z; (52 + 2Cwn s + wi) — vs? Z Z = zj15 + 252 (5.32)
k=2
k#j
where
p
51 =720 —7 D %o (5.33)
k=2
k#j
and
p
Zj2 = Zjo + 2Cwn2j0 -y Z 210- (5.34)
k=2
k#j

The solution to Equation [5.32| can be written in matrix form as

z(t)=L1(AT'B) (t) (5.35)
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where

[ Zb(s) Zn(s) .. Zn(s) ]
Al | AN ZoG) 2w | 530
| Zn(s) Zn(s) - Zp(s) |
S
g | et (5.37)
| 215+ 2 |

and £~! denotes the inverse Laplace transform operator. The variables Zp and Zy are
defined as
Zp (5) = 8% 4+ 20wns + w? (5.38)

and

Zn (s) = —vs2. (5.39)

The matrix A is in a special patterned form, which is called a circulant matrix [147].

To find A™1, the special form of A can be exploited. It is postulated that A~ will have

the form ) )
a(s)  Zn(s) Zn (s)
A= D(s) ZIn(s) a(s) ... Zn(s) (5.40)
| Zn(s) Zn(s) ... als) |

where a (s) is the diagonal of A~ and D (s) is the determinant of A, with « (s) and D (s)

to be found. Since AA™! = I where I is the identity matrix, multiplying AA~! results in
D (s) |a(s) Zp (s)+ Zn (s)? (p—2)| =1 (5.41)
for a diagonal element and

Zp(s)+a(s)+Zn(s)(p—3)=0 (5.42)
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for an off diagonal element. Then

a(s)=—[Zp(s)+2Zn(s)(p—3)] (5.43)
and
D(s) = ! (5.44a)
((s) Zp () + 2w (s (0 - 2)

- ! . (5.44D)

~Zp (s)[Zp () + Zn (s) (p = 3)] + Zn ()" (P — 2)
= 5 ! 5 (5.44c)

—Zp(s)"=Zp(s)Zn(s) (p—3)+ Zn(s)"(p—2)

1

T ZnG) = Zp () [(p—2) Zn (5) + Zp (5)] (5.44d)

With a general form for A~! known, it is now possible to fully specify Equation m

First,

[ o () [2215 + 222] + Znv () Z%% (zi1s + zi2) -
1 a(s)[#315 + z32) + Zn (5) 2?22 (2i15 + 2i2)
A1 (s) B(s) = D(s) i#3 (5.45)

a(s) [zp18 + zp2] + Zn (5) Zf=2 (zi15 + zi2)
i#p J

or in tensor notation

p
A7 (s)B (s); = D(s) |a(s)[z1s+ 2] + Zn (s) Z (zi1s + 27;2)] (5.46a)
| 7
a(s) [zj15 + zj2] — Zn (s) [zj15 + zj2]

+ZN (8) Zf:2 (zils + 2’2'2)

] (5.46b)
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where j = 2,3, ...,p. Substituting Equations and into Equation and then

simplifying results in

1 B(s). = [zj1s +zj2] V52 Y0, [zi15 + 2]
AT B, =206 2o () () Zo -2 Zn ()~ Zp (@] O

or recalling Equations and

- _ —[2'18+Z'2]
AT OB = [ s 2t o

752 fzg [2i18 + z2]

_ - (5.48
(=75 + 2was + 2l (L -7 (0= 2) 2 + Wos 4 2] O H)
Equation [5.48| can be expanded into partial fractions resulting in
A7 (s) B(s); = — ]21;:— 22 =t 2@];8 + o - (5.49)
ST IS Ty ST T T 509
where »
(p—2) 21— Zi’?’ 2i1
Fj = 7 5.50
ST D) (5:50)
(p—2)zj2 — Z%z Zi2
Fj = 7y 5.51
N T oD () (551
D ien %l
Gi1= = R 5.52
- D-7(—2) (552
and
P
G = 2=y %2 (5.53)

S p-1)(A-7(p—2)
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Using a table of Laplace transforms [145], Equation can be transformed to the time
domain allowing Equation to be written as

(), =L <A*1 (s) B (s)j> (t)

/ 2
1 Gun,y Fijwn /14— ¢%cos <Wt>
= e_m
2 w1 —c?
wpV14+7v—=¢ + [Fj1¢wn + Fj2 (1 + )] sin <”fjj<t>
2 wny/1—(p—2)—¢*
. 1 _ten Gjlwn\/l —v(p—2)—("cos < 17](;:2) t)
e 1-(— . —
wnJ1—7(p—2) +[Giwn + Gy (1~ (p— 2))] sin ( e t)
(5.54)
For the special case when p = 3, the solution is
1
29 (t) = B [Zf (t, Qp, Cp, Dp,'y) + Zf (t, Qiny Cry D, —’}/)] (555)
and
1
23 (t) = 3 [(—Z¢ (t,92,Cp, Dp,v) + Zy (t, Qn, Crny Doy, —7)] (5.56)
where
1 Wn Q Q
Zf (t, Q, C, _D, F) = (1_|_F)(26_§+Ft [C (1 + F) — DCwn] sin (I—H—‘t) + DQ COS <1_'_1_‘t>:| y
(5.57)
Cm = 232 + 222, (5.58)
Cp = —232 + 222, (5.59)
Dy, = 231 + 291, (5.60)
Dp = —231 + 291, (5.61)

Qp = wp\/1+v -2 (5.63)

and



This special case will be compared later with the true system to determine how accurate

the approximation is.

Optimal Control.  Determining the optimal control policy in a rigorous way
for the coupled system appears daunting. One approach would be to calculate the energy
of the system and then take partial derivatives with respect to A1 and Ao to identify settings
that minimize energy. Another approach is to minimize the approximate equations for
displacement. Both of these approaches result in time varying parameters for A\; and As

and requires time consuming numerical study.

A second approach is to examine Equation [5.27] when v is small and for the initial
value problem (no forcing). The result if the perturbation problem was completed would
be in the form of

zj = zj(o) + ’yzj(-l) + ... (5.64)

The leading order solution is known, since the problem looks exactly like the SDOF con-
stantly damped variable stiffness initial value problem solved in Chapter The 1% order
correction is of order v. Hence, for small v, the optimal control policy found for the SDOF

problem will be approximately optimal for the coupled problem.

This result can also be seen by looking at the approximate solution for the coupled
problem (Equation and by assuming the goal is to maximize the decay coefficients
in the exponential terms. The arguement of the exponential decay terms are nearly the
same for both terms, and only differ in the arguement’s denominator. As the denominator
of the arguement of the exponential term is not a function of A1 and Ao, it would seem
desirable to maximize numerator of the arguement (i.e. maximize (wy). This is equivalent
to choosing the SDOF uncoupled optimal control policy found in Chapter 3| (see Equations
[3.158 and [3.159| while using Figures and . Hence, this policy will be used.

Time Response Results. Time response plots were created for both the
approximate solution and for the simulated solution of the exact equations of motion. In
what follows, only the initial velocity problem is considered, since the initial displacement

problem would be very similar. For the 3 DOF problem, two initial value problems are
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considered. One possibility is only the base mass m] has an initial velocity, resulting in

and

(5.66)
by applying Equation and Here, j =2,3 and p = 3. In this situation, letting
=21 (5.67)

“o

results in the nondimensional initial conditions

ZjO == 0, 73]'0 =1 (568)
and

(5.69)

The other case is for one of the other masses to have an initial velocity, say m3.

