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Abstract

With the advent of smart materials, the concept of semi-active control or dynamic

control of sti¤ness and/or damping for vibration control of structures has become practical

and has seen limited use. Semi-active control has advantages over active and passive con-

trol methods, since it provides almost as much capability as active control while requiring

much less power. Its main disadvantage is its inherent nonlinearity, greatly complicating

engineering design. The purpose of this research is to extend semi-active control vibra-

tion isolation tools and methods, considering applications for space launch and on-orbit

systems.

After surveying the literature, variable sti¤ness using a general on-o¤control law with

constant damping is examined in several contexts. First, the single degree of freedom prob-

lem is solved in exact form and approximated for the initial value problem. Results include

development of an optimal control policy for all possible variable sti¤ness settings and a

large range of viscous damping settings, guaranteed stability regions, and new possibilities

for fast settling time even with an overdamped system. Second, the sinusoidally forced

problem was approximated and a near optimal control policy was formulated. Third, the

results of the initial value problem were extended to two multi-degree of freedom problems.

The problems examined are representative of a cross section of a simple space telescope

structure and of a variable sti¤ness beam. Besides providing new engineering design

tools and insight into the nonlinear behavior of variable sti¤ness concepts, the results open

several future research possibilities.
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ENGINEERING TOOLS FOR VARIABLE STIFFNESS VIBRATION

SUPPRESSION AND ISOLATION

1. Introduction

With the advent of smart materials, the concept of controlling sti¤ness and/or damp-

ing in a structure for vibration control of structures has become practical. These concepts

together can be loosely called semi-active control methods. They are currently being

researched by many industries including the automotive, building, and space industries.

Some automotive applications are shock absorbers and engine mounts. Building industry

applications include earthquake protection and damping of wind induced vibration. Space

applications include isolation of payloads from rocket stages during launch and isolation

of mirrors in space telescopes. These are just a few of the many possible applications.

Vibration control has typically been accomplished using passive, active or a combina-

tion of passive and active control systems (hybrid control). In the last 10 years, there has

been much research on developing semi-active control, which performs better than passive

control, but not as well as active control methods. In some situations, semi-active control

might be a better choice than active control because it typically requires less energy than

active or hybrid control. However, semi-active control is more complex to analyze than

passive or active control methods. The complexity exists in part because the damping and

sti¤ness characteristics of a vibrating structure are dynamically controlled using measure-

ments of the structures�vibration, which is inherently nonlinear. The problem becomes

even more complex because the smart devices that are capable of changing sti¤ness and/or

damping exhibit nonlinear behavior as well. Hence, the well known linear techniques used

to design many passive, active and hybrid control systems cannot be used or must be

modi�ed.

The purpose of this research is to extend semi-active control vibration isolation tools

and methods considering space launch and on-orbit systems. After an extensive survey of

the literature, the work begins with analysis of a single degree of freedom (SDOF) lumped
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parameter model and eventually works up to multi-degree of freedom (MDOF) lumped

parameter models, taking advantage of the knowledge gained from the SDOF problems.

This work concentrates on dynamically controlling sti¤ness of a structure using a general

control law and both con�rms and extends previous work to include constant viscous

damping. While the literature was reviewed to develop a link to real variable sti¤ness

and variable damping devices, this work is restricted to analysis using a simpli�ed abstract

variable sti¤ness device. However, the results of this analysis could assist in choosing a real

variable sti¤ness device to meet desired performance criteria. Because variable sti¤ness

systems are nonlinear, the behavior from one disturbance type provides no information

about how it will behave with another disturbance type. Hence, the initial value problem

and the sinusoidally forced problem were examined separately, since they are representative

of real disturbances such as those caused by shocks and rotating machinery.

Finally, various mathematical tools were used in the analysis. For the initial value

SDOF problem, it was possible to solve the nonlinear equations exactly. However, the

exact equations could not be written in an explicit closed form, so they were approximated

with a linear equation. On the other hand, the exact solution for the sinusoidally forced

SDOF problem could not be found, so a perturbation method and an ad hoc approach

was used. For the MDOF problems considered, linear analysis methods could be used in

conjunction with the SDOF approximation results because these results are linear. This

allowed some insight to be developed into how these larger systems behave. In all cases,

simulation was used to help validate the analytic and approximate results.

Chapter 2 begins with a survey of the literature. Vibration control, its application

to space, and models of systems and smart materials are discussed. In the literature, much

work was found using semi-active devices with vibration absorbers. Much less information

was found that discussed vibration isolation. Further, almost all of the literature uses

either variable sti¤ness devices or variable damping devices, rarely combining the two

methods. This can be attributed to the di¢ culty in analyzing these kinds of systems.

A survey of control laws used with variable sti¤ness and variable damping devices is also

provided. The survey concludes by noting there is a need to better understand control

schemes using nonlinear control devices.
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Chapter 3 provides in depth analysis of an initial value SDOF system using a general

on-o¤ control law. The system contains both variable sti¤ness and constant viscous

damping. The nonlinear equation of motion is solved implicitly in exact form for the �rst

time. Because of the form of the nonlinear solution, an explicit solution could only be

found in approximate form. An optimal control law was found and guaranteed stability

for the system was found. It was discovered that the system can be switched between

overdamped and underdamped states using the variable sti¤ness controller, creating fast

settling behavior that cannot be achieved using a passively controlled system.

Chapter 4 provides analysis of a sinusoidally forced SDOF system using a general on-

o¤ control law. The system contains both variable sti¤ness and constant viscous damping.

Since an exact solution could not be found, system behavior was approximated using an

ad hoc direct method and by using a perturbation method. The results were compared

with simulated results and much of the nonlinear system behavior was captured, though

not all of it. The approximate solutions were then used to develop near optimal control

laws.

Chapter 5 extends the work of Chapter 3 to MDOF problems. It shows that it

is possible to take the SDOF approximate results and extend them to more complicated

systems, with some restrictions. Two problems are considered. The �rst problem is a

large mass with any number of equal masses attached in parallel with each other. Each

attachment is assumed to consist of a variable sti¤ness element and a constant viscously

damped element. The isolators are assumed to be the same for each attachment. This

model could structurally represent a cross section of a space telescope. The other problem

considered is a large number of equal masses connected in series with each other. This

problem might be representative of a variable sti¤ness beam, if enough masses are provided.

On the down side, the problem is di¢ cult to solve analytically for systems with more than

3 degrees of freedom.

Chapter 6 ends this work by identifying major conclusions and identifying future

research. As research is being carried out, new research opportunities are identi�ed. It

was found there are many directions for future research expanding on all of the previous
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chapters. Besides providing some new engineering tools for semi-active systems, this work

opens the door to several new research opportunities.
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2. Background

2.1 Introduction

Research in removing unwanted vibration in applications is extensively documented

in the literature. This chapter provides a broad and representative look at the state-of-

the-art in vibration control, emphasizing semi-active control. The goal was to concentrate

on vibration isolation problems, but other types of vibration control such as vibration

absorption and vibration suppression are discussed, since these areas seem to have more

extensive semi-active control documentation than vibration isolation does. Research was

limited to those of space applications, though developments for other application areas are

discussed where it appeared to be useful for future space applications research. This review

expands on a recent review of current state of the art in vibration isolation technology by

Winthrop and Cobb [1].

First, vibration control is de�ned. Using the literature, vibration absorption, vibra-

tion isolation, and vibration suppression, which are three well known types of vibration

control are de�ned. Then, passive, active, hybrid, and semi-active control, which are four

methods of achieving vibration control are discussed. This is followed by a review of vibra-

tion control in space applications, along with some information on how vibration control

devices have been used. Next, some models used for vibration control are discussed as

identi�ed by the literature. The discussion continues with a look at semi-active devices,

used to change either damping or sti¤ness of a system. Models of some of these devices

are reviewed and some discussion of these models is provided. A discussion of isola-

tion performance criteria is provided. Finally, semi-active control strategies are reviewed,

concentrating most heavily on energy minimizing methods.

2.2 Vibration Control

Types of Vibration Control. Vibration control is an attempt to reduce unwanted os-

cillations in a structure [2]. Vibration isolation, one type of vibration control, occurs when

compact, resilient connections are placed between a vibrating structure and a sensitive

structure. If the connections are placed between a vibrating source and the surrounding
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structure, it is called source isolation or force transmissibility. If the connections are

placed between the vibration sensitive structure and the surrounding structure, then it is

called receiver isolation or displacement transmissibility [2], [3].

Vibration absorption, also referred to as tuned mass damping, dynamic vibration

absorption, vibration neutralization, or tuned vibration absorption, is another type of

vibration control [4], [5]. A vibration absorber is a device added to a structure that

minimizes vibrations to the host structure. It typically consists of a reaction mass, a

spring element, and a damping element. It can be used both to control narrow-band or

tonal vibrations and to control broadband vibrations [4].

A third kind of vibration control, vibration suppression, occurs when damping and

sti¤ness of a system are changed, often through the use of feedback control or active

control (which will be better de�ned in a following section). The goal of such control is

to remove unwanted disturbances applied directly to the sensitive structure. This di¤ers

from vibration absorption since no device is being placed between the disturbance and the

body to be kept quiet from vibration. Rather, actions are taken to damp out vibrations

directly [6].

In Section 2.4, vibration suppression and vibration isolation models will be reviewed.

Because this research focuses on suppression and isolation, vibration absorption will not be

explicitly discussed. However, vibration absorption applications are referenced throughout

this work since vibration absorption devices can also be used for vibration suppression and

isolation applications.

Classi�cations of Vibration Control. Vibration control systems can be classi�ed

as passive, active, semi-active (adaptive-passive), or hybrid [7]; [8]. A passive isolator is

de�ned as a compact connection that receives no external energy or information [9]; [7] and

behaves like a low pass �lter [10]. The compact connection consists of a resilient sti¤ness

member and an energy dissipation or damping member that either absorbs vibrations or

loads the vibrational path [3]. Advantages of passive systems are simplicity, guaranteed

stability [11], reliability, and no required power [7]. However, passive control has many

limitations for vibration isolation in space applications: 1) inability to practically achieve
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isolation at very low frequencies, 2) trade-o¤between resonant peak and high-frequency at-

tenuation, 3) trade-o¤between base motion isolation and disturbance rejection, 4) inability

to adapt to changes in structural parameters over time resulting in reduced performance,

5) inability to optimize the design for varying excitation frequencies, 6) may amplify low

frequency vibrations, and 7) may require structural o¤-load mechanisms to survive launch

and ground tests [10], [3], [12].

Active control is a method of loading a vibrational path using force actuators that

require external energy and information as inputs [8], [9]. Active isolation has many advan-

tages over passive isolation: 1) it removes trade-o¤s between low-frequency ampli�cation

and high-frequency attenuation, 2) it removes the base motion isolation and disturbance

rejection trade, 3) and allows intelligent and a fast response to disturbances [10], [7]. The

disadvantages of active isolation are: 1) it requires relatively high power, 2) it can create

instability in the system, 3) may require complex control laws and components, and 4)

failure of the control system results in no isolation at all [7], [3], [12].

In practice, active isolation and passive isolation are combined into what is sometimes

referred to as hybrid isolation. Advantages of hybrid isolation are it: 1) allows transmis-

sions of static loads through the isolation system [9], 2) reduces the external power required

in comparison to a purely active system by reducing the bandwidth needed by the active

portion [3], [12], and 3) allows some vibration isolation if the active element fails [7]. Dis-

advantages are 1) a risk of instability created by the active element [7] and 2) a risk of

degradation due to detuning of the passive element.

Semi-active control or adaptive passive control implements a tuning scheme to change

tunable parameters of passive elements of sti¤ness and/or damping. Advantages of this

method are: 1) it requires low external energy (or no external energy [13]), 2) cost less

than active systems [3], 3) provides passive isolation if the semi-active portion fails, 4)

can be nearly as e¤ective as active systems [14], and 5) has guaranteed stability when

just the damping element is varied [15]. It has been demonstrated however, that varying

the sti¤ness element can cause instability in a system [16]. Physically, this is because

changing the sti¤ness causes work to be performed on the system. The variable sti¤ness

element can be visualized as a constant sti¤ness element and an active force element [17],
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[4]. Hence, semi-active control di¤ers from hybrid control in that hybrid control employs

additional actuators to implement the active control and hybrid control does not attempt

to change the passive portion of the control, once it is designed.

2.3 Space Applications of Vibration Control

Vibration control is being used or being considered for a variety of di¤erent space

applications. Because of the nature of space systems, unique challenges exist which do not

exist in other industries. For example, vibration control for payloads on launch vehicles

must consider the e¤ects of large changes in mass, since large amounts of burned propellant

is expelled. Parts of satellites on orbital platforms may be constrained to displacements

smaller than the wavelength of visible light. For all space systems, weight, cost, and power

are critical constraints. Because of the importance of space to the United States, much

research has been devoted to �nding better ways of solving vibration problems.

The background that follows presents current capabilities and lists some relevant

data that will be used in later Chapters to make assumptions and link existing systems

to the results developed. Later chapters focus exclusively on constant mass problems.

However, because of the importance of vibration control in variable mass system, it will

be reviewed in some detail. In Chapter 6.3, which identi�es proposed future research for

variable mass problems, an approach for developing insight into vibration isolation of a

simple variable mass system will be considered.

On-Orbit Applications. Spacecraft must deal with a variety of disturbances on

orbit. For sensitive structures, failure to reduce the disturbances to a low enough level

can either degrade or prevent mission completion. After introducing common types of

disturbances that often occur in spacecraft, several vibration sensitive space applications

are discussed.

Spacecraft Disturbances. Typical external disturbances to a spacecraft in-

clude solar radiation pressure, thermal e¤ects, micro-meteorite impacts, atmospheric drag

and gravity gradients [10], [18]. Internal disturbances in a spacecraft can include attitude
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control components such as reaction wheels or control moment gyros, cryogenic coolers

and solar array gimbals [12], [19], [20]. When the spacecraft is manned (such as the

International Space Station), additional disturbances arise such as pumps, compressors,

electric motors, fans, impacts, and astronaut motions [10]. There has been much e¤ort to

empirically model these disturbances. A standard reference [21] describing and providing

data on many types of disturbances is available from the National Aeronautics and Space

Administration (NASA). Some speci�c studies have examined reaction wheels [22] and

cryocoolers [23]. For manned platforms, in depth models have been developed and are

being improved for use in vibration environments [24], [10].

Space Telescopes. The current trend in space based telescopes is to build

increasingly larger aperture mirrors, since larger apertures allow higher resolution in Earth

observation applications and allows dimmer objects to be seen in astronomy. However,

there are limits on aperture size due to di¢ culties in creating a single large optical surface

and because of existing launch vehicle shroud volume constraints which limit aperture

size to about 5 meters [25]. Larger aperture sizes also require more massive optics,

requiring larger launch vehicles and increasing costs. Hence, one research trend is to

create proportionally lighter optics. However, lighter optics are also less sti¤ than more

massive ones, which increases susceptibility to lower frequency vibrational disturbances.

This in turn, creates a trade-o¤ of control architectures, where lighter structures require

lower frequency active control than heavier ones [26].

A second research trend is in the development of space interferometers. The concept

of interferometers in space, which typically consist of sparse aperture arrays, is a method

of combining the light from two or more separated telescope apertures to create an image

with the same resolution as a single aperture with a diameter equal to the separation

distance between the smaller telescopes [27], [28]. This overcomes the volume constraints

of launching the hardware, but requires more stringent six axis control. In fact, control

must be su¢ cient to keep errors below nanometer and nanoradian levels for each mirror

[29], [30]. For example, the HST has been compared to the NGST (now called the James

Webb Space Telescope) [31]. Essentially, the HST is heavier and more rigid allowing
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the entire satellite to be pointed at a target of interest. The NGST is lighter and more

�exible and requires complex cascading control loops and the isolation corner frequencies

are signi�cantly lower than for HST.

Powers et. al. developed a preliminary design for a sparse aperture array telescope

with six mirrors. Their design identi�es a total mirror mass with support structure of

883: 4 kg while the mass of the rest of the satellite is 2533 kg. Hence, one mirror with

support structure would have a mass of about 147 kg [29]. More recently, the Air Force

Research Laboratory has developed a ground based sparse array space telescope testbed for

demonstrating key technologies such as control nanometer control of the primary mirrors

[32]. Using system identi�cation methods, a model of the di¤erent modes found in the

three mirrored system was developed. A multi objective MDOF control system was

successfully developed and demonstrated to isolate the mirrors, reject disturbances, and

properly point the mirrors [30].

A third trend in space telescope research is investigation of the supporting structure

for the telescopes. Due to launch vehicle constraints, large optics must be deployable.

However, due to low vibration tolerances, the support structure must be sti¤ [33]. As a

result, small, otherwise unnoticed nonlinearities (called microdynamics) of the structure

become large problems. One important nonlinearity called microlurch has been identi�ed

and is believed to be caused by a sudden release of strain energy built up due to frictional

e¤ects in joints and latches of a structure. The latches and joints are traditionally used

to make the structure deployable. A microlurch tends to excite high frequency vibrations

that fall well outside the bandwidth of typical active control systems [34].

There seem to be two novel approaches for developing better support structure for

deployable telescopes. One approach is to create much sti¤er joints, for example, us-

ing a sti¤ folding composite. Some testing has been performed on this concept showing

deployability similar to conventional joints though with some apparently, manageable non-

linearities [35]. The other novel approach is to almost completely mechanically decouple

satellite deployable telescope (payload module) from the rest of the satellite (support mod-

ule). In this concept, the payload module is controlled by reacting on the support module

with noncontact actuators and sensors. The support module uses external actuators to
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react against the surroundings to control the spacecraft [36]. Hence, the entire range of

structural sti¤ness possibilities are under consideration.

Microgravity Research on the International Space Station. The ISS represents

one platform for performing microgravity research. The purpose of microgravity research

is to perform basic research to better understand the phenomenon in the areas of �uid

physics, combustion, fundamental physics, material science, biotechnology and other areas

[37]. Study of some phenomena is greatly improved when studied in an environment

nearly free of gravity. Vibrations also can damage these experiments and much e¤ort is

being devoted to vibration minimization. An excellent survey of this work was written

by Grodsinsky and Whorton [10]. A rack isolation system for experiments known as the

ARIS is being developed, capable of providing isolation to multiple experiments. Risk

reduction �ights for the technology have been made [38]. Other e¤orts are being made to

isolate individual experiments from the ISS [39], [40], [41], [42].

Precision Pointing. A goal of commercial communications is the capability

of transmitting information to any location on the Earth. An ideal way of accomplishing

this is to create a satellite communications network where information is retransmitted

between several satellites before being transmitted to the ground. One way to accomplish

this goal is to use optical intersatellite links, which has been surveyed by Arnon [43]. An-

other use for precision pointing is on the SBL. SBL is expected to require approximately

a 10 m diameter mirror and to be able to reduce vibration by approximately 80 dB [44].

Issues with deploying optics larger than 5 m have already been discussed in terms of space

telescopes. Further, the laser has attributes similar to a rocket engine, such as combus-

tion induced vibration, and will create disturbances on the precision optics [45]. Riker

provides an overview of the risk reduction Integrated Flight Experiment to demonstrate

SBL technologies [46].

Launch Vehicle.

Shock and Isolation. The goal of launch isolation is to prevent damage to

the payload by removing unwanted structural and acoustical vibrations. Disturbances for

2-7



launch vehicles include vibrational/acoustic loads and aerodynamic loads [47]. In small

launch vehicles, the sound level can exceed 130 dB and can cause payload damage [48].

Methods of overcoming acoustical noise damage to the payload are not reviewed here, but

this area is well documented [49] and is an active research area.

The purposes of launch isolation are to allow 1) more sensitive equipment to be

launched, 2) reduced risk of equipment failures, and 3) reduced spacecraft bus mass with

design considerations to minimize impacts on payload and launch hardware/software [50].

Passive launch isolation has been successfully used and designed for many payloads for

speci�c launch events. It has been used for Hubble Space Telescope servicing missions in

the space shuttle, achieving attenuation above 8 Hz for the solar array resupply mission

[51] and has achieved attenuation above 30 Hz on a mission to replace various modules

[52]. The passive interface between the space shuttle and the payloads has been analyzed

and methods to decrease transmissibility to the payload have been suggested [53].

More recently, for small launch vehicles, two types of passive launch protection de-

vices are being pursued: 1) whole spacecraft isolation [54] and 2) shock isolation [55].

Launch isolation has been applied both to axial (thrust axis) and to multiaxial (thrust

axis and lateral axis) cases and has �own successfully a minimum of �ve times making this

a mature technology [19]. Shock isolation is also being developed. Vibration isolation

has been designed to attenuate frequencies above 30 Hz, while shock isolation has been

designed to attenuate frequencies above 100 Hz. Vibration isolation can isolate vibrations

at lower frequencies than shock isolation, but can also couple with the guidance, naviga-

tion and control system of the launch vehicle requiring more complex analysis to allow a

successful �ight, where as shock isolation does not have this problem [50]. A more generic

vibration system for the Evolved Expendable Launch Vehicle is being developed, which

would isolate one large payload and up to six smaller payloads on the medium lift vehicle

[56], [57], [58]. The concept is also being developed for Minotaur and the Space Shuttle

[59]. A generic, adaptive passive, multi-axis launch isolation system has been proposed

for Delta II, capable of compensating for the time varying static loads the launch vehicle

applies to a payload and is envisioned for all launch vehicles [13].
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Active and passive isolators have been studied, showing the improved performance of

active isolation over passive [60]. Hybrid launch isolation has been proposed and designed,

providing large improvements over purely passive isolation [53], [61], [62], [63]. Further,

adaptive control combined with passive control has been studied resulting in additional

improvements over active control with passive [64]. Finally, Honeywell has bridged a gap

between launch isolation and on-orbit isolation using a single isolation system capable of

doing both jobs [65].

Typical Payloads to be Isolated. Sutton provides a table of typical launch

vehicle masses at launch along with payload weights to 100 nautical mile orbit and to

geosynchronous orbit. Table 2.1 provides the results of calculating the payload fraction

for payloads launched into a LEO of 100 nautical miles and into GEO at the instant the

launch vehicle is launched. These launch vehicles are older vehicles and have two or more

stages. Appendix A provides a more detailed comparison of payload and mass fractions

for various launch vehicles. The payload fraction ranges between 0.002 and 0.153 while

the mass fraction ranges between 0.847 to 0.998 at the instant of launch.

Table 2.1 Payload Fraction for Some American Launch Systems
Launch
Vehicle

Launch Mass
(metric tons)

LEO
Payload
(lb)

GEO
Payload
(lb)

LEO
Mass
Fraction

GEO
Mass
Fraction

Titan 34D 1,091 30,000 1,820 0.012 1:663 � 10�3
Delta II 6925 132 5,600 1,454 0.019 0.011
Atlas Centaur 141 6,100 1,545 0.02 0.011

Scout 21.5 500 45 0.011 2:109 � 10�3

Isakowitz et. al. provides a more in depth summary of launch vehicle performance

[66]. The authors provide weights for various stages in a vehicle, nominal staging events

and weights for both dry and fully loaded stages. Enough information is available to

create an approximate model of how the mass of a launch vehicle decreases as a payload is

launched into an orbit [64]. A challenge to the designer is to create an isolation system

that operates optimally over this entire range.
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MDOF Vibration Control. Vibration control devices for space applications and

for ground testing are typically MDOF. Launch devices have already been discussed,

so only on-orbit devices will be brie�y mentioned. For a recent review of such devices,

see Thayer et. al. [67] and Cobb et. al. [68]. Almost all devices being considered

are designed as hexapods or Stewart platforms (see Geng and Haynes for a discussion on

Stewart platforms [69]) and have been designed as hybrid, purely active, or purely passive

systems. Thayer et. al. provides an interesting summary of current hexapod devices where

comparisons were made of actuator stroke lengths, passive damping capabilities and corner

frequencies, provision for gravity o¤-load devices, and active bandwidth requirements. It

was noted earlier that passive damping and active control trade-o¤ with each other [26]

and Cobb et. al. has noted that high actuator stroke lengths allow hexapod devices

to be used to steer payloads while low stroke lengths limit the system just to vibration

control. Further, hexapods have been used for vibration isolation, vibration absorption

and steering simultaneously. In closing, future research in hexapods seems to be working

towards increasing isolation capability of control systems [67] and towards miniaturizing

of hexapod hardware [20]. As already noted earlier, novel methods of multidegree control

are also being considered in the idea of contactless sensors and actuators between payload

and satellite, with a goal of substantially increasing isolation performance [36].

2.4 Modeling Vibration Control Problems (System Models)

Many simpli�ed models of real applications have been considered in the literature.

Simple models have the bene�t of being more understandable and can be analyzed relatively

easily. Unfortunately, they may not represent the real systems very accurately. More

complex models can be more representative of real systems, but the complexity makes

them more di¢ cult or impossible to analyze. The existing models found in the literature

serve as a reference and starting point for the analysis presented later. Both linear and

nonlinear models are considered.
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Figure 2.1 SDOF Suppression Problem with Constant Parameters

Equations of Motion for Constant Parameter Systems.

SDOF Models. Vibration control problems have been modeled in many

ways in the literature. The simplest model is the SDOF system (Figure 2.1), which is

well documented for constant parameters of mass, damping and sti¤ness [70], [71]. This

system has been called source isolation [2] and vibration suppression. The equation of

motion is

m�x+ c _x+ kx = Q; (2.1)

where m is the mass of the system, c is the damping coe¢ cient, and k is the sti¤ness

coe¢ cient.

m

ck

x1 Q1

x2 Q2

m

ck

x1 Q1

x2 Q2

Figure 2.2 SDOF Constant Parameter Isolation Problem

Alternatively, the vibration isolation problem or receiver isolation problem [2] is

shown in Figure 2.2 when Q1 = 0. It is assumed that either Q2 or x2 is prescribed and

vibration of m is to be minimized. The equations of motion (assuming x2 is prescribed)

are [72]

m�x1 + c _x1 + kx1 = c _x2 + kx2 (2.2)
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and Q2 is

Q2 = k (x2 � x1) + c ( _x2 � _x1) : (2.3)

However, if Q2 is prescribed, then by substituting Equation 2.3 into Equation 2.2 results

in

m�x1 = Q2 (2.4)

and displacement x2 is found by substituting the results of Equation 2.4 into Equation 2.3.

2 Degree of Freedom Models. The 2 degree of freedom (DOF) model is

considered to be better for analyzing vibration isolation and has also been extensively

analyzed [2], [73] again with constant parameters. Typically, such systems in the literature

assume a �xed or moving support attached to the model with a spring and/or damper.

Since there are no �xed supports in space or in a launch application, a free-free type model

is considered.

m1

c

k

x1

Q1

m2

x2

Q2

m1

c

k

x1

Q1

m2

x2

Q2

Figure 2.3 2 DOF Isolation/Suppression Problem with Constant Parameters

Figure 2.3 shows the 2 DOF system located in space. If we assume m2 is to have

vibrations minimized, then if Q1 6= 0 and Q2 = 0, the isolation problem is being considered.

When Q1 = 0 and Q2 6= 0, the suppression problem is under consideration. Of course,

both problems could be examined simultaneously. The equations of motion are

m1�x1 � g (x1; x2; _x1; _x2) = Q1 (2.5)

and

m2�x2 + g (x1; x2; _x1; _x2) = Q2 (2.6)

2-12



where

g (x1; x2; _x1; _x2) = c ( _x2 � _x1) + k (x2 � x1) . (2.7)

MDOF Models. A general series MDOF model has been considered by Meiriovitch

[71]. He considers a linear series system with p masses connected by p + 1 springs and

dampers with �xed connections on either side of the system. Each mass has a force Qi

operating on it where i = 1; 2; :::p. The general equations of motion are

pX
j=1

[mijxj + cij _xij _xj + kijxij ] = Qi (2.8)

where
mij = �ijmi

cij = 0 kij = 0 j = 1; 2; :::; i� 2; i+ 2; :::; n

cij = �ci kij = �ki j = i� 1

cij = ci + ci+1 kij = ki + ki+1 j = i

cij = �ci+1 kij = �ci+1 j = i+ 1

(2.9)

and � is the Kronecker delta function

�ij =

8<: 1 if i = j

0 otherwise
. (2.10)

The equations can be written in matrix form as

[m] f�x (t)g+ [c] f _x (t)g+ [k] fx (t)g = fQ (t)g (2.11)

In general, Equation 2.11 is very di¢ cult to solve analytically except in special cases.

Solving these equations exactly requires the the matrices [m]; [c]; and [k] be simultaneously

diagonalizable. These matrices can be diagonalized if and only if

[c][m] = [m][c]

[m][k] = [k][m]

[c][k] = [k][c]:

(2.12)
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That is, any two matrices of Equation 2.11 must commute in multiplication [74], [75], [76].

If the system is diagonalizable, then modal analysis can be used to solve the equations of

motion [71].

Equations of Motion for Variable Parameter Systems. When sti¤ness and/or the

damping of a system can be controlled, the system is considered to have tunable parameters

[3] or is semi-active. Extensive literature exists on attenuating harmonic excitations

through the use of vibration absorbers and is surveyed by Sun et. al. [4]. Vibration

absorbers are widely used to attenuate unwanted narrow-band disturbances, but can also

be used for broadband applications [4], [3].

Vibration isolation and vibration suppression will be considered in the following

sections. Equations of motion in the literature for varying parameter systems are surveyed.

The goal is to review how vibration control problems allowing variable sti¤ness, variable

damping, and/or variable mass have been mathematically modelled in the literature.

m(t)~

c~k~

x Qm(t)~m(t)~

c~c~k~k~

x Q

Figure 2.4 1 DOF Suppression Problem

SDOF Models. Leitmann studies the SDOF suppression problem (see Figure

2.4) and develops control laws for variable damping, variable sti¤ness and constant mass

(m (t) = m). Note, that Leitmann concludes variable damping should always be maxi-

mum, so varying damping is not very useful in this problem. The equation of motion he

considers is

m�x+ c (uc) _x+ k (uk)x = Q; (2.13)

where uc and uk are control parameters that instantaneously change the damping and

sti¤ness of the system. The functions c and k are damping and sti¤ness, respectively
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while Q is the disturbance function. Leitmann considers a case where uc and uk can be

controlled independently and a case where uc = uk = u where the damping and sti¤ness

can not be changed independently [77]. The problem of only varying sti¤ness was also

studied earlier [78].

x Q
m(t)~

A

x Q
m(t)~m(t)~

A

Figure 2.5 1DOF General Suppression Problem

Clark analyzes the system of Figure 2.5 where element A is a piezoelectric hollow

cylinder. His analysis is similar to Leitmann�s, except by changing the type of shunt

attached to the piezoelectric, Clark is able to change the characteristics of element A,

causing it to have damping characteristics or both damping and sti¤ness characteristics.

