Information Theoretic Comparison of MIMO Wireless Communication Receivers in the Presence of Interference

Daniel W. Bliss and Keith W. Forsythe
MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108
phone: 781-981-3300
e-mail: bliss@ll.mit.edu
email: forsythe@ll.mit.edu

Abstract Multiple-input multiple-output (MIMO) wireless communication provides a number of advantages over traditional single-input single-output (SISO) approaches, including increased data rates for a given total transmit power and improved robustness to interference. Many of these advantages depend strongly upon the details of the receiver implementation. For practical communication systems a competition between communication performance and computational complexity exists. To reduce computation complexity, suboptimal receivers are commonly employed. In this paper, the details of a variety of receivers are incorporated into the effects of the channel so that information-theoretic performance bounds can be exploited to evaluate receiver approaches. The performance of these receivers is investigated for a range of environments. Two classes of environments are considered: first, channel complexity, characterized by the shape of the narrowband channel-matrix singular-value distribution, and second, external interference. Receiver approaches include minimum-mean-squared error, minimum interference, and multichannel multiuser detection (MCMUD), given various assumed limitations on channel and interference estimation. Receiver performance implications are also demonstrated using experimental data.
Information Theoretic Comparison of MIMO Wireless Communication Receivers in the Presence of Interference

Authors:

Performing Organization:
MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108

Report Number:

DISTRIBUTION/AVAILABILITY STATEMENT:
Approved for public release, distribution unlimited

Supplementary Notes:
See also, ADMO01741 Proceedings of the Twelfth Annual Adaptive Sensor Array Processing Workshop, 16-18 March 2004 (ASAP-12, Volume 1), The original document contains color images.

Security Classification of:

<table>
<thead>
<tr>
<th>Report</th>
<th>Abstract</th>
<th>This Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

Limitation of Abstract:
Unlimited

Number of Pages:
29
Information Theoretic Comparison of MIMO Wireless Communication Receivers in the Presence of Interference

Daniel W. Bliss
Keith W. Forsythe
MIT Lincoln Laboratory
bliss@ll.mit.edu

This work was sponsored by the United States Air Force under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
Topics

MIMO Communication

- Introduction
- MIMO Phenomenology
- Receiver Approaches
- Receiver Performance Bounds
- Performance Comparison
MIMO Communication

Multiple-Input Multiple-Output

- Single transmitted data stream
- Single received data stream
- Employ multiple modes through environment
- Potential advantages over single-input single-output
 - Diversity
 - Robustness to interference
 - Spectral efficiency
Not All MIMO Receivers Are Equal

• “Standard” MIMO receivers perform badly in difficult environments
 – Ignore the possibility of jamming or external interference
 – Lower computational complexity
• “Optimal” MIMO receiver barely affected by jamming

MIMO Communication
Multiple-Input Multiple-Output

4 x 4 MIMO

Transmit Array
Receive Array
Jammer

Receiver Performance Comparison

Spectral Efficiency (b/s/Hz)

“Optimal”
“Standard”

SNR = 10 dB

Jammer JNR (dB)

x 1000

MIT Lincoln Laboratory
Topics
MIMO Communication

- Introduction
- MIMO Phenomenology
- Receiver Approaches
- Receiver Performance Bounds
- Performance Comparison
The Channel Matrix

- Channel matrix, \(H \), contains complex attenuation between each transmit and receive antenna
 \[\ddot{z}(t) = H \ddot{x}(t) + \ddot{n}(t) \]

- Large channel matrix singular values are useful

Channel Matrix Singular Values

- Few Useful Modes
- Many Useful Modes
- Scatterers

Sorted by Mode Strength

Relative Power

Low Complexity Channel

High Complexity Channel

MIT Lincoln Laboratory
MIMO Capacity Bound(s)

SISO

\[C_{SISO} = \log_2(1 + \text{SNR}) \]

Informed Transmitter

\[C_{IT} = \max_{P; \text{tr}P = P_0} \log_2 \left| I + HPH^\dagger \right| \]

Uninformed Transmitter

\[P \rightarrow \frac{P_0}{nT} \]

\[C_{UT} = \log_2 \left| I + \frac{P_0}{nT} HH^\dagger \right| \]

\[= \sum_m \log_2 \left(1 + \frac{P_0}{nT} \| s_m \|^2 \right) \]