Since
m5 = m3 and the isolation devices are identical, it does not matter which one is chosen.

In this case applying Equation and results in

* sk %
ZjO_Oa %20 = T20,

230 =0 (5.70)
and
Yo =0, 95 = v&d5 (5.71)
where j = 2,3, again. Selecting
X
=220 5.72
wa (5:72)
results in the nondimensional initial conditions
250 = 0, 232() = 1, 230 =0 (573)
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and
Yo=0, go=rE. (5.74)

Representative results for the second case will be shown, since only one case is required to

understand the basic utility of these results.

Figure shows a time response plot for the case v = 0.2, e = 0.8, and © = 0. The
SDOF uncoupled time response was plotted, showing that for small coupling, the response
could be used to estimate the coupled response at least for the disturbed mass. Naturally,
no information is provided for the undisturbed mass with this formulation. The simulated
and estimated coupled solutions are also plotted, showing that the estimated solution is

a reasonable approximation to the true system, for both the disturbed and undisturbed

masses.
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- Switching (Mot to Scale)
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Figure 5.2  Nondimensional Relative Displacements for the 3 DOF Initial Velocity Prob-
lem (7 =0.2, e =0.8, u=0)

Figure shows a time response plot for the case v = 0.2, e = 0.8, and . = 0.6. In
this result, the approximate solution underpredicts the simulated displacement in the near
time behavior, resulting in error. However, the error is not so large that the approximate
solution cannot be used in a preliminary design. Running other simulations shows as

coupling increases and ¢ increases, the accuracy of the approximate solution decreases.
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Since the coupling is expected to be small for space telescopes, the error between actual

and approximate solutions is expected to be reasonably small.

= Displacement 28 Digplacement
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Figure 5.3 Nondimensional Relative Displacements for the 3 DOF Initial Velocity Prob-
lem (v =0.2, e = 0.8, u = 0.6)

Sinusoidally Forced Problem.  In this section, the sinusoidally forced space telescope
problem was considered. It was assumed mj was disturbed sinusoidally and the goal was
to minimize the transmission of the disturbance to two masses connected in parallel. This

equates to Q = A* cosw*t* with all other disturbances 0, and p = 3. Then Equation [5.27]

becomes 5
. . . v
Zi +2uz; + (1+eu)z; = 2k — coswt 5.75
J i+ ( ) %j ’YkZQ k 1+~ ( )
k#j
where j = 2,3 and by Equation L* = %.
Linear Approzimate Solution. Another well known approach for solving

linear problems is through modal analysis [71]. Essentially, a transformation matrix of
eigenvectors is found that completely decouples all of the differential equations in a system
of equations. It is assumed as previously done that the masses of the forced system
are all equal (except the base mass m}) and the isolators are all exactly the same. An

estimated analytic solution can be found by applying Equations and to Equation
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[6.75] resulting in

3
. . 5 . v
Zj 42025 + wizj = 7; BTy 5 cos wt. (5.76)
k#j
or in matrix form
2 1 2 1 1
spte |0 T ap e 1 T o Y cose . (5.77)
L="1 5 1 L="1 5 1 e 1
Letting
z = Pq (5.78)
—1
where P = allows Equation |5.77| to be put in modal form resulting in
1 1
1-— 0 2 1-— 0 0
q+ '%2 ! q+ w62 K q=— PYQCoswt
l—x 0 14+ l—x 0 14~ — 1
(5.79)
The solution to Equation [5.79|is
0
q= (5.80)
¥ cos (wt + 0)
where
b= v (5.81)
2
(149) /T2 = w2 (1= )P + (2,0
and
_ 2p.w
0=m—tan ! g : 5.82
Zow(l ) 552
Then
1
z = 1) cos (wt + 0) (5.83)

1

showing both mirrors oscillate in phase and with the same displacement. This basic process

could be applied to solve problems where there are more than 2 mirrors (i.e. p > 3).
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Frequency Response Comparison.  Equation was simulated over a range
of frequencies using the same method discussed in Chapter .4] to develop a Bode plot of
the response. The simulated solution was the same for both mirrors (m3 and mj). Both
approximations developed in Chapter [4] were compared to the simulated response. Figure
shows a comparison for the frequency response of both approximate and simulated
solutions for a lightly coupled system and for A\; = 0.5. Reasonable agreement was found
for low frequency and peak response. At high frequency, the approximate solutions show a
40 dB/decade decrease while the simulated solution decreases at a more shallow rate. The
reason for this is not currently known. Hence, it would appear the approximate solution

provides reasonable accuracy, except at high frequency.

Solution Compatisons (Epsilon = 0.1) Solution Comparisons (Epsilon = 0.5

40

dB
=3

001 1 10 01 1 10

NonDimensional Frequency NonDimensional Frequency

— Simulated
<+ Approximate Solution (Direct Method) 0
—  Approximate Solution (Perturbation) 1
— - No Variable Stiffnese

Solution Comparisons (Epsilen = 0.9)

dr

NonDimensional Frequency

Figure 5.4  Nondimensional Relative Displacements for the 3 DOF Initial Velocity Prob-
lem (=02, \y =0.5, \a =0, u =0)
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The setting for Ay = 0.5 was arbitrary. It is possible to estimate an optimal control
law for the system, which might differ from the optimal control law found for the SDOF
problem. The difference in control law is because of the coupling coefficient ~ found in
Equation [5.81] which does not appear in the SDOF approximate amplitude. For small
v, the control law will match the SDOF problem, but for large ~, there will likely be a

difference.

5.8 Series Mass MDOF System

FEquations of Motion.  Figure [5.5| represents another type of model with all masses

in series with each other. The equations of motion are

miE} + & (¢ - @3) + k3 (o] —23) = QF, (5.84)

M+ (& — @) i (8 - df) TR (2 - aly) R (2 - 2in) = QF, (5.85)

and

min 4+ & (25— i) + k(2 — 2 )) = @, (5.86)
where p > 1 is the number of masses in the system and ¢ = 2...p—1. For the MDOF model,
a particular mass or group of masses may be allowed to vibrate while another particular
mass or group of masses may need to be isolated from vibration. For example, this type of
model has been used to model a launch vehicle with a payload [148], [47]. Alternatively,
this type of system can be used to approximate the solution to a distributed system [149].
In this case, the system might represent a variable stiffness beam in axial vibration. The
parameter ¢ is the coefficient of damping for the i'® viscous damper, l;::‘ is the variable
stiffness function for the i** variable stiffness spring, Q7 is the ith disturbance force acting

on the " mass m}, and Q7 is the disturbance force on mj.