Clark�s equations of motion are

m�x+ g (x; _x) = Q; (2.14)

where g (x; _x) is the force generated by element A (piezoelectric element) [79].

m1(t)
~

c~

k~

x1

Q1

x2

Q2

m1(t)
~m1(t)
~

c~c~

k~k~

x1

Q1

x2

Q2

Figure 2.6 1 DOF Isolation Problem with Explicit Varying Mass Representation

The SDOF isolation problem is shown in Figure 2.6. Variants of this problem have

been studied, typically with m1 (t) = m1 where m1 is constant. For example, Karnopp

uses this type of model with constant sti¤ness and a variable damper to isolate m1 from a
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disturbance Q2. The equation of motion used is

m1�x+ g (x; _x) = Q; (2.15)

where

x = x2 � x1 (2.16)

and

g (x; _x) = ~c _x+ ~kx (2.17)

is the the combined isolation device and control law [80], [15].

Figure 2.7 Quarter-Car Model

2 DOF Models. A commonly used model in the automotive industry called

the quarter-car model is shown in Figure 2.7. Mass m2 is often called the sprung mass

(representing the mass of an automobile) while mass m1 is called the unsprung mass (rep-

resenting the mass of a tire). A prescribed displacement at x0 represents the disturbance

of the system (road noise). Equations of motion for this system are

m1�x1 � g (x; _x; t) + c0 ( _x1 � _x0) + k0 (x1 � x0) = 0 (2.18)
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and

m2�x2 + g (x; _x; t) = 0 (2.19)

where g (x1; x2; _x1; _x2) is the the combined isolation device and control law. This type of

model has been studied by many authors using variable damping devices [14], [81], [82],

[83].

Figure 2.8 2 DOF System with an Inertial and a Relative Coordinate

Balandin et. al. has considered a di¤erent derivation of the 2 DOF problem [84].

They use one inertial coordinate and one relative coordinate using the transformations

z = x1 (2.20)

and

x2 = x+ z; (2.21)

where x is the relative displacement between x2 and x1. They de�ne the isolator as simply

g (x; _x; t) as shown in Figure 2.8. Further, they consider m1 (t) = m1 to be constant and

Q2 = 0. The equations of motion are

m1�z +m2 (�x+ �z) = Q1 (t) (2.22)
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and

m2 (�x+ �z) = g (x; _x; t) : (2.23)

By solving Equation 2.23 for �z and substituting into Equation 2.22, the uncoupled second

order equation

�x� g (x; _x; t)

�
=
Q1
m1

(2.24)

is derived, where � = m1m2
m1+m2

is called the reduced mass. Equation 2.24 is a SDOF

equation describing the isolation of the system [84], [85]. Note that Equations 2.20 and

2.21 is simply a transformation of the 2 DOF problem from inertial to modal coordinates.

2.5 Semi-Active Control Devices (Device Models)

Constant sti¤ness elements and damping elements are well understood and examples

of elegant designs of isolation struts for use in space have existed for many years [86]. For

an overview of passive damping design (viscoelastic materials, viscous �uids, magnetic and

passive piezoelectrics), see Johnson [87]. Much e¤ort is now going into smart materials

allowing sti¤ness and/or damping to be varied during operation of vibration control sys-

tems. For damping elements, research lines have considered MRFs, ERFs, piezoelectrics,

and hydraulic concepts [88]. Variable sti¤ness elements are also being examined, though

these technologies appear to be newer and less mature than variable damping devices. De-

vices being considered for variable sti¤ness include SMA, MREs, piezoelectrics and others.

Each of these will be brie�y reviewed and their corresponding mathematical models will

be presented.

Variable Damping.

ERF/MRF Dampers. MRF dampers are well developed devices currently in

use in the automotive industry [89], while ERF dampers are in a prototype stage of being

studied [90], [91]. These dampers have the ability to change their damping characteristics

by application of an electric �eld for ERFs or by applying a magnetic �eld for MRFs. When

these �elds are applied, micro size particles distributed in the �uid form chains. Field

strength can be increased to the point where the chains solidify resulting in a high yield
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stress and an increase in damping for MRF or ERF dampers. Removal of the �eld results

in the �uid returning to its original state. Changes in state occur within milliseconds [90],

[92], [93], [94].

ERFs can be easily manufactured (silicon oil and cornstarch will work) [90], but

MRFs have several advantages over ERFs. MRFs generate higher yield stresses than

ERFs, allowing MRF dampers to provide a wider range of variable damping than an

ERF damper. Additionally, MRFs can use low voltage while ERFs tend to require high

voltage. MRF dampers are insensitive to impurities in the �uid allowing less stringent

manufacturing requirements. Further, a larger number of additives can be used with

MRFs simplifying design for seals and minimization of wear [94].

There are many studies that model ERF dampers and MRF dampers that trade

accuracy for complexity. Typically, the damper is tested and increasingly complex non-

linear models are applied. Testing usually entails measuring force, displacement and

velocity generated by the damper for an input signal (random or sinusoidal) [14], [95], [7]

over a range of input currents. Models follow a hierarchy of roughly increasing order of

complexity and accuracy, are mostly nonlinear, and are not always continuous functions.

Figure 2.9 Equivalent Viscous Damping Model

The equivalent viscous damping method (a linearization) equates energy dissipation

with that of an equivalent damper, making damping a function of input current and dis-

placement amplitude [95], [96], [7]. This type of model has been analyzed by Leitmann

(see Figure 2.9) in the form

F = c (u) _x; (2.25)
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where u 2 [�1; 1] and

c (u) =
1

2
[(c0 + c1) + (c1 � c0)u] � c1 > c0 > 0: (2.26)

The complex sti¤ness method (another linearization) calculates storage sti¤ness and

loss sti¤ness in the form of a complex number, which will be a function of the excitation

frequency [95].

Figure 2.10 Bingham Viscoplastic Model

The Bingham viscoplastic model adds the yield stress of the �uid (often modelled as

a frictional element), but has limitations that make its use as a control model debatable

[97], [95], [94]. Figure 2.10 shows the model. The equations of motion are

F = fc signum ( _x) + c0 _x+ f0: (2.27)

Here, fc is a frictional force related to the yield stress of the �uid inside the damper. The

coe¢ cient c0 is the damping coe¢ cient and f0 can be used to account for the nonzero

mean observed in variable dampers containing a pressurized tank used to prevent �uid

cavitation. Pan et. al. has proposed that fc and c0 vary approximately linearly as

fc = fa + fbV (2.28)

and

c0 = ca + cbV; (2.29)

where fa, fb, ca, and cb are constants and V is the input voltage to the damper [98].
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Figure 2.11 Bouc-Wen Model

The Bouc-Wen model, shown in Figure 2.11, adds a hysteresis element, but has some

of the same limitations as the Bingham model. It has been used in vibration isolation

applications [94], [14]. The equations of motion for the Bouc-Wen model are

F = c0 _x+ k0 (x� x0) + �z (2.30)

and

_z = �
 j _xj z jzjn�1 � � _x jzjn +A _x: (2.31)

The parameters �, �, and 
 control the scale and shape of the hysteresis curve, n controls

sharpness of the curve as it transitions from one region to another, c0 is the damping

coe¢ cient, and k0 is the sti¤ness coe¢ cient [99]. Pan et. al. has approximated c0 and �

linearly as

c0 = ca + cbV (2.32)

� = �a + �bV (2.33)

where ca, cb, �a, and �b are constants and V is the input voltage to the damper. The vari-

able x0 physically corresponds to an initial displacement of the damper due to a pressurized

gas �lled accumulator in the damper used to prevent cavitation of the �uid.

Spencer et. al. has proposed a modi�ed Bouc-Wen model shown in Figure 2.12,

which is able to account for �uctuating magnetic �elds being applied to the MRF damper.
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The equations of motion for this system are

F = c1 _y + k1 (x� x0) ; (2.34)

_z = �
 j _x� _yj z jzjn�1 � � ( _x� _y) jzjn +A ( _x� _y) ; (2.35)

_y =
1

c0 + c1
f�z + c0 _x+ k0 (x� y)g ; (2.36)

� = �a + �bu; (2.37)

c1 = c1a + c1bu; (2.38)

c0 = c0a + c0bu; (2.39)

and

_u = � (u� V ) ; (2.40)

where the parameters c0a ,c0b, k0, c1a, c1b, k1, x0, �a, �b, 
, �, n, �, and A (fourteen total

parameters) are determined in a nonlinear optimization problem. The variable V is the

voltage being supplied to the damper and is assumed to cause �, c1, and c0 to vary linearly.

The variable u is used to describe dynamics of the MRF achieving rheological equilibrium

[94].

Figure 2.12 Modi�ed Bouc-Wen Model

As can be seen, many models have been proposed to represent MR and ER damping

devices. The choice of which model to use depends on the desired accuracy in solving a
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problem. Unfortunately, the price for accuracy is much more complexity, which can limit

the insight to be gained in analysis.

Damping with Piezoelectrics. Use of piezoelectrics for damping vibrations

in a structure has been extensively reviewed in the literature. Hagood and von Flotow

created the analytical foundation for understanding how piezoelectrics can be used for

damping. When piezoelectrics are combined with a resistor, they create damping anal-

ogous to viscoelastic damping. The piezoelectric combined with the resistor electrically

creates an RC shunt network, since the piezoelectric acts like a capacitor [100]. Maximum

damping has a stronger frequency dependence than viscoelastic materials and occurs at a

point related to the inverse of the RC time constant for the shunt circuit [101]. Tang,

Liu and, Wang reviewed semi-active damping and hybrid damping methods. The hybrid

method can be divided into active and passive damping abilities of the piezoelectric it-

self and active damping with the piezoelectric combined with traditional passive damping

materials [11].

Figure 2.13 Piezoelectric Damping

Corr and Clark derive the damping force of a piezoelectric stack using linear theory

and the following derivation comes directly from their article [102]. Refer to Figure 2.13.

They consider the piezoelectric stack as N identical layers bonded together and wired in

parallel. They begin with the one dimensional, uniaxial loading constitutive equations

[103] 24 D

S

35 =
24 "T3 d33

d33 sE33

3524 E

T

35 ; (2.41)
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where D is electrical displacement (charge/area), S is mechanical strain, E is the electric

�eld (volts/meter), T is mechanical stress (force/area), "T3 is the dielectric constant, d33 is

the piezoelectric constant, and sE33 is the piezoelectric compliance. The superscripts T and

E indicate the parameters were measured at constant stress or electric �eld, respectively.

The subscript 3 represents the orientation of the piezoelectric being modelled. Making

the substitutions

V = LpE; (2.42)

q1 = AD; (2.43)

S =
x

Lp
; (2.44)

and

T =
Fp
A
; (2.45)

where Lp is the thickness of the piezoelectric layer, q1 is the generated charge for one

piezoelectric layer, and A is the cross sectional area results in

24 Fp

q1

35 =
24 ksc �kscd33
kscd33 Csp

3524 x

V

35 ; (2.46)

where

ksc =
A

sE33Lp
; (2.47)

CTp =
A"T3
Lp

; (2.48)

CSp = CTp
�
1� k233

�
; (2.49)

and

k33 =

s
d233
sE33"

T
3

: (2.50)

For N piezoelectric layers,

24 Fp

qN

35 =
24 ksceq �kscd33
kscd33

�
Csp
�
total

3524 x

V

35 ; (2.51)
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where ksceq is the equivalent short circuit sti¤ness for springs in series while
�
Csp
�
total

is the

equivalent capacitance for each piezoelectric layer in parallel. By solving the second of

Equation 2.51 for V and substituting into the �rst equation of Equation 2.51, and letting

Qapp = qn (applied charge) results in the equation of motion

Fp =

 
ksceq +

(kscd33)
2�

Csp
�
total

!
x� (kscd33)�

Csp
�
total

Qapp: (2.52)

Typically, some type of shunt circuit is added to the piezoelectric device which

changes the electrical charge Qapp. One type of shunt circuit discussed by Corr and

Clark is

L �Qapp +R _Qapp +
1�

Csp
�
total

Qapp =
kscd33�
Csp
�
total

x; (2.53)

where R is the resistance of the shunt circuit and L is the inductance of the shunt circuit

[17]. Lesieutre classi�es di¤erent types of shunt circuits and their e¤ect on a mechanical

system. When L = 0; the shunt circuit converts electrical energy to heat, dispersing it from

the system. Hence, mechanical energy is converted to electrical energy by the piezoelectric

which is then converted to heat by the resistive shunt. By varying the resistance of the

shunt circuit using a control law, it is possible to vary the amount of energy damped out

by a piezoelectric. When L 6= 0; the shunt circuit is analogous to a vibration absorber

[101]. Energy is most e¢ ciently dissipated when the impedance of the resister in the shunt

circuit matches the impedance of the piezoelectric [104].

Corr and Clark considered changing the damping of a piezoelectric by alternately

connecting and disconnecting an RL shunt circuit to the piezoelectric. In tests, they were

able to attenuate the third mode of a clamped-clamped beam [102]. In another approach,

Wang et. al. researched semi-active damping with piezoelectric patches attached to a

cantilever beam. One piezoelectric patch is used to create a disturbance to the beam, while

the other is used to damp out the disturbance. They formulated the equations of motion

for a cantilever beam and for the piezoelectric with a variable resistance-inductance shunt

circuit. They note that a variable resister can be created using a digital potentiometer

and variable inductors can be emulated using an OP amp circuit [105].
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Figure 2.14 Equivalent Sti¤ness Element

Variable Sti¤ness. The simplest model of a variable sti¤ness element is shown in

Figure 2.14. The sti¤ness is

F = k (u)x; (2.54)

where u 2 [�1; 1] ;

k (u) =
(k0 + k1)

2
[1 + "u] � k1 > k0 > 0; (2.55)

" =
k1 � k0
k1 + k0

; (2.56)

k0 is the smallest sti¤ness the variable sti¤ness device can achieve, and k1 is the largest

sti¤ness the variable sti¤ness device can achieve. The variable u is an input variable for

controlling the sti¤ness device while " is a measure of the maximum variation of a variable

sti¤ness device. While real devices do not behave as this simplistic model suggests, it does

allow for analysis and hence is often used in the literature.

In the literature, researchers often document maximum and minimum natural fre-

quencies achieved using a device or they report the maximum and minimum sti¤ness

achieved by a device. Since actuating a variable sti¤ness device does not change the mass

of the system, a characterization parameter � can be de�ned as

� =

�
!min
!max

�2
=
k0
k1
. (2.57)

where � is the variable sti¤ness ratio of a variable sti¤ness device, !min is the minimum

natural frequency of a system with a variable sti¤ness device, and !max is the maximum

natural frequency of a system with a variable sti¤ness device. The relationship between
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� and " is

" =
1� �
1 + �

. (2.58)

These parameters will be used to develop physical insight into the capabilities of di¤erent

variable sti¤ness devices when such data is available.

Shape Memory Alloy Models. SMAs are metal alloys that recover otherwise

permanent strains when heated. Stable phases of SMAs include a low temperature phase

called martensite and a high temperature phase called austenite. SMAs have two prop-

erties which are exploited for use in vibration control called the SME and the PE. The

SME occurs when a SMA in martensitic form is deformed by a load and then heated to

austenitic form where it recovers its original shape. The PE occurs when a load is applied

to a SMA in austenitic form, which under proper conditions, can induce a phase change to

martensitic form. When the load is released, the material is transformed back to austenitic

form and recovers its original shape [106]. Detailed discussion of SMA mechanisms are

available [107]. In addition to discussing SMA mechanisms, models describing both SME

and PE in SMAs has been extensively reviewed [108].

The SME has been used to create semi-active absorbers and isolators. In one article,

Williams et. al. used three SMAs and steel wires con�gured as cantilever beams with a

concentrated mass at the end to create a vibration absorber. The reported change in

natural frequency was !min
!max

= 1
1:73 resulting in � = 0:33 [109].

In another case, a novel actuator was created using a weave of SMA wires surrounding

disks with passive springs in between [110]. The actuator uses mechanical advantage to

increase stroke length and has millisecond response rates. The actuator has been used for

semi-active control and successfully damped out impulse disturbances in 360 msec. The

problem with all of these SME concepts is the time required for SMAs to cool o¤, which

can be mitigated by clever design, but not completely eliminated [111].

Another example is an aircraft wing spar strut concept with an internal piston and

multiple preloaded standard and SMA springs on either side of the piston. The SMA

springs are inactive while in martensitic phase. Since the standard springs are sti¤er than
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the SMA springs, stop spacers are used to prevent preloading of the SMA springs. When

heated, the SMA changes to austenitic phase, increases in sti¤ness, and becomes able to

support the preload. The result is a decrease in overall sti¤ness in the strut, due to clever

design [112].

The PE of SMAs has been proposed for use in place of softening springs for passive

isolation of large loads. Typically, a soft spring is desired for isolation, but a sti¤ spring

is needed to prevent large displacements. A softening spring can be used, but it lowers

isolator resonance frequencies and damping must be added. This in turn, degrades higher

frequency isolation. Use of SMAs might remove this trade-o¤. Recent work has looked at

building simpli�ed models for SMAs [113] and has been studied for use in passive isolation

[113], [114].

Magnetorheological Elastomers. MREs are solid polymers with dispersed

micron-sized magnetizable particles. The elastomer is cured in a magnetic �eld causing

the magnetic particles to align in chains and remain aligned after the magnetic �eld is

removed. Application of a magnetic �eld changes the sti¤ness of the elastomer [115]. The

Ford Motor Company has been researching MREs for use as variable sti¤ness elements

for control-arm bushings and engine mounts in automobiles. They have studied and

modelled the MRE phenomena [116], [117] and are developing tunable vibration absorbers.

MRE absorbers have been fabricated and both sti¤ness and damping were observed to

increase with increasing magnetic �elds [118]. Additionally, resonant frequency was found

to decrease with increasing input acceleration amplitude attributed to strain-softening

behavior of the elastomer [119], making this variable spring non-linear.

Zhou notes that a primary di¤erence between MRFs and MREs is that MRFs operate

in post yield conditions while MREs operate in preyield conditions. As a result, an MRE

should be used in a structure to change its natural frequency. Changing the natural

frequency can prevent resonance response or other coupled behavior in a structure. Zhou

studies a device made of silicone rubber and carbonyl iron particles. Zhou models the
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MRE in a SDOF system as

m�x = �G (BMRE)S

h
x� �m (BMRE)

 r
G (BMRE)S

h
m

!
_x; (2.59)

where G (BMRE) is the shear modulus of elasticity for the MRE, BMRE is the magnetic

induction or magnetic �ux density, S is the surface area of the MRE, h is the thickness of

the MRE, �m (BMRE) is a damping factor and m is the mass of a covering plate attached

to the MRE. Note that G and �m are functions of BMRE . Zhou determined G and �m

experimentally by �tting experimental data to Equation 2.59. The author concludes that

G (BMRE) is a linear function and �m (BMRE) is a constant. Zhou found he could vary

the natural frequency of his system from 1397.6 to 1773.5 radians/second [120] or � = 0:62.

In another experiment, Albanese and Cunefare tested silicone mixed with several

di¤erent percentages of iron particle concentrations. They concluded that at 35% iron

content, as much as a 400% change in frequency could be made by applying a magnetic

�eld. In their conference brie�ng, they concluded 30% iron content could cause a nearly

900% change in frequency. Their results are reported in terms of ��
1
2 or equivalently,

they tested several devices in the range 0:11 � � � 0:91 [121], [122].

Piezoelectric Models. Sti¤ness of piezoelectrics can be varied by connecting

them to a capacitive shunt circuit. This and other methods of shunting piezoelectrics for

vibration control was reviewed by Lesieutre [101]. A simple method of varying sti¤ness

of piezoelectric devices is to switch it between open and closed circuit conditions. This

has the e¤ect of changing the electrical capacitance of the piezoelectric device and varies

the sti¤ness between its highest and lowest sti¤ness values. The equation of motion for a

SDOF problem discussed by Kurdila et. al. is

m�x+

 
ksc +

(kscd33)
2

CSP
(1��)

!
x� (k

scd33)
2

CSP
(1��)x0 = F (t) ; (2.60)

where ksc is the short circuit sti¤ness of the piezoelectric, d33 is the piezoelectric constant,

CSP is the constant strain piezoceramic capacitance, m is a vibrating mass, x0 is the dis-

placement of the actuator at the instant the piezoelectric is switched to an open circuit
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condition, and � is either 0 or 1. Setting the control parameter � to 1 sets the piezo-

electric to its lowest sti¤ness while setting � to 0 maximizes the sti¤ness. The authors

observe that selecting a control law making x0 6= 0 introduces a step function into the sys-

tem. They eventually conclude switching should only occur when x _x = 0 to make x0 = 0

[123]. Richard et. al. experimented with this method and found superior performance as

compared to a resistively shunted nonswitching system [124].

Corr and Clark have also experimented with this concept. For their setup, they

concluded this method provided only small changes in sti¤ness and was not as e¤ective as

other shunt circuits with associated control laws. Other shunt circuits experimented with

include pure resistor and resistor/inductor shunt circuits [17], [102].

In an earlier paper, Clark analyzed e¤ective beam sti¤ness in the case of a piezo-

electric bonded to a cantilever. As the ratio of beam to piezoelectric patch thickness

decreased, the open circuit to short circuit sti¤ness ratio or ��1 was found to increase to

a maximum value approaching 2.0. That is, �! 1
2 . [125]

Varying sti¤ness has been used to tune vibration absorbers when the resonant fre-

quency varies. Davis and Lesieutre created and demonstrated a tunable vibration absorber

that tracked a disturbance frequency. The piezoelectric sti¤ness element was actively tuned

using a shunt circuit ladder of capacitors allowing various discrete levels of capacitance to

be chosen. Davis and Lesieutre were able to vary the natural frequency of their system

by almost 7:5% over a range of 313 Hz to 338 Hz [126]. This translates to an � of 0:86.

More recently, Ramaratnam et. al. propose using piezoelectrics for robotic applica-

tions. They simulated both open and closed switching and the use of capacitive shunt

circuits to minimize tip de�ection of a translational �exible beam. Both methods achieved

similar results. The capacitive shunt method allowed a more gradual change in sti¤ness

than the open/closed switching method. Their predicted equivalent sti¤ness for the ca-

pacitive method translates to an � of approximately 0.045. Future experimental work is

planned [127].

Other Devices. Other methods of varying sti¤ness have been explored. One

approach is to place a MRF damper in series with a spring, which is then placed in parallel
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with another spring, creating a three parameter isolator. Varying the MRF damping then

changes the apparent sti¤ness of the isolator [128], [7].

Two mechanical concepts for varying sti¤ness have been discussed in the literature.

One concept is a vibration absorber that consists of a mass attached to helical spring with

a spring collar dividing the spring into two parts. The spring collar isolates part of the

spring from the rest of the absorber and the number of coils used in the absorber can

be changed by rotating the spring [8]. Another concept is to connect two leaf springs

in opposition to each other and use a stepper motor to increase the separation distance

between the two springs. In this concept, the authors report a change of sti¤ness of

��1 = 62 in a nonlinear range and ��1 = 45 in an approximately linear range. The linear

range where � = 1
45 = 0:02 corresponds to a value for " very close to its largest possible

value [129].

Summary. Table 2.2 summarizes the results of these calculations for some

proposed hardware values for " and � found in the literature in order of reported ability

to change sti¤ness from highest to lowest. These devices o¤er a wide range of choices for

the control system designer, with a potential wide range of achievable performance.

2.6 Semi-Active Control Strategies

It is clear from the previous discussion that passive and hybrid control concepts have

often been used operationally in space applications and are well documented. On the

other hand, no examples of semi-active control have been found operationally in space

applications, though numerous studies (both space and non-space) on the subject exist.

Further, most studies concentrate on vibration absorption and suppression problems with

very little found on vibration isolation. Studies can be divided up into studies using

only variable sti¤ness, using only variable damping, and using both variable sti¤ness and

variable damping.

Sun et. al. provides a review of ATVAs through 1995. Tuned vibration absorbers

only function for set conditions which may vary with time. ATVAs overcome this by using

a control system to tune them automatically as conditions vary [4]. Manual tuning of a
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Table 2.2 Parameter Values for Proposed Variable Sti¤ness Devices in the Literature
Source Year Device � "

Albanese and Cuefare [122] 2003 MRE 30% Fe 0.01 0.98
Walsh and Lamancusa [129] 1992 Leaf Spring 0.02 0.96
Albanese and Cuefare [121], [122] 2003 MRE 35% Fe 0.05 0.91
Albanese and Cuefare [121], [122] 2003 MRE 25% Fe 0.11 0.80
Albanese and Cuefare [121], [122] 2003 MRE 40% Fe 0.19 0.68
Albanese and Cuefare [121], [122] 2003 MRE 10% Fe 0.31 0.53
Williams, Chiu, and Bernhard [109] 2002 SMA 0.33 0.50
Albanese and Cuefare [121], [122] 2003 MRE 50% Fe 0.35 0.49
Clark [125] 2000 Piezoelectric Patch

on Cantilever (On-
O¤)

0.50 0.33

Zhou [120] 2003 MRE 27% Fe 0.62 0.23
Albanese and Cuefare [121], [122] 2003 MRE 0% Fe 0.83 0.10
Ramaratnam, Jalili, and Grier [127] 2003 Piezoelectric (Ca-

pactive Shunt)
0.91 0.05

Davis and Lesieutre [126] 2000 Piezoelectric (Ca-
pactive Shunt)

0.93 0.04

vibration absorber with a large tuning range (1375-2010 Hz) was demonstrated using a

magnetostrictive device [130]. Davis and Lesieutre were able to automatically tune an

ATVA in discrete steps using a capacitive shunt piezoelectric device [126]. Franchek et.

al. has also designed a tuning scheme, which was experimentally veri�ed on a subscale

building [8].

The control law idea of maximizing or minimizing an element has also been used in

variable damping devices. For example, Yao et. al. designed this type of controller for

an automotive shock absorber [14] and used a nonlinear function of velocity to switch the

damping. The control law used is called the skyhook damper and will be discussed further

below.

However, study is not limited to this type of control law. Spencer et. al.�s develop-

ment of better MR damping models opens the possibility of improved vibration control [94].

Oh, Onoda, and Minesugi simulated an improved control as compared to on-o¤ damping

with an ERF damper used to isolate reaction wheel disturbances. While the improved

control law used on-o¤ control, the damping was not always maximized or minimized at
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all frequencies tested, which decreased the e¤ects of harmonics created by instantaneous

on-o¤ switching [131], [132].

Wang and many associates have examined several di¤erent kinds of semi-active con-

trol laws. Sliding mode control has been studied in depth with multiple semi-active

dampers to remove vibrations of a simply supported beam [133], [93], [134]. Wang et.

al. have also considered using energy based control laws similar to those described in the

next section. They mounted two piezoelectric patches to a cantilever beam near the �xed

support and used one to disturb the beam while using the other to damp out disturbances.

The piezoelectric damping out disturbances was connected to a shunt circuit with a vari-

able inductor and variable resistor. An energy based control law was created to vary the

resistance, inductance and the rate of change of the inductance in the shunt circuit. The

system was simulated and disturbances to the beam were attenuated [105].

Almost no results were found on semi-active control where both sti¤ness and damp-

ing are varied. Kidner and Brennan used a fuzzy controller to vary both sti¤ness and

damping of a vibration absorber, allowing both improved performance and tuning of the

absorber [135]. Kimbrough discusses bilinear systems and develops a method for control-

ling sti¤ness, damping or both. The method results in a nonlinear control system and

was applied to variable damping suspension systems for automobiles [136]. Jalili explored

a combined semi-active/active combination where the semi-active system is tuned, the ac-

tive system is changed adaptively, or both systems are changed together [137]. Finally,

Jalili has also considered semi-active control for vibration isolation for a SDOF system [3].

He reviews the possibility of tuning a vibration isolation system by varying the natural

frequency of a system [138].

Minimizing Energy Change through Variable Sti¤ness. Vibrations in a structure

can be damped out by varying sti¤ness in the absence of damping and has been developed

for suppression problems. Leitmann formulates a simple though not necessarily optimal

on-o¤ control law considering both variable damping and variable sti¤ness for the SDOF

suppression problem and �nds that setting damping as high as possible removes the most

energy from the system [77]. This variable sti¤ness control law has also been considered
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by others, and is brie�y discussed, though this control law is not necessarily an optimal

law [78], [139]. Rearranging and multiplying Equation 2.13 through by _x and then making

use of Equations 2.26 and 2.55, the change in energy, the rate of work, or the power of the

system is found by taking

_E (uc; uk) = m�x _x = �c (uc) _x
2 � k (uk)x _x+Q _x. (2.61)

To make _E (uc; uk) as negative as possible, it is clear that c (uc) should be maximized

(c (uc) = cmax) and

k (uk) =

8<: k (�1) = kmin if x _x < 0

k (1) = kmax if x _x > 0
(2.62)

where kmax is the maximum sti¤ness the variable sti¤ness device can create while kmin is

the lowest sti¤ness the variable sti¤ness device can create. The energy of the system can

be found by integrating _E (uc; uk) over time resulting in

E (uc; uk) =
mx2

2
= �k (uk)x

2

2
+

Z t

0

�
�c (uc) _x

2
+Q _x

�
d�: (2.63)

Hence, E (uc; uk) represents the kinetic energy of the system due to the motion of the mass.

Douay and Hagood developed optimal control laws for the variable sti¤ness problem

with no damping. They conclude the optimal control delays switching time, having the

e¤ect of increasing equivalent natural frequency while decreasing equivalent damping ratio

of the system. The control law increases energy dissipation more than the simple control

law. An explicit form for the control law is not developed, but is shown graphically from

numerical simulation [139].

Kobs and Sun developed optimal control laws for the variable sti¤ness problem also,

but realized that real systems cannot switch instantly, as assumed by on-o¤ type control

laws. They created a continuous control law that accounts for both tuning range and

rate of change for a variable sti¤ness device. They showed the continuous control law

dissipated less energy than a on-o¤ control law, but conclude a continuous control law is

more representative of reality [140].
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Crespo and Sun also developed optimal control laws for both the variable sti¤ness

problem and the variable sti¤ness problem with constant damping. They used a numerical

method called simple cell mapping to develop solutions to these problems. Their method

allowed them to graphically present an optimal on-o¤ control law of the form

uk = sgn [(�1x+ _x) (�2 _x+ x)] ; (2.64)

where �1 and �2 are parameters implicitly chosen by their optimization method. This

control law seems to have �rst been proposed by Onoda, who found the optimal settings

for �1 and �2 for a SDOF suppression problem with no viscous damping [141]. Crespo

and Sun observe that "analytic" solutions in the form of numerical simulations exist in

the literature to the variable sti¤ness with no damping SDOF problem. They further

note that neither analytic nor numeric solutions to the variable sti¤ness constant damping

problem appear in the literature [142], [143].