Channel Singular Values

MIT Lincoln Laboratory
Channel Complexity Parameterization

- Gaussian channel matrix, G
- Simulate more realistic eigenvalue distributions by introducing spatial correlation
 - Parameterized by α
- Modified parameterized random channel matrix, F

\[
F = a \mathbf{U} \mathbf{A}_\alpha \mathbf{U}^\dagger \mathbf{G}' \mathbf{V} \mathbf{A}_\alpha \mathbf{V}^\dagger
= a \mathbf{U} \mathbf{A}_\alpha \mathbf{G} \mathbf{A}_\alpha \mathbf{V}^\dagger
\]

\[
\mathbf{A}_\alpha = \sqrt{n} \frac{\text{diag}\{\alpha^0, \alpha^1, \ldots, \alpha^{n-1}\}}{\sqrt{\text{tr}\{\text{diag}\{\alpha^0, \alpha^1, \ldots, \alpha^{n-1}\}^2\}}}
\]
Topics
MIMO Communication

- Introduction
- MIMO Phenomenology
- Receiver Approaches
- Receiver Performance Bounds
- Performance Comparison
Adaptive Beamforming Receivers

Suboptimal

Beamformer Outputs
\[\tilde{z}' = W^\dagger (H\tilde{x} + \tilde{n}) \]
\[W \equiv (\tilde{w}_1 \tilde{w}_2 \cdots \tilde{w}_{n_T}) \]

Minimum Mean Squared Error
\[\tilde{w}_{n}^{MMSE} \propto \left(I + R + \frac{P_o}{n_T} HH^\dagger \right)^{-1} h_n \]
If Known

Minimum Interference
\[\tilde{w}_{n}^{MI} \propto P_n^\perp \tilde{h}_n \]
\[P_n^\perp = I_{n_R} - \overline{H}_n (\overline{H}_n^\dagger \overline{H}_n)^{-1} \overline{H}_n^\dagger \]
\[\overline{H} \equiv \begin{pmatrix} \tilde{h}_1 & \overline{H}_1 \end{pmatrix} \]

or
\[\tilde{w}_{n}^{MI} \propto \operatorname{min \ eigenv} \left\{ R + \frac{P_o}{n_T} \overline{H}_n \overline{H}_n^\dagger \right\} \]
Multi-Channel Multi-User Detection (MCMUD)

“Optimal” MIMO Receiver

- Effective in environments with
 - Multiple access interference
 - Challenging multipath
 - Jamming
- Iterative decoder
 - Estimation subtraction (multi-user detection)
 - Spatially adaptive beamformers

MIT Lincoln Laboratory
bliss
Topics
MIMO Communication

- Introduction
- MIMO Phenomenology
- Receiver Approaches
- Receiver Performance Bounds
- Performance Comparison
Information Theoretic Capacity

Optimal

Signal Model
\[\tilde{z} = H \tilde{x} + \tilde{n} \]

Mutual Information
\[\mathcal{I}(\tilde{z}, \tilde{x}|H) = h(\tilde{z}|H) - h(\tilde{z}|\tilde{x}, H) \]
\[= h(\tilde{z}|H) - h(H\tilde{x} + \tilde{n}|\tilde{x}, H) \]
\[= h(\tilde{z}|H) - h(\tilde{n}) , \]

- **Receive-Signal Entropy**
 \[h(\tilde{z}|H) = \log_2 |\pi e \langle \tilde{z} \tilde{z}^\dagger \rangle| \]
 \[= \log_2 |\pi e \sigma_n^2 \left(I_{n_R} + H \langle \tilde{x} \tilde{x}^\dagger \rangle H^\dagger \right)| \]

- **Noise-Like Entropy**
 \[h(\tilde{n}) = \log_2 |\pi e \langle \tilde{n} \tilde{n}^\dagger \rangle| \]
 \[= \log_2 |\pi e \sigma_n^2 I_{n_R}| \]

In Interference Environment
\[h(\tilde{z}|H) \leq \log_2 \left\{ \pi e \sigma_n^2 I + \sigma_n^2 R + H \langle \tilde{x} \tilde{x}^\dagger \rangle H^\dagger \right\} \]
\[h(\tilde{z}|\tilde{x}, H) \leq \log_2 \left\{ \pi e \sigma_n^2 I + \sigma_n^2 R \right\} \]

Uninformed Transmitter Capacity
\[C_{UT} = \log_2 \left| I_{n_R} + \frac{P_o}{n_T} \tilde{H} \tilde{H}^\dagger \right| \quad ; \quad \tilde{H} = (I + R)^{-1/2} H \]

MIT Lincoln Laboratory
Beamformer Receiver Extension to Information Theoretic Bounds