The initial conditions can be defined in the same way as the parallel mass MDOF

system using Equations and by defining j = 2,3, ...,p. The rigid body modes for
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Figure 5.5 MDOF Masses in Series Variable Stiffness Constantly Damped Problem

Equations [5.84] [5.85], and [5.86] can be separated out by defining

g (5.87)

and using Equations and Solving Equation for 7 and recognizing it is a

recursive relationship results in

o=+ 2 (5.88)
n=2
Solving for 27 and 7} results in
Ty =y" — 72, (5.89)
J
vi=y 75+ ) 2 (5.90)
i=2
where A
p * ? * p * p *
Z; _ Z2ui=2 m; *Z:jZQ Zj _ 2uj=2 Zj . i=j mi. (5.91)
mr mr

Substituting Equations[5.87] [5.89 and [5.90] into Equations [5.84], [5.85], and [5.86] results

n
mi (i — Zp) - &% — k= = Q1. (5.92)
.. Z
n=2

5-19



and
.. p ~
m <y ~Zr+ Y zj> vas ke = Q) (5.94)
n=2

Adding all i equations of Equation to Equations and results in

PQr
i = 7%@@ (5.95)
mr

which is the same as Equation and represents rigid body motion.  Substituting

Equation [5.95 into Equations [5.93] [5.92] and [5.94] results in

m Z * Tk % m * * m ok *
T Zoima T iy sy 4+ By = iZQi—Ql—m—szjZmi, (5.96)
T T =1 T j=3 i=j
i

m; (—Z; + Zz:) T = Tt R — Kl = (5.97)
P

m (-Z; + Zz;) +&an + k= (5.98)
n=2

The transformed initial conditions are found by applying Equations [5.5] and

3 DOF Problem. Next, a 3 DOF problem is considered, by letting p = 3. The

simplified equations of motion are

* 3 * *
W@ eyt Ry = Z T (5.99)
T T — T
and
M3 (£ M) sy sy iy~ TAE M (Q1+Q2) M3 55 (5.100)
mh T mr
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Next, the damping and variable stiffness functions are specified as

Cy = ¢}
Cy =3
s (5.101)
k; = k; (1 + 82’LL2)

]22;; = k§ (1 + €3U3)

where c3, c3, k3, and k3 are constants. The parameters €2 and €3 are the total variation
in variable stiffness while the functions us and us are defined as

ug = sgn|(A122 + 22) (Aaza + 22

[z + 22) o + 2) 5102

uz = sgn[()\lzg + 23) ()\223 + 2’3)]
which are control laws. This represents the 3 DOF equation of motion in exact form.
However, the exact form is difficult to solve, so the coefficients will be replaced with an
approximate form based on the approximate equivalent damping and stiffness coefficients

defined by Equations [3.169] and [3.164. The damping and stiffness functions are replaced

as
~ m7T(mi+m3 )k
C; = ZCQUJHQ 1( fn§ 3) 2

m} (mi+m3 )k}

G =20Wns\[ = (5.103)
ks = ko
B = ko,

Next, the equations of motion will be nondimsionalized. To begin, define

b= —————— 5.104
0=\ g ) (109
which is the uncontrolled natural frequency for Equation [5.99] and will be used to scale

time for the system. By selecting a nonzero length L* # 0 which will be selected later,

Equations and [5.100] can be nondimensionalized by letting

tr=— 5.105
o (5.105)
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zi = L*z, (5.106)

and ,
m* L*w
Qz 1 + 7 Ql ( )

The nondimensional equations become

. : 9 . mj w ey Motmy
Zo + 2Qowny 22 + Wy, 22 = —Y923 + W%L* (@5 +Q3) — WQl (5.108)

and

*

. ) .. m . ms + m3 . .
Z3+ 2(3“713\/ %523 +W721333 = —gEpt ——— Q3 — Jp e T 1) (m3 3 (Q7 +Q3) (5.109)
2

mpyoks L* mipks L*
where
ms
= ) 5.110
Y2 i + mi ( )
mj
= 5.111
and

_ [k
§= \/; (5.112)

The parameters 75 and 3 are measures of the coupling of the system which are bounded

between 0 and 1.

Considering Equations [5.108 and [5.109] an appropriate length scale can now be

chosen. For an unforced problem a length scale can be created by defining a nonzero
length such as

L* = max (279, 250, Z30) (5.113)
for the initial displacement problem or

max (jfnya L350, fbgo)

L* = (5.114)

%
Wo
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for the initial velocity problem. For the forced problem with no initial conditions, it is
convenient to choose L* such that the amplitude of at least one of the forcing functions is

unity.

3 DOF' Initial Value Problem.  For the initial value problem when @} = 0, Equa-
tions [5.108] and [5.109] become

.. . 2
1 Yo 29 n 2C2wn2 0 ; 29 n Wh, 0 29 _ 0
v 1 Z3 0 2(3wn, %f z3 0 "ngg 23
(5.115)
or
2 laoal 2 Vil 2 Vg (5.116)
Z3 Z3 23
where
1 - Cow 0
A= 1 72 2 (5.117)
— Y273 -3 1 0 ngng %5
and
1 1 — w? 0
72 " (5.118)

B=——
1=m78 |~y 1 0 W%S\/%f

Equation [5.116] can be solved analytically if A and B are simultaneously diagonalizable.
This occurs if and only if AB = BA [r4], [75], [76]. Using symbolic software, AB = BA

Can2 Y2
=, —=. 5.119
CSw”?, 735 ( )

Equation [5.119 can also be derived by examining what is different between A and B and

when

requiring

Co = Cun, (5.120)

and

Ca=Cuny, | B¢ (5.121)
Y2

where C' is an arbitrary constant. Then solving one equation for C' and substituting it

into the other results in Equation [5.119] This method of diagonalizing the matrices is

5-23



called proportional damping where C' is the proportional damping coefficient [71]. The
restriction of Equation [5.119| prevents analytic solutions to a rocket problem, and limits

approximations to a beam problem.

When Equation [5.119 is true, Equation [5.116| can be solved using classical modal

analysis methods. Equation can be rewritten as

{£} +2Cp [K|{2} + Cs[K]|{z} =0 (5.122)

where Cp and Cg are constants. A transformation P can defined such that
[P]7H [K][P] = [D] (5.123)
where [D] is a diagonal matrix. Defining a new coordinate vector {¢q} using the relationship
{z} = [P]{d}, (5.124)
substituting into Equation then premultiplying Equation by [P]fl results in
{q} +2Cp [D]{q} + Cs [D]{q} = 0. (5.125)

Solving for ¢, where n = 2,3 results in

Gn = ane PPt cos <\/C’5Dn - C3 D2t + 9n> (5.126)
where
. \/quO (CsDy, — C3,D2) + (d4no + CpDnno)” (5.127)
\/CsD — CR D2
and
6, = —tan~" [ — 40t CDDndno (5.128)

4o/ Cs Dy — C} D2
The variables g,0 and ¢, are the initial conditions for Equation [5.122] and can be found

by applying Equation [5.124]
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Time Response Results. The 3 DOF problem was simulated using the nonlinear

system and was approximated. The values

G =c5=0 (5.129)
T =k =10"

were selected to compare the approximate solution with the simulated exact solution.
Results are shown in dimensional form and using the original inertial references. The
initial conditions were all assumed to be 0, except for the initial velocity on mj which was
set to 1. By applying the solution to Equation [5.95] the rigid body motion of the system

was subtracted out of the response leaving just the vibrational motion for examination.

The control law was set to match the optimal SDOF unforced problem. While this
control law is optimal for the SDOF problem, it is uncertain whether it is optimal for
the 3 DOF system. It was found that the approximate solution becomes increasingly less
accurate as the control law is changed from the SDOF optimal control law. The inaccuracy
due to changing the control law means that the real 3DOF system is switching differently
than the SDOF problem. The difference in switching is because coupling between the
masses is strong. Recalling Equations [5.110/and [5.111], the coupling coefficients v, and 75

are both % Further, as ¢ is increased, the approximate solution was found to become less
accurate. Increasing e strengthens the nonlinear behavior of the variable stiffness device,
which then increases any switching errors. Hence, for sufficiently small values of ¢, the
approximate solution works well. For large values of ¢, however, the approximate solution

is not valid.

Figure [5.6] shows a time displacement history when ¢ = 0.1 and there is no viscous
damping. The results show the approximate solution slightly overpredicts the amplitude
of the real system, but otherwise is providing a good estimate of the behavior of the real

system.