Minimizing Energy Change through Variable Damping. A review of the literature

credits Karnopp et. al. with �rst discussing the concept of the skyhook damper and the

following discussion is derived from their article [80]. Consider a free-free 2 DOF system

(see Figure 2.3) with spring constant k and a viscous damper with damping coe¢ cient c

isolating the two degrees from each other. The isolator can be described as

g (x; _x) = c ( _x2 � _x1) + k (x2 � x1) : (2.65)

This is a typical passive system with many limitations already discussed in section 2.3.

Karnopp et. al. cites linear optimal control theory to conclude that the ideal isolator is

g (x; _x) = c _x2 + k (x2 � x1) : (2.66)

Physically, to realize this ideal control law, the damper must be connected to an

inertial reference. This is impossible for many systems, so the idea of a skyhook damper

is to create the same forces a damper connected to an inertial reference would create.

This can be accomplished through active control and can be partially created through
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semi-active control. The force of a damper Fd will dissipate energy only when

Fd ( _x2 � _x1) � 0: (2.67)

The nonlinear control law for the force of the semi-active damper is

Fd = c _x2; if _x2 ( _x2 � _x1) > 0: (2.68)

A damper cannot create a negative damping force when

Fd ( _x2 � _x1) < 0 (2.69)

since the damper has no capability to add energy to the system. Active control has this

capability. To most closely approximate an active system, the force of the damper is set

as low as possible, or ideally,

Fd = 0 if _x2 ( _x2 � _x1) < 0: (2.70)

Karnopp discusses two special cases when _x2 ( _x2 � _x1) = 0. If _x2 = 0; the Fd = 0.

When ( _x2 � _x1) = 0, the semi-active damper can �lock up� the system. These cases

happen rarely, and usually for a �nite amount of time before the system returns to another

condition.

2.7 Some Conclusions on State of the Art

A review of some of the space applications for vibration control technologies shows

immense challenges. Some of these challenges are being met today using passive, active,

and hybrid control concepts. However, these technologies may not be able to achieve

all future challenges identi�ed in their current forms. While many of these technologies

are mature, much opportunity for research exists in semi-active control, though it is not

clear if these technologies can meet all of the future challenges. The literature shows that

smart materials have been and are being developed that make semi-active control concepts
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physically viable. Research opportunities exists in the realm of smart materials in creating

better analytical models for use in vibration control applications. Much work has been

found showing how smart materials can be applied to the vibration absorption problem,

and this area is clearly an area rich in research opportunities. It also appears gaps exist

in the literature in that limited information was found on semi-active vibration isolation

as opposed to vibration absorption where much more exists. Hence, semi-active vibration

isolation may have even more opportunities for research than vibration absorption.

A review of semi-active vibration control literature shows semi-active control prob-

lems are inherently nonlinear. Several authors have identi�ed the need to gain a better

understanding of control schemes using nonlinear control devices [3], [11]. Unfortunately,

the nonlinearity makes analysis both di¢ cult and time consuming. Because of the nonlin-

earity of variable damping and variable sti¤ness devices, analysis is even more di¢ cult.

In order to begin developing new insights and engineering tools for this challenging

�eld, a model that could be analyzed and provides some insights into how a real system

would behave was needed. It was decided to begin where the literature stops by choosing

a relatively simple problem, which provides some knowledge of real systems. One such

model is Equation 2.13. Since varying damping greatly complicates the analysis and is

not as helpful as using constant damping for initial value vibration suppression SDOF

problems (see Section 2.4), damping was made constant. Hence, the equation of motion

considered is

m�x (t) + c _x (t) +
1

2
[(k1 + k0) + (k1 � k0)u (�1; �2)]x (t) = Q (t) (2.71)

where

u (�1; �2) = sgn [(�1x+ _x) (�2 _x+ x)] (2.72)

Understanding Equation 2.71 represents an incremental improvement over the cur-

rent state of the art since past analysis has considered problems with no damping. Further,

while past analysis has made use of the proposed two parameter control, the analysis is

somewhat incomplete. In practice, it moves analytic understanding of semi-active control
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problems closer to experimental real world research which has been going on over the last

decade.

Hence, in Chapter 3, the initial value problem with Q (t) = 0 is solved for the �rst

time exactly. An approximate solution linked to the exact solution is then developed

and both solutions are used to develop new insights. In Chapter 4, the sinusoidally

forced problem is approximated and some new insights are developed. Interestingly, the

approximate solutions that were developed in both chapters are linear. Hence, Chapter

5 demonstrates some instances where the linear approximations of Chapters 3 and 4 can

be used to gain insights into MDOF problems, which begin to approximate the expected

behavior of real space system structures.
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3. Initial Value Variable Sti¤ness with Constant Damping SDOF Problem

3.1 Introduction

An exact and approximate solution to Equation 2.71, an initial value SDOF variable

sti¤ness suppression ordinary nonlinear di¤erential equation (ODE) with constant damping

will be developed. Winthrop et. al. recently solved this problem for the case of no viscous

damping using a simpler control law than the one that will be used here [144]. Equation

2.71 was selected to be approximately representative of a true variable sti¤ness system

which can be analyzed. The purpose of this analysis is to 1) determine the optimal

control of the system using a general on-o¤ control law, 2) determine system stability, and

3) develop an approximate explicit solution to the exact implicit solution to develop insight

into what variable sti¤ness contributes. Equation 2.71 is immediately nondimensionalized

since nondimesionalizing the ODE greatly simpli�es it and allows generalization of the

results to any dimensional problem.

Next, the nondimensional second order ODE is transformed to two �rst order ODE�s

which are related to the phase angle and amplitude of a trajectory in the phase plane.

The �rst order ODE�s are simpler to solve than the untransformed second order ODE.

The ODE�s were solved implicitly, treating time as though it was a dependent variable,

rather than an independent variable. In the process, di¤erent types of behavior for the

system are identi�ed and the exact switching times for the system are found analytically.

The resulting solution to the two ODE�s was complicated and resulted in a transcen-

dental equation that cannot be solved explicitly. Hence an explicit approximate solution

was developed to better explore system behavior. The explicit solution has the same form

as a linear viscously damped oscillator, so equivalent damping ratio, natural frequency,

and damped natural frequency was found. Using the approximate and exact solutions,

an expression for guaranteed system stability and an approximate optimal control of the

system were found. Afterward, examples showing how the system behaves are provided.

Following the examples, the energy use of the sti¤ness device is explored. The analysis is

concluded by identifying design metrics that can be used to understand variable sti¤ness

devices.
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3.2 Nondimensional Equations

From the literature [77], the initial value variable sti¤ness vibration suppression prob-

lem

m��x� + c� _x� +
1

2
[(k�1 + k

�
0) + (k

�
1 � k�0)u]x� = 0, (3.1)

was selected for study where m is the mass of the system, c is the damping coe¢ cient,

k0 is the smallest value the sti¤ness can be, k1 is the largest value sti¤ness can be, x is a

reference displacement, and u is a control law to be speci�ed later such that �1 � u � 1.

The "�" superscript designates a variable as a dimensional variable, while variables without

the "�" superscript are nondimensional variables. The initial conditions considered herein

are either for initial displacement or initial velocity de�ned as

x�(0) = x�0, _x�(0) = 0 (3.2)

or

x�(0) = 0, _x�(0) = _x�0, (3.3)

respectively. Equation 3.1 can be nondimensionalized by de�ning the uncontrolled natural

frequency (u = 0)

!�0 =

r
k�0 + k

�
1

2m� , (3.4)

and by de�ning a reference length L�, such that the nonzero initial condition is unity. For

the initial conditions of Equation 3.2 use

L� = x�0, (3.5)

while for the initial conditions of Equation 3.3 use

L� =
_x�0
!�0
. (3.6)

Nondimensional time can be scaled to be

t = t�!�0 (3.7)
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and the displacement can be scaled to be

x =
x�

L�
. (3.8)

When L� = 0; Equation 3.8 becomes invalid. However, L� = 0 implies no initial distur-

bance to the system, resulting in the trivial solution for Equation 3.1. Equation 3.1 can

then be rewritten in nondimensional form as

�x+ 2� _x+ (1 + "u)x = 0, (3.9)

where

� =
c�p

2m� (k�0 + k
�
1)

(3.10)

and

" =
k�1 � k�0
k�1 + k

�
0

(3.11)

Note that 0 � " < 1. Further, � will be restricted such that 0 � � < 1. This was done

to allow selection of an oscillatory solution form, though it restricts the solution range

of validity. When " = 0 and � < 1 Equation 3.9 is an underdamped system with an

oscillatory solution.[71]

A two parameter on-o¤ control law is used given by

u (x; _x) = sgn [(�1x+ _x) (�2 _x+ x)] (3.12)

where

sgn (z) =

8>>><>>>:
1 if z > 0

0 if z = 0

�1 if z < 0

, (3.13)

and �1 and �2 are real valued design parameters of the controller. In the special case

when �1 = �2 = 0, Equation 3.12 becomes the simple though not necessarily optimal

control law discussed by several authors [77], [78], [139]. With a proper transformation

and when c� = 0, Equation 3.1 can be used to model a SDOF variable sti¤ness system
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with a piezoelectric actuator using a short circuit/open circuit switching device, modeled

by Kurdila et. al. The SDOF piezoelectric model used is

m��x� +

 
ksc

�
+

�
ksc

�
d�33
�2

CS
�

P

(1��)
!
x� = 0 (3.14)

where ksc
�
is the short circuit sti¤ness of the piezoelectric, d�33 is the piezoelectric constant,

CS
�

P is the constant strain piezoceramic capacitance, m� is a vibrating mass and � is either

0 or 1 [123]. Letting

k�0 = ksc
�

(3.15)

and

k�1 = ksc
�
+

�
ksc

�
d�33
�2

CS
�

P

(3.16)

transforms 3.14 to Equation 3.1.

Equation 3.12 was proposed by Onoda et. al. [141] and is implied by Crespo and Sun

[142] from an applied optimal control method. This control law assumes instantaneous

changes in sti¤ness, which is not realistic [140]. However, when the variable sti¤ness device

time constant is much shorter than the time constant of the actual system, Equation 3.12 is

expected to be a reasonable approximation of reality. One way to verify this is to measure

the switching time of a variable sti¤ness device and compare it to the reciprocal of !�0

calculated by Equation 3.4. In section 3.13, a more accurate system time constant will

be derived that can be used to validate the instantaneous change in sti¤ness control law.

Equation 3.12 was chosen because it is general enough to consider nearly any switching

policy and makes use of physical quantities that are easy to measure in real physical

systems.

3.3 Transformed Equations by Method of Variation of Parameters

Equations 3.9 and 3.12 can be transformed into two �rst order di¤erential equations

using the method of variation of parameters as shown in Appendix B. The solution to

Equation 3.9 is of the form

x = ae��t cos� (3.17)
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and the velocity is of the form

_x = �ae��t [� cos�+  sin�] = �x [�+  tan�] (3.18)

where a and � are functions of time. Using Equations 3.17 and 3.18, the control law can

be transformed into

u (�) = sgn ([�1 � (�+  tan�)] [1� �2 (�+  tan�)]) : (3.19)

where

 =
p
1� �2: (3.20)

The functions a and � satisfy the di¤erential equations

_� =
 u

2�
[J (�) + cos (2�)] =  

�u
�
cos2 �+ 1

�
(3.21)

and
_a

a
=
 u

2�
sin (2�) (3.22)

where

J (u (�)) = J (�) =
2�

u
+ 1 (3.23)

and

� =
 2

"
. (3.24)

Because 0 � � < 1, 0 <  � 1 implies � > 0. For the initial displacement problem, the

initial conditions are

�0 = � tan�1
�

 
; a0 =

1

 
: (3.25)

For the initial velocity problem, the initial conditions are

�0 = �
�

2
; a0 =

1

 
. (3.26)
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Both versions of the initial conditions are derived in Appendix B. Note that �0 6= 0 in the

initial displacement problem since  6= 0. In Equation 3.24 " ! 0 implies � ! 1, and

Equations 3.21 and 3.22 simplify to _� =  and _a
a = 0. These equations have solutions

� =  t + �0 and a = a0, which when substituted into Equation 3.17 yields the simple

linear underdamped oscillator

x = a0e
��t cos ( t+ �0) . (3.27)

Hence,  represents the damped natural frequency of the uncontrolled system (u = 0).

The parameters J and � have no physical meaning when " = 0. However, when " > 0,

these parameters will later be shown to de�ne if the system is underdamped, critically

damped, or overdamped in the classical sense.

Another way to interpret Equations 3.17 and 3.18 is to put them in polar form as

_x

x
= � [�+  tan�] = tan� (3.28)

and

r =
ae��t 

p
1 + tan2�p

1 + 2� tan� + tan2�
(3.29)

where � is an angle of rotation of a trajectory in phase space or phase angle while r is the

distance from the origin of a trajectory in phase space. When � = 0, Equations 3.28 and

3.29 simplify to the standard polar coordinates transformation. Equation 3.28 is an a¢ ne

transformation for phase. Therefore, both � and � will be called the phase of the system.

3.4 Solution Strategy

Equations 3.21 and 3.22 will be solved implicitly using the method of separation of

variables. Equations 3.21 and 3.22 can be rewritten as

dt =
2�d�

 u (�) [J (�) + cos (2�)]
(3.30)
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and
da

a
=
 u (�)

2�
sin (2�) dt =

sin (2�) d�

J (�) + cos (2�)
. (3.31)

Next, it is tempting to immediately integrate both equations as

Z t

0
d� =

2�

 

�Z
�0

d�

u (�) [J (�) + cos (2�)]
(3.32)

and Z a

a0

dA

A
=

�Z
�0

sin (2�) d�

J (�) + cos (2�)
(3.33)

where A; �; and � are dummy variables of integration. Unfortunately, the integrals on

the right hand side of Equations 3.32 and 3.33 can have discontinuous integrands and also

have di¤erent solution forms depending on the values of J . To evaluate Equations 3.32

and 3.33, the right hand side must be broken up into sums of integrals over the intervals

of continuity and the e¤ect of varying J (Equation 3.23) must be understood.

3.5 Bifurcations and Solution Region De�nitions

Applying the control law of Equation 3.12 in Equation 3.9 demonstrates a number

of behavioral changes or bifurcations by varying the parameters "; �; �1; and �2. These

changes result in rich behavior for Equation 3.9, which is common in nonlinear equations.

This behavior creates di¤erent solution regions which can be identi�ed in the " and �

plane and in the �1 and �2 plane. The next sections will derive and identify these solution

regions.

Bifurcations due to Varying Sti¤ness Using an On-O¤ Control Law. Equations

3.32 and 3.33 have two di¤erent forms due to how J (de�ned by Equation 3.23) depending

on u = �1. This bifurcation is a direct result of varying the sti¤ness of the system using

the on-o¤ control law of Equation 3.19. Since J (�) is constant for a particular u, two new

constants will be de�ned. When u = +1; de�ne

J (�) = Jp , 1 + 2� (3.34)

3-7



and when u = �1, de�ne

J (�) = Jm , 1� 2�. (3.35)

The subscript p corresponds to u = 1 and can be thought of as an abbreviation for "plus."

Similarly, the subscript m corresponds to u = �1 and can be thought of as an abbreviation

for "minus."

Phase Switching Angles. Next, it must be determined when a switching

events occur, in terms of the phase �. The phase � will switch to a di¤erent function

whenever u = 0. Applying Equation 3.19, switching occurs when

tan� =
�1 � �
 

(3.36)

or

tan� =
1� �2�
�2 

. (3.37)

For convenience, the angles

�1 = tan
�1
�
�1 � �
 

�
(3.38)

and

�2 = tan
�1
�
1� �2�
�2 

�
(3.39)

are de�ned where �1 and �2 are the principle values of the tan
�1 function (i.e. ��

2 <

�1; �2 <
�
2 ). Then the behavior of the phase angle � will change when

� = �1; �1 + �; �1 + 2�; ::: (3.40)

or

� = �2; �2 + �; �2 + 2�; ::: (3.41)

The Control Law Parameters �1 and �2. The parameters �1 and �2 can be

physically interpreted using Equation 3.12 in phase space as shown in Figure 3.1. When a

trajectory of the system is in the shaded area, u = 1. Otherwise, u = �1. The settings for

�1 and �2 change where control switching occurs, which changes the system performance
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(as will be shown). The phase angles �1 and �2 can be calculated using Equations 3.28,

3.38, and 3.39.

Figure 3.1 u in Phase Space (Shaded area u = 1, Unshaded area u = �1)

Depending on the values of �1 and �2, and considering Equations 3.38 and 3.39, three

cases arise. Either �1 < �2; �1 = �2, or �1 > �2. The case where �1 = �2 implies

�1�2 = 1; (3.42)

making the two switching lines of Figure 3.1 collinear. The result is no switching can

occur. This is easily seen by substituting Equation 3.42 into Equation 3.12 resulting in:

u (x; _x) = sgn
h
�2 (�2 _x+ x)

2
i
= sgn (�2) : (3.43)
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This case is not considered further.

The other two cases present possible switching control laws for Equation 3.12. When

�1 < �2 or �1 <
1
�2
, Equations 3.40 and 3.41 can be combined in order of smallest to highest

switching angles as

� = �1; �2; �1 + �; �2 + �; ::: (3.44)

Similarly, when �1 > �2 or �1 >
1
�2
order of switching angles becomes

� = �2; �1; �2 + �; �1 + �; ::: (3.45)

Figure 3.2 shows settings for �1 and �2 where this bifurcation in the solutions occurs.

The unshaded areas represent the regions where Equation 3.44 applies while the shaded

areas represent the regions where Equation 3.45 applies. It is immediately apparent from

Equations 3.44 and 3.45 that � is periodic and has period �.

Continuous Intervals for � and a Bifurcation in �2. Equation 3.44 and

3.45 de�ne phase angles where a switch in u occurs. Between these switching angles are

continuous intervals where no switching occurs and u = �1. In this section, the settings

for �1 and �2 for a particular value of u in a continuous interval are determined. In the

process, a bifurcation due to the parameter �2 is identi�ed.

When �2 6= 0 Equation 3.19 can be rewritten as

u (�) = sgn

�
�1 � �
 

� tan�
�
sgn (�2) sgn

�
1� �2�
�2 

� tan�
�

(3.46)

or recalling Equations 3.38 and 3.39,

u (�) = sgn (�2) sgn (tan�1 � tan�) sgn (tan�2 � tan�) . (3.47)

When �2 = 0;

u (�) = sgn (tan�1 � tan�) : (3.48)
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Figure 3.2 Bifurcation due to Varying �1 (�1) and �2 (�2). (�1 <
1
�2
Unshaded Area,

�1 >
1
�2
Shaded Area)

A bifurcation point exists at �2 = 0 because changing �2 < 0 or �2 > 0 immediately

changes the sign of u (�). Suppose �1 < �2 and � 2 (�1 + n�; �2 + n�) ; where n =

0; 1; 2; :::. When �2 � 0, u = �1. When �2 < 0, u = 1. Now, suppose �1 > �2 and

� 2 (�2 + n�; �1 + n�). When �2 > 0, u = �1. When �2 < 0, u = 1. Notice it is

impossible for �2 = 0 and �1 > �2 since it requires �1 ! 1, which will at best, make

�1 = �2. Besides being unrealistic to implement with real hardware, �1 = �2 implies

�1�2 = 1, which creates a nonswitching variable sti¤ness system. As previously discussed,

the solution to the nonswitching variable sti¤ness system is a simple viscously damped

linear oscillator, which is already well understood.
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Bifurcations due to Damping and Variable Sti¤ness Strength: Underdamped, Criti-

cally Damped, or Overdamped. For ease of analysis, the properties of J2m and J2p are

examined in preparation for solving Equation 3.21. These parameters mathematically

de�ne what the solution form will be for Equation 3.21. By examining the original dif-

ferential equation of the system (Equation 3.9) for a value of u, it is possible to label in

a classical sense whether the system is underdamped, critically damped, or overdamped.

Correlating physical insight with the solution form for Equation 3.21 de�nes what type of

system is being analyzed.

When u = 1, Equation 3.34 is valid and it is clear that Jp > 1 since � > 0. The

characteristic values of Equation 3.9 are s = ��� i
p
1 + "� �2, which are always oscilla-

tory for 0 < " < 1 and 0 � � < 1. Therefore, the system is always underdamped when

u = 1 and no bifurcation exists.

When u = �1, Equation 3.35 is valid and it is possible for J2m < 1; J2m = 1; and

J2m > 1. Depending on the value for Jm, the system will either be underdamped, critically

damped, or overdamped. Table 3.1 summarizes how Jm varies for settings of � and ".

The characteristic value of Equation 3.9 was correlated with the possible values for Jm

to develop physical meaning. Figure 3.3 graphically depicts the three di¤erent regions of

Table 3.1 where

�crit =
p
1� " (3.49)

is de�ned as the transition between regions and de�nes when the system is critically

damped. When " = 0, the system is underdamped for � < 1. This is the behavior

of a simple linear oscillator with viscous damping. When " = 1, the system can never be

underdamped.

Since the system switches between u = �1, it is possible for it to switch between

two underdamped systems, an underdamped and critically damped system, or an under-

damped and an overdamped system. For convenience, a system that switches between

an underdamped and a critically damped system will simply be called a critically damped

system. Similarly, one that switches between underdamped and overdamped will be called

an overdamped system. With these de�nitions, it will be seen later that it is possible to
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Table 3.1 Variable Sti¤ness Constant Damping Problem Conditions for Underdamped,
Critically Damped, or Overdamped System

J2m Value Damping/Sti¤ness
Relation

Eigenvalues System Property

J2m < 1 �crit < � < 1 s = ���
q
�2 � �2crit Overdamped

J2m = 1 � = �crit s = �� Critically Damped

J2m > 1 0 � � < �crit s = ��� i
q
�2crit � �2 Underdamped

have an oscillatory response for underdamped, critically damped, and overdamped systems,

with the proper settings of the control law u.

Solution Forms for Phase and Amplitude. Equations 3.32 and 3.33 are rewritten

as Z tU

tL

d� = tU � tL =
2�

 

�UZ
�L

d�

u (J + cos (2�))
(3.50)

and Z aU

aL

dA

A
= ln (au)� ln (aL) =

�UZ
�L

sin (2�) d�

J + cos (2�)
(3.51)

where the intervals (�U ; �L), (tU ; tL), and (aU ; aL) are continuous intervals. From the pre-

vious discussion on bifurcations, the intervals of integration and the solution to Equations

3.50 and 3.51 varies by changing �1; �2; �; and ". The solution to 3.21 and 3.22 will be a

summation of these continuous intervals identi�ed by the phase switching angles. The so-

lutions to all of the integrals in this section were found using standard integral tables.[145]

To simplify writing the exact solution, the actual bounds of integration will be considered

later. Only the solution form is studied here.

Solution Forms for Phase. The right hand side of Equation 3.50 has four

solutions, depending on whether u = �1 and the settings for � and ". The following

solutions make use of Equations 3.34 and 3.35. Additionally, the constants

�p =

q
 2 + " (3.52)
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Figure 3.3 Overdamped and Underdamped Regions

and

�m =

8>>><>>>:
p
 2 � " if 0 � � < �crit

0 if � = �critp
"�  2 if �crit < � < 1

=
q�� 2 � "�� (3.53)

are de�ned to simplify the solutions. When u = 1, the solution is

��p (�L; �U ) =
2�

 

Z �U

�L

d�

Jp + cos 2�
=
1

�p

�
tan�1

�
 

�p
tan�U

�
� tan�1

�
 

�p
tan�L

��
.

(3.54)
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When u = �1, the solution is

��m (�L; �U ) =
2�

 

Z �U

�L

d�

Jm + cos 2�
(3.55a)

=

8>>>>>>><>>>>>>>:

1
�m

24 tan�1
�
 
�m
tan�U

�
� tan�1

�
 
�m
tan�L

�
35 if 0 � � < �crit

� 1
 [cot�U � cot�L] if � = �crit

� 1
2�m

ln
h�

 tan�U+�m
 tan�U��m

��
 tan�L��m
 tan�L+�m

�i
if �crit < � < 1;

(3.55b)

which accounts for the three possible damping conditions of Table 3.1 when u = �1 . Note

that all forms of Equations 3.54 and 3.55b use the tangent function which has the identity

tan (�) = tan (�+ n�) where n = 0; 1; 2; :::. This result is used later to simplify answers.

Additionally, in using Equations 3.54 and 3.55b, care must be used when calculating the

arctangent function to make sure the value returned is in the correct quadrant. For

Equations 3.54 and 3.55b to evaluate correctly, they must always return a nonnegative

real value, to be physically realistic. One way to force this to happen is to add �
�p
or �

�m

to the results of Equations 3.54 and 3.55b, respectively, whenever the function evaluates

to something less than 0. This is only done for the functions that use the arctangent

function.

Solution Forms for Amplitude. The right hand side of Equation 3.51 has

two solutions, depending only on u = �1. The following solutions again make use of

Equations 3.34 and 3.35. When u = 1; the solution is

�ap (�L; �U ) =

�UZ
�L

sin (2�) d�

Jp + cos (2�)
= ln

s
� + cos2 �L
� + cos2 �U

= ln

s
 2 + " cos2 �L
 2 + " cos2 �U

. (3.56)

When u = �1; the damping conditions of Table 3.1 have no e¤ect on the solution. The

solution is

�am (�L; �U ) =

�UZ
�L

sin (2�) d�

Jm + cos (2�)
= ln

s
� � cos2 �L
� � cos2 �U

= ln

s
 2 � " cos2 �L
 2 � " cos2 �U

. (3.57)
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Considering Equations 3.56 and 3.57, Equation 3.51 can be simpli�ed since it is written in

terms of the natural log function on both sides of the equation. Depending on whether

u = �1, Equations 3.51 , 3.56, and 3.57 can be rewritten as

aU
aL

= ap (�L; �U ) =

s
� + cos2 �L
� + cos2 �U

=

s
 2 + " cos2 �L
 2 + " cos2 �U

(3.58)

or
aU
aL

= am (�L; �U ) =

s
� � cos2 �L
� � cos2 �U

=

s
 2 � " cos2 �L
 2 � " cos2 �U

. (3.59)

Both Equations 3.58 and 3.59 use the square of the cosine function which has the identity

cos2 (�+ n�) = cos2 (�) for n = 0; 1; 2; :::. This result is used later to simplify answers.

3.6 The Range of the Phase Angle

The range of � can be found by studying Equation 3.21. The purpose of understand-

ing the phase is to determine when � increases without bound or when it is bounded by

a constant. This is important to allow better understanding of the solutions of Equation

3.21. When � is bounded, the control law of the system (Equation 3.19) may not switch at

all. Without switching, the system behaves like a simple damped linear oscillator, which

defeats the purpose of using variable sti¤ness. Hence, it is important to understand where

no switching occurs, to properly design a control law.

Critical or Stationary Points. When _� = 0 in Equation 3.21, � becomes constant

and the control law is no longer switching. Hence, �crit will be de�ned such that _� = 0.

From Equation 3.21, �crit exists only when u = �1 and implies

cos2 �crit = � (3.60)

or

tan�crit = �
�m
 
; (3.61)

where only the principle values of the tangent function are used to de�ne �crit. Notice

��
2 < �crit <

�
2 and �crit 6= ��

2 since � > 0. The only time �crit can exist is when
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0 < � � 1. It was previously shown that when 0 < � < 1, the system is overdamped

and when � = 1, the system is critically damped. Since �crit does not exist when � > 1,

settings making the system underdamped implies Equation 3.19 will always switch at

regular intervals.

Critical Points for Phase Angle. Next, it will be proven that when �crit exists,

�0 < �crit. Recall that �0 is the phase of the system at time t = 0 and is de�ned by

Equation 3.25 or 3.26. To prove �0 < �crit, the following Lemma is required.

Lemma 1 When �crit exists, �� �m > 0.

Proof. By de�nition, 0 � " < 1 which implies

1� " > 0: (3.62)

Adding and subtracting �2 on the left side of Equation 3.62 and recalling Equations

3.20 and 3.53 results in

�2 � "+ 1� �2 = �2 �
�
"�  2

�
= �2 � �2m > 0 (3.63)

Note that since �crit exists, then by Equation 3.53, �
2
m = 0 when the system is critically

damped and �2m = "� 2 when the system is overdamped. Factoring Equation 3.63 results

in

(�+ �m) (�� �m) > 0. (3.64)

Since �+ �m > 0; �� �m > 0.

Now it can be proven �0 < �crit. The proof is given for the initial displacement

problem and the initial velocity problem.

Theorem 2 When �crit exists, �0 < �crit.

Proof. Because �� �m > 0 when �crit exists,

� �

 
< ��m

 
(3.65)
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which implies

� �

2
< � tan�1 �

 
< � tan�1 �m

 
= �crit (3.66)

Note that ��
2 < � tan�1 � is true because 0 <  � 1 and � < 1. The two terms on

the left hand side of Equation 3.66 are de�nitions of �0 for the initial velocity and initial

displacement problem (Equations 3.26 and 3.25, respectively). Then �0 < �crit:

E¤ects of Control Law Tuning.

Boundedness and Increasing/Decreasing Criteria for Phase. Substituting

�crit into Equation 3.19 when u = �1 implies

[�1 � (�+  tan�crit)] [1� �2 (�+  tan�crit)] < 0. (3.67)

Substituting Equation 3.61 results in

[�1 � (�� �m)] [1� �2 (�� �m)] < 0. (3.68)

Solving Equation 3.68 results in

�1 > �� �m and �2 >
1

�+ �m
(3.69)

or

�1 < �+ �m and �2 <
1

�� �m
. (3.70)

The shaded areas of Figure 3.4 illustrates the regions where �crit exists in the �1 and

�2 plane. It will be shown that in the regions where �crit exists (shaded regions), � is

bounded and where �crit does not exist (unshaded regions) � is not bounded. The fact

that there are regions where �crit does not exist means it is possible to design a system that

switches between underdamped and overdamped or underdamped and critically damped

states. This result will be examined in more detail, later.

First, the criteria when _� is an increasing function and when it is a decreasing function

will be identi�ed. Understanding the behavior of _� will make it possible to understand
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Figure 3.4 Regions where �crit Exists (Shaded Area)

what � is bounded by. Letting u = 1 in Equation 3.21 results in _� =  
�
1
� cos

2 �+ 1
�
> 0

since both  > 0 and � > 0. Hence, when u = 1, _� > 0.

In the case when u = �1, it is possible for _� > 0 and _� < 0. Substituting u = �1

into Equation 3.21 results in _� =  
�
�1
� cos

2 �+ 1
�
. Then, _� > 0 when

cos2 � < � (3.71)

and _� < 0 when

cos2 � > �. (3.72)
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Regions where Variable Sti¤ness Switching Stops. Regions in Figure 3.4

where � is bounded by �crit will be identi�ed. When � reaches �crit, � no longer changes

since _� = 0. Variable sti¤ness switching stops because � never increases enough to

reach the next switching phase angle. The next theorem identi�es the regions where �

approaches �crit for �1 < �2. Although not shown, when �1 > �2 such that �1 > �� �m

and �2 > 1
���m , then � will also approach �crit. This proof is omitted since it is similar

to the case where �1 < �2.

Theorem 3 The conditions u = �1, �crit exists, and �1 � � < �crit < �2 implies

�1 < �� �m and �2 < 1
���m . Further � is an increasing function.

Proof. Substituting Equations 3.38, 3.39, and 3.61 into the inequality �1 � � <

�crit < �2 results in

tan�1
�
�1 � �
 

�
� � < � tan�1 �m

 
< tan�1

�
1� �2�
�2 

�
. (3.73)

Simplifying results in

�1 �  tan�+ � < �� �m <
1

�2
.

Then

�1 < �� �m (3.74)

and

�2 <
1

�� �m
. (3.75)

Now it is shown that � is an increasing function. It is su¢ cient to show Equation 3.71 is

true when � = �1. Since Equation 3.74 is true,

�1 < �+ �m (3.76)

is also true since �m � 0. Then

(�1 � �+ �m) (�1 � �� �m) > 0 (3.77)
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or

�21 � 2�1�+ �2 � �2m > 0: (3.78)

Recalling Equation 3.53 and because �crit exists implies �crit � � < 1 or �2m = "�  2,

�21 � 2�1�+ 1� " > 0 (3.79)

since �2 +  2 = 1 by Equation 3.20. Rearranging and multiplying through by  2,

 2

"
>

 2

�21 � 2�1�+ 1
: (3.80)

Recalling Equations 3.24 and 3.38 results in

� > cos2 �1. (3.81)

Figure 3.5 summarizes the regions where �! �crit, when �crit exists.

Corridors of Rapid Variable Sti¤ness Switching or Chattering. Next when

u = �1, values of �1 and �2 where _� can be negative are determined. Rewriting the de�n-

itions of �1 and �2 (Equations 3.38 and 3.39) in terms of cosine functions and substituting

into Equation 3.72 results in

cos2 �1 =
 2

�21 � 2�1�+ 1
>
 2

"
(3.82)

and

cos2 �2 =
 2�22

�22 � 2�2�+ 1
>
 2

"
. (3.83)

Solving for �1 and �2 results in

�� �m < �1 < �+ �m (3.84)
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Figure 3.5 Regions (shaded) where �! �crit when �crit exists

and
�� �m
1� " < �2 <

�+ �m
1� " . (3.85)

The fractions in Equation 3.85 can be reduced to a more recognizable form by multiplying

the left fraction by �+�m
�+�m

and the right fraction by ���m
���m . Then, by recognizing �

2��2m =

�2 � "+  2 = 1� ", (which is true only when �crit exits), Equation 3.85 can be rewritten

as
1

�+ �m
< �2 <

1

�� �m
. (3.86)

Equations 3.84 and 3.86 de�ne the two "corridors" seen in Figure 3.4. When �1 < �2 and

Equation 3.84 holds, letting � = �1 in Equation 3.21 makes _� negative. The same result

applies for Equation 3.86 when �1 > �2 and � = �2. In the previous section, regions
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were de�ned where � ! �crit. Some of these regions overlap the "corridors" de�ned by

Equations 3.84 and 3.86. In these overlapping regions, � cannot reach �1 when �1 < �2

or reach �2 when �1 > �2 since � must cross through � = �crit to do so. At this point,

_� = 0 and � becomes constant. Hence, _� < 0 for Equation 3.84 only when �1�2 < 1.

Similarly, _� < 0 for Equation 3.86 only when �1�2 > 1. The shaded areas of Figure 3.6

show the regions where _� < 0 occurs.

Figure 3.6 Rapid Switching or Chattering Corridors

The result of being in one of the regions is � increases until it reaches either �1 or �2,

depending on which region. When � = �1 or � = �2, _� becomes negative, causing � to

decrease. Since �1 and �2 are switching angles, the control law switches when � decreases

until it is less than �1 or �2. At this point, _� > 0 and � increases again. This switching

cycle repeats endlessly, resulting in rapid switching or chattering of the variable switching
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device. In running simulations, the switching time is extremely rapid, but the number of

switches is �nite. For example, there can be as many as 5 switches in 0.1 nondimensional

time units. From a practical standpoint, real hardware can only switch at a �nite rate and

a �nite number of times before the hardware fails. Further, examples of slightly better

performance was found by moving away from this region. Hence, it would seem desirable

to select �1 and �2 to prevent _� < 0 and risk possible premature hardware failure.

3.7 Solution to Initial Displacement Problem

The previous two sections discussing bifurcations due to the parameters �1; �2; �;

and " and identifying the range of � were critical to understanding how to write the solution

to Equations 3.32 and 3.33. Understanding the bifurcations not only provides physical

insight into di¤erent system behaviors, but mathematically determines how to break up

the integrals of Equations 3.32 and 3.33. Understanding the range of � for any particular

parameter setting identi�es where the solutions to Equations 3.32 and 3.33 are valid.

It is now possible to write the solution to Equations 3.21 and 3.22. The solution to

Equation 3.21 is in the form

t (�) = tb (�) + tmi (�) + te (�) (3.87)

and the solution to Equation 3.22 is in the form

a (�) = a0ab (�) ami (�) ae (�) (3.88)

where the subscripts b; mi; and e are abbreviations for beginning, middle, and ending in-

tervals, respectively. The beginning interval provides a solution from the initial condition

to the �rst switching time. The middle interval provides a solution for any number of

complete switching phase angle periods which occurs in � intervals. Finally, the end-

ing interval provides a solution when between switching events, but not in the beginning

interval. The following sections de�ne the terms in Equations 3.87 and 3.88.

Implicit Solution for Phase in terms of time.
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Solution for Phase from Initial Condition to First Switching Angle. Recalling

Equation 3.30, the goal is to de�ne t (�) with initial condition �0 de�ned by Equation 3.25.

Depending on settings for �1 and �2, six possible solution regions exist when integrating

Equation 3.30 from �0 to the �rst switching angle. Table 3.2 details the six initial starting

conditions and identi�es the six di¤erent possible regions. For convenience, a new variable

Regr is de�ned where the subscript r = 1; 2; ::6 identi�es the region of interest. Figure

3.7 depicts the regions where each condition occurs.

Table 3.2 Variable Sti¤ness Controller Solution Regions
Region Condition �1, �2 Settings Interval u

1 �0 � �1 < �2 0 � �1 <
1
�2

Reg1 +1

2 �1 � �0 < �2 �1 < 0 <
1
�2

Reg2 �1
3 �1 < �2 < �0 �1 <

1
�2
< 0 Reg3 �1

4 �0 < �2 < �1 0 < 1
�2
< �1 Reg4 +1

5 �2 < �0 � �1
1
�2
< 0 � �1 Reg5 +1

6 �2 < �1 < �0
1
�2
< �1 < 0 Reg6 �1

Then

tb (�) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

��p (�0; �) if Reg1 ^ � < �1

��m (�0; �) if Reg2 ^ � < �2

��m (�0; �) if Reg3 ^ � < �1 + �

��p (�0; �) if Reg4 ^ � < �2

��p (�0; �) if Reg5 ^ � < �1

��m (�0; �) if Reg6 ^ � < �2 + �

tsw0 otherwise

(3.89)

is the solution to Equation 3.30 until the �rst switching angle is reached. The �rst six

entries represent time as � increases, until reaching the �rst switching angle. After the

�rst switching angle is reached, tb = tsw0 where tsw0 is the �rst time the variable sti¤ness

device switches. It is possible that the �rst switching angle is never reached as � may be
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Figure 3.7 Solution Regions for Variable Sti¤ness Constant Damping Initial Displace-
ment Problem

bounded as was discussed previously. Equation 3.89 can be simpli�ed somewhat as

tb (�) =

8>>><>>>:
��p (�0; �) if [� < �1 ^ (Reg1 _Reg5)] _ [� < �2 ^Reg4]

��m (�0; �) if [� < �2 ^Reg2] _ [� < �1 + � ^Reg3] _ [� < �2 + � ^Reg6]

tsw0 otherwise

.

(3.90)

where "_" is the boolean symbol for "or" and "^" is the boolean symbol for "and." Because

the form of solutions for ��p and ��m have a period of �, Cases 1 and 5 and Cases 2 and
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6 of Table 3.2 are the same upon passing the �rst switching angle. That is

tsw0 =

8>>>>>><>>>>>>:

��p (�0; �1) if Reg1 _Reg5
��m (�0; �2) if Reg2 _Reg6
��p (�0; �1) if Reg3

��m (�0; �2) if Reg4

. (3.91)

where tsw0 is the �rst switching time for the variable sti¤ness device.

Implicit Solution for Full Period Switching. Since � is periodic, it is possible

to �nd t (�) for � having passed through an entire period. Recalling Equation 3.91,

a period begins at tsw0 and u switches from either negative to positive or positive to

negative, depending on what it was initially as de�ned in Table 3.2. An entire period is

completed when u has switched twice. Then,

tmi (�) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

Pn�1
k=0

h
��m (�1 + k�; �2 + k�) + ��p (�1 + k�; �2 + k�)

i
if Reg1Pn�1

k=0

h
��p (�2 + k�; �1 + k1�) + ��m (�1 + k1�; �2 + k1�)

i
if Reg2Pn�1

k=0

h
��p (�1 + k1�; �2 + k1�) + ��m (�2 + k1�; �1 + k2�)

i
if Reg3Pn�1

k=0

h
��m (�2 + k�; �1 + k�) + ��p (�1 + k�; �2 + k1�)

i
if Reg4Pn�1

k=0

h
��m (�1 + k�; �2 + k1�) + ��p (�2 + k1�; �2 + k1�)

i
if Reg5Pn�1

k=0

h
��p (�2 + k1�; �1 + k1�) + ��m (�1 + k1�; �2 + k2�)

i
if Reg6

(3.92)

is the time for an entire period of �, where n (�) is the number of complete periods � has

passed through, k1 = k+1; and k2 = k+2. Since ��m and ��p are � periodic, the periodic

constants added to �1 and �2 can be dropped. This allows considerable simpli�cation of

Equation 3.92 to

tmi (�) = n (�)D� (3.93)

where

D� =

8<: ��m (�1; �2) + ��p (�2; �1) if Reg1 _Reg2 _Reg5 _Reg6
��p (�1; �2) + ��m (�2; �1) if Reg3 _Reg4

(3.94)
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and

n (�) =

8>>>>>>><>>>>>>>:

floor
�
���1
�

�
if Reg1 _Reg5

floor
�
���2
�

�
if Reg2 _Reg4

floor
�
���1��

�

�
if Reg3

floor
�
���2��

�

�
if Reg6

; n � 0. (3.95)

Alternatively,

n (�) = floor

�
�

�
� �e

�
; n � 0 (3.96)

where

�e =
1

�

8>>>>>><>>>>>>:

�1 if Reg1 _Reg5
�2 if Reg2 _Reg4
�1 + � if Reg3

�2 + � if Reg6

(3.97)

Solution for Partial Periods. Finally, the solution when � falls between

periods is found that occurs after the �rst switching angle. A partial period could begin

at the �rst switching angle or some multiple of � of the �rst switching angle. Again Table

3.2 can be used and once again, u switches from either negative to positive or positive to

negative at the �rst switching angle or at multiples of � of the �rst switching angle. The

3-28



solution looks like

te (�; k) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

��m (�1; �) if Reg1 ^ �1 + k� < � < �2 + k�

��m (�1; �2) + ��p (�2; �) if Reg1 ^ �2 + k� < � < �1 + k1�

��p (�2; �) if Reg2 ^ �2 + k� < � < �1 + k1�

��p (�2; �1) + ��m (�1; �) if Reg2 ^ �1 + k1� < � < �2 + k1�

��p (�1; �) if Reg3 ^ �1 + k1� < � < �2 + k1�

��p (�1; �2) + ��m (�2; �) if Reg3 ^ �2 + k1� < � < �1 + k2�

��m (�2; �) if Reg4 ^ �2 + k� < � < �1 + k�

��m (�2; �1) + ��p (�1; �) if Reg4 ^ �1 + k� < � < �2 + k1�

��m (�1; �) if Reg5 ^ �1 + k� < � < �2 + k1�

��m (�1; �2) + ��p (�2; �) if Reg5 ^ �2 + k1� < � < �1 + k1�

��p (�2; �) if Reg6 ^ �2 + k1� < � < �1 + k1�

��p (�2; �1) + ��m (�1; �) if Reg6 ^ �1 + k1� < � < �2 + k2�;

(3.98)

where the periodic constant has been omitted from ��m and ��p . Although not shown,

Equation 3.98 can be simpli�ed slightly since Regions 1 and 5 and Regions 2 and 6 are

similar, except for the conditions of when they apply.

Switching Times. When switching occurs, the exact switching times can be iden-

ti�ed, using Equation 3.87. As was discussed previously, switching occurs at � multiples

of �1 and �2. The �rst switching time is de�ned by Equation 3.91. Switching occurs

when

tswe (n) = tsw0 + nD� (3.99)

or

tswo (n) = tsw0 + nD� +

8>>>>>><>>>>>>:

��m (�1; �2) if Reg1 _Reg5
��p (�2; �1) if Reg2 _Reg6
��p (�1; �2) if Reg3

��m (�2; �1) if Reg4

(3.100)

where tswe is de�ned as an even number switching time, tswo is de�ned as an odd number

switching time, and n = 0; 1; 2; :::. Using Equations 3.99 and 3.100, the switching time for
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even and odd times can be combined to create one equation de�ning all switching times

in the order they occur as

tswk =
1

2

�h
1 + (�1)k

i
tswe

�
k

2

�
+
h
1� (�1)k

i
tswo

�
k � 1
2

��
(3.101)

where k = 0; 1; 2; ::: is the kth time the sti¤ness device has switched since time 0.

Solution for Amplitude. Development of the solution for the amplitude of the

system is simpler than the development of the solution for phase �. The solution uses the

same boundaries of integration as the solution for �, but amplitude is only a¤ected by the

change in variable sti¤ness (Equations 3.58 and 3.59). Since development of the solution

for amplitude follows the same logic as the solution for �, the solution is stated without

discussion.

ab (�) = a0

8>>><>>>:
ap (�0; �) if [� < �1 ^ (Reg1 _Reg5)] _ [� < �2 ^Reg4]

am (�0; �) if [� < �2 ^Reg2] _ [� < �1 + � ^Reg3] _ [� < �2 + � ^Reg6]

asw0 otherwise

:

(3.102)

asw0 = a0

8>>>>>><>>>>>>:

ap (�0; �1) if Reg1 _Reg5
am (�0; �2) if Reg2 _Reg6
ap (�0; �1) if Reg3

am (�0; �2) if Reg4

. (3.103)

ami (�) = Dn(�)
a (3.104)

Da =

8<: am (�1; �2) ap (�2; �1) if Reg1 _Reg2 _Reg5 _Reg6
ap (�1; �2) am (�2; �1) if Reg3 _Reg4

: (3.105a)

=

8>><>>:
r
( 2�" cos2 �1)( 2+" cos2 �2)
( 2�" cos2 �2)( 2+" cos2 �1)

if Reg1 _Reg2 _Reg5 _Reg6r
( 2+" cos2 �1)( 2�" cos2 �2)
( 2+" cos2 �2)( 2�" cos2 �1)

if Reg3 _Reg4
:(3.105b)
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ae (�; k) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

am (�1; �) if Reg1 ^ �1 + k� < � < �2 + k�

am (�1; �2) ap (�2; �) if Reg1 ^ �2 + k� < � < �1 + k1�

ap (�2; �) if Reg2 ^ �2 + k� < � < �1 + k1�

ap (�2; �1) am (�1; �) if Reg2 ^ �1 + k1� < � < �2 + k1�

am (�1; �) if Reg3 ^ �1 + k1� < � < �2 + k1�

am (�1; �2) ap (�2; �) if Reg3 ^ �2 + k1� < � < �1 + k2�

am (�2; �) if Reg4 ^ �2 + k� < � < �1 + k�

am (�2; �1) ap (�1; �) if Reg4 ^ �1 + k� < � < �2 + k1�

am (�1; �) if Reg5 ^ �1 + k� < � < �2 + k1�

am (�1; �2) ap (�2; �) if Reg5 ^ �2 + k1� < � < �1 + k1�

am (�2; �) if Reg6 ^ �2 + k1� < � < �1 + k1�

am (�2; �1) ap (�1; �) if Reg6 ^ �1 + k1� < � < �2 + k2�

. (3.106)

3.8 Solution for Initial Velocity Problem

Implicit Solution for Phase in Terms of Time. The solution form for the initial

velocity problem is the same as the initial displacement problem (Equations 3.87 and

3.88). Recalling Equation 3.30, the goal is to de�ne t (�) with initial condition �0 de�ned

by Equation 3.26. Depending on settings for �1 and �2, four possible solution regions

exist when integrating Equation 3.30 from �0 to the �rst switching angle. Table 3.3 details

the six initial starting conditions and identi�es the six di¤erent possible regions. Again

for convenience, the variable Regr is de�ned where the subscript r = 1; 2; ::4 identi�es the

region of interest. Figure 3.8 depicts the regions where each condition occurs.

Table 3.3 Variable Sti¤ness Controller Solution Regions (Initial Velocity Problem)
Region Condition �1, �2 Settings Interval u

1 �1 < �2 �1 <
1
�2
^ �2 � 0 Reg1 +1

2 �2 < �1
1
�2
< �1 ^ �2 � 0 Reg2 +1

3 �1 < �2 �1 <
1
�2
^ �2 < 0 Reg3 �1

4 �2 < �1
1
�2
< �1 ^ �2 < 0 Reg4 �1

Development of the solution is the same as for the initial displacement problem, the

solution is presented with little discussion. The solution form is simpler than for the
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Figure 3.8 Solution Regions for Variable Sti¤ness Constant Damping Initial Velocity
Problem

initial displacement problem since �0 = ��
2 and does not change as a function of � as in

the initial displacement problem. The solution for the beginning portion of the solution

is

tb (�) =

8>>><>>>:
��p

�
��
2 ; �
�

if Reg1 ^ � < �1 _Reg2 ^ � < �2

��m
�
��
2 ; �
�

if Reg3 ^ � < �1 _Reg4 ^ � < �2

tsw0 otherwise

(3.107)

where

tsw0 =

8>>>>>><>>>>>>:

��p
�
��
2 ; �1

�
if Reg1

��p
�
��
2 ; �2

�
if Reg2

��m
�
��
2 ; �1

�
if Reg3

��m
�
��
2 ; �2

�
if Reg4

. (3.108)
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is the �rst switching time for the variable sti¤ness device.

Similar to the initial displacement problem,

D� =

8<: ��m (�1; �2) + ��p (�2; �1) if Reg1 _Reg4
��p (�1; �2) + ��m (�2; �1) if Reg2 _Reg3

(3.109)

and

n (�) =

8<: floor
�
���1
�

�
if Reg1 _Reg3

floor
�
���2
�

�
if Reg2 _Reg4

; n � 0. (3.110)

Alternatively,

n (�) = floor

�
�

�
� �e

�
; n � 0 (3.111)

where

�e =
1

�

8<: �1 if Reg1 _Reg3
�2 if Reg2 _Reg4

. (3.112)

Equation 3.111 is the same as Equation 3.96, but �e is de�ned di¤erently.

The solution for a partial period is

te (�; k) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

��m (�1; �) if Reg1 ^ �1 + k� < � < �2 + k�

��m (�1; �2) + ��p (�2; �) if Reg1 ^ �2 + k� < � < �1 + k1�

��m (�2; �) if Reg2 ^ �2 + k� < � < �1 + k�

��m (�2; �1) + ��p (�1; �) if Reg2 ^ �1 + k� < � < �2 + k1�

��p (�1; �) if Reg3 ^ �1 + k� < � < �2 + k�

��p (�1; �2) + ��m (�2; �) if Reg3 ^ �2 + k� < � < �1 + k1�

��p (�2; �) if Reg4 ^ �2 + k� < � < �1 + k�

��p (�2; �1) + ��m (�1; �) if Reg4 ^ �1 + k� < � < �2 + k1�;

(3.113)

where k1 = k + 1.
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Switching Times. Switching times are de�ned the same as for the initial displace-

ment problem except

tswo (n) = tsw0 + nD� +

8>>>>>><>>>>>>:

��m (�1; �2) if Reg1

��m (�2; �1) if Reg2

��p (�1; �2) if Reg3

��p (�2; �1) if Reg4

(3.114)

where tswe is de�ned as an even number switching time, tswo is de�ned as an odd number

switching time, D� is de�ned using Equation 3.109, and n = 0; 1; 2; :::. Switching times

in the order they occur are de�ned using Equation 3.101.

Solution for Amplitude. The solution for the amplitude is similar to the initial

displacement problem and is given without discussion.

ab (�) =

8>>><>>>:
ap
�
��
2 ; �
�

if Reg1 ^ � < �1 _Reg2 ^ � < �2

am
�
��
2 ; �
�

if Reg3 ^ � < �1 _Reg4 ^ � < �2

tsw0 otherwise

(3.115)

where

asw0 =

8>>>>>><>>>>>>:

ap
�
��
2 ; �1

�
if Reg1

ap
�
��
2 ; �2

�
if Reg2

am
�
��
2 ; �1

�
if Reg3

am
�
��
2 ; �2

�
if Reg4

. (3.116)

ami (�) = Dn(�)
a (3.117)

Da =

8<: am (�1; �2) ap (�2; �1) if Reg1 _Reg4
ap (�1; �2) am (�2; �1) if Reg2 _Reg3

(3.118a)

=

8>><>>:
r
( 2�" cos2 �1)( 2+" cos2 �2)
( 2�" cos2 �2)( 2+" cos2 �1)

if Reg1 _Reg4r
( 2+" cos2 �1)( 2�" cos2 �2)
( 2+" cos2 �2)( 2�" cos2 �1)

if Reg2 _Reg3
(3.118b)
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ae (�; k) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

am (�1; �) if Reg1 ^ �1 + k� < � < �2 + k�

am (�1; �2) ap (�2; �) if Reg1 ^ �2 + k� < � < �1 + k1�

am (�2; �) if Reg2 ^ �2 + k� < � < �1 + k�

am (�2; �1) ap (�1; �) if Reg2 ^ �1 + k� < � < �2 + k1�

ap (�1; �) if Reg3 ^ �1 + k� < � < �2 + k�

ap (�1; �2) am (�2; �) if Reg3 ^ �2 + k� < � < �1 + k1�

ap (�2; �) if Reg4 ^ �2 + k� < � < �1 + k�

ap (�2; �1) am (�1; �) if Reg4 ^ �1 + k� < � < �2 + k1�

. (3.119)

3.9 Approximate Explicit Solution

Unfortunately Equation 3.87 is a transcendental equation which cannot be solved

explicitly for �. The system can be solved exactly between switching events explicitly, but

this type of solution is both tedious to develop and not useful since it is too complicated

to allow adequate understanding of the behavior of the system. However, an approximate

solution can be written by considering the long time behavior of the system. The long term

approximate behavior of the system will then be used to gain insight into the performance

of the system for use in engineering design. The approximate solution can always be

checked against the exact solution, if desired.

The long term behavior for the system can be approximated for both � and amplitude

of the system. First, an approximate solution for � is found using Equations 3.87 and 3.96

or 3.111. When u is switching, � will increase without bound. One way to approximate

� (t) is as a straight line. This can be done by neglecting te by assuming tmi dominates

the solution in the long term in Equation 3.87 and approximating n as

n (�) = floor

�
�

�
� �e

�
� �

�
� �e. (3.120)

Equation 3.120 is exact at even switching times. Combining Equations 3.87 and 3.120

results in

t � tb + tmi = tb + nD� � tb +

�
�

�
� �e

�
D� (3.121)
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where tb is constant since the long term behavior of the system is being considered. Equa-

tion 3.121 can be solved for � resulting in

� � �

D�
t+ C (3.122)

where C absorbs all of the constants of Equation 3.121. Selecting C = �0 is convenient

in Equation 3.122 since it forces the approximate solution to pass through �0 when t = 0.

Hence, an approximation for � is

� � �

D�
t+ �0 (3.123)

where D� is de�ned by either Equations 3.94 or 3.109.

Using the same approach, Equation 3.88 can be approximated. Assuming ae is close

to unity results in

a � a0asw0ami = a0asw0D
n
a � a0asw0D

t
D�

+C

a (3.124)

where various constants are absorbed into C. Selecting C = � ln asw0
lnDa

will cause Equation

3.124 to pass through a0 when t = 0. The approximate solution is

a � a0asw0D
t
D�

� ln asw0
lnDa

a = a0asw0e

�
t
D�

� ln asw0
lnDa

�
lnDa

= a0e
lnDa
D�

t
. (3.125)

where Da is de�ned using either Equations 3.105a or 3.118a and asw0 is de�ned using

Equations 3.103 or 3.116.

Finally, substituting Equations 3.123 and 3.125 into Equations 3.17 and 3.18 results

in an approximate explicit solution for displacement and velocity. The equations are

x = a0e

�
lnDa
D�

��
�
t
cos

�
�

D�
t+ �0

�
(3.126)

and

_x = �a0e

�
lnDa
D�

��
�
t
�
� cos

�
�

D�
t+ �0

�
+  sin

�
�

D�
t+ �0

��
: (3.127)
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3.10 Mapping Phase to Time

With the exact solutions known and an understanding of the range of �, it is now

possible to understand the e¤ects on time t. When �crit does not exist, continuous

switching occurs and � is unbounded. When � ! 1, t ! 1. The reason this is true

can be found in Equation 3.87. When �!1, tb (�) is constant and te (�) does not exist

since no �nite value for � is ever reached. This is another way of stating that tmi (�)

dominates all other terms. Realistically, a stable real system will not switch for all time

since the displacement and velocity of the system will become too small to be sensed by

real hardware. At this point, the displacement and velocity has e¤ectively been damped

out and switching is expected to cease.

Next, consider when � is bounded by �crit. This only occurs in the regions shown in

Figure 3.5 and only applies for the critically damped or overdamped situations. Further,

�crit was found to exist only when u = �1. Since � is bounded by �crit, tmi (�) = 0.

Then all that is left is

t (�) = tb (�) + te (�) . (3.128)

Recalling Equation 3.55b, consider �U ! �crit for the critically damped case. The result

is

lim
�U!�crit

��m (�L; �U ) = �
1

 
[cot�crit � cot�L] = �

1

 

�
�  

�m
� cot�L

�
= �1 (3.129)

since �m = 0 when the system is critically damped. Since time cannot be negative, the

system must reach �crit = � tan�1
�
 
�m

�
and it takes an in�nite amount of time to do so.

Similarly, when the system is overdamped, the result is

lim
�U!�crit

��m (�L; �U ) =
�1
2�m

ln

��
 tan�crit + �m
 tan�crit � �m

��
 tan�L � �m
 tan�L + �m

��
=
�1
2�m

ln

��
��m + �m
��m � �m

��
 tan�L � �m
 tan�L + �m

��
= �1. (3.130)

Again, the conclusion is the system takes an in�nite amount of time to reach �crit =

� tan�1
�
 
�m

�
, since negative time is impossible.
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3.11 System Stability

Corless and Leitmann demonstrated at least one on-o¤ control law exists that can

make a variable sti¤ness system with viscous damping unstable [16]. Kurdila et. al.

proved Equation 3.1 is stable when c� = 0; �1 = 0; and �2 = 0 [123]. With the exact

solution available for a damped variable sti¤ness system, it is now possible to provide more

insight into the stability of a more general type of system than shown in the literature.

The parameters �1 and �2 for particular " and � that make the system stable can be found

by solving

lim
t!1

x (t) = 0 (3.131)

for �1 and �2. Substituting Equation 3.17 into Equation 3.131 results in

lim
t!1

a (� (t)) e��t cos� (t) = 0. (3.132)

Since in general, cos� (t) 6= 0 for all t, only the amplitude functions determine system

stability. Then

lim
t!1

a (� (t)) e��t = 0: (3.133)

Next, consider only the systems with oscillatory response or systems where �crit does not

exist. The systems where the variable sti¤ness device does not switch are simple linear

oscillators with well known stability characteristics. When �crit does not exist, t ! 1

implies �!1. Hence

lim
�!1

a (�) e��t(�) = 0. (3.134)

Substituting Equations 3.87 and 3.88 into Equation 3.134 and realizing that the terms

te (�) and ae (�) do not exist since they can never be reached results in

lim
�!1

ab (�) ami (�) e
��[tb(�)+tmi(�)] = 0 (3.135)
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for stability. Recognizing ab (�) and tb (�) are constant as �!1, Equation 3.135 can be

simpli�ed as

lim
�!1

ami (�) e
��tmi(�) = lim

�!1
Dn(�)
a e��n(�)D� (3.136a)

= lim
�!1

en(�) lnDae��n(�)D� (3.136b)

= lim
�!1

en(�)[lnDa��D�] = 0 (3.136c)

Then the system is stable when

lnDa � �D� < 0. (3.137)

By similar reasoning, the system is marginally stable when

lnDa � �D� = 0 (3.138)

and is unstable when

lnDa � �D� > 0. (3.139)

Incidentally, analysis of stability for the approximate solution (Equation 3.126) has pre-

cisely the same stability behavior as the exact solution. Equation 3.138 is transcendental

in �1 and �2, but can be solved numerically for speci�c settings of � and ". Figure 3.9

shows some marginal stability curves when " = 0:8. When �1 and �2 are tuned to fall

on a marginal stability curve, the variable sti¤ness device is adding the same amount of

energy the viscous damper is dissipating from the system. Depending on the strength of

� and "; it is possible to identify marginally stable and unstable systems even for some

overdamped oscillatory variable sti¤ness system.

Equation 3.137 will always be satis�ed or the system is guaranteed stable when

lnDa < 0, (3.140)
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Figure 3.9 Marginal Stability Control Law Tuning when " = 0:8

since D� � 0. This is because D� < 0 implies negative time in Equation 3.87 which is

impossible. Considering Equation 3.137, the SDOF system can be stable when lnDa > 0;

since the viscous damping is dissipating energy and might dissipate more energy than the

variable sti¤ness device is adding to the system. In e¤ect, the variable sti¤ness device is

�ghting or con�icting with the viscous damper. However, it makes no sense to use the

variable sti¤ness device to add energy to the system when the goal is to dissipate as much

energy as possible. Therefore, in practice, it is preferable to restrict the control law using

Equation 3.140 rather than Equation 3.137.