Next, the response when € = 0.9 was examined, shown in Figure The response

has about the right order of magnitude, but the frequency of the approximate solution
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Figure 5.6  Dimensional 3 DOF Series Model Vibrational Displacement History (¢ = 0.1,
p=0)

is too fast and out of phase with the clearly nonlinear simulated response. This shows
the switching time has been poorly estimated and the high value of € has exacerbated the

situation.

Next, a viscous damping of ¢] = c§ = 365 was selected, making 1 = 0.5. Figure
shows the response for the system when ¢ = 0.1. Good agreement was found for both
the simulated and approximate solutions. Though not shown, for values of ¢ < 0.4, the
approximate solution appears to reasonably agree with the simulated solution. For higher
values of ¢, the approximate solution fails to predict the system behavior. For high values
of u, the approximate solution becomes inaccurate for lower values of €, though values of

€ as high as 0.1 seem reasonable as y — 1. Since real devices operate for these settings of
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Figure 5.7  Dimensional 3 DOF Series Model Vibrational Displacement History (¢ = 0.9,
p=0)

¢ as seen in Table this method can be used to approximate the system behavior of a

system when ¢ is small.

5.4 Conclusions

Two types of variable stiffness MDOF problems were examined using the approx-
imate solutions developed in Chapters [3] and One MDOF problem can be used for
preliminary design in a space telescope problem while the other MDOF problem can be
used to approximate a variable stiffness continuous beam. In both cases, the approximate
solution provided a good estimate of the simulated solution for small ¢ and small coupling
between the masses in the system. For higher values of € but with small coupling, the

approximate solution was reasonable, but contained error. For higher coupling and higher
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Figure 5.8  Dimensional 3 DOF Series Model Vibrational Displacement History (¢ = 0.1,
w=0.5)

¢ values, the error became rather large, making the approximate solution a poor estimate

of the system.
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6. Conclusions and Recommendations

Semi-active vibration control or the ability to dynamically change damping and/or stiffness
of a structure to reduce vibration is a rich area for investigation. It has the potential to
be used in many space applications because it can provide almost the same capabilities
as combined passive and active control (often called hybrid control), but uses much less
power. Semi-active systems (like hybrid systems) can also fail gracefully in that they can
still provide a passive control capability if the powered portion of a device were to fail.
A great deal of research is being done on smart materials that are capable of changing
both damping and stiffness. These smart materials include electrorheological dampers,
magnetorhelogical dampers, shunted piezoelectric crystals, shape memory alloys, magne-
torheological elastomers, and mechanical devices. The difficulty with the control concepts
and the devices considered is that they are all nonlinear making engineering design difficult
.

In this work, a simple analytic variable stiffness device using a general on-off con-
trol law was analyzed using several models. All models combined the variable stiffness
device with a constant viscous damper. In all cases, the initial value problem was exam-
ined, while the sinusoidally forced problem was examined for the single degree of freedom
problem and one version of a multi-degree of freedom model. These disturbances are
representative of shocks and rotating machinery, respectively. Analysis started with a
single degree of freedom model and worked up to multi-degree of freedom models making
use of the insight gained from the smaller problems. Various methods were applied to
gain insight into the problems to include exact analytic solutions, ad hoc approximations,
perturbation methods, nonlinear analysis, and linear approximate methods. In the next
sections, important results will be summarized. Next, developed engineering tools will be
identified. Finally, follow on research is extensively outlined to include extensions to this

work and an approach for analyzing variable mass systems.



6.1 FEzecutive Summary of Research Results and Conclusions

For the first time, the damped single degree of freedom variable stiffness initial value
problem using a general on-off control law was solved. The author and others also re-
cently solved the undamped single degree of freedom problem using a less general on-off
control law [I44]. The reason this was possible was because an exact representation of the
switching was found. The exact solution was used to develop an approximate viscously
damped system, which can reasonably reproduce the true system. From the exact solu-
tion, behavior of the system was explained for changes in the control law, for variations in
variable stiffness strength, and for changes in the viscous damping. The variable stiffness
strength was linked to real variable stiffness devices, developing a rough performance met-
ric. Further, the guaranteed stability region taking all parameters into account was found.
Using the approximate solution, the optimal control law that causes the system to settle
the fastest was determined. While the optimal control law has been found previously for
a system with no viscous damping, these results include viscous damping effects. It was
discovered that it is possible to switch the system between underdamped and overdamped
states, removing significantly more energy from the system than a viscously damped sys-
tem could by itself. This is because the variable stiffness device does work on the system
to remove energy and also changes the equivalent natural frequency of the system, which is
impossible for a viscously damped system. Finally, the work required to achieve a desired
settling time was found and a method for finding the work the variable stiffness does on
the system was explained. Dividing the work in by the work out creates an efficiency

factor. This result can be used to measure efficiency of real devices.

After analyzing the unforced problem, the sinusoidally forced single degree of free-
dom problem was examined, using the same parameters as the unforced problem. Three
approximate methods were considered to develop insight and only two were viable. An
ad hoc approach and a perturbation approach were found to provide a reasonable esti-
mate for system behavior when the variable stiffness strength was small. A Fourier series
approach was attempted, but the method resulted in analytically unsolvable nonlinear al-
gebraic equations and provided no insight. The other approaches provided reasonable

solutions as compared to simulated solutions of the true system. Regions for the control



law were identified that provide low frequency attenuation that a viscously damped sys-
tem cannot provide. The perturbation solution was then minimized over all frequency
to find a near optimal control law policy. Comparing the near optimal control policy of
the forced problem to the optimal control of the unforced problem shows the policies were
quite different. However, it appears possible to accept suboptimal performance for one
type of disturbance and optimal performance in the other disturbance type, allowing the
same control law to be used in both situations. This would, of course, be dependent on

the particular application the variable stiffness is used on.

Having analyzed the single degree of freedom problem, two multi-degree of freedom
problems were analyzed, where each controller has the same parameters as the single degree
of freedom system. In both cases, the control laws for all of the variable stiffness devices
was made the same to allow the problems to be solved analytically and restrictions on the
masses were made. This made it impossible to determine if the optimal control law should
vary for each mass, which seriously limited insight. The purpose of this analysis was to
extend the single degree of freedom results to larger models more representative of real

systems.

A system representing the cross section of a simple space telescope was examined,
first. To represent the variable stiffness, the single degree of freedom equivalent viscous
damping model was used. Examining the solution for the 3 degree of freedom system,
it was determined that the optimal control law found from the single degree of freedom
problem would still be optimal. Comparing the approximate solution to simulations
using an exact model showed the approximate solution reasonably approximated the exact

solution and should be usable for design purposes.

The same process was applied to a multi degree of freedom system with all masses
in series. In this case, the system could represent a variable stiffness beam. This problem
was much more difficult because it lacked symmetries the space telescope problem had. As
a result, it required solving a more difficult eigenvalue problem, which is difficult to solve
as the number of degrees of freedom in the system increase. For a 3 degree of freedom
problem, it can be solved. Comparisons were made once again between the approximate

and exact simulated solutions. In this case, if the variable stiffness strength was not too
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strong, approximate solution provided reasonable results. For larger variable stiffness
strength, the approach failed. A major difference between the space telescope problem
and the beam problem was the coupling between masses in the space telescope was much

smaller than in the beam problem.

6.2 Developed Engineering Tools Summary

Important new engineering tools will be summarized. The most important results of

this research will be repeated here and reference to applicable discussion will be provided.

In Chapter [2] the literature was searched to gain understanding of variable damping
and variable stiffness systems. As this work focused on variable stiffness, only these results
are summarized. In searching the literature, an important parameter € representing the
total variation in variable stiffness was identified as a way of comparing variable stiffness

devices. It is defined as
Kk
N kT + K

e (6.1)

where £ is the smallest variable stiffness and k] is the largest stiffness a device can be
controlled to create. The "*" notation defines the variable as a dimensional quantity.
Many variable stiffness devices exist in the literature which nearly span the possible range

of € between 0 and 1, as can be seen in Table

An obvious question is which variable stiffness device should be used to minimize
vibration in a system? Answering the question requires knowing what the performance
of a system might be given a particular selection for . To help answer this question, the
single degree of freedom vibration suppression problem

. : kT + kg
m Lt + 't + (120) [1+4 cu]z* = A" cosw™t* (6.2)
was analyzed where m* is a vibrating mass, ¢* is the damping coefficient, A* is the am-
plitude of the forcing function, w* is the forcing frequency of a forcing function, z* is the
displacement of the vibrating mass, u is a control law, and t* is time. In Chapter [3] the

initial value problem (A* = 0) was solved exactly and approximately while in Chapter



Table 6.1  Parameter Values for Proposed Variable Stiffness Devices in the Literature

Source Year Device €

Albanese and Cuefare [122] 2003 | MRE 30% Fe 0.98
Walsh and Lamancusa [129] 1992 | Leaf Spring 0.96
Albanese and Cuefare [121], [122] 2003 | MRE 35% Fe 0.91
Albanese and Cuefare [121], [122] 2003 | MRE 25% Fe 0.80
Albanese and Cuefare [121], [122] 2003 | MRE 40% Fe 0.68
Albanese and Cuefare [121], [122] 2003 | MRE 10% Fe 0.53
Williams, Chiu, and Bernhard [109] | 2002 | SMA 0.50
Albanese and Cuefare [121], [122] 2003 | MRE 50% Fe 0.49
Clark [125] 2000 | Piezoelectric Patch | 0.33

on Cantilever (On-

Off)
Zhou [120] 2003 | MRE 27% Fe 0.23
Albanese and Cuefare [121], [122] 2003 | MRE 0% Fe 0.10

Ramaratnam, Jalili, and Grier [127] | 2003 | Piezoelectric (Ca- | 0.05
pactive Shunt)
Davis and Lesieutre [126] 2000 | Piezoelectric (Ca- | 0.04
pactive Shunt)

the forced problem was approximated. The control law chosen in both cases was

u(x*, %) = sgn[(ANjz" + &%) (A\52™ + 27)] (6.3)

where A\] and A3 are arbitrary real constants that tune the controller. When A] and \; are
both 0, Equation can represent a single degree of freedom system with a piezoelectric
element. Equation was nondimensionalized to generalize its use for any dimensional

problem resulting in

F+2ut+ (1+eu)z=0 (6.4)
for the unforced problem or

&4 2ut + (1 + eu) z = coswt (6.5)

for the forced problem where

C*

= ) 6.6
M= am (e 1 k) (66)
t = t*wy, (6.7)
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A= M, (6.8)

A2
A= —= 6.9
and
. kX + k*
wh = 02m* 1 (6.10)

Initial Value Problem. Equations and are four parameter (A1, A2, p,
¢) nonlinear problems. The exact solution, switching times, and approximate solutions
for the initial value problem in terms of the four parameters can be found in Chapter
In the analysis process, depending on the settings of y and e, it was discovered
switching could occur between two underdamped systems, an underdamped and a critically
damped system, or an underdamped and an overdamped system. For convenience, a
system switching between two underdamped systems will simply be called an underdamped
system, while a system switching between underdamped and overdamped systems will be
called an overdamped system. The relationship determining when the system will operate

as an underdamped or overdamped system is
Herit =V l-e¢ (611)

and the settings for p and ¢ resulting in a particular system behavior can be found in
Figure It was found that an underdamped system displayed stable and unstable
behavior depending on the settings for the control law as shown in Figure [6.2l For the
overdamped system, regions where switching stopped, where switching occurred extremely
rapidly, where switching caused unstable system behavior, and where switching caused

stable system behavior were found as shown in Figure [6.3

Using the approximate solution, the optimal control law that maximizes energy dis-
persion was identified. It was found that A2 = 0 and A; can be set using Figure
Figure [6.4] extends results found in the literature because it allows viscous damping to be
added to the system.The approximate solution was used to develop an equivalent viscously
damped system, and the average natural frequency (Figure and average damping ratio
(Figure of the system was found for the optimal control policy. Hence, using stan-
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Figure 6.1  Overdamped and Underdamped Regions

dard linear control concepts (settling time, overshoot, etc.), it is now possible to classically
design a single degree of freedom control system to meet a desired performance. Once
the classically designed system is identified, it is now possible to select a desired variable
stiffness device that will roughly provide the desired performance. The analogy is rough
because real variable stiffness devices display more nonlinearity than was assumed for this

analysis.

Forced Problem. An approximate solution related to a viscously damped system
was developed and used to estimate the long term behavior of a sinusoidally forced system
(Equation . The approximate solution is able to approximate the primary behavior
of the system, but fails to take into account harmonics excited by the forcing function.
The approximation works reasonably well when ¢ is small, but as ¢ increases, the error

between simulated and approximate results increases at low frequency. It was discovered
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that making A\; > 0 caused improved attenuation of the system, impossible for a passive
system to duplicate. When A\; = 0, the system attenuation was similar to what a passive
system could create, and setting A\; < 0 resulted in attenuation worse than a passive
system might create. However, letting Ay > 0 causes a DC displacement, which may
not be acceptable in all systems. The optimal control law that minimizes the system
attenuation for all frequency was estimated using the approximate solutions, resulting in
a near optimal control law of Figure Once again, Ay = 0 for all optimal settings.

Hence, the question of how to select € has been answered for the forced system.

Multi-Degree of Freedom Problems.  The approximate solutions were used to esti-

mate the behavior of two systems with multi-degrees of freedom. For a 2 degree of freedom



Az

- =

1
B Om

Upsj[alf)lq/ Copﬂiciﬁec}l 47

e

.
,,,!..-'::' .
2
2
o i g i i o i wu wi?
s

PR

¢ Finite Switching

1

2.12.2—2!12.2'#1 =0 5 5,

e

Q
5
=
g.

4=
P!
=}
=
LTy
g

-

-

T R

- - 2'1
e Ak =1 \\ Ads—2uAs+1=0
= : = Htom -7 :
Fint witching | ' 3 ! o7
Bl mom )
\ NN ]
NNV
\ : E : ¢ Unstable/
1 O ¢ Contflicted

Figure 6.3  Variable Stiffness Constant Damping Overlaid Unstable Controller and Non-
Switching Regions for Overdamped or Critically Damped System

problem, the equations of motion could be transformed to a single degree of freedom prob-
lem making all single degree of freedom problem results directly applicable. Higher degree
of freedom problems were also examined, such as a system representative of a cross section
of a space telescope. The unforced problem and the forced problem were estimated for a 3
degree of freedom problem and it was found the estimate reasonably agreed with simulated
results. A problem possibly representative of a beam was also examined for the unforced
problem, only. In this case, for small € and p, the estimated solution reasonably approxi-
mated the simulated solution. For larger values of € and p, the approximate solution was
off, significantly. The reason for the error was because the coupling between masses in

the system was fairly high. Owverall, it was concluded that the single degree of freedom
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Figure 6.4  Variable Stiffness Constant Damping Optimal Control Policy (Ao = 0)

approximations could be used in some multi-degree of freedom problems to provide design

insight.