Equation 3.140 is solved by �rst solving

lnDa = 0, (3.141)

which de�nes when the variable sti¤ness device is neither dissipating nor adding energy

to the system. When � = 0 and " 6= 0, Equation 3.141 also de�nes when the undamped

variable sti¤ness system is marginally stable. Hence, Equation 3.141 will be called the

zero-energy boundary of the variable sti¤ness device. Regardless of initial conditions and

regions (i.e. applying Equation 3.140 or Equation 3.118a) and applying Equations 3.105a,
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3.58, and 3.59 results in

cos2 �1 = cos
2 �2 (3.142)

or
 2

�21 � 2�1�+ 1
=

�22 
2

�22 � 2�2�+ 1
. (3.143)

Solving for �1 results in

�1 =
2��2 � 1

�2
or �1 =

1

�2
. (3.144)

The case �1 = 1
�2
is a nonswitching case and is stable. However, the other case is the

settings for the controller where the variable sti¤ness device does no work on the system.

Equivalently,

�1�2 � 2��2 + 1 = 0. (3.145)

Thus, the system is guaranteed to be stable or the variable sti¤ness device is removing

energy from the system when

�1�2 � 2��2 + 1 > 0 (3.146)

and the variable sti¤ness device is adding energy to the system when

�1�2 � 2��2 + 1 < 0. (3.147)

Figure 3.10 identi�es guaranteed stability regions for the variable sti¤ness system and

identi�es the regions where the system is either con�icted or unstable. A con�icted

variable sti¤ness system will be de�ned as one where the variable sti¤ness device is adding

energy to the system which is still stable due to dissipation from the viscous damper.

Interestingly, the dynamic capability of the variable sti¤ness device (the range of ") has

no e¤ect on the guaranteed stability region.

3-41



Figure 3.10 Regions where the Variable Sti¤ness System is Guarranteed Stable

3.12 Optimal Control Law

To maximize damping of the system, it is desired to select �1 and �2 for any �xed

values of � and " such that Equation 3.137 is as small as possible. This is found by �nding

min
�1;�2

(lnDa � �D�) (3.148)

which can be found by solving

r
�
a (�) e��t

�
= 0 (3.149)

where a (�) is de�ned by Equation 3.88 and r de�nes the gradient operator with respect

to the parameters �1 and �2. Equation 3.150 is transcendental in �1, �2 and � requiring

it be solved numerically. Additionally, in r
�
a (�) e��t

�
the parameters �1 and �2 cannot
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be separated from � making �1 and �2 functions of �. However, the approximate solution

(Equation 3.126) can be used to estimate an optimal control where �1 and �2 are constants.

Considering only the amplitude term of Equation 3.126, the estimated optimal control

should minimize the argument of the exponential function. Since time can be separated

from the rest of the argument, the optimal control law need only satisfy the equation

r
�
lnDa

D�
� �

�
= 0 (3.150)

where r de�nes the gradient operator with respect to �1 and �2. Further, the solution

to Equation 3.150 is constrained to only those choices of �1 and �2 where the system

is stable and where the system produces oscillatory responses (i.e. the variable sti¤ness

device mathematically switches an in�nite number of times as t!1).

Figure 3.11 Variable Sti¤ness Constant Damping Candidate (Unshaded) and Non-
Candidate (Shaded) Optimal Control Regions
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The unstable and con�icted regions of Figure 3.10 are not candidate regions for

optimal control for underdamped, critically damped, or overdamped systems. Further,

in the critically damped and overdamped case, additional regions can be ruled out as

candidate regions. In the "�nite switching" region, the system demonstrates classical

overdamped behavior after switching possibly only one time resulting in slow settling time.

In the "Chattering Corridor" the system switches extremely fast, resulting in possible

premature hardware failure. Figure 3.11 depicts a combination of unstable regions and

overlays Figure 3.4 showing the regions where the number of switching events is �nite or

extremely fast. Hence, only the unshaded areas of Figures 3.10 and 3.11 are considered to

be candidate regions for optimal control in the critically damped or overdamped systems.

Figure 3.12 Variable Sti¤ness Constant Damping Optimal Control Policy (�2 = 0)
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Equation 3.150 was solved numerically and graphed in Figure 3.12. In all cases,

�2 = 0 while �1 varied with respect to � and ". The same result was found by Onoda

et. al. for the case � = 0.[141] Attempts to �nd solutions where �2 6= 0 resulted in a

control law that can be transformed back to the case where �2 = 0 and �1 varies. Hence,

it appears the control law of Equation 3.12 can be simpli�ed. It should be noted that,

because these results were developed using numerical simulation, it can only be strictly

concluded that Figure 3.12 represents a local minima.

The solutions in Figure 3.12 are linear for small values of �. For larger values

of �, the values are linear for small ", but the optimal solution changes form for " near

1, creating curvature. The change occurs because �1 cannot be set any lower without

entering the chattering corridors. Hence, �1 = � + �m in these regions. In practice, to

prevent chattering of the variable sti¤ness controller, set �1 > �+ �m.

The curve found for � = 0 appears to exactly match the optimal control curve found

by Onoda et. al. [141] The point highlighted in Figure 3.12 is the same optimal control

policy used by Douay and Hagood [139], found using optimal control theory. By selecting

�1 = 0:124, " = 0:386, and � = 0, a sample result reported by Douay and Hagood can be

recreated. It has been noted in the literature that past work has considered control laws

that are either "nonintuitive" and optimal such as the one reported by Douay and Hagood

or has considered control laws that are intuitive and di¢ cult to prove to be optimal in a

conventional optimal control formulation.[140] While this di¢ culty still remains, the fact

that Douay and Hagood�s example matches the control law proposed by Onoda, Sano, and

Kamiyama (Equation 3.12) suggests the two methods are equivalent.

Figure 3.13 shows the optimal exponential decay coe¢ cient for the approximate

solution. To maximize system damping, high values of � and " should be selected. Of

particular note is the decay coe¢ cient can be less than �1. In a passive system, setting

the decay coe¢ cient less than �1 results in a classical overdamped response. However, the

bene�t of variable sti¤ness is overdamped behavior is changed and the system no longer

provides the slow settling time behavior of the classical overdamped problem. Now, it

creates an oscillatory response which is much faster than the classical overdamped behavior.
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Figure 3.13 Variable Sti¤ness Constant Damping Optimal Exponential Decay Coe¢ -
cient

3.13 Approximate Equivalent Viscously Damped System

The classical second order viscously damped system

�x+ 2�!n _x+ !
2
nx = 0 (3.151)

where � is the damping ratio, and !n is the natural frequency of the system. With

initial conditions x (0) = d0 and _x (0) = v0; this system has the following solution for the

underdamped case

x (t) = a0e
��!nt cos [!dt+ �0] (3.152)

3-46



where

a0 =

q
d20!

2
d + ( _x0 + �!nx0)

2

!d
; (3.153)

�0 = � tan�1
�
v0 + d0�!n

d0!d

�
; (3.154)

and

!d = !n

q
1� �2; (3.155)

which is called the damped natural frequency. Comparing Equation 3.152 with Equation

3.126 allows the long term behavior or an averaged equivalent natural frequency and equiv-

alent damping ratio of the variable sti¤ness system to be estimated using the equations

� �!n =
�
lnDa

D�
� �

�
(3.156)

and

!d =
�

D�
. (3.157)

Solving the two equations for � and !n results in

� = � (lnDa �D��)q
�2 + (lnDa �D��)

2
. (3.158)

and

!n =

q
�2 + (lnDa �D��)

2

D�
(3.159)

Equation 3.158 matches the theoretical damping ratio found by Douay and Hagood calcu-

lated using an energy method when �1 = �2 = � = 0.

Comparing Equations 3.151 and 3.9 suggests that

1 + "u v !2n (3.160)

and

� v �!n. (3.161)

3-47



The " v " is used to mean the quantity on the left hand side of the relationship is replaced

by the quantity on the right hand side. The quantities of the relationship are not equal.

In fact, since the variable sti¤ness device does work on the system, the quantity on the

right hand side of Equation 3.161 is a combination of the equivalent damping due to this

work and the viscous damping. Solving Equation 3.10 for c� and applying approximate

Equations 3.160 and 3.161 to Equation 3.1 suggests the original dimensional di¤erential

equation can be approximated as

m��x� + c�eq _x
� + k�eqx

� = 0, (3.162)

where

c�eq = 2�!n
p
m�k�; (3.163)

and

k�eq = k�!2n (3.164)

with

k� =
k�1 + k

�
0

2
: (3.165)

Equations 3.163 and 3.164 de�ne an approximate equivalent damping coe¢ cient and sti¤-

ness coe¢ cient, respectively, for the variable sti¤ness constantly damped SDOF problem.

It is only valid for the initial value problem.

The coe¢ cients of Equation 3.162 can be used to de�ne two time constants. One

time constant is based on the natural frequency of the approximate system which is

T �n =

s
m�

k�eq
=

1

!n

r
m�

k�
. (3.166)

The other is based on the damped natural frequency of the approximate system and can

be calculated to be

T �d =
1

!n

r
m�

k�
1p
1� �2

. (3.167)

Equation 3.167 represents the period of the approximate system with viscous damping.

Equation 3.167 can be compared with the time needed to switch between sti¤ness states
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of a variable sti¤ness device. If the time to switch between sti¤ness states is much faster

than T �d ; then the on-o¤ control law assumption made at the beginning of this analysis

should be valid. If the two time constants are close to each other, the assumption of

instantaneous sti¤ness changes will not be valid.

Because of Equation 3.162, it is also possible to �nd an approximate switching control

law. Since u in Equation 3.160 is an exact switching control law and !2n is an approximate

natural frequency, replacing u with ueq allows Equation 3.160 to be solved to determine

an averaged switching law. The solution is

ueq =
!2n � 1
"

. (3.168)

Figure 3.14 Variable Sti¤ness Constant Damping Optimal Equivalent Damping Ratio
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Figure 3.15 Variable Sti¤ness Constant Damping Optimal Equivalent Natural Frequency

Figures 3.14, 3.15, and 3.16 are graphs of Equations 3.158, 3.159 and 3.157, respec-

tively. All graphs were created for optimal settings of �1 and �2. Figure 3.14 shows the

equivalent damping ratio increases with increasing " for low values of �. The damping

ratio seems to nearly match the optimal damping ratio found by Douay and Hagood [139].

For high values of �, the damping ratio reaches a maximum and then slowly decreases.

Because this problem is a nonlinear problem, the natural frequency of the system also

varies as � and " vary.

Figure 3.15 shows the equivalent natural frequency always decreases when � = 0

for increasing ". When � > 0, the natural frequency can increase to a maximum then

decrease, at least for � � 0:4. For high values of �, the natural frequency increases to a

maximum, decreases to a local minimum, and then increases again. Comparing Figures
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Figure 3.16 Variable Sti¤ness Constant Damping Optimal Equivalent Damped Natural
Frequency

3.14 and 3.15 with Figure 3.13 shows a trade-o¤ between equivalent damping ratio and

natural frequency. For low values of �, the variable sti¤ness device behaves more like a

viscous damper, since most damping is due to an increasing damping ratio. However,

for high values of �, both damping ratio and increasing natural frequency are working

synergistically to increase damping of the system. In fact, the damping ratio begins to

change very little as " changes, but the natural frequency increases dramatically. This

e¤ect is perhaps more clearly observed by considering the damped natural frequency of

Figure 3.16. For low values of �, !d decreases as " increases. However, for higher values

of �, !d reaches a minimum and then increases.
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3.14 Control Law E¤ects

The e¤ect of varying �1 on system performance will be considered. Since the optimal

control policy always makes �2 = 0; only varying �1 was considered. Figure 3.17 shows

the e¤ects of varying �1 for equivalent natural frequency, damping ratio, damped natural

frequency, and damping coe¢ cient. For damping ratio and damped natural frequency,

increasing �1 increases the frequency, though the e¤ect is bounded. On the other hand,

the damping ratio is maximum when �1 = 0. Because frequency is shifted by changing

sti¤ness, the optimal damping coe¢ cient occurs when �1 > 0; which con�rms previous

discussion. Although not shown, the same basic trends were found as � was increased.

However, as � is increased, �1 is restricted since setting it too low results in the variable

sti¤ness chattering or non-switching conditions discussed earlier.

3.15 Sample Results and Validation

Sample results (found on pages 3-55 through 3-61) for the variable sti¤ness constant

damping initial velocity problem will be presented to demonstrate the behavior of the

system and to validate the analytical and approximate solutions. Although not shown,

the same types of plots can be made for the initial displacement problem. For each result,

graphic representation of the control law is provided followed by time response plots of

the phase angle �, the amplitude of the system, and the displacement. Simulated, exact,

approximate solutions, and switching times are shown on these plots. The displacement

plots also show a settling time envelope (d = 0:05) to make comparing plots simpler. Some

of the time response plots show the same system with no variable sti¤ness (" = 0 ) showing

the e¤ects of the variable sti¤ness device. Additionally, the system is shown in phase space

along with switching lines calculated using Equations 3.28, 3.38, and 3.39. For some plots,

an additional line is added representing �crit (when it exists) which is calculated using

Equations 3.28 and 3.61. In all cases, the exact and simulated solutions were found to

match. The simulated solution was calculated using the standard adaptive Runge-Kutta

routine in Mathcad version 11. The exact and approximate solutions use the various

equations discussed earlier in this chapter. The approximate solution is only valid when

the system is switching. When the system is not switching it is a simple viscously damped
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Figure 3.17 System E¤ects of Varying �1 for � = 0

system and no approximate solution is needed since it can be found using standard linear

theory.

Figure 3.18 shows several response plots of an optimally controlled underdamped

system with no viscous damping. The plot of the �1 and �2 plane graphically marks the

tuning of the control law on a plot similar to Figure 3.10. As previously demonstrated in

the literature, the variable sti¤ness device is e¤ectively suppressing vibration. Both the

phase � and amplitude of the system have oscillatory behavior. The scale for the phase �

was divided by � making it easy to see the length of a period is �. The approximate solution
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predicts �rst order behavior for phase and amplitude, but is missing the oscillatory behavior

of the true solution. For long time behavior, however, the error between approximate

and exact solutions gets progressively smaller, as demonstrated by the amplitude, time

response, and phase plane plots.

Figure 3.19 shows a sample underdamped system with viscous damping. The same

basic trends can be seen showing the oscillatory behavior in all plots and showing the

approximate solution becoming more accurate for the long time behavior of the system.

Clearly, the variable sti¤ness device has increased the damping of the system, since it

performs much better than the equivalent system with no variable sti¤ness. As expected,

the settling time for Figure 3.19 is lower than the settling time for Figure 3.18.

Figure 3.20 shows the slow behavior of a suboptimal overdamped system. In the �1

and �2 plane plot, boundaries lines that are functions of �m and � are graphed. These

boundaries were also graphed in Figure 3.11 and make it easy to identify which region. The

controller was tuned so that �crit exists and � asymptotically approaches this boundary.

In this case, the controller switched the sti¤ness device one time and then never switched

again. The phase plot shows the trajectory following the line de�ned by the angle �crit.

A viscously damped system has much better behavior than this system does using the

variable sti¤ness device. Designing the system with this type of controller would result in

undesirable response and should be avoided. The exact solution is not completely plotted

as compared to the simulated solution since it requires selecting successive values of � closer

and closer to �crit to solve for larger time values, since � asymptotically approaches �crit.

While this could be done using an appropriate function, it provides no new information

and was not done.

Figure 3.21 shows another suboptimal overdamped system. The variable sti¤ness

controller begins in a stable con�guration and then switches. After that, it switches very

rapidly and never slows down. Despite the controller instability, the system itself is stable.

In this case, � oscillates about �1 at a very rapid rate and the oscillations are very small.

The switching was omitted from the displacement plot because it would have blotted out

the other plots. The behavior of the system is much better than in Figure 3.20, but the
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Figure 3.18 Sample Optimal Underdamped System with no Viscous Damping (�1 =
:266, �2 = 0, � = 0, " = 0:8)
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Figure 3.19 Sample Optimal Underdamped System with Viscous Damping (�1 = :473,
�2 = 0, � = 0:2, " = 0:8)
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Figure 3.20 Sample SubOptimal Overdamped System (�1 = 0, �2 = 0, � = 0:6, " = 0:8)
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controller chattering has the potential of damaging hardware. Therefore, this tuning of

the controller should be avoided.

Figure 3.22 shows an optimal overdamped system. The setting for �1 is only slightly

beyond the region where the controller becomes unstable, resulting in a response like Figure

3.21. To be safe, �1 may need to be increased more to account for modelling uncertainty.

The response of this optimal system shows good settling time and has avoided the controller

instability. The phase plot of this system is very similar to Figure 3.21, but it does not

have the oscillatory switching behavior.

Figure 3.23 shows the results of selecting the controller to make the system marginally

stable in a classical sense. For a system with no damping, the settings for �1 and �2 that

create a marginally stable system can be found exactly using Equation 3.145. With

damping added, �nding the point of marginal stability requires solving Equation 3.138

using numerical methods. Essentially, this is one point on the curve � = 0:2 of Figure

3.9 where the energy the variable sti¤ness device is adding to the system is equal to the

amount of energy the viscous damper is dissipating. As expected, a viscously damped

system with no variable sti¤ness will behave much better than a marginally stable system

since the variable sti¤ness device is cancelling out the viscous damper. Finally, the phase

plane shows the orbit trajectory the system follows. The approximate solution provides

an excellent �rst order approximation of the orbit by creating an ellipse.

3.16 Energy Usage

From the literature, changing the sti¤ness of the system does work on the system [4].

Switching the variable sti¤ness device requires energy and is the system input that can

cause marginal stability or instability. Because the exact switching times for the variable

sti¤ness device are known, it is possible to calculate the exact work going into the variable

sti¤ness device used to suppress vibration. Theoretically, it is also possible to calculate the

work the variable sti¤ness device is applying to the system. Finally, with expressions for

work out and work in, one could be divided by the other to create an e¢ ciency factor. In

practice the actual analytic calculations are too complex to provide much insight. Hence,
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Figure 3.21 Sample SubOptimal Overdamped System Controller Instability (�1 = 0:75,
�2 = 0, � = 0:6, " = 0:8)
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Figure 3.22 Sample Optimal Overdamped System (�1 = 1:01, �2 = 0, � = 0:6, " = 0:8)
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Figure 3.23 Sample Orbit in an Underdamped System (�1 = �3, �2 = 3:566, � = 0:2,
"k = 0:8)
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this e¢ ciency factor is probably best calculated numerically for speci�c systems. The

following discussion provides detail of how to calculate both types of work.

Work In. Work is de�ned as

Win = Pt (3.169)

whereW is the work done by the variable sti¤ness device, P is the average power expended

by the variable sti¤ness device during time t, and t is the time the device uses power. Since

the variable sti¤ness device switches between two states, the power needed for each state

must be known and the time spent in each state must be calculated. The power to switch

the variable sti¤ness device can be found by measuring the energy input to the variable

sti¤ness device and has been done on various devices in the literature. Determining

the time spent in each sti¤ness setting requires making use of the exact switching times

(Equations 3.99, 3.91, 3.100, 3.108 and 3.114 depending on initial conditions). Only the

energy used for the initial velocity problem will be discussed, since the initial displacement

problem is similar. Further, only the long term behavior will be considered. That is, the

work for a partial period of � will be ignored.

To begin, de�ne Pp as the power used by the variable sti¤ness device when u = 1

and Pm as the power used when u = �1. It is likely that Pm = 0, but this is not required.

Next, the interval of time where u = 1 is de�ned as

tp =

8>>>>>><>>>>>>:

D� � ��m (�1; �2) if Reg1

D� � ��m (�2; �1) if Reg2

��p (�1; �2) if Reg3

��p (�2; �1) if Reg4

(3.170)
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and the interval of time where u = �1 is de�ned as

tm =

8>>>>>><>>>>>>:

��m (�1; �2) if Reg1

��m (�2; �1) if Reg2

D� � ��p (�1; �2) if Reg3

D� � ��p (�2; �1) if Reg4

: (3.171)

Because initial conditions make it possible to start in the middle of a switching cycle, the

initial time is

tp0 =

8>>><>>>:
��p (�0; �1) if Reg1

��p (�0; �2) if Reg2

0 otherwise

(3.172)

when u = 1 and

tp0 =

8>>><>>>:
��m (�0; �1) if Reg3

��m (�0; �2) if Reg4

0 otherwise

(3.173)

where u = �1. The total work done on the system due to the variable sti¤ness device is

Win = (Wp +Wm)n+Wp0 +Wm0 (3.174)

where Wp = Pptp, Wm = Pmtm, Wp0 = Pp0tp0, Wm0 = Pm0tm0 and n is de�ned by

Equation 3.110. The normalized energy used by the system is

E =
W �Wp0 �Wm0

Wp +Wm
= n. (3.175)

Using Equations 3.123 and 3.120, the work and normalized energy needed to achieve a

desired settling time can be estimated as

W � (Wp +Wm)

�
ts
D�

+
�0
�
� �e

�
+Wp0 +Wm0 (3.176)

and

E � ts
D�

+
�0
�
� �e (3.177)
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where ts is the desired settling time.

Work Out. The exact work the variable sti¤ness device performs on the system

can be found by solving Equation 3.9 for �x, multiplying through by _x; and then integrating

from time 0 to a desired settling time. The work is

Wout =

Z ts

0
�x _xdt = �2�

Z ts

0
_x2dt�

Z ts

0
(1 + "u)x _xdt. (3.178)

In theory, substituting Equations 3.17, 3.18, 3.30, and 3.87 into Equation 3.178 and then

integrating determines the work the variable sti¤ness device performs on the system. Un-

fortunately, performing the integrations is very di¢ cult and probably should only be per-

formed numerically for a speci�c system. Alternatively, the approximate work done by

the variable sti¤ness device can be computed as

Wout =

Z ts

0
�x _xdt = �2�!n

Z ts

0
_x2dt� !2n

Z ts

0
x _xdt. (3.179)

Substituting Equations 3.126 and 3.127 into 3.179 and performing the integration provides

the approximate work the variable sti¤ness device performs. This is much easier to do,

but tedious and creates a complicated analytic expression. Once again, it is probably

easier to complete the integrations numerically for a speci�c system.

3.17 Variable Sti¤ness Design Metrics

As a result of this analysis, design metrics will now be identi�ed and summarized.

Theoretically, using the previous section, Wout
Win

can be de�ned, which is an e¢ ciency factor

that could be used to compare variable sti¤ness devices with each other. Clearly, it is

preferable to make Wout
Win

as close as possible to unity, making the variable sti¤ness device

as e¢ cient as possible. Another important metric is the decay factor shown graphically in

Figure 3.13, which identi�es performance of a variable sti¤ness device in this system. Here,

it is preferable to make the decay coe¢ cient as large as possible. This is accomplished by

maximizing " and �. The parameter ", identi�ed in Table 2.2, roughly links real variable
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sti¤ness devices to system performance. Since " should be made as large as possible,

Table 2.2 can be used to select an appropriate variable sti¤ness device. Finally, Equation

3.167 de�nes the period of the system, which can be used to validate the instantaneous

on-o¤ control law assumption in any particular real system. This may limit which variable

sti¤ness device can be chosen using Table 2.2 since this analysis is only valid when the

system time constant is much larger than the time required to switch the variable sti¤ness

device from one sti¤ness level to another. These metrics with supporting analysis represent

a set of tools for selecting and using a variable sti¤ness device in a real structure.

3.18 Conclusion

A SDOF variable sti¤ness constantly damped system using a general on-o¤ control

law has been studied. For the initial value problem, both an exact and an approximate

solution were developed. The approximate solution was found to provide a good estimate

for the long term behavior of the system. In the process, insight was found about how

tuning the system changes the behavior of the system. It was found that the control

law could be tuned to create conditions ranging from no switching to extremely rapid

switching. It was also possible to make the controlled system stable, marginally stable,

or unstable. The control law was optimized creating the most damping possible for

any possible variable sti¤ness strength and for a given viscous damper. The energy use

of the variable sti¤ness device was analytically estimated. Finally, four metrics for

understanding variable sti¤ness systems were identi�ed. The results provide a new set of

engineering tools for selecting and designing variable sti¤ness compensators.

In the next Chapter, the same SDOF variable sti¤ness problem with the same two

parameter control law will be analyzed, except a sinusoidally forced version of the problem

will be considered. Because of the nonlinear nature of variable sti¤ness, the results found

in this Chapter for the unforced problem do not apply when other forcing functions are

used. It will be seen that the optimal control policy for the forced problem is quite di¤erent

from that of the unforced problem.
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4. Variable Sti¤ness SDOF Sinusoidally Forced Problem

4.1 Introduction and Problem Statement

The forced problem is signi�cantly di¤erent from the unforced problem because the

forcing function adds new complexity to the control law. The unforced problem could be

solved exactly because an exact expression for the switching could be developed. Finding

the switching times analytically for the forced problem proved to be very di¢ cult. Hence,

approximation approaches were used instead.

Three di¤erent approaches were tried to gain insight into the forced problem and

compared to the simulated system. The �rst method is a direct approximation approach

which compares the exact equations of motion with a viscously damped system. An

equivalent sti¤ness and damping coe¢ cient are calculated for the viscously damped sys-

tem. The resulting linear equation is easily solved and allows generation of frequency

response plots as well as phase for the system. In a second method, both the solution

and switching control law were expanded in a Fourier series. The switching control law

used only the �rst oscillatory term in the solution. The control law Fourier series coef-

�cients were written in terms of the solution Fourier series coe¢ cients which generated

nonlinear algebraic equations. Unfortunately, these equations were so nonlinear the co-

e¢ cients could not be solved for in analytic form. This method will not be presented

since it became intractable. The third method tried which will be presented is to use

a perturbation method. The results of the perturbation method and the direct method

were very similar. Hence, the perturbation method provides insight into the region of

validity for the solution and represents a systematic approach for improving the accuracy

of the resulting approximate solution. On the other hand, the direct method is more phys-

ically based than the perturbation approach which clearly identi�es the work the variable

sti¤ness device performs on the system.

Both methods provide reasonable accuracy when " is small. However, for large "

both fail to capture other nonlinear e¤ects. The main reason for the poor performance is

because the methods fail to capture harmonics associated with the true nonlinear system.

Because of the type of control law being used, the harmonics change both the solution and
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the switching times for the control law. In theory, the Fourier series approach could have

captured these e¤ects. However, because the nonlinear algebraic equations could not be

solved analytically, the ability to develop insight with this approach was severely limited.

The forced problem will be de�ned as

m��x� + c� _x� +
1

2
[(k�1 + k

�
0) + (k

�
1 � k�0)u]x� = A� cos (!�t�) , (4.1)

where !� is the forcing frequency and A� is the amplitude of the forcing function. Similar

to the discussion in Chapter 3.2, when the right control law is used, Equation 4.1 can be

used to represent a variable sti¤ness system using a piezoelectric device. Equation 4.1 can

be nondimensionalized to become

�x+ 2� _x+ (1 + "u)x = cos (!t) . (4.2)

The nondimesionlization is accomplished using Equations 3.4, 3.7, and 3.8 while letting

L� =
A�

m�!�20
(4.3)

and

! =
!�

!�0
(4.4)

The initial conditions for the problem will be discussed later.

4.2 Direct Approximation

To gain insight into the solution of Equation 4.2, the viscously damped system

�xe + 2�e _xe + !
2
exe = cos (!t) ; (4.5)

will be de�ned so Equations 4.5 and 4.2 behave in a similar dynamic way by selecting

an e¤ective damping coe¢ cient �e = �e (!; �1; �2; �; ") and an e¤ective natural frequency
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!e = !e (!; �1; �2; �; "). The frequency !e will be de�ned as

!2e = 1 + "ue (4.6)

where ue = ue (!; �1; �2; �; ") is the e¤ective switching control law. The subscript "e" iden-

ti�es the variable as the e¤ective behavior of the true variable it represents. Subtracting

Equation 4.5 from Equation 4.2 de�nes the comparison di¤erential equation

�y + 2� _y + (1 + "u) y + 2 (�� �e) _xe + " (u� ue)xe = 0, (4.7)

where

y = x� xe: (4.8)

Ideally, �e and ue would be chosen such that y = _y = �y = 0. In reality, Equation 4.7 only

holds under this restriction when �e = � and ue = u. However, because xe and x are

periodic functions, it is possible to �nd an averaged value for �e and ue so that Equation

4.7 is true for a set of points.

Based on Meirovitch [71], the particular solution to Equation 4.5 is

xe = 	cos (!t+ �) (4.9)

where

	 = 	(!; �1; �2; �; ") =
1q

(!2e � !2)
2 + (2�e!)

2
(4.10)

and

� = � (!; �1; �2; �; ") = � tan�1
2�e!

!2e � !2
. (4.11)

The variable sti¤ness term of Equation 4.2 is simultaneously creating damping and

shifting the natural frequency of the system, so the damping and frequency contributions

need to be separated. The e¤ective sti¤ness will be solved approximately by averaging the

control u over a period. The e¤ective damping of the system will be found by calculating

the work done on the system by changing the spring sti¤ness.
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E¤ective Sti¤ness. The averaged value for ue can be found as

ue =
1

T

Z T

u (�) d� (4.12)

where T is the period of u. Calculating ue requires knowing the length of time the variable

sti¤ness device spends in each state as de�ned by Equation 4.2. The switching time can

be approximated by substituting Equation 4.9 into Equation 3.12 and simplifying as

u = sgn
��
�1 � ! tan�1 (!t+ �)

� �
1� �2! tan�1 (!t+ �)

��
(4.13)

The switching times are

t1 =
1

!

�
tan�1

�
�1
!

�
� �
�

(4.14)

and

t2 =
1

!

�
tan�1

�
1

�2!

�
� �
�
. (4.15)

Note that � has not yet been determined since it depends on ue; but will be found later.

Since t1 and t2 are de�ned in terms of the arctangent function, t is periodic and it has

period

T =
�

!
. (4.16)

Then the system switches when

t = t1; t1 + T; t1 + 2T; ::: (4.17)

and when

t = t2; t2 + T; t2 + 2T; :::. (4.18)

When t1 < t2, then switching events will occur in order from smallest to largest time

as

t = t1; t2; t1 + T; t2 + T; ::: (4.19)
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Table 4.1 Variable Sti¤ness Constant Damping Forced Problem Control Law Values for
One Time Period

t1 < t2 t2 < t1
�2 � 0 �2 < 0 �2 � 0 �2 < 0

u = �1 t1 < t < t2 t2 < t < t1 + T t2 < t < t1 t1 < t < t2 + T

u = 1 t2 < t < t1 + T t1 < t < t2 t1 < t < t2 + T t2 < t < t1

and likewise, if t2 < t1; then switching events will occur in order from smallest to largest

time as

t = t2; t1; t2 + T; t1 + T; :::. (4.20)

From Equation 3.12, the length of time that u = �1 can be found by solving the inequalities

�
�1 � ! tan�1 (!t+ �)

� �
1� �2! tan�1 (!t+ �)

�
> 0 (4.21)

and �
�1 � ! tan�1 (!t+ �)

� �
1� �2! tan�1 (!t+ �)

�
< 0. (4.22)

Table 4.1 identi�es conditions and time intervals that u = �1 over one period of time T .