6.3 Recommendations for Additional Research

As this research was carried out, many new questions and ideas were identified for
future research. There are two directions that eventually merge to a single body of work.
First, more research can be accomplished on constant mass systems. This type of research
would extend the work discussed in this dissertation. Second, variable mass systems could
be examined. Variable mass research could be considered with passive isolation to begin
with, and then could add the complexity of variable stiffness and/or variable damping,

later.

6-10



Figure 6.5  Variable Stiffness Constant Damping Optimal Equivalent Damping Ratio

Constant Mass Semi-Active Control Problems.  To begin, much more work can be
accomplished with the single degree of freedom problem. Using the methods in Chapter

it should now be possible to solve an initial value problem in the form

F+2u(l+cecu)z+ (1+epu)z =0 (6.12)

where 0 < e, < 1 is a change in damping, ¢ is defined as ¢ in Equation [3.11} and wu is
defined using Equation Real variable stiffness devices have been seen to create a
small change in viscous damping of the system, also. For example, magnetorheological

dampers are known to behave this way [121], [122].
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Figure 6.6  Variable Stiffness Constant Damping Optimal Equivalent Natural Frequency

Another single degree of freedom problem it may be possible to solve using the
Chapter [3| approach is the three parameter problem. As discussed in Chapter 2, the
approach is to place a variable damper in series with a spring, which is then placed in
parallel with another spring, creating a three parameter isolator. Varying the damping

then changes the apparent stiffness of the isolator [128], [7].

Assuming these problems can be solved, the next problem to attempt would be to
change the variable stiffness device from the abstract device used to a real one, based
on experimental results. This may require solving a nonlinear problem with hysteresis.
Analytic models using real devices may not exhibit analytic solutions, since the equations
of motion become considerably more nonlinear. In this case, analysis would have to be

done numerically and would focus on developing good models that could be simulated. If
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Figure 6.7 Near Optimal A; for Sinusoidally Forced Problem using Perturbation Ap-
proximation (Ay = 0)

the problem were solvable using a nonlinear device or even if unsolvable, the next step
would be to experimentally verify results. In this situation, the analytic results (as far as
possible) would be linked to real experimental evidence, building confidence in the created

design tools.

For the sinusoidally forced problem, it would be desirable to find an improved ap-
proximate solution. The main limitation of the current approximate solution is it fails
to account for harmonics excited in the system. The attempt to account for this using

the Fourier series approach could not be solved. Hence, some other method is needed to
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account for this. At the same time, this method must allow the control law to be solved
or closely approximated. Adding terms of the Fourier series to the assumed solution of
the problem will not allow the problem to be solved if the switching times cannot be found

because the switching equation is a transcendental equation.

Regardless of whether or not the sinusoidally forced problem of Chapter 4 can be
more accurately approximated, the same systems identified for the unforced problem could
also be approximated for the forced problem. Further, a problem where variable damping
and variable stiffness are controlled independently could also be examined. The problem
has the form

Z42u(1+ecue) @ + (14 epug) x = cos (wt) (6.13)

where uy, is defined using Equation and u. is defined using the 2 degree of freedom
skyhook control law introduced by Karnopp [80]. In this case, the 2 degree of freedom
problem would be transformed to the single degree of freedom problem using the trans-
formations of Chapter 5. This would transform the skyhook control law, also, creating a
system to be approximated. The payoff here is that a combination of variable stiffness and
variable damping with the right control law will create even more attenuation than either

variable damping or variable stiffness alone. This can be validated using simulation.

As previously discussed with the unforced single degree of freedom problem, the
forced problem should be experimentally verified. If real devices can be used in the analytic
problems, it would be useful to solve these nonlinear problems and then experimentally
verify results. If not, it would be useful to determine how close to reality the problems

that have been solved compare with real systems.

With more insight into the single degree of freedom problems, the multi-degree of
freedom problems can be considered. The current method would be to use linear approx-
imations of the nonlinear behavior and verify their usefulness in multi-degree of freedom
problems. This could be accomplished for a myriad of such problems or at least for those
that can be analytically solved. For those that cannot be analytically solved due to cou-
pling in the linear equations, methods of approximating the coupling through perturbation

approaches or removing the coupling could be explored. Further, it may be possible to
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increase the solvability of coupled linear equations using Lie algebra methods [76]. With
this research, the restrictions on the multi-degree of freedom problems noted earlier might
be relaxed. Finally, just like the single degree of freedom problems, the multi-degree of
freedom problems should be verified experimentally. This would increase confidence in

the analytic tools being developed by validating them.

Another research possibility is to determine how well variable stiffness and variable
damping devices can be calibrated and to determine if they can be qualified for use in
space. It is possible to change the maximum variation in stiffness and/or damping created
by the devices by simply increasing or decreasing the power supplied to the device. Since
the control law can also be changed easily using computers, this has the effect of providing
tremendous flexibility to change both the control law and the behavior of the structure,
possibly even remotely. For space systems, this could be a great advantage, since it might
allow vibration control to be optimized while a satellite is in orbit, using much less power

than an active system might require.

Variable Mass Semi-Active Control Problems.  The variable mass problem has not
been considered in this dissertation, except initially in the literature review of Chapter
2l In this section, a simplified variable mass problem representative of vibration isolation
for a launch vehicle with a payload is considered. After formulating the problem, future

research that could be accomplished is identified.

2 DOF Variable Mass Formulation. — Recalling Figure 2.8 the equations of
motion are

miEE + il 4+ 2 R = Q) (6.14)

and

miE — &5 — k2t = Qb (6.15)

where m; = my (t) represents the total mass of the rocket at any time, mj represents a
payload to be isolated, ¢* = ¢* (2%, 2*) is a damping function, k* = k* (z*,2%) is a stiffness
function,

2" =y — ], (6.16)
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Q7 = Q7 (t) is the thrust of the rocket engine, and Q5 = Q3 (¢) is a disturbance forced
applied directly to the payload, such as acoustical noise generated by the rocket engine.
Equations andcould also be representative of an SBL (briefly reviewed in Chapter
. Similar to Chapter [5, Equations and can be transformed to a center of mass
coordinate system using

. _ MITT + M5y

yr=——== (6.17)

my +ms;
Equations and [6.17] look the same as center of mass transformation equations used in
Chapter |5, but have one important difference in that m] of Equation is a function of
time. Solving Equations and for 27 and % results in

ok 6.18
=y mj +mj ( )
and
. N mjz*
= —_— 6.19
T2=Y mi 4+ ms3 ( )

For this simplified problem, it will be assumed that

i (1) = miy — p*t* if t* < T (6.20)
miy — p*Ty if t*>T%

where m}, = m{ (0), p* is a constant mass flow rate out of the system, and 7} is the length

of time mass is being removed from the system (burn time for a rocket). Substituting

Equations and [6.19] into Equations and and then simplifying results in

o O

*2 * *
Lo G T s (6.21)
q q

+—0"7 +—
q q
and

m* (m* _ *t*) 2 *m*2 2 *2m*2
210 Z P2 Dy (é*— P )z'*—i— (k*—p - )Z*:Q;_m;y* (6.22)

q

where

¢ =q"(t) =mp—pt* (6.23)
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and mp, = mj, +m3.

Next, Equations [6.21], [6.22], and [6.23] will be nondimensionalized. To nondimension-

alize, first define

t = wpt”, 6.24
0
L* 40, (6.25)
my
my = - (6.26)
Mo
mp=1-—my=—-, (6.27)
P
& = e, (6.28)
and
k* = k*k. (6.29)

The time scaling factor w( and the length scale L* will be defined after the nondimen-
sional form of Equations and are examined. The variables m, and my
represent the mass fraction of the payload and mass fraction of the fully fueled launch
vehicle, respectively. These quantities have physical meaning as identified in Table
and Appendix [A] The quantities ¢* and k* represent a convenient scaling factor for the

damping and stiffness functions, respectively.

After some algebraic manipulation, the nondimensional forms of Equations

and [6.23] are
2
. . pmy pmy,
— o = 6.30
j—py=Q1+ Z tio b (6.30)

54 < c*eq _ 2pmy > iy k*kq B 20%m,, B
mjwg (my —pt)  (my—pt)q miwy’ (my — pt)  (myg— pt) ¢

o q .
- my— ot (QQ y)a (631)

and

g=q(t)=1-pt (6.32)
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where
*
p= p
- ko0 k )
WoMmp

Q1

* Tx, %2
mpL*wg

(6.33)

Q1= (6.34)

and

Q=% (6.35)

2
* T %, ok
mL*wyg

Now, it is possible to select wg and L*. A good way of selecting L* is

max (Q’;)

*_
L= mEwr’
T%0

(6.36)

where j = 1,2 making (); < 1. There are several time scales that could be used for this

problem. These time scales include T}" or the total time mass is flowing out of the system,

*

a time based on mass flow rate such as T = 4=, and a scaling related to the natural
T

frequency of the structure such as

1 k* k*mk
S S A L (6.37)
T maomyg mgoMyg

There are other valid ways of defining 77 and T§ since different masses could be used in

the definitions than those chosen such as the mass at burn out time, the mass at the start

time, the total mass of the system at the starting time, and so on.

A valuable way of choosing a time scale would be one that makes p a small parameter.
If this occurs, it then might be possible to implement perturbation methods to find out
how the system behaves. Selecting the time scale of Equation [6.37] appears to meet this
criteria. Additionally, this selection is consistent with the time scaling used in the constant
mass problems analyzed in earlier chapters. Using Equation [6.37] Equation [6.31]simplifies

slightly to

. 2pmysiq 2pm > . mykq 2p%my, q )
i+ - i+ - 2= Q2 — ).

<(mf —pt)  (my—pt)q (my—pt)  (my—pt)q? myg — pt ( )
(6.38)
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which is basically the same as Equation [5.29| when p = 0.

To understand why Equation [6.37] makes p a small parameter requires substituting

Equation [6.37| into Equation [6.33] Then

*/mims * ST,
P oMy P Mpiiy (6.39)

P e Jem R

Referring to Table 2.I] or Appendix [A] and recalling Equations [6.26] and [6.27] shows 0 <

my, < 0.153 and 0.847 < my < 1. In a worst case scenario, ,/mymy < 0.36, which was
determined by finding max ( mpm f) using the data in Appendix Further, /k*m7 is
likely to be large.

Using the Taurus launch vehicle, a sample p can be found. Stage 0 of the Taurus
launch vehicle has an average vacuum thrust of 363, 087 Ibf and a specific impulse of 277.9
seconds. The mass flowrate p* can be calculated to be about 1306.5 Ib/sec [I50]. Using
Appendix vmpmy = 0.14 and m7 = 160,000 Ib. Hence, p = %\/1%7 Ib/sec where k* is
still to be determined. For a launch vehicle, £* cannot be made small or the payload will
have too much vibration displacement and will impact the payload fairing. It is more likely
that k* will be a large stiffness value, so it appears p is in fact a small parameter. More

research could be done to verify p is a small parameter for the different launch vehicles

identified in Appendix [A]

Since p is a small parameter, perturbation methods should be applicable to approx-
imate a solution to Equation [6.38 Equation [6.30] which represents rigid body motion
coupled with the vibrational motion, may be directly solvable, in which case the solution

could be substituted into Equation [6.38

The rocket engine creates both random vibrations and sustained oscillations at spe-
cific frequencies. These disturbances manifest as vibration transmitted mechanically to
the payload and as acoustical induced vibration [2I]. As a first cut analysis, @1 (¢) and
Q2 (t) could be modeled as white noise or sinusoidal forcing frequencies to determine iso-
lator performance. Afterward, a more representative colored noise disturbance would
need to be modeled and perhaps combined with specific narrow band resonances that real

rockets create. Ultimately, real test data might be used as the disturbance force.
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Future Research. Having formulated and nondimensionalized a simple 2
DOF variable mass problem, a research direction can be formulated. Moving from simpler
problems to the more complex, it would be best to analyze Equation [6.38|assuming a passive
isolation system. The results of the analysis could be linked to real data to validate the
results. Next, either variable stiffness and/or variable damping could be added to the
system. In might be better to understand variable stiffness and variable damping with a
constant mass problem, since this problem does not appear to have been analyzed before
with random noise disturbances. Whether or not this step would be needed would depend

on how easily the passive isolation problem could be solved.

Finally, before attempting semi-active control on a launch vehicle, simpler laboratory
work could be accomplished. In two recent articles, Flores et. al. created two simple ex-
periments demonstrating the effects of variable mass in a single degree of freedom problem.
In one experiment, they filled a bottle with sand and suspended it from a spring attached
to a fixed support. The sand was allowed to drain from the bottle through an orifice
and was found to drain at a constant rate, even when the bottle of sand was oscillating
[151], [152]. Extending this experiment to a two degree of freedom problem and forcing
the system with white noise, colored noise, and/or other forcing functions could simulate a
system similar to a launch problem. Comparing analysis using a passive isolation system
linked to existing launch results with an experimental laboratory device would gauge the
accuracy of the laboratory experiment. If successful, it would constitute a cost effective

experiment with semi-active control for launch vehicles.
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Appendiz A. Launch Vehicle Performance

Table provides calculated mass and payload fractions for various launch vehicles. [153]

Table A.1  Payload and Mass Fractions for Various Launch Vehicles

Launch Vehicle Country | Launch Payload Orbit | Mass Payload

Weight (Ib) Frac Frac

(1b)
Arian 4 France 1,090,000 10,900 | GTO 0.990 0.010
Arian 4 France 545,000 4,800 GTO 0.991 0.009
Arian 5 France 1,650,000 15,000 | GTO 0.991 0.009
Athena 1 USA 146,000 1,805 LEO 0.988 0.012
Athena 2 USA 266,000 4,520 LEO 0.983 0.017
Atlas 2A USA 413,000 6,760 GTO 0.984 0.016
Atlas 2AS USA 522,000 8,202 GTO 0.984 0.016
Atlas 3 USA 496,900 9,920 GTO 0.980 0.020
Atlas 5 (400 series) USA 734,800 16,843 | GTO 0.977 0.023
Atlas 5 (500 series) USA 1,191,200 19,110 | GTO 0.984 0.016
Cosmos 3M Russia 240,000 3,100 0.987 0.013
Cyclone 2 Ukraine 404,000 7,900 LEO 0.980 0.020
Cyclone 3 Ukraine 417,000 7,900 LEO 0.981 0.019
Delta 2 (7326) USA 333,000 2,040 GTO 0.994 0.006
Delta 2 (7425) USA 364,000 2,510 GTO 0.993 0.007
Delta 2 (7925) USA 511,000 4,060 GTO 0.992 0.008
Delta 2 (7925H) USA 665,000 4,815 GTO 0.993 0.007
Delta 3 USA 660,000 8,400 Not 0.987 0.013