Using Table 4.1, it is now possible to solve Equation 4.12 as

ue =
1

T

8>>>>>><>>>>>>:

�
R t2
t1
d� +

R t1+T
t2

d� if t1 < t2 ^ �2 � 0R t2
t1
d� �

R t1+T
t2

d� if t1 < t2 ^ �2 < 0

�
R t1
t2
d� +

R t2+T
t1

d� if t2 < t1 ^ �2 � 0R t1
t2
d� �

R t2+T
t1

d� if t2 < t1 ^ �2 < 0

(4.23)

which simpli�es to

ue =

8<: 1� 2!
� jt1 � t2j �2 � 0

�1 + 2!
� jt1 � t2j �2 < 0

(4.24)

or by making use of Equations 4.14 and 4.15,

ue =

8<: 1� 2
�

���tan�1 ��1! �� tan�1 � 1
�2!

���� �2 � 0

�1 + 2
�

���tan�1 ��1! �� tan�1 � 1
�2!

���� �2 < 0
. (4.25)
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E¤ective Damping. Varying the sti¤ness in a system causes work to be

performed. [4] Several authors have used work to explain how varying sti¤ness changes

the energy of the system [17], [139] and the same approach is applied here. The equivalent

viscous damping coe¢ cient that matches the work applied by varying the spring sti¤ness

will be developed. Multiplying Equation 4.7 by _xe, assuming y = _y = �y = 0, and

integrating over one period results in

Z 2T

0
2 (�� �e) _x2e + " (u� ue)xe _xedt = 0 (4.26)

where T = �
! as before. Breaking up Equation 4.26 results in

2 (�� �e)
Z 2T

0
_x2edt+ "

Z 2T

0
uxe _xedt� "ue

Z 2T

0
xe _xedt = 0. (4.27)

Substituting Equation 4.9 into Equation 4.27 and solving for �e results in

�e = �+
"

2 2!�

Z 2T

0
uxe _xedt = �+

"

8�

Z 2T

0
u sin [2 (!t+ �)] dt: (4.28)

The integral of Equation 4.28 can be solved by referring to Table 4.1 to determine

bounds of integration. The result is

�e = �+
"

2!�

8>>>>>><>>>>>>:

T1 � T2 if �2 � 0 ^ t1 < t2

T2 � T1 if �2 < 0 ^ t1 < t2

T2 � T1 if �2 � 0 ^ t2 < t1

T1 � T2 if �2 < 0 ^ t2 < t1

(4.29)

where

T1 =
!2 � �21
!2 + �21

(4.30)

and

T2 =
�22!

2 � 1
�22!

2 + 1
. (4.31)

With ue and �e known, Equations 4.10 and 4.11 are now completely speci�ed.
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4.3 Perturbation Approximation

Perturbation methods for approximating solutions are well known and are often used

on nonlinear problems [146]. The perturbation method used here follows similar reasoning

the direct approach used. The development begins the same way as the direct approach,

but diverges at Equation 4.8. It is now assumed

x = xe + "y (t; ") (4.32)

where x is de�ned using Equation 4.2, xe is de�ned using Equation 4.5. The error, x�xe,

between the true solution and the e¤ective approximate solution is assumed to be of order

" (where " is also assumed to be small) and written as "y (t; "). This is not strictly true,

since it is possible for "! 1: However, for small values of "; perturbation techniques can

provide accurate analytic approximations. The e¤ective solution, natural frequency, and

damping of 4.5 are expanded in a power series as

xe = xe0 + "xe1 + "
2xe2 + :::; (4.33)

!e = !e0 + "!e1 + "
2!e2 + ::: (4.34)

and

�e = �e0 + "�e1 + "
2�e2 + ::: (4.35)

The error can also be expanded as

y = y0 + "y1 + "
2y2 + ::: (4.36)

Substituting 4.32 and 4.5 into Equation 4.2 results in

" [�y + 2� _y + (1 + "u) y] = �2 (�� �e) _xe �
�
1� !2e + "u

�
xe: (4.37)

When "! 0; the order 1 solution to 4.37 becomes

2
�
�� �e0

�
_xe +

�
1� !2e0

�
xe = 0 (4.38)
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which means
�e0 = �

!e0 = 1
: (4.39)

Substituting Equation 4.39 into Equation 4.37, dividing by " and letting "! 0 results

in

�y0 + 2� _y0 + (1 + "u) y0 = 2�e1 _xe0 + [2!e1 � u (xe0 ; _xe0)]xe0 . (4.40)

The right hand side of Equation 4.40 is a forcing function with unknown coe¢ cients �e1

and !e1 . Equation 4.40 has a particular solution in the form

y0 = A1 cos (!t+ �e0) +A2 sin (!t+ �e0) (4.41)

where �e0 is the order one expansion of Equation 4.11, considering Equation 4.35. Sub-

stituting Equation 4.41 and 4.9 into Equation 4.40 results in

��
1� !2

�
A1 + 2�!A2

�
cos (!t+ �e0) +

��
1� !2

�
A2 � 2�!A1

�
sin (!t+ �e0)

= 	0
�
�2�e1! sin (!t+ �e0) + (2!e1 � u) cos (!t+ �e0)

� : (4.42)

Taking advantage of orthogonality, Equation 4.42 can be multiplied by cos (!t+ �e0)

and by sin (!t+ �e0), then can be integrated over one period resulting in

�

!

24 1� !2 2�!

�2�! 1� !2

3524 A1

A2

35 = 	0
0@2�

24 1
! 0

0 �1

3524 !e1

�e1

35�
24 Zc

Zs

351A (4.43)

where

Zc =
1

2

�Z 2T

udt+

Z 2T

u cos [2 (!t+ �e0)] dt

�
(4.44a)

=

Z T

udt+

Z T

u cos [2 (!t+ �e0)] dt; (4.44b)
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Zs =
1

2

Z 2T

u sin [2 (!t+ �e0)] dt (4.45)

=

Z T

u sin [2 (!t+ �e0)] dt; (4.46)

and

u = u (xe; _xe)j"=0 : (4.47)

Ideally, A1 and A2 in Equation 4.42 vanish since it is desired that xe � x. Then

!e1 =
!

2�
Zc (4.48)

and

�e1 = �
1

2�
Zs: (4.49)

Then to order "; the expressions for !e and �e are

!e = 1 +
"!

2�
Zc (4.50)

and

�e = �� "

2�
Zs: (4.51)

All that is left is to evaluate the integrals of Equations 4.50 and 4.51. Using Table

4.1, Equation 4.50 evaluates to

!e = 1 + "

26666664
1

2

8<: 1� 2!
� jt1 � t2j if �2 � 0

�1 + 2!
� jt1 � t2j if �2 < 0

9=;+ 1

�

8>>>>>><>>>>>>:


1 � 
2 if �2 � 0 ^ t1 < t2


2 � 
1 if �2 < 0 ^ t1 < t2


2 � 
1 if �2 � 0 ^ t2 < t1


1 � 
2 if �2 < 0 ^ t2 < t1

9>>>>>>=>>>>>>;

37777775
(4.52)

where


1 =
�1!

!2 + �21
; (4.53)


2 =
�2!

�22!
2 + 1

; (4.54)
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t1 is de�ned by Equation 4.14, and t2 is de�ned by Equation 4.15. Equation 4.50 evaluates

to the same expression as Equation 4.29.

4.4 Comparisons of Approximate and Simulated Solutions

Comparison of Equation 4.52 and Equation 4.25 substituted into Equation 4.6 shows

the perturbation solution adds a correction term the direct solution misses. The extra

term is small as ! ! 0 and ! !1, but does make a correction at low frequency.

Simulation Approach. To gain insight into the accuracy of the approximate so-

lutions, Equation 4.2 was simulated at various frequencies using a �xed time step Runge-

Kutta method. Since only the steady state solution was needed for comparison purposes,

a procedure was needed to separate the transient response from the steady state behavior.

Ideally, only the steady state response would be calculated or equivalently the transient

behavior would not be excited. In a linear system, the transient response can be made

zero by making the homogeneous portion of the response zero. Considering Equation 4.5,

the general solution with both homogeneous and particular solutions is

xe = Ae��t cos (!dt+ �H) + 	cos (!t+ �) (4.55)

where !d is the damped natural frequency of the system [71]. The velocity of the system

is

_xe = �Ae��t [� cos (!dt+ �H) + !d sin (!dt+ �H)]�	! sin (!t+ �) : (4.56)

At time t = 0, the displacement and velocity are

xe (0) = A cos (�H) + 	cos (�) (4.57)

and

_xe (0) = �A [� cos (�H) + !d sin (�H)]�	! sin (�) : (4.58)
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It is desired to make A = 0 to prevent a transient response from being excited. Hence,

the initial conditions should be

xe (0) = 	cos (�) (4.59)

and

_xe (0) = �	! sin (�) : (4.60)

Since the real system is nonlinear and the initial conditions were developed for the

approximate solution, the time response was run for 20 periods as measured by the forcing

function period to ensure steady state was found. Some time response plots were inspected

to verify steady state was being achieved for the nonlinear problem with satisfactory results.

It should be noted that �nding steady state for the nonlinear problem using other initial

conditions will likely require many more periods to be run, which increases the time needed

to complete the simulations. Only the last 20% of the time response was kept to identify

the amplitude of the response. Again, some time response plots were inspected and the

20% number may be overly conservative.

The amplitude of the response was determined by �nding the root mean square of

the response and dividing by the root mean square of the input. The root mean square is

de�ned as

rms (z) =

rPn
i=1 z

2
i

n
(4.61)

where z is a vector of time response data and n is the number of points in z. Using the

rms smooths out nonlinear behavior such as harmonics that appear due to the nonlinear

nature of the system. Figure 4.1 shows a steady state time response forced at a frequency

of 0.1. The simulated response shows high frequency harmonics have also been excited by

the forcing function, but the predominate behavior is at the forcing frequency of 0.1.

Approximate Solution Validation. The magnitude of response at various frequen-

cies was graphed a various frequencies for the simulated system and for the two approximate

systems to make comparisons using a plot like a Bode magnitude plot, shown in Figures

4.2, 4.3, and 4.4 on pages 4-14 - 4-16. Care must be used in interpreting these plots

because the variable sti¤ness system is a nonlinear system and the superposition principle
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Figure 4.1 Forced Response at ! = 0:1 (� = 0; " = 0:1; �1 = 0:1; �2 = 0)

often associated with these types of plots in linear systems does not apply. Changes in the

forcing function (such as adding a second sinusoid function) requires complete reanalysis

of system behavior. With this caveat, Figures 4.2, 4.3, and 4.4 can be considered Bode

magnitude plot equivalents.

Figure 4.2 shows a comparison of simulated results with approximate results for both

the direct calculation method and the perturbation method. The parameters �1 and �2

were both set to 0. Additionally, it shows the e¤ects of using variable sti¤ness as compared

to the same system with no variable sti¤ness. In this case, since damping is 0, the system

with no variable sti¤ness is a simple linear oscillator with in�nitely strong resonance at

its natural frequency of 1. For " < 0:5; the approximate results reasonably match the

simulated results. For high values of "; however, the approximate solutions fail to capture

system behavior. No di¤erence was seen between the two approximate solutions since

both solutions are the same when �1 = 0 and �2 = 0:

Figure 4.3 shows comparisons of the simulated and approximate solutions using the

unforced optimal control of Figure 3.12 and sets � = 0:1. This control policy may not

be optimal for this system as will be discussed later, but still provides much damping,
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especially for the higher values of ": At very low frequencies, the variable sti¤ness method

provides signi�cant attenuation that the standard viscously damped system does not pro-

vide, though apparently at the expense of less attenuation as resonance is approached.

To better understand where the low frequency attenuation comes from, consider

Equation 4.2 and let ! ! 0. In the limit, the system is being forced by a unit step

function or

�x+ 2� _x+ (1 + "u)x = 1: (4.62)

Assuming the control law is chosen to make the system stable, it is expected the system

will settle to a constant value as time t!1: It may be possible that certain settings of

�1 and �2 could cause limit cycle or other oscillatory behavior (which has not yet been

observed), but this type of behavior is undesirable for damping out vibration in the system

and was not further pursued. The settling value can be found by �nding the stationary

point of Equation 4.62 or steady state error to a unit step function which is

x =
1

1 + "u
: (4.63)

Since _x! 0 by de�nition of a stationary point, the control law of Equation 3.12 simpli�es

to

u = sgn
�
�1x

2
�
= sgn (�1) (4.64)

since x2 > 0. Then as ! ! 0;

x!

8>>><>>>:
1
1+" if �1 > 0

1 if �1 = 0

1
1�" if �1 < 0

: (4.65)

or the attenuation in dB is

x!

8>>><>>>:
�20 log (1 + ") if �1 > 0

0 if �1 = 0

�20 log (1� ") if �1 < 0

= �20 log [1 + "sgn (�1)] : (4.66)
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Figure 4.2 Comparison of Simulation with Approximate Solutions (�1 = 0; �2 = 0;
� = 0)
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Figure 4.3 Comparison of Simulation with Approximate Solutions (�1 =Unforced Opti-
mal, �2 = 0, � = 0:1)
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Figure 4.4 Comparison of Simulation with Approximate Solutions (�1 =Unforced Opti-
mal, �2 = 0, � = 0:9)

4-16



Clearly, letting �1 > 0 provides the best low frequency attenuation.

Figure 4.4 shows that even with very high damping, variable sti¤ness is still valuable

because of the low frequency attenuation it provides. The control law was once again set

to the same settings as the unforced optimal control law of Figure 3.12, since �1 > 0 for this

policy. In the case where " = 0:9, the variable sti¤ness device is providing approximately

5.58 dB more attenuation than a viscously damped system with no variable sti¤ness.

4.5 Approximate Optimal Control Law

From the previous section, it would appear an optimal control law should have �1 > 0;

since it provides much better low frequency behavior than other settings for �1: One ap-

proach that estimates an optimal control law considering the low frequency behavior is

to minimize the area of the response curve over all frequencies. The results are limited

to being near optimal and may only be approximate local minimums, since the approx-

imate solutions derived earlier have limited accuracy. Numerical methods were used to

solve for relevant parameters because the functions for the approximate amplitude are too

complex to allow analytic methods. For the direct method, the approximate amplitude is

represented by Equation 4.10 using Equations 4.6, 4.25, and 4.29. For the perturbation

method, the amplitude is represented by Equation 4.10 using Equations 4.52 and 4.29.

The area under the frequency response curve can be found by solving

I (�1; �2; �; ") =

Z 1

0
	(!; �1; �2; �; ") d!: (4.67)

Then, the settings for �1 and �2 that minimize the peak response can be found by solving

rI (�1; �2; �; ") = 0 (4.68)

for �1 and �2. Figure 4.5 shows the near optimal values for �1 for various values of �.

The curves for 0:3 � � � 0:9 are di¢ cult to tell apart and range between 0:32 and 0:37 for

small " and are very close to 0:46 for large ". The parameter �2 was found to be 0 while

�1 > 0 as expected. A comparison between Figure 4.5 and Figure 3.12 shows the control
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laws for the initial value and sinusoidally forced problems is radically di¤erent. However,

two common results are that �1 > 0 and �2 = 0. If a suboptimal control is acceptable for

one or the other disturbance types, it may be possible to use a single control law to meet

two disturbance rejection criteria.

Figure 4.5 Near Optimal �1 for Sinusoidally Forced Problem using Perturbation Ap-
proximation (�2 = 0)

4.6 Equivalent Damping and Sti¤ness Coe¢ cients

As was done in Chapter 3.13, an equivalent sti¤ness and equivalent damping co-

e¢ cient can be calculated to use in the dimensioned SDOF equivalent forced system.
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Comparing Equations 4.2 and 4.5 suggests

1 + "u v !2e (4.69)

and

� v �e (4.70)

where " v " again is used to mean the quantity on the left hand side of the relationship

is replaced by the quantity on the right hand side. Once again, the quantities of the

relationship are not equal since �e is a combination of viscous damping and dissipating

work done on the system due to switching the sti¤ness. Solving Equation 3.10 for c�

and applying the approximations of Equations 4.69 and 4.70 to Equation 4.2 suggests the

original dimensional di¤erential equation can be approximated as

m��x�e + c
�
eq _x

�
e + k

�
eqx

�
e = A� cos (!�t�) , (4.71)

where

c�eq = 2�e
p
m�k� (4.72)

k�eq = k�!2e (4.73)

with

k� =
k�1 + k

�
0

2
: (4.74)

Equation 4.71 represents a well known viscously damped oscillator that can be used to

approximate some behavior of Equation 4.1.

4.7 Conclusion

Two approximate methods were developed to estimate the dominant response of a

SDOF sinusoidally forced system. The system can make use of both variable sti¤ness

and viscous damping to attenuate the input. Both methods were found to provide good

approximations of the response for low variation in the variable sti¤ness device. For high

variation in the variable sti¤ness, the methods did not always capture all of the nonlinear
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e¤ects such as high frequency harmonics. The approximate solutions were used to develop

a near optimal control law, which was only near optimal due to the limited accuracy of

the approximate solutions. For certain settings of the variable sti¤ness control law, it is

possible to substantially improve the low frequency attenuation of the response as compared

to a passively damped system, even when the system has strong viscous damping.
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5. Variable Sti¤ness for Multi-Degree of Freedom Systems

5.1 Introduction

The utility of the SDOF approximate solutions of Chapter 3 and Chapter 4 for

multi-degree of freedom problems will be explored for the initial value problem and for

the sinusoidally forced problem. Because the approximate solution is linear, linear the-

ory was used to study the MDOF problems. A parallel mass lumped parameter system

representative of a space telescope structure will be examined. Afterward, a series mass

lumped parameter system that could represent the model of a continuous beam with vary-

ing sti¤ness will be considered. In both cases, equations of motion will be developed and

nondimensionalized. Since space applications are the focus, the system examined is one

�oating in space, meaning it has no �xed constraints. Hence, the rigid body modes were

removed from the system using a center of mass transformation. In both cases, a 3 DOF

problem was selected, where one DOF is a rigid body mode. After removing the rigid

body mode, a 2 DOF problem was found with acceleration coupling in both equations. In

both cases, limiting assumptions had to be made about the masses and control law to allow

the 2 DOF problems to be solved. For the parallel mass lumped parameter system, the

assumptions were physically reasonable while the series mass lumped parameter system

was restricted enough to limit the utility of the results. The coupling in the parallel mass

lumped parameter system was weak while in the series mass lumped parameter system

it was much stronger. Hence, the results for the parallel mass MDOF model were much

more accurate than the series mass MDOF model.

5.2 Parallel Mass MDOF Model

Equations of Motion. Figure 5.1 is one type of multi-degree of freedom model

(MDOF). It could represent a cross section of a space telescope where the satellite bus is

m�
1 and the other masses represent mirrors. Alternatively, if there are only two masses

in the system, it could represent a simple vibration isolation problem. The equations of
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motion can be written as

m�
1�x
�
1 +

pX
i=2

h
c�i ( _x

�
1 � _x�i ) + ~k

�
i (x

�
1 � x�i )

i
= Q�1 (5.1)

and

m�
j �x
�
j + c

�
j

�
_x�j � _x�1

�
+ ~k�j

�
x�j � x�1

�
= Q�j (5.2)

for j = 2; 3; :::; p, where p is the total number of masses in the system and p > 1. For the

MDOF model, m�
1 is a mass allowed to vibrate while m

�
j are masses to be isolated from

vibration, c�j is the coe¢ cient of damping for the j
th viscous damper, ~k�j is the variable

sti¤ness function for the jth variable sti¤ness spring, Q�j is the j
th disturbance force acting

on the jth mass m�
j , and Q

�
1 is the disturbance force on m

�
1. As previously used, the "

�"

notation de�nes the variable as a dimensional variable. The initial conditions are

x�1 (0) = x�10; _x
�
1 (0) = _x�10 (5.3)

and

x�j (0) = x�j0; _x
�
j (0) = _x�j0 (5.4)

Figure 5.1 MDOF Masses in Parallel Variable Sti¤ness Constantly Damped Problem
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Equations 5.1 and 5.2 can be transformed to separate rigid body modes by de�ning

y� =

Pp
i=1m

�
ix
�
i

m�
T

=

Pp
j=2m

�
jx
�
j +m

�
1x
�
1

m�
T

(5.5)

and

z�j = x�j � x�1 (5.6)

where

m�
T =

pX
i=1

m�
i . (5.7)

Solving Equation 5.6 for x�j and substituting into Equation 5.5 results in

y� =

Pp
j=2

�
m�
jz
�
j +m

�
jx
�
1

�
+m�

1x
�
1

m�
T

= x�1 +

Pp
j=2m

�
jz
�
j

m�
T

(5.8)

or

x�1 = y� �
Pp

j=2m
�
jz
�
j

m�
T

: (5.9)

Substituting 5.9 into Equation 5.6 and solving for x�j results in

x�j = z�j + y
� �

Pp
j=2m

�
jz
�
j

m�
T

. (5.10)

Substituting 5.9 and 5.10 into Equations 5.1 and 5.2 results in

m�
j

 
�z�j + �y

� �
Pp

j=2m
�
j �z
�
j

m�
T

!
+ c�j _z

�
j +

~k�j z
�
j = Q�j (5.11)

and

m�
1

 
�y� �

Pp
j=2m

�
j �z
�
j

m�
T

!
�

pX
j=2

h
c�j _z

�
j +

~k�j z
�
j

i
= Q�1. (5.12)

Adding all j equations of Equation 5.11 to Equation 5.12 and simplifying results in

�y� =

Pp
i=1Q

�
i

m�
T

. (5.13)
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Equation 5.13 describes the rigid body motion of the system and can be immediately solved

as

y� =
1

m�
T

Z t�

0

Z �

0

pX
i=1

Q�i dTd� +R
� (t�) (5.14)

=
1

m�
T

Z t�

0
(t� � �)

pX
i=1

Q�i d� +R
� (t�) (5.15)

where

R (t�)� = _y�0t
� + y�0 (5.16)

represents rigid body modes of the system. The other term of Equation 5.14 represents

forced vibration with respect to the center of mass of the system measured by the inertial

coordinate y. Substituting Equation 5.13 into Equation 5.11 and simplifying results in

pX
k=1
k 6=j

m�
k

m�
j

m�
T

�z�j + c
�
j _z
�
j +

~k�j z
�
j = Q�j +

m�
j

m�
T

pX
k=2
k 6=j

m�
k�z
�
k �

m�
j

m�
T

pX
i=1

Q�i . (5.17)

Now, it will be assumed that m�
j = m�; c�j = c�; and ~k�j = ~k� = k� (1 + "u) ;

where u is a control law for the variable sti¤ness device, k� is the uncontrolled sti¤ness

of the variable sti¤ness device, and " measures the range the variable sti¤ness device can

achieve, de�ned by Equation 3.11. These de�nitions assume all of the masses, springs and

dampers of Figure 5.1 are the same, except for m�
1. This is a reasonable assumption for

some systems such as a space telescope, since it assumes all masses and isolation devices

were manufactured to be identical. Equation 5.17 can be simpli�ed to be

m�

1 + 

�z�j + c

� _z�j + k
� (1 + "u) z�j = Q�j +


m�

1 + 


pX
k=2
k 6=j

�z�k �



1 + 


pX
i=1

Q�i (5.18)

where


 =
m�

m�
1 + (p� 2)m� : (5.19)
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The transformed initial conditions are found using Equations 5.3, 5.4, 5.5, and 5.6 and

are

y�0 =



1 + 


pX
j=2

x�i0 +
1� (p� 2) 


1 + 

x�10, _y

�
0 =




1 + 


pX
j=2

_x�i0 +
1� (p� 2) 


1 + 

_x�10 (5.20)

and

z�j0 = x�j0 � x�10, _z�j0 = _x�j0 � _x�10. (5.21)

By letting

w�0 =

r
k� (1 + 
)

m� (5.22)

and de�ning a nonzero length (will be speci�ed later)

L� 6= 0 (5.23)

Equation 5.18 can be nondimensionalized by letting

t� =
t

w�0
; (5.24)

z�j = L�zj ; (5.25)

and

Q�j =
m�L�!�

2

0

1 + 

Qj = L�k�Qj . (5.26)

Hence, Equation 5.18 becomes

�zj + 2� _zj + (1 + "u) zj =
1

1 + 

Qj + 


pX
k=2
k 6=j

�zk �



1 + 


pX
i=1
k 6=j

Qi (5.27)

where

� =
c�w�0
2k�

. (5.28)
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From Equation 5.27, it can now be seen that the parameter 
 is a measure of the coupling

between the di¤erent masses in the system. Clearly 0 < 
 < 1 and as p ! 1 or if

m�
1 >> m�, 
 ! 0; which means the coupling with all other masses in the system is weak.

To determine if 
 will be large or small for a space telescope, Powers et. al. was

consulted. Their preliminary design identi�es a total mirror mass with support structure

for a space telescope with six mirrors as 883: 4 kg while the mass of the rest of the satellite

is 2533 kg [29]. One mirror with support structure would have a mass of about 147 kg.

Considering Equation 5.19 clearly showsm� << m�
1 so it is expected that 
 would typically

be small.

For the special case where p = 2, Equation 5.27 simpli�es to

�z2 + 2� _z2 + (1 + "u) z2 =
1

1 + 

Q2 �




1 + 

Q1 (5.29)

which has already been solved for some cases. For example, when Q1 = Q2 = 0, Equa-

tion 5.29 becomes the constantly damped variable sti¤ness problem solved in Chapter 3.

Similarly, if either Q1 or Q2 are sinusoidal forcing functions, the results of Chapter 4 can

be used to estimate the response. Hence, the work of the SDOF problem directly applies

to the 2DOF problem.

For p > 2; as 
 ! 0, Equation 5.27 becomes j SDOF problems. When 
 ! 1,

m�
1 ! 0. This implies the other masses are connected to each other through their isolation

devices. Equation 5.27 is very similar to Equation 3.9 found in Chapter 3. With the right

forcing function, it is similar to Equation 4.2. The main di¤erence between Equation 5.27

and the equations studied in Chapter 3 is the coupling with the other masses on the order

of 
.

Based on previous work, two methods of solving Equation 5.27 are possible. One

way is to consider 
 to be a small parameter and treat Equation 5.27 as a perturbation

problem. This is possible because the unperturbed problem has already been solved.

This has the advantage of allowing any settings for � and ", but limits the size of the

coupling of the system. The second approach is to develop an approximate solution using

the equivalent linear approximate solution developed in Chapter 3. This appeals to well
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known linear tools making it easier to develop, but is limited in accuracy in the short term

as " and � become large. The second approach was used.

Initial Value Problem. The solution to Equation 5.27 can be approximated by

solving the linear equation

�zj + 2�!n _zj + !
2
nzj = 


pX
k=2
k 6=j

�zk (5.30)

where it is assumed all external forces are 0. The parameters � and !n are de�ned

using Equations 3.157 and 3.158 and represent the equivalent damping ratio and natural

frequency, respectively, for the SDOF variable sti¤ness constant damping problem solved

in Chapter 3.

Linear Approximate Solution. Taking the Laplace transform of 5.30 with

Zj = L (zj) results in

Zjs
2 � szj0 � _zj0 + 2�!nZjs� 2�!nzj0 + !2nZj = 


pX
k=2
k 6=j

�
Zks

2 � szk0 � _zk0
�

(5.31)

or

Zj
�
s2 + 2�!ns+ !

2
n

�
� 
s2

pX
k=2
k 6=j

Zk = zj1s+ zj2 (5.32)

where

zj1 = zj0 � 

pX

k=2
k 6=j

zk0 (5.33)

and

zj2 = _zj0 + 2�!nzj0 � 

pX

k=2
k 6=j

_zk0. (5.34)

The solution to Equation 5.32 can be written in matrix form as

z (t) = L�1
�
A�1B

�
(t) (5.35)

5-7



where

A =

26666664
ZD (s) ZN (s) ::: ZN (s)

ZN (s) ZD (s) ::: ZN (s)

::: ::: ::: :::

ZN (s) ZN (s) ::: ZD (s)

37777775 ; (5.36)

B =

26666664
z21s+ z22

z31s+ z32

:::

zp1s+ zp2

37777775 , (5.37)

and L�1 denotes the inverse Laplace transform operator. The variables ZD and ZN are

de�ned as

ZD (s) = s2 + 2�!ns+ !
2
n (5.38)

and

ZN (s) = �
s2. (5.39)

The matrix A is in a special patterned form, which is called a circulant matrix [147].

To �nd A�1; the special form of A can be exploited. It is postulated that A�1 will have

the form

A�1 = D (s)

26666664
� (s) ZN (s) ::: ZN (s)

ZN (s) � (s) ::: ZN (s)

::: ::: ::: :::

ZN (s) ZN (s) ::: � (s)

37777775 (5.40)

where � (s) is the diagonal of A�1 and D (s) is the determinant of A; with � (s) and D (s)

to be found. Since AA�1 = I where I is the identity matrix, multiplying AA�1 results in

D (s)
h
� (s)ZD (s) + ZN (s)

2 (p� 2)
i
= 1 (5.41)

for a diagonal element and

ZD (s) + � (s) + ZN (s) (p� 3) = 0 (5.42)
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for an o¤ diagonal element. Then

� (s) = � [ZD (s) + ZN (s) (p� 3)] (5.43)

and

D (s) =
1�

� (s)ZD (s) + ZN (s)
2 (p� 2)

� (5.44a)

=
1

�ZD (s) [ZD (s) + ZN (s) (p� 3)] + ZN (s)2 (p� 2)
(5.44b)

=
1

�ZD (s)2 � ZD (s)ZN (s) (p� 3) + ZN (s)2 (p� 2)
(5.44c)

=
1

[ZN (s)� ZD (s)] [(p� 2)ZN (s) + ZD (s)]
: (5.44d)

With a general form for A�1 known, it is now possible to fully specify Equation 5.35.