Listed

Delta 4 Heavy USA 1,617,000 28,950 | GTO 0.982 0.018
Delta 4 Medium USA 565,000 9,285 GTO 0.984 0.016
Delta 4 Medium + (4,2) | USA 723,000 12,890 | GTO 0.982 0.018
Delta 4 Medium + (5,2) | USA 736,000 10,230 | GTO 0.986 0.014
Delta 4 Medium + (5,4) | USA 892,000 14,475 | GTO 0.984 0.016
Dnepr-1 Ukraine 464,377 8,377 LEO 0.982 0.018
GSLV India 888,000 3,520 GTO 0.996 0.004
H-2A (H2A202) Japan 642,400 9,000 GTO 0.986 0.014
H-2A (H2A2022) Japan 708,400 9,900 GTO 0.986 0.014
H-2A (H2A2024) Japan 774,400 11,000 | GTO 0.986 0.014
J-1 Japan 201,000 2,540 LEO 0.987 0.013
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Launch Vehicle Country | Launch Payload Orbit | Mass Payload

Weight (1b) Frac Frac

(1b)
K-1 USA 290,000 10,000 | LEO 0.966 0.034
LK-1 Israel Not Listed | 720 LEO N/A N/A
Long March LM-2C | China 422,400 2,200 GTO 0.995 0.005
Long March LM-2E | China 1,012,000 7,430 GTO 0.993 0.007
Long March LM-3A | China 708,400 5,720 GTO 0.992 0.008
Long March LM-3B | China 936,760 9,900 GTO 0.989 0.011
Long March LM-4 China 712,800 2,430 GTO 0.997 0.003
M-5 Japan 302,000 4,000 LEO 0.987 0.013
Minotaur USA 80,340 1,400 LEO 0.983 0.017
Moniya M Russia 672,000 4,400 GEO 0.993 0.007
Pegasus XL USA 51,000 7,800 0.847 0.153
Proton K Russia 1,547,000 45,747 | GTO 0.970 0.030
Proton K/Block DM | Russia 1,547,000 46,189 | GTO 0.970 0.030
Proton M/Breeze M | Russia 1,595,996 7,072 GTO 0.996 0.004
PSLV India 644,600 2,640 Sun 0.996 0.004

Synch
Rockot Russia 237,575 4,044 LEO 0.983 0.017
Shavit Israel 66,000 352 LEO 0.995 0.005
Shtil Russia 88,000 195 LEO 0.998 0.002
Shtil 2.1 Russia 88,000 488 LEO 0.994 0.006
Soyuz TM/TMA Russia 15,700 Not Not N/A N/A
Listed Listed

Soyuz U Russia 683,000 16,100 | LEO 0.976 0.024
Space Shuttle USA 4,500,000 54,000 0.988 0.012
Start Russia 132,275 1,401 LEO 0.989 0.011
Start Russia 132,275 481 0.996 0.004
Start-1 Russia 103,400 1,077 LEO 0.990 0.010
Start-1 Russia 103,400 232 0.998 0.002
Taurus USA 160,000 3,300 0.979 0.021
Titan 2 USA 340,000 4,200 LEO 0.988 0.012
Titan 4 USA 2,100,000 47,000 | LEO 0.978 0.022
Titan 4 USA 2,100,000 39,000 | LEO 0.981 0.019
Titan 4 USA 2,100,000 12,700 | GEO 0.994 0.006
Vega Ttaly 286,650 3,300 Polar 0.988 0.012
VLS-1 Brazil 110,000 275 LEO 0.998 0.002
Volna Russia 77,000 244 0.997 0.003
Zenit, 2 Ukraine 1,012,620 29,980 | LEO 0.970 0.030
Zenit 3SL Ukraine 1,042,785 13,228 | LEO 0.987 0.013

A-2




Appendiz B. Variation of Parameters for the Initial Value Variable Stiffness
Constant Damping Problem

The method of variation of parameters [I54] will be applied to solve Equation using the
control law defined by Equation |[3.12, The following discussion is very similar to a deriva-
tion developed by Nayfeh [146] in the preliminaries of using the averaging perturbation
method and uses his reasoning. Rather than continuing by using the method of averaging
like Nayfeh uses on other nonlinear equations, the resulting first order differential equa-
tions were solved exactly in Chapter The reason for not using perturbation methods is
these methods assume a small parameter exists in the equations of motion, which is not
strictly true in Equation [3.9, Specifically, the parameter of interest in Equation [3.9]is ¢
which represents the variation of stiffness in the system and 0 < e < 1. If a perturbation
method was used, the analytic approximation would likely fail as ¢ — 1, which would have
limited insight into this problem. Table shows that real variable stiffness devices can

be selected that have large values for e.

When ¢ = 0, the solution to Equation [3.9]is
x = ae " cos ¢ (B.1)

where

6= pt+B, (B2)
b=1-p2 (B3)

and a and 3 are constants determined by the initial conditions. Then
&= —ae M [pcos ¢ + 1 sin @) . (B.4)

When e # 0, the parameters a and § in Equation are considered to be functions that
vary in time, which is where the name variation of parameters comes from. Equation
can be thought of as a transformation that relates z (¢) to a (t) and ¢ (t). Equations
and define two equations with three unknowns. One way to choose a third independent

equation to uniquely define the transformation is to consider the derivatives of Equation
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when € # 0 and force the first derivative to have the same form as Equation B4 The

first and second derivatives when € # 0 are
T=e M [(d — ap) cos ¢ + (—m/J - aﬁ) sin gzb] (B.5)
and
g=e M [(a —ap — a,@@b) cos ¢ + (2a¢,u + aB,u, — c'm/)) sin qb} . (B.6)

Hence, to make Equation have the same form as Equation [B.4] requires
acos (¢) — aBsin (¢) = 0 (B.7)

or by solving for B and recalling Equation

. acos(9) o
ﬁ_iasin(@ ¢ —. (B.8)

Note that a (t) # 0, since this can only occur when z (¢) = 0 by Equation which only

occurs when Equation has 0 initial conditions and represents the trivial solution to

Equation Substituting Equations B4 and into Equation [3.9] results in
(—d,u — af + aau) cos ¢ + (aﬁ,u — diﬁ) sin ¢ = 0. (B.9)

Substituting Equation into and simplifying results in

a _¢u sin (2¢)

-7 B.1
- 20 (B.10)
Substituting into and solving for gb results in
. 1 9 9 2 2 2
¢:6u[ + cos (2¢)] + 2¢ _ cucos" g+ ‘ (B.A1)

29 Y

Equations and can be simplified somewhat by using Equations and
resulting in Equations and
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Next, the initial conditions for Equations and will be found for the case
2(0)=1, &(0)=0 (B.12)

and for the case

z(0) =0, & (0) = 1. (B.13)

Substituting Equation into Equations and followed by solving them for ag
and ¢ results in

(B.14)

and

¢o=06(0) = —tan~ . (B.15)

Since 0 < pp < 1 and 0 < ¥ < 1, then % > 0 which means —§ < ¢y < 0 for the initial
displacement problem. Similarly, substituting Equation into Equations and
results in Equation and

¢ =¢(0) = —g (B.16)

for the initial velocity problem.
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