First,

A�1 (s)B (s) = D(s)

26666666664

� (s) [z21s+ z22] + ZN (s)
Pp

i=2
i6=2
(zi1s+ zi2)

� (s) [z31s+ z32] + ZN (s)
Pp

i=2
i6=3
(zi1s+ zi2)

:::

� (s) [zp1s+ zp2] + ZN (s)
Pp

i=2
i6=p
(zi1s+ zi2)

37777777775
(5.45)

or in tensor notation

A�1 (s)B (s)j = D (s)

264� (s) [zj1s+ zj2] + ZN (s) pX
i=2
i6=j

(zi1s+ zi2)

375 (5.46a)

= D (s)

24 � (s) [zj1s+ zj2]� ZN (s) [zj1s+ zj2]

+ZN (s)
Pp

i=2 (zi1s+ zi2)

35 (5.46b)

5-9



where j = 2; 3; :::; p. Substituting Equations 5.44d and 5.43 into Equation 5.46b and then

simplifying results in

A�1 (s)B (s)j =
� [zj1s+ zj2]
ZN (s)� ZD (s)

� 
s2
Pp

i=2 [zi1s+ zi2]

[ZN (s)� ZD (s)] [(p� 2)ZN (s)� ZD (s)]
(5.47)

or recalling Equations 5.38 and 5.39,

A�1 (s)B (s)j =
� [zj1s+ zj2]

[(1� 
) s2 + 2�!ns+ !2n]

� 
s2
Pp

i=2 [zi1s+ zi2]

[(1� 
) s2 + 2�!ns+ !2n] [(1� 
 (p� 2)) s2 + 2�!ns+ !2n]
� (5.48)

Equation 5.48 can be expanded into partial fractions resulting in

A�1 (s)B (s)j =
Fj1s+ Fj2

s2 + 2�!n
1�
 s+

!2n
1�


+
Gj1s+Gj2

s2 + 2�!n
1�
(p�2)s+

!2n
1�
(p�2)

(5.49)

where

Fj1 =

(p� 2) zj1 �
Pp

i=2
i6=j

zi1

(p� 1) (1 + 
) ; (5.50)

Fj1 =

(p� 2) zj2 �
Pp

i=2
i6=j

zi2

(p� 1) (1 + 
) ; (5.51)

Gj1 =

Pp
i=2 zi1

(p� 1) (1� 
 (p� 2)) ; (5.52)

and

Gj1 =

Pp
i=2 zi2

(p� 1) (1� 
 (p� 2)) : (5.53)
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Using a table of Laplace transforms [145], Equation 5.49 can be transformed to the time

domain allowing Equation 5.35 to be written as

z (t)j = L
�1
�
A�1 (s)B (s)j

�
(t)

=
1

!n
p
1 + 
 � �2

e
� �!n
1+


t

2664 Fj1!n
p
1 + 
 � �2 cos

�
!n
p
1+
��2
1+
 t

�
+ [Fj1�!n + Fj2 (1 + 
)] sin

�
!n
p
1+
��2
1+
 t

�
3775

+
1

!n

q
1� 
 (p� 2)� �2

e
� �!n
1�
(p�2) t

2664 Gj1!n

q
1� 
 (p� 2)� �2 cos

�
!n
p
1�
(p�2)��2
1�
(p�2) t

�
+ [Gj1�!n +Gj2 (1� 
 (p� 2))] sin

�
!n
p
1�
(p�2)��2
1�
(p�2) t

�
3775

(5.54)

For the special case when p = 3, the solution is

z2 (t) =
1

2
[Zf (t;
p; Cp; Dp; 
) + Zf (t;
m; Cm; Dm;�
)] (5.55)

and

z3 (t) =
1

2
[�Zf (t;
p; Cp; Dp; 
) + Zf (t;
m; Cm; Dm;�
)] (5.56)

where

Zf (t;
; C;D;�) =
1

(1 + �)

e�

�!n
1+�

t

�
[C (1 + �)�D�!n] sin

�



1 + �
t

�
+D
cos

�



1 + �
t

��
;

(5.57)

Cm = z32 + z22; (5.58)

Cp = �z32 + z22; (5.59)

Dm = z31 + z21; (5.60)

Dp = �z31 + z21; (5.61)


m = !n

q
1� 
 � �2 (5.62)

and


p = !n

q
1 + 
 � �2. (5.63)
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This special case will be compared later with the true system to determine how accurate

the approximation is.

Optimal Control. Determining the optimal control policy in a rigorous way

for the coupled system appears daunting. One approach would be to calculate the energy

of the system and then take partial derivatives with respect to �1 and �2 to identify settings

that minimize energy. Another approach is to minimize the approximate equations for

displacement. Both of these approaches result in time varying parameters for �1 and �2

and requires time consuming numerical study.

A second approach is to examine Equation 5.27 when 
 is small and for the initial

value problem (no forcing). The result if the perturbation problem was completed would

be in the form of

zj = z
(0)
j + 
z

(1)
j + ::: (5.64)

The leading order solution is known, since the problem looks exactly like the SDOF con-

stantly damped variable sti¤ness initial value problem solved in Chapter 3. The 1st order

correction is of order 
. Hence, for small 
, the optimal control policy found for the SDOF

problem will be approximately optimal for the coupled problem.

This result can also be seen by looking at the approximate solution for the coupled

problem (Equation 5.54) and by assuming the goal is to maximize the decay coe¢ cients

in the exponential terms. The arguement of the exponential decay terms are nearly the

same for both terms, and only di¤er in the arguement�s denominator. As the denominator

of the arguement of the exponential term is not a function of �1 and �2, it would seem

desirable to maximize numerator of the arguement (i.e. maximize �!n). This is equivalent

to choosing the SDOF uncoupled optimal control policy found in Chapter 3 (see Equations

3.158 and 3.159 while using Figures 3.12 and 3.13). Hence, this policy will be used.

Time Response Results. Time response plots were created for both the

approximate solution and for the simulated solution of the exact equations of motion. In

what follows, only the initial velocity problem is considered, since the initial displacement

problem would be very similar. For the 3 DOF problem, two initial value problems are
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considered. One possibility is only the base mass m�
1 has an initial velocity, resulting in

z�j0 = 0; _z�j0 = � _x�10 (5.65)

and

y�0 = 0; _y�0 =
m�
1

m�
T

_x�10 (5.66)

by applying Equation 5.21 and 5.20. Here, j = 2; 3 and p = 3. In this situation, letting

L� = � _x
�
10

!�0
(5.67)

results in the nondimensional initial conditions

zj0 = 0; _zj0 = 1 (5.68)

and

y0 = 0; _y0 = �
m�
1

m�
T

. (5.69)

The other case is for one of the other masses to have an initial velocity, say m�
2. Since

m�
2 = m�

3 and the isolation devices are identical, it does not matter which one is chosen.

In this case applying Equation 5.21 and 5.20 results in

z�j0 = 0; _z�20 = _x�20, _z�30 = 0 (5.70)

and

y�0 = 0; _y�0 = 
� _x�20 (5.71)

where j = 2; 3; again. Selecting

L� =
_x�20
!�0

(5.72)

results in the nondimensional initial conditions

zj0 = 0; _z20 = 1, _z30 = 0 (5.73)
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and

y0 = 0; _y0 = 
�. (5.74)

Representative results for the second case will be shown, since only one case is required to

understand the basic utility of these results.

Figure 5.2 shows a time response plot for the case 
 = 0:2; " = 0:8, and � = 0. The

SDOF uncoupled time response was plotted, showing that for small coupling, the response

could be used to estimate the coupled response at least for the disturbed mass. Naturally,

no information is provided for the undisturbed mass with this formulation. The simulated

and estimated coupled solutions are also plotted, showing that the estimated solution is

a reasonable approximation to the true system, for both the disturbed and undisturbed

masses.

Figure 5.2 Nondimensional Relative Displacements for the 3 DOF Initial Velocity Prob-
lem (
 = 0:2; " = 0:8; � = 0)

Figure 5.3 shows a time response plot for the case 
 = 0:2; " = 0:8, and � = 0:6. In

this result, the approximate solution underpredicts the simulated displacement in the near

time behavior, resulting in error. However, the error is not so large that the approximate

solution cannot be used in a preliminary design. Running other simulations shows as

coupling increases and " increases, the accuracy of the approximate solution decreases.
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Since the coupling is expected to be small for space telescopes, the error between actual

and approximate solutions is expected to be reasonably small.

Figure 5.3 Nondimensional Relative Displacements for the 3 DOF Initial Velocity Prob-
lem (
 = 0:2; " = 0:8; � = 0:6)

Sinusoidally Forced Problem. In this section, the sinusoidally forced space telescope

problem was considered. It was assumed m1 was disturbed sinusoidally and the goal was

to minimize the transmission of the disturbance to two masses connected in parallel. This

equates to Q�1 = A� cos!�t� with all other disturbances 0; and p = 3. Then Equation 5.27

becomes

�zj + 2� _zj + (1 + "u) zj = 

3X

k=2
k 6=j

�zk �



1 + 

cos!t (5.75)

where j = 2; 3 and by Equation 5.26, L� = A�

k� .

Linear Approximate Solution. Another well known approach for solving

linear problems is through modal analysis [71]. Essentially, a transformation matrix of

eigenvectors is found that completely decouples all of the di¤erential equations in a system

of equations. It is assumed as previously done that the masses of the forced system

are all equal (except the base mass m�
1) and the isolators are all exactly the same. An

estimated analytic solution can be found by applying Equations 4.69 and 4.70 to Equation
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5.75 resulting in

�zj + 2�e _zj + !
2
ezj = 


3X
k=2
k 6=j

�zk �



1 + 

cos!t: (5.76)

or in matrix form

�z +
2�e
1� 
2

24 1 



 1

35 _z + !2e
1� 
2

24 1 



 1

35 z = � 


1� 
2 cos!t

24 1
1

35 . (5.77)

Letting

z = Pq (5.78)

where P =

24 �1 1

1 1

35 allows Equation 5.77 to be put in modal form resulting in

�q +
2�e
1� 
2

24 1� 
 0

0 1 + 


35 _q + !2e
1� 
2

24 1� 
 0

0 1 + 


35 q = � 


1� 
2 cos!t

24 0
1

35 .
(5.79)

The solution to Equation 5.79 is

q =

24 0

 cos (!t+ �)

35 (5.80)

where

 =



(1 + 
)

q
[!2e � !2 (1� 
)]

2 + (2�e!)
2

(5.81)

and

� = � � tan�1 2�e!

!2e � !2 (1� 
)
. (5.82)

Then

z =  cos (!t+ �)

24 1
1

35 (5.83)

showing both mirrors oscillate in phase and with the same displacement. This basic process

could be applied to solve problems where there are more than 2 mirrors (i.e. p > 3).
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Frequency Response Comparison. Equation 5.75 was simulated over a range

of frequencies using the same method discussed in Chapter 4.4 to develop a Bode plot of

the response. The simulated solution was the same for both mirrors (m�
2 and m

�
3). Both

approximations developed in Chapter 4 were compared to the simulated response. Figure

5.4 shows a comparison for the frequency response of both approximate and simulated

solutions for a lightly coupled system and for �1 = 0:5. Reasonable agreement was found

for low frequency and peak response. At high frequency, the approximate solutions show a

40 dB/decade decrease while the simulated solution decreases at a more shallow rate. The

reason for this is not currently known. Hence, it would appear the approximate solution

provides reasonable accuracy, except at high frequency.

Figure 5.4 Nondimensional Relative Displacements for the 3 DOF Initial Velocity Prob-
lem (
 = 0:2; �1 = 0:5; �2 = 0, � = 0)
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The setting for �1 = 0:5 was arbitrary. It is possible to estimate an optimal control

law for the system, which might di¤er from the optimal control law found for the SDOF

problem. The di¤erence in control law is because of the coupling coe¢ cient 
 found in

Equation 5.81 which does not appear in the SDOF approximate amplitude. For small


, the control law will match the SDOF problem, but for large 
, there will likely be a

di¤erence.

5.3 Series Mass MDOF System

Equations of Motion. Figure 5.5 represents another type of model with all masses

in series with each other. The equations of motion are

m�
1�x
�
1 + ~c

�
2 ( _x

�
1 � _x�2) + ~k

�
2 (x

�
1 � x�2) = Q�1; (5.84)

m�
i �x
�
i +~c

�
i

�
_x�i � _x�i�1

�
+~c�i+1

�
_x�i � _x�i+1

�
+~k�i

�
x�i � x�i�1

�
+~k�i+1

�
x�i � x�i+1

�
= Q�i ; (5.85)

and

m�
p�x
�
p + ~c

�
p

�
_x�p � _x�p�1

�
+ ~k�p

�
x�p � x�p�1

�
= Q�p; (5.86)

where p > 1 is the number of masses in the system and i = 2:::p�1. For the MDOF model,

a particular mass or group of masses may be allowed to vibrate while another particular

mass or group of masses may need to be isolated from vibration. For example, this type of

model has been used to model a launch vehicle with a payload [148], [47]. Alternatively,

this type of system can be used to approximate the solution to a distributed system [149].

In this case, the system might represent a variable sti¤ness beam in axial vibration. The

parameter ~c�i is the coe¢ cient of damping for the i
th viscous damper, ~k�i is the variable

sti¤ness function for the ith variable sti¤ness spring, Q�i is the i
th disturbance force acting

on the ith mass m�
i , and Q

�
1 is the disturbance force on m

�
1.

The initial conditions can be de�ned in the same way as the parallel mass MDOF

system using Equations 5.3 and 5.4 by de�ning j = 2; 3; :::; p. The rigid body modes for
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Figure 5.5 MDOF Masses in Series Variable Sti¤ness Constantly Damped Problem

Equations 5.84, 5.85, and 5.86 can be separated out by de�ning

z�j = x�j � x�j�1 (5.87)

and using Equations 5.5 and 5.7. Solving Equation 5.87 for x�j and recognizing it is a

recursive relationship results in

x�j = x�1 +

jX
n=2

z�n. (5.88)

Solving for x�1 and x
�
j results in

x�1 = y� � Z�p ; (5.89)

x�j = y� � Z�p +
jX
i=2

z�j . (5.90)

where

Z�p =

Pp
i=2m

�
i

Pi
j=2 z

�
j

m�
T

=

Pp
j=2 z

�
j

Pp
i=jm

�
i

m�
T

: (5.91)

Substituting Equations 5.87, 5.89 and 5.90 into Equations 5.84, 5.85, and 5.86 results

in

m�
1

�
�y� � �Z�p

�
� ~c�2 _z�2 � ~k�2z�2 = Q�1; (5.92)

m�
i

 
�y� � �Z�p +

iX
n=2

�z�n

!
+ ~c�i _z

�
i � ~c�i+1 _z�i+1 + ~k�i z�i � ~k�i+1z�i+1 = Q�i ; (5.93)
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and

m�
p

 
�y� � �Z�p +

pX
n=2

�z�j

!
+ ~c�p _z

�
p +

~k�pz
�
p = Q�p: (5.94)

Adding all i equations of Equation 5.93 to Equations 5.92 and 5.94 results in

�y� =

Pp
i=1Q

�
i

m�
T

(5.95)

which is the same as Equation 5.13 and represents rigid body motion. Substituting

Equation 5.95 into Equations 5.93, 5.92, and 5.94 results in

m�
1

Pp
i=2m

�
i

m�
T

�z�2 + ~c
�
2 _z
�
2 +

~k�2z
�
2 =

m�
1

m�
T

pX
i=1

Q�i �Q�1 �
m�
1

m�
T

pX
j=3

�z�j

pX
i=j

m�
i ; (5.96)

m�
i

 
� �Z�p +

iX
n=2

�z�n

!
+ ~c�i _z

�
i � ~c�i+1 _z�i+1 + ~k�i z�i � ~k�i+1z�i+1 = Q�i �

m�
i

m�
T

pX
i=1

Q�i (5.97)

m�
p

 
� �Z�p +

pX
n=2

�z�j

!
+ ~c�p _z

�
p +

~k�pz
�
p = Q�p �

m�
i

m�
T

pX
i=1

Q�i : (5.98)

The transformed initial conditions are found by applying Equations 5.5 and 5.87.

3 DOF Problem. Next, a 3 DOF problem is considered, by letting p = 3. The

simpli�ed equations of motion are

m�
1 (m

�
2 +m

�
3)

m�
T

�z�2 + ~c
�
2 _z
�
2 +

~k�2z
�
2 =

m�
1

m�
T

3X
i=1

Q�i �Q�1 �
m�
1m

�
3

m�
T

�z�3 (5.99)

and

m�
3 (m

�
1 +m

�
2)

m�
T

�z�3 + ~c
�
3 _z
�
3 +

~k�3z
�
3 =

m�
1 +m

�
2

m�
T

Q�3 �
m�
3

m�
T

(Q�1 +Q
�
2)�

m�
1m

�
3

m�
T

�z�2 : (5.100)
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Next, the damping and variable sti¤ness functions are speci�ed as

~c�2 = c�2

~c�3 = c�3

~k�2 = k�2 (1 + "2u2)

~k�3 = k�3 (1 + "3u3)

(5.101)

where c�2; c
�
3; k

�
2, and k

�
3 are constants. The parameters "2 and "3 are the total variation

in variable sti¤ness while the functions u2 and u3 are de�ned as

u2 = sgn[(�1z2 + _z2) (�2 _z2 + z2)]

u3 = sgn[(�1z3 + _z3) (�2 _z3 + z3)]
(5.102)

which are control laws. This represents the 3 DOF equation of motion in exact form.

However, the exact form is di¢ cult to solve, so the coe¢ cients will be replaced with an

approximate form based on the approximate equivalent damping and sti¤ness coe¢ cients

de�ned by Equations 3.163 and 3.164. The damping and sti¤ness functions are replaced

as

~c�2 = 2�2!n2

r
m�
1(m�

2+m
�
3)k�2

m�
T

~c�3 = 2�3!n3

r
m�
3(m�

1+m
�
2)k�3

m�
T

~k�2 = k�2!
�2
n2

~k�3 = k�3!
�2
n3

: (5.103)

Next, the equations of motion will be nondimsionalized. To begin, de�ne

w�0 =

s
k�2m

�
T

m�
1 (m

�
2 +m

�
3)

(5.104)

which is the uncontrolled natural frequency for Equation 5.99 and will be used to scale

time for the system. By selecting a nonzero length L� 6= 0 which will be selected later,

Equations 5.99 and 5.100 can be nondimensionalized by letting

t� =
t

w�0
; (5.105)
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z�i = L�zi; (5.106)

and

Q�i =
m�L�!�

2

0

1 + 

= L�k�Qi. (5.107)

The nondimensional equations become

�z2 + 2�2!n2 _z2 + !
2
n2z2 = �
2�z3 +

m�
1

m�
Tk

�
2L

� (Q
�
2 +Q

�
3)�

m�
2 +m

�
3

m�
Tk

�
2L

� Q
�
1 (5.108)

and

�z3+2�3!n3

r

3

2
� _z3+!

2
n3z3 = �
3�z2+

m�
1

m�
T
2k

�
2L

�Q
�
3�


3 (m
�
2 +m

�
3)

m�
Tk

�
2L

� (Q�1 +Q
�
2) (5.109)

where


2 =
m�
3

m�
2 +m

�
3

; (5.110)


3 =
m�
1

m�
1 +m

�
2

; (5.111)

and

� =

s
k�3
k�2
: (5.112)

The parameters 
2 and 
3 are measures of the coupling of the system which are bounded

between 0 and 1.

Considering Equations 5.108 and 5.109, an appropriate length scale can now be

chosen. For an unforced problem a length scale can be created by de�ning a nonzero

length such as

L� = max (x�10; x
�
20; x

�
30) (5.113)

for the initial displacement problem or

L� =
max ( _x�10; _x

�
20; _x

�
30)

w�0
(5.114)
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for the initial velocity problem. For the forced problem with no initial conditions, it is

convenient to choose L� such that the amplitude of at least one of the forcing functions is

unity.

3 DOF Initial Value Problem. For the initial value problem when Q�i = 0; Equa-

tions 5.108 and 5.109 become24 1 
2


3 1

358<: �z2

�z3

9=;+
24 2�2!n2 0

0 2�3!n3

q

3

2
�

358<: _z2

_z3

9=;+
24 !2n2 0

0 !2n3

358<: z2

z3

9=; = 0

(5.115)

or 8<: �z2

�z3

9=;+ 2A
8<: _z2

_z3

9=;+B
8<: z2

z3

9=; = 0 (5.116)

where

A =
1

1� 
2
3

24 1 �
2
�
3 1

3524 �2!n2 0

0 �3!n3

q

3

2
�

35 (5.117)

and

B =
1

1� 
2
3

24 1 �
2
�
3 1

3524 !2n2 0

0 !2n3

q

3

2
�

35 : (5.118)

Equation 5.116 can be solved analytically if A and B are simultaneously diagonalizable.

This occurs if and only if AB = BA [74], [75], [76]. Using symbolic software, AB = BA

when
�2!n2
�3!n3

=

r

2

3�

. (5.119)

Equation 5.119 can also be derived by examining what is di¤erent between A and B and

requiring

�2 = C!n2 (5.120)

and

�3 = C!n3

r

3

2
� (5.121)

where C is an arbitrary constant. Then solving one equation for C and substituting it

into the other results in Equation 5.119. This method of diagonalizing the matrices is
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called proportional damping where C is the proportional damping coe¢ cient [71]. The

restriction of Equation 5.119 prevents analytic solutions to a rocket problem, and limits

approximations to a beam problem.

When Equation 5.119 is true, Equation 5.116 can be solved using classical modal

analysis methods. Equation 5.116 can be rewritten as

f�zg+ 2CD [K] f _zg+ CS [K] fzg = 0 (5.122)

where CD and CS are constants. A transformation P can de�ned such that

[P ]�1 [K] [P ] = [D] (5.123)

where [D] is a diagonal matrix. De�ning a new coordinate vector fqg using the relationship

fzg = [P ] fqg ; (5.124)

substituting into Equation 5.122, then premultiplying Equation 5.122 by [P ]�1 results in

f�qg+ 2CD [D] f _qg+ CS [D] fqg = 0: (5.125)

Solving for qn where n = 2; 3 results in

qn = ane
�CDDnt cos

�q
CSDn � C2DD2

nt+ �n

�
(5.126)

where

an =

q
q2n0
�
CSDn � C2DD2

n

�
+ ( _qn0 + CDDnqn0)

2q
CSDn � C2DD2

n

(5.127)

and

�n = � tan�1
0@ _qn0 + CDDnqn0

qn0

q
CSDn � C2DD2

n

1A . (5.128)

The variables qn0 and _qn0 are the initial conditions for Equation 5.122 and can be found

by applying Equation 5.124.
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Time Response Results. The 3 DOF problem was simulated using the nonlinear

system and was approximated. The values

m�
1 = m�

2 = m�
3 = 20

c�1 = c�2 = 0

k�1 = k�2 = 10
4

(5.129)

were selected to compare the approximate solution with the simulated exact solution.

Results are shown in dimensional form and using the original inertial references. The

initial conditions were all assumed to be 0; except for the initial velocity on m�
1 which was

set to 1. By applying the solution to Equation 5.95, the rigid body motion of the system

was subtracted out of the response leaving just the vibrational motion for examination.

The control law was set to match the optimal SDOF unforced problem. While this

control law is optimal for the SDOF problem, it is uncertain whether it is optimal for

the 3 DOF system. It was found that the approximate solution becomes increasingly less

accurate as the control law is changed from the SDOF optimal control law. The inaccuracy

due to changing the control law means that the real 3DOF system is switching di¤erently

than the SDOF problem. The di¤erence in switching is because coupling between the

masses is strong. Recalling Equations 5.110 and 5.111, the coupling coe¢ cients 
2 and 
3

are both 1
2 . Further, as " is increased, the approximate solution was found to become less

accurate. Increasing " strengthens the nonlinear behavior of the variable sti¤ness device,

which then increases any switching errors. Hence, for su¢ ciently small values of "; the

approximate solution works well. For large values of "; however, the approximate solution

is not valid.

Figure 5.6 shows a time displacement history when " = 0:1 and there is no viscous

damping. The results show the approximate solution slightly overpredicts the amplitude

of the real system, but otherwise is providing a good estimate of the behavior of the real

system.

Next, the response when " = 0:9 was examined, shown in Figure 5.7. The response

has about the right order of magnitude, but the frequency of the approximate solution
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Figure 5.6 Dimensional 3 DOF Series Model Vibrational Displacement History (" = 0:1;
� = 0)

is too fast and out of phase with the clearly nonlinear simulated response. This shows

the switching time has been poorly estimated and the high value of " has exacerbated the

situation.

Next, a viscous damping of c�1 = c�2 = 365 was selected, making � = 0:5. Figure 5.8

shows the response for the system when " = 0:1. Good agreement was found for both

the simulated and approximate solutions. Though not shown, for values of " < 0:4; the

approximate solution appears to reasonably agree with the simulated solution. For higher

values of "; the approximate solution fails to predict the system behavior. For high values

of �; the approximate solution becomes inaccurate for lower values of "; though values of

" as high as 0:1 seem reasonable as �! 1: Since real devices operate for these settings of
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Figure 5.7 Dimensional 3 DOF Series Model Vibrational Displacement History (" = 0:9;
� = 0)

" as seen in Table 2.2, this method can be used to approximate the system behavior of a

system when " is small.

5.4 Conclusions

Two types of variable sti¤ness MDOF problems were examined using the approx-

imate solutions developed in Chapters 3 and 4. One MDOF problem can be used for

preliminary design in a space telescope problem while the other MDOF problem can be

used to approximate a variable sti¤ness continuous beam. In both cases, the approximate

solution provided a good estimate of the simulated solution for small " and small coupling

between the masses in the system. For higher values of " but with small coupling, the

approximate solution was reasonable, but contained error. For higher coupling and higher
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Figure 5.8 Dimensional 3 DOF Series Model Vibrational Displacement History (" = 0:1;
� = 0:5)

" values, the error became rather large, making the approximate solution a poor estimate

of the system.
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6. Conclusions and Recommendations

Semi-active vibration control or the ability to dynamically change damping and/or sti¤ness

of a structure to reduce vibration is a rich area for investigation. It has the potential to

be used in many space applications because it can provide almost the same capabilities

as combined passive and active control (often called hybrid control), but uses much less

power. Semi-active systems (like hybrid systems) can also fail gracefully in that they can

still provide a passive control capability if the powered portion of a device were to fail.

A great deal of research is being done on smart materials that are capable of changing

both damping and sti¤ness. These smart materials include electrorheological dampers,

magnetorhelogical dampers, shunted piezoelectric crystals, shape memory alloys, magne-

torheological elastomers, and mechanical devices. The di¢ culty with the control concepts

and the devices considered is that they are all nonlinear making engineering design di¢ cult

[1].

In this work, a simple analytic variable sti¤ness device using a general on-o¤ con-

trol law was analyzed using several models. All models combined the variable sti¤ness

device with a constant viscous damper. In all cases, the initial value problem was exam-

ined, while the sinusoidally forced problem was examined for the single degree of freedom

problem and one version of a multi-degree of freedom model. These disturbances are

representative of shocks and rotating machinery, respectively. Analysis started with a

single degree of freedom model and worked up to multi-degree of freedom models making

use of the insight gained from the smaller problems. Various methods were applied to

gain insight into the problems to include exact analytic solutions, ad hoc approximations,

perturbation methods, nonlinear analysis, and linear approximate methods. In the next

sections, important results will be summarized. Next, developed engineering tools will be

identi�ed. Finally, follow on research is extensively outlined to include extensions to this

work and an approach for analyzing variable mass systems.
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6.1 Executive Summary of Research Results and Conclusions

For the �rst time, the damped single degree of freedom variable sti¤ness initial value

problem using a general on-o¤ control law was solved. The author and others also re-

cently solved the undamped single degree of freedom problem using a less general on-o¤

control law [144]. The reason this was possible was because an exact representation of the

switching was found. The exact solution was used to develop an approximate viscously

damped system, which can reasonably reproduce the true system. From the exact solu-

tion, behavior of the system was explained for changes in the control law, for variations in

variable sti¤ness strength, and for changes in the viscous damping. The variable sti¤ness

strength was linked to real variable sti¤ness devices, developing a rough performance met-

ric. Further, the guaranteed stability region taking all parameters into account was found.

Using the approximate solution, the optimal control law that causes the system to settle

the fastest was determined. While the optimal control law has been found previously for

a system with no viscous damping, these results include viscous damping e¤ects. It was

discovered that it is possible to switch the system between underdamped and overdamped

states, removing signi�cantly more energy from the system than a viscously damped sys-

tem could by itself. This is because the variable sti¤ness device does work on the system

to remove energy and also changes the equivalent natural frequency of the system, which is

impossible for a viscously damped system. Finally, the work required to achieve a desired

settling time was found and a method for �nding the work the variable sti¤ness does on

the system was explained. Dividing the work in by the work out creates an e¢ ciency

factor. This result can be used to measure e¢ ciency of real devices.

After analyzing the unforced problem, the sinusoidally forced single degree of free-

dom problem was examined, using the same parameters as the unforced problem. Three

approximate methods were considered to develop insight and only two were viable. An

ad hoc approach and a perturbation approach were found to provide a reasonable esti-

mate for system behavior when the variable sti¤ness strength was small. A Fourier series

approach was attempted, but the method resulted in analytically unsolvable nonlinear al-

gebraic equations and provided no insight. The other approaches provided reasonable

solutions as compared to simulated solutions of the true system. Regions for the control
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law were identi�ed that provide low frequency attenuation that a viscously damped sys-

tem cannot provide. The perturbation solution was then minimized over all frequency

to �nd a near optimal control law policy. Comparing the near optimal control policy of

the forced problem to the optimal control of the unforced problem shows the policies were

quite di¤erent. However, it appears possible to accept suboptimal performance for one

type of disturbance and optimal performance in the other disturbance type, allowing the

same control law to be used in both situations. This would, of course, be dependent on

the particular application the variable sti¤ness is used on.

Having analyzed the single degree of freedom problem, two multi-degree of freedom

problems were analyzed, where each controller has the same parameters as the single degree

of freedom system. In both cases, the control laws for all of the variable sti¤ness devices

was made the same to allow the problems to be solved analytically and restrictions on the

masses were made. This made it impossible to determine if the optimal control law should

vary for each mass, which seriously limited insight. The purpose of this analysis was to

extend the single degree of freedom results to larger models more representative of real

systems.

A system representing the cross section of a simple space telescope was examined,

�rst. To represent the variable sti¤ness, the single degree of freedom equivalent viscous

damping model was used. Examining the solution for the 3 degree of freedom system,

it was determined that the optimal control law found from the single degree of freedom

problem would still be optimal. Comparing the approximate solution to simulations

using an exact model showed the approximate solution reasonably approximated the exact

solution and should be usable for design purposes.

The same process was applied to a multi degree of freedom system with all masses

in series. In this case, the system could represent a variable sti¤ness beam. This problem

was much more di¢ cult because it lacked symmetries the space telescope problem had. As

a result, it required solving a more di¢ cult eigenvalue problem, which is di¢ cult to solve

as the number of degrees of freedom in the system increase. For a 3 degree of freedom

problem, it can be solved. Comparisons were made once again between the approximate

and exact simulated solutions. In this case, if the variable sti¤ness strength was not too
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strong, approximate solution provided reasonable results. For larger variable sti¤ness

strength, the approach failed. A major di¤erence between the space telescope problem

and the beam problem was the coupling between masses in the space telescope was much

smaller than in the beam problem.

6.2 Developed Engineering Tools Summary

Important new engineering tools will be summarized. The most important results of

this research will be repeated here and reference to applicable discussion will be provided.

In Chapter 2, the literature was searched to gain understanding of variable damping

and variable sti¤ness systems. As this work focused on variable sti¤ness, only these results

are summarized. In searching the literature, an important parameter " representing the

total variation in variable sti¤ness was identi�ed as a way of comparing variable sti¤ness

devices. It is de�ned as

" =
k�1 � k�0
k�1 + k

�
0

(6.1)

where k�0 is the smallest variable sti¤ness and k
�
1 is the largest sti¤ness a device can be

controlled to create. The "�" notation de�nes the variable as a dimensional quantity.

Many variable sti¤ness devices exist in the literature which nearly span the possible range

of " between 0 and 1, as can be seen in Table 6.1.

An obvious question is which variable sti¤ness device should be used to minimize

vibration in a system? Answering the question requires knowing what the performance

of a system might be given a particular selection for ". To help answer this question, the

single degree of freedom vibration suppression problem

m��x� + c� _x� +
(k�1 + k

�
0)

2
[1 + "u]x� = A� cos!�t� (6.2)

was analyzed where m� is a vibrating mass, c� is the damping coe¢ cient, A� is the am-

plitude of the forcing function, w� is the forcing frequency of a forcing function, x� is the

displacement of the vibrating mass, u is a control law, and t� is time. In Chapter 3, the

initial value problem (A� = 0) was solved exactly and approximately while in Chapter 4
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Table 6.1 Parameter Values for Proposed Variable Sti¤ness Devices in the Literature
Source Year Device "

Albanese and Cuefare [122] 2003 MRE 30% Fe 0.98
Walsh and Lamancusa [129] 1992 Leaf Spring 0.96
Albanese and Cuefare [121], [122] 2003 MRE 35% Fe 0.91
Albanese and Cuefare [121], [122] 2003 MRE 25% Fe 0.80
Albanese and Cuefare [121], [122] 2003 MRE 40% Fe 0.68
Albanese and Cuefare [121], [122] 2003 MRE 10% Fe 0.53
Williams, Chiu, and Bernhard [109] 2002 SMA 0.50
Albanese and Cuefare [121], [122] 2003 MRE 50% Fe 0.49
Clark [125] 2000 Piezoelectric Patch

on Cantilever (On-
O¤)

0.33

Zhou [120] 2003 MRE 27% Fe 0.23
Albanese and Cuefare [121], [122] 2003 MRE 0% Fe 0.10
Ramaratnam, Jalili, and Grier [127] 2003 Piezoelectric (Ca-

pactive Shunt)
0.05

Davis and Lesieutre [126] 2000 Piezoelectric (Ca-
pactive Shunt)

0.04

the forced problem was approximated. The control law chosen in both cases was

u (x�; _x�) = sgn [(��1x
� + _x�) (��2 _x

� + x�)] (6.3)

where ��1 and �
�
2 are arbitrary real constants that tune the controller. When �

�
1 and �

�
2 are

both 0, Equation 6.2 can represent a single degree of freedom system with a piezoelectric

element. Equation 6.2 was nondimensionalized to generalize its use for any dimensional

problem resulting in

�x+ 2� _x+ (1 + "u)x = 0 (6.4)

for the unforced problem or

�x+ 2� _x+ (1 + "u)x = cos!t (6.5)

for the forced problem where

� =
c�p

2m� (k�0 + k
�
1)
; (6.6)

t = t�!�0; (6.7)
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��1 = �1!
�
0; (6.8)

��2 =
�2
!�0
; (6.9)

and

!�0 =

r
k�0 + k

�
1

2m� : (6.10)

Initial Value Problem. Equations 6.4 and 6.5 are four parameter (�1; �2, �;

") nonlinear problems. The exact solution, switching times, and approximate solutions

for the initial value problem in terms of the four parameters can be found in Chapter

3. In the analysis process, depending on the settings of � and ", it was discovered

switching could occur between two underdamped systems, an underdamped and a critically

damped system, or an underdamped and an overdamped system. For convenience, a

system switching between two underdamped systems will simply be called an underdamped

system, while a system switching between underdamped and overdamped systems will be

called an overdamped system. The relationship determining when the system will operate

as an underdamped or overdamped system is

�crit =
p
1� " (6.11)

and the settings for � and " resulting in a particular system behavior can be found in

Figure 6.1. It was found that an underdamped system displayed stable and unstable

behavior depending on the settings for the control law as shown in Figure 6.2. For the

overdamped system, regions where switching stopped, where switching occurred extremely

rapidly, where switching caused unstable system behavior, and where switching caused

stable system behavior were found as shown in Figure 6.3.

Using the approximate solution, the optimal control law that maximizes energy dis-

persion was identi�ed. It was found that �2 = 0 and �1 can be set using Figure 6.4.

Figure 6.4 extends results found in the literature because it allows viscous damping to be

added to the system.The approximate solution was used to develop an equivalent viscously

damped system, and the average natural frequency (Figure 6.6) and average damping ratio

(Figure 6.5) of the system was found for the optimal control policy. Hence, using stan-
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Figure 6.1 Overdamped and Underdamped Regions

dard linear control concepts (settling time, overshoot, etc.), it is now possible to classically

design a single degree of freedom control system to meet a desired performance. Once

the classically designed system is identi�ed, it is now possible to select a desired variable

sti¤ness device that will roughly provide the desired performance. The analogy is rough

because real variable sti¤ness devices display more nonlinearity than was assumed for this

analysis.

Forced Problem. An approximate solution related to a viscously damped system

was developed and used to estimate the long term behavior of a sinusoidally forced system

(Equation 6.5). The approximate solution is able to approximate the primary behavior

of the system, but fails to take into account harmonics excited by the forcing function.

The approximation works reasonably well when " is small, but as " increases, the error

between simulated and approximate results increases at low frequency. It was discovered
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Figure 6.2 Regions where the Variable Sti¤ness Device Controller is Guarranteed Stable

that making �1 > 0 caused improved attenuation of the system, impossible for a passive

system to duplicate. When �1 = 0, the system attenuation was similar to what a passive

system could create, and setting �1 < 0 resulted in attenuation worse than a passive

system might create. However, letting �1 > 0 causes a DC displacement, which may

not be acceptable in all systems. The optimal control law that minimizes the system

attenuation for all frequency was estimated using the approximate solutions, resulting in

a near optimal control law of Figure 6.7. Once again, �2 = 0 for all optimal settings.

Hence, the question of how to select " has been answered for the forced system.

Multi-Degree of Freedom Problems. The approximate solutions were used to esti-

mate the behavior of two systems with multi-degrees of freedom. For a 2 degree of freedom
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Figure 6.3 Variable Sti¤ness Constant Damping Overlaid Unstable Controller and Non-
Switching Regions for Overdamped or Critically Damped System

problem, the equations of motion could be transformed to a single degree of freedom prob-

lem making all single degree of freedom problem results directly applicable. Higher degree

of freedom problems were also examined, such as a system representative of a cross section

of a space telescope. The unforced problem and the forced problem were estimated for a 3

degree of freedom problem and it was found the estimate reasonably agreed with simulated

results. A problem possibly representative of a beam was also examined for the unforced

problem, only. In this case, for small " and �; the estimated solution reasonably approxi-

mated the simulated solution. For larger values of " and �, the approximate solution was

o¤, signi�cantly. The reason for the error was because the coupling between masses in

the system was fairly high. Overall, it was concluded that the single degree of freedom
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Figure 6.4 Variable Sti¤ness Constant Damping Optimal Control Policy (�2 = 0)

approximations could be used in some multi-degree of freedom problems to provide design

insight.

6.3 Recommendations for Additional Research

As this research was carried out, many new questions and ideas were identi�ed for

future research. There are two directions that eventually merge to a single body of work.

First, more research can be accomplished on constant mass systems. This type of research

would extend the work discussed in this dissertation. Second, variable mass systems could

be examined. Variable mass research could be considered with passive isolation to begin

with, and then could add the complexity of variable sti¤ness and/or variable damping,

later.
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Figure 6.5 Variable Sti¤ness Constant Damping Optimal Equivalent Damping Ratio

Constant Mass Semi-Active Control Problems. To begin, much more work can be

accomplished with the single degree of freedom problem. Using the methods in Chapter

3, it should now be possible to solve an initial value problem in the form

�x+ 2� (1 + "cu) _x+ (1 + "ku)x = 0 (6.12)

where 0 � "c < 1 is a change in damping, "k is de�ned as " in Equation 3.11, and u is

de�ned using Equation 3.12. Real variable sti¤ness devices have been seen to create a

small change in viscous damping of the system, also. For example, magnetorheological

dampers are known to behave this way [121], [122].
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Figure 6.6 Variable Sti¤ness Constant Damping Optimal Equivalent Natural Frequency

Another single degree of freedom problem it may be possible to solve using the

Chapter 3 approach is the three parameter problem. As discussed in Chapter 2, the

approach is to place a variable damper in series with a spring, which is then placed in

parallel with another spring, creating a three parameter isolator. Varying the damping

then changes the apparent sti¤ness of the isolator [128], [7].

Assuming these problems can be solved, the next problem to attempt would be to

change the variable sti¤ness device from the abstract device used to a real one, based

on experimental results. This may require solving a nonlinear problem with hysteresis.

Analytic models using real devices may not exhibit analytic solutions, since the equations

of motion become considerably more nonlinear. In this case, analysis would have to be

done numerically and would focus on developing good models that could be simulated. If
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Figure 6.7 Near Optimal �1 for Sinusoidally Forced Problem using Perturbation Ap-
proximation (�2 = 0)

the problem were solvable using a nonlinear device or even if unsolvable, the next step

would be to experimentally verify results. In this situation, the analytic results (as far as

possible) would be linked to real experimental evidence, building con�dence in the created

design tools.

For the sinusoidally forced problem, it would be desirable to �nd an improved ap-

proximate solution. The main limitation of the current approximate solution is it fails

to account for harmonics excited in the system. The attempt to account for this using

the Fourier series approach could not be solved. Hence, some other method is needed to
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account for this. At the same time, this method must allow the control law to be solved

or closely approximated. Adding terms of the Fourier series to the assumed solution of

the problem will not allow the problem to be solved if the switching times cannot be found

because the switching equation is a transcendental equation.

Regardless of whether or not the sinusoidally forced problem of Chapter 4 can be

more accurately approximated, the same systems identi�ed for the unforced problem could

also be approximated for the forced problem. Further, a problem where variable damping

and variable sti¤ness are controlled independently could also be examined. The problem

has the form

�x+ 2� (1 + "cuc) _x+ (1 + "kuk)x = cos (!t) (6.13)

where uk is de�ned using Equation 3.12 and uc is de�ned using the 2 degree of freedom

skyhook control law introduced by Karnopp [80]. In this case, the 2 degree of freedom

problem would be transformed to the single degree of freedom problem using the trans-

formations of Chapter 5. This would transform the skyhook control law, also, creating a

system to be approximated. The payo¤ here is that a combination of variable sti¤ness and

variable damping with the right control law will create even more attenuation than either

variable damping or variable sti¤ness alone. This can be validated using simulation.

As previously discussed with the unforced single degree of freedom problem, the

forced problem should be experimentally veri�ed. If real devices can be used in the analytic

problems, it would be useful to solve these nonlinear problems and then experimentally

verify results. If not, it would be useful to determine how close to reality the problems

that have been solved compare with real systems.

With more insight into the single degree of freedom problems, the multi-degree of

freedom problems can be considered. The current method would be to use linear approx-

imations of the nonlinear behavior and verify their usefulness in multi-degree of freedom

problems. This could be accomplished for a myriad of such problems or at least for those

that can be analytically solved. For those that cannot be analytically solved due to cou-

pling in the linear equations, methods of approximating the coupling through perturbation

approaches or removing the coupling could be explored. Further, it may be possible to
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increase the solvability of coupled linear equations using Lie algebra methods [76]. With

this research, the restrictions on the multi-degree of freedom problems noted earlier might

be relaxed. Finally, just like the single degree of freedom problems, the multi-degree of

freedom problems should be veri�ed experimentally. This would increase con�dence in

the analytic tools being developed by validating them.

Another research possibility is to determine how well variable sti¤ness and variable

damping devices can be calibrated and to determine if they can be quali�ed for use in

space. It is possible to change the maximum variation in sti¤ness and/or damping created

by the devices by simply increasing or decreasing the power supplied to the device. Since

the control law can also be changed easily using computers, this has the e¤ect of providing

tremendous �exibility to change both the control law and the behavior of the structure,

possibly even remotely. For space systems, this could be a great advantage, since it might

allow vibration control to be optimized while a satellite is in orbit, using much less power

than an active system might require.

Variable Mass Semi-Active Control Problems. The variable mass problem has not

been considered in this dissertation, except initially in the literature review of Chapter

2. In this section, a simpli�ed variable mass problem representative of vibration isolation

for a launch vehicle with a payload is considered. After formulating the problem, future

research that could be accomplished is identi�ed.

2 DOF Variable Mass Formulation. Recalling Figure 2.8, the equations of

motion are

m�
1�x
�
1 + _m�

1 _x
�
1 + ~c

� _z� + ~k�z� = Q�1 (6.14)

and

m�
2�x
�
2 � ~c� _z� � ~k�z� = Q�2 (6.15)

where m1 = m1 (t) represents the total mass of the rocket at any time, m�
2 represents a

payload to be isolated, ~c� = ~c� (z�; _z�) is a damping function, ~k� = ~k� (z�; _z�) is a sti¤ness

function,

z� = x�2 � x�1; (6.16)
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Q�1 = Q�1 (t) is the thrust of the rocket engine, and Q
�
2 = Q�2 (t) is a disturbance forced

applied directly to the payload, such as acoustical noise generated by the rocket engine.

Equations 6.14 and 6.15 could also be representative of an SBL (brie�y reviewed in Chapter

2). Similar to Chapter 5, Equations 6.14 and 6.15 can be transformed to a center of mass

coordinate system using

y� =
m�
1x
�
1 +m

�
2x
�
2

m�
1 +m

�
2

: (6.17)

Equations 6.16 and 6.17 look the same as center of mass transformation equations used in

Chapter 5, but have one important di¤erence in that m�
1 of Equation 6.17 is a function of

time. Solving Equations 6.16 and 6.17 for x�1 and x
�
2 results in

x�1 = y� � m�
2z
�

m�
1 +m

�
2

(6.18)

and

x�2 = y� +
m�
1z
�

m�
1 +m

�
2

: (6.19)

For this simpli�ed problem, it will be assumed that

m�
1 (t) =

8<: m�
10 � ��t� if t� < T �B

m�
10 � ��T �b if t� � T �B

(6.20)

where m�
10 = m0

1 (0) ; �
� is a constant mass �ow rate out of the system, and T �b is the length

of time mass is being removed from the system (burn time for a rocket). Substituting

Equations 6.18 and 6.19 into Equations 6.14 and 6.15 and then simplifying results in

�y� � ��

q�
_y� =

Q�1
q�
+
��

2
m�
2

q�2
z� +

��m�
2

q�
_z� (6.21)

and

m�
2 (m

�
10 � ��t�)
q�

�z� +

 
~c� � 2�

�m�2
2

q�2

!
_z� +

 
~k� � 2�

�2m�2
2

q�3

!
z� = Q�2 �m�

2�y
� (6.22)

where

q� = q� (t) = m�
T � ��t� (6.23)
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and m�
T = m�

10 +m
�
2.

Next, Equations 6.21, 6.22, and 6.23 will be nondimensionalized. To nondimension-

alize, �rst de�ne

t = !�0t
�; (6.24)

L� 6= 0; (6.25)

mp =
m�
2

m�
T

; (6.26)

mf = 1�mp =
m�
10

m�
T

, (6.27)

~c� = c�~c; (6.28)

and

~k� = k�~k. (6.29)

The time scaling factor !�0 and the length scale L
� will be de�ned after the nondimen-

sional form of Equations 6.21, 6.22, and 6.23 are examined. The variables mp and mf

represent the mass fraction of the payload and mass fraction of the fully fueled launch

vehicle, respectively. These quantities have physical meaning as identi�ed in Table 2.1

and Appendix A. The quantities c� and k� represent a convenient scaling factor for the

damping and sti¤ness functions, respectively.

After some algebraic manipulation, the nondimensional forms of Equations 6.21, 6.22,

and 6.23 are

�y � � _y = Q1 +
�2mp

q2
z +

�mp

1� �t _z; (6.30)

�z +

�
c�~cq

m�
2w

�
0 (mf � �t)

� 2�mp

(mf � �t) q

�
_z +

 
k�~kq

m�
2!
�2
0 (mf � �t)

� 2�2mp

(mf � �t) q2

!
z

=
q

mf � �t
(Q2 � �y) ; (6.31)

and

q = q (t) = 1� �t (6.32)
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where

� =
��

!�0m
�
T

, (6.33)

Q1 =
Q�1

m�
TL

�!�
2

0

; (6.34)

and

Q2 =
Q�2

m�
TL

�!�
2

0

(6.35)

Now, it is possible to select !�0 and L
�: A good way of selecting L� is

L� =
max

�
Q�j

�
m�
T!

�2
0

(6.36)

where j = 1; 2 making Qj � 1. There are several time scales that could be used for this

problem. These time scales include T �b or the total time mass is �owing out of the system,

a time based on mass �ow rate such as T �� =
��

M�
T
, and a scaling related to the natural

frequency of the structure such as

1

T �S
= !�0 =

s
k�

m�
2mf

=

s
k�m�

T

m�
2m

�
10

. (6.37)

There are other valid ways of de�ning T �� and T
�
S since di¤erent masses could be used in

the de�nitions than those chosen such as the mass at burn out time, the mass at the start

time, the total mass of the system at the starting time, and so on.

A valuable way of choosing a time scale would be one that makes � a small parameter.

If this occurs, it then might be possible to implement perturbation methods to �nd out

how the system behaves. Selecting the time scale of Equation 6.37 appears to meet this

criteria. Additionally, this selection is consistent with the time scaling used in the constant

mass problems analyzed in earlier chapters. Using Equation 6.37, Equation 6.31 simpli�es

slightly to

�z +

�
2�mf~cq

(mf � �t)
� 2�mp

(mf � �t) q

�
_z +

 
mf
~kq

(mf � �t)
� 2�2mp

(mf � �t) q2

!
z =

q

mf � �t
(Q2 � �y) ;

(6.38)
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which is basically the same as Equation 5.29 when � = 0:

To understand why Equation 6.37 makes � a small parameter requires substituting

Equation 6.37 into Equation 6.33. Then

� =
��
p
m�
2m

�
10

m�
T

p
k�m�

T

=
��
p
mpmfp
k�m�

T

. (6.39)

Referring to Table 2.1 or Appendix A and recalling Equations 6.26 and 6.27 shows 0 <

mp < 0:153 and 0:847 < mf < 1. In a worst case scenario, pmpmf < 0:36, which was

determined by �nding max
�p
mpmf

�
using the data in Appendix A. Further,

p
k�m�

T is

likely to be large.

Using the Taurus launch vehicle, a sample � can be found. Stage 0 of the Taurus

launch vehicle has an average vacuum thrust of 363; 087 lbf and a speci�c impulse of 277:9

seconds. The mass �owrate �� can be calculated to be about 1306:5 lb/sec [150]. Using

Appendix A, pmpmf = 0:14 and m�
T = 160; 000 lb. Hence, � = 0:457p

k�
lb/sec where k� is

still to be determined. For a launch vehicle, k� cannot be made small or the payload will

have too much vibration displacement and will impact the payload fairing. It is more likely

that k� will be a large sti¤ness value, so it appears � is in fact a small parameter. More

research could be done to verify � is a small parameter for the di¤erent launch vehicles

identi�ed in Appendix A.

Since � is a small parameter, perturbation methods should be applicable to approx-

imate a solution to Equation 6.38. Equation 6.30, which represents rigid body motion

coupled with the vibrational motion, may be directly solvable, in which case the solution

could be substituted into Equation 6.38.

The rocket engine creates both random vibrations and sustained oscillations at spe-

ci�c frequencies. These disturbances manifest as vibration transmitted mechanically to

the payload and as acoustical induced vibration [21]. As a �rst cut analysis, Q1 (t) and

Q2 (t) could be modeled as white noise or sinusoidal forcing frequencies to determine iso-

lator performance. Afterward, a more representative colored noise disturbance would

need to be modeled and perhaps combined with speci�c narrow band resonances that real

rockets create. Ultimately, real test data might be used as the disturbance force.
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Future Research. Having formulated and nondimensionalized a simple 2

DOF variable mass problem, a research direction can be formulated. Moving from simpler

problems to the more complex, it would be best to analyze Equation 6.38 assuming a passive

isolation system. The results of the analysis could be linked to real data to validate the

results. Next, either variable sti¤ness and/or variable damping could be added to the

system. In might be better to understand variable sti¤ness and variable damping with a

constant mass problem, since this problem does not appear to have been analyzed before

with random noise disturbances. Whether or not this step would be needed would depend

on how easily the passive isolation problem could be solved.

Finally, before attempting semi-active control on a launch vehicle, simpler laboratory

work could be accomplished. In two recent articles, Flores et. al. created two simple ex-

periments demonstrating the e¤ects of variable mass in a single degree of freedom problem.

In one experiment, they �lled a bottle with sand and suspended it from a spring attached

to a �xed support. The sand was allowed to drain from the bottle through an ori�ce

and was found to drain at a constant rate, even when the bottle of sand was oscillating

[151], [152]. Extending this experiment to a two degree of freedom problem and forcing

the system with white noise, colored noise, and/or other forcing functions could simulate a

system similar to a launch problem. Comparing analysis using a passive isolation system

linked to existing launch results with an experimental laboratory device would gauge the

accuracy of the laboratory experiment. If successful, it would constitute a cost e¤ective

experiment with semi-active control for launch vehicles.
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Appendix A. Launch Vehicle Performance

Table A.1 provides calculated mass and payload fractions for various launch vehicles. [153]

Table A.1 Payload and Mass Fractions for Various Launch Vehicles
Launch Vehicle Country Launch

Weight
(lb)

Payload
(lb)

Orbit Mass
Frac

Payload
Frac

Arian 4 France 1,090,000 10,900 GTO 0.990 0.010
Arian 4 France 545,000 4,800 GTO 0.991 0.009
Arian 5 France 1,650,000 15,000 GTO 0.991 0.009
Athena 1 USA 146,000 1,805 LEO 0.988 0.012
Athena 2 USA 266,000 4,520 LEO 0.983 0.017
Atlas 2A USA 413,000 6,760 GTO 0.984 0.016
Atlas 2AS USA 522,000 8,202 GTO 0.984 0.016
Atlas 3 USA 496,900 9,920 GTO 0.980 0.020
Atlas 5 (400 series) USA 734,800 16,843 GTO 0.977 0.023
Atlas 5 (500 series) USA 1,191,200 19,110 GTO 0.984 0.016
Cosmos 3M Russia 240,000 3,100 0.987 0.013
Cyclone 2 Ukraine 404,000 7,900 LEO 0.980 0.020
Cyclone 3 Ukraine 417,000 7,900 LEO 0.981 0.019
Delta 2 (7326) USA 333,000 2,040 GTO 0.994 0.006
Delta 2 (7425) USA 364,000 2,510 GTO 0.993 0.007
Delta 2 (7925) USA 511,000 4,060 GTO 0.992 0.008
Delta 2 (7925H) USA 665,000 4,815 GTO 0.993 0.007
Delta 3 USA 660,000 8,400 Not

Listed
0.987 0.013

Delta 4 Heavy USA 1,617,000 28,950 GTO 0.982 0.018
Delta 4 Medium USA 565,000 9,285 GTO 0.984 0.016
Delta 4 Medium + (4,2) USA 723,000 12,890 GTO 0.982 0.018
Delta 4 Medium + (5,2) USA 736,000 10,230 GTO 0.986 0.014
Delta 4 Medium + (5,4) USA 892,000 14,475 GTO 0.984 0.016
Dnepr-1 Ukraine 464,377 8,377 LEO 0.982 0.018
GSLV India 888,000 3,520 GTO 0.996 0.004
H-2A (H2A202) Japan 642,400 9,000 GTO 0.986 0.014
H-2A (H2A2022) Japan 708,400 9,900 GTO 0.986 0.014
H-2A (H2A2024) Japan 774,400 11,000 GTO 0.986 0.014
J-1 Japan 201,000 2,540 LEO 0.987 0.013
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Launch Vehicle Country Launch
Weight
(lb)

Payload
(lb)

Orbit Mass
Frac

Payload
Frac

K-1 USA 290,000 10,000 LEO 0.966 0.034
LK-1 Israel Not Listed 720 LEO N/A N/A
Long March LM-2C China 422,400 2,200 GTO 0.995 0.005
Long March LM-2E China 1,012,000 7,430 GTO 0.993 0.007
Long March LM-3A China 708,400 5,720 GTO 0.992 0.008
Long March LM-3B China 936,760 9,900 GTO 0.989 0.011
Long March LM-4 China 712,800 2,430 GTO 0.997 0.003
M-5 Japan 302,000 4,000 LEO 0.987 0.013
Minotaur USA 80,340 1,400 LEO 0.983 0.017
Moniya M Russia 672,000 4,400 GEO 0.993 0.007
Pegasus XL USA 51,000 7,800 0.847 0.153
Proton K Russia 1,547,000 45,747 GTO 0.970 0.030
Proton K/Block DM Russia 1,547,000 46,189 GTO 0.970 0.030
Proton M/Breeze M Russia 1,595,996 7,072 GTO 0.996 0.004
PSLV India 644,600 2,640 Sun

Synch
0.996 0.004

Rockot Russia 237,575 4,044 LEO 0.983 0.017
Shavit Israel 66,000 352 LEO 0.995 0.005
Shtil Russia 88,000 195 LEO 0.998 0.002
Shtil 2.1 Russia 88,000 488 LEO 0.994 0.006
Soyuz TM/TMA Russia 15,700 Not

Listed
Not
Listed

N/A N/A

Soyuz U Russia 683,000 16,100 LEO 0.976 0.024
Space Shuttle USA 4,500,000 54,000 0.988 0.012
Start Russia 132,275 1,401 LEO 0.989 0.011
Start Russia 132,275 481 0.996 0.004
Start-1 Russia 103,400 1,077 LEO 0.990 0.010
Start-1 Russia 103,400 232 0.998 0.002
Taurus USA 160,000 3,300 0.979 0.021
Titan 2 USA 340,000 4,200 LEO 0.988 0.012
Titan 4 USA 2,100,000 47,000 LEO 0.978 0.022
Titan 4 USA 2,100,000 39,000 LEO 0.981 0.019
Titan 4 USA 2,100,000 12,700 GEO 0.994 0.006
Vega Italy 286,650 3,300 Polar 0.988 0.012
VLS-1 Brazil 110,000 275 LEO 0.998 0.002
Volna Russia 77,000 244 0.997 0.003
Zenit 2 Ukraine 1,012,620 29,980 LEO 0.970 0.030
Zenit 3SL Ukraine 1,042,785 13,228 LEO 0.987 0.013
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Appendix B. Variation of Parameters for the Initial Value Variable Sti¤ness

Constant Damping Problem

The method of variation of parameters [154] will be applied to solve Equation 3.9 using the

control law de�ned by Equation 3.12. The following discussion is very similar to a deriva-

tion developed by Nayfeh [146] in the preliminaries of using the averaging perturbation

method and uses his reasoning. Rather than continuing by using the method of averaging

like Nayfeh uses on other nonlinear equations, the resulting �rst order di¤erential equa-

tions were solved exactly in Chapter 3. The reason for not using perturbation methods is

these methods assume a small parameter exists in the equations of motion, which is not

strictly true in Equation 3.9. Speci�cally, the parameter of interest in Equation 3.9 is "

which represents the variation of sti¤ness in the system and 0 � " < 1. If a perturbation

method was used, the analytic approximation would likely fail as "! 1, which would have

limited insight into this problem. Table 2.2 shows that real variable sti¤ness devices can

be selected that have large values for ".

When " = 0, the solution to Equation 3.9 is

x = ae��t cos� (B.1)

where

� =  t+ �; (B.2)

 =
p
1� �2 (B.3)

and a and � are constants determined by the initial conditions. Then

_x = �ae��t [� cos�+  sin�] . (B.4)

When " 6= 0, the parameters a and � in Equation B.1 are considered to be functions that

vary in time, which is where the name variation of parameters comes from. Equation B.1

can be thought of as a transformation that relates x (t) to a (t) and � (t). Equations 3.9

and B.1 de�ne two equations with three unknowns. One way to choose a third independent

equation to uniquely de�ne the transformation is to consider the derivatives of Equation
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B.1 when " 6= 0 and force the �rst derivative to have the same form as Equation B.4. The

�rst and second derivatives when " 6= 0 are

_x = e��t
h
( _a� a�) cos�+

�
�a � a _�

�
sin�

i
(B.5)

and

�x = e��t
h�
a� _a�� a _� 

�
cos�+

�
2a �+ a _��� _a 

�
sin�

i
. (B.6)

Hence, to make Equation B.5 have the same form as Equation B.4 requires

_a cos (�)� a _� sin (�) = 0 (B.7)

or by solving for _� and recalling Equation B.2

_� =
_a cos (�)

a sin (�)
= _��  . (B.8)

Note that a (t) 6= 0, since this can only occur when x (t) = 0 by Equation B.1, which only

occurs when Equation 3.9 has 0 initial conditions and represents the trivial solution to

Equation 3.9. Substituting Equations B.1, B.4, and B.6 into Equation 3.9 results in

�
� _a�� a _� + a"u

�
cos�+

�
a _��� _a 

�
sin� = 0. (B.9)

Substituting Equation B.8 into B.9 and simplifying results in

_a

a
=
"u sin (2�)

2 
: (B.10)

Substituting B.10 into B.8 and solving for _� results in

_� =
"u [1 + cos (2�)] + 2 2

2 
=
"u cos2 �+  2

 
. (B.11)

Equations B.10 and B.11 can be simpli�ed somewhat by using Equations 3.23 and 3.24,

resulting in Equations 3.21 and 3.22.
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Next, the initial conditions for Equations B.10 and B.11 will be found for the case

x (0) = 1; _x (0) = 0 (B.12)

and for the case

x (0) = 0; _x (0) = 1. (B.13)

Substituting Equation B.12 into Equations B.1 and B.4 followed by solving them for a0

and �0 results in

a0 = a (0) =
1

 
(B.14)

and

�0 = � (0) = � tan�1 �
 
. (B.15)

Since 0 � � < 1 and 0 <  � 1, then �
 � 0 which means ��

2 < �0 � 0 for the initial

displacement problem. Similarly, substituting Equation B.13 into Equations B.1 and B.4

results in Equation B.14 and

�0 = � (0) = ��
2

(B.16)

for the initial velocity problem.
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