Signal Model
\[\tilde{z} = \mathbf{H}\tilde{x} + \tilde{n} \quad \Rightarrow \quad \tilde{z}' = \mathbf{W}^\dagger(\mathbf{H}\tilde{x} + \tilde{n}) \]
\[\mathbf{W} \equiv (\tilde{w}_1 \tilde{w}_2 \cdots \tilde{w}_{n_T}) \]

Noise-Like Entropy
\[h_{uc}(\tilde{z}'|\tilde{x}, \mathbf{H}) \rightarrow \sum_l h_{uc}(\tilde{z}'|x_l, \mathbf{H}) \]
\[= \sum_{m} \log_2 \left(\pi e \sigma_n^2 \tilde{w}_m^\dagger \left\{ \mathbf{I}_{n_R} + \mathbf{R} + \frac{P_o}{n_T} \mathbf{H}_m \mathbf{H}_m^\dagger \right\} \tilde{w}_m \right) ; \quad \mathbf{H} \equiv \left(\tilde{h}_1 \mathbf{H}_1 \right) \]

Receive-Signal Entropy
\[h_{uc}(\tilde{z}'|\mathbf{H}) = \sum_{m}^{n_T} \log_2 \left(\pi e \sigma_n^2 \left[\tilde{w}_m^\dagger \left\{ \mathbf{I}_{n_R} + \mathbf{R} + \frac{P_o}{n_T} \mathbf{H}_m \mathbf{H}_m^\dagger \right\} \tilde{w}_m + \frac{P_o}{n_T} \tilde{w}_m^\dagger \tilde{h}_m \tilde{h}_m^\dagger \tilde{w}_m \right] \right) \]

Receiver Beamformer Capacity
\[C_{uc} = \sum_{m}^{n_T} \log_2 \left[1 + \left(\tilde{w}_m^\dagger \left\{ \mathbf{I}_{n_R} + \mathbf{R} + \frac{P_o}{n_T} \mathbf{H}_m \mathbf{H}_m^\dagger \right\} \tilde{w}_m \right)^{-1} \frac{P_o}{n_T} \|	ilde{w}_m^\dagger \tilde{h}_m\|^2 \right] \]
Topics
MIMO Communication

• Introduction
• MIMO Phenomenology
• Receiver Approaches
• Receiver Performance Bounds
• Performance Comparison
 – Benign
 – Channel Complexity
 – MIMO Interference
 – Jamming
 – Experimental
Performance Comparison
Benign Environment (No Interference)

Minimum Mean Squared Error
\[\hat{w}_n^{MMSE} \propto \left(I + R + \frac{P_0}{nT} HH^\dagger \right)^{-1} \tilde{h}_n \]

or

Minimum Interference
\[\hat{w}_n^{MI} \propto P_n \tilde{h}_n \]

Versus MCMUD

- MMSE has only slight loss compared to MCMUD
- MI performs badly particularly at lower SNR
Performance Comparison
Function of Channel Complexity

- Study 2 regimes of channel complexity
 - $\alpha = 1$
 - $\alpha = 0.5$
- Significant losses for both MI and MMSE at lower channel complexity
Performance Comparison
Effects of Interference

- Second interfering MIMO transmitter
 - Equal transmit power
- MI performs bad at all SNR
- Both MMSE and MI perform badly compared to MCMUD at high SNR
 - More strong signals than antennas
Performance Comparison
Effects of Jammer

- Significant losses for both MI and MMSE over most SNR
- Terrible performance for receivers that are blind to interference structure
MIMO Experiment
Summer 2002

- Investigate channel phenomenology
- Study space-time coding
- Explore transmitter coherence requirements
- Demonstrate robustness to
 - Jamming
 - Cochannel interference

16-Channel Hi-Fidelity Data Recording System

2 Groups of 4, or 8 Coherent Transmitters Near PCS band

MIT Lincoln Laboratory
4x4 MIMO Performance

Motion, Jammers, and LO Errors

- 2 Noise Jammers (25 dB JNR)
- Moving transmitter (25 mph)
- Error-free 2b/s/Hz data-link
- MCMUD near performance of jammer-free environment!
- Interference-blind & MI receivers perform badly

Experimental MIMO Performance

Jammer Spatial Mode Distribution

SISO SINR (dB)

Relative Power (dB)

Mode #

MIT Lincoln Laboratory
Summary

• Presented overview of robust MIMO communication

• Introduced bounds for variety of MIMO receivers
 – MMSE
 – MI
 – MCMUD

• MCMUD advantage significant in many environments
 – Spatially correlated channels (rate improvement > 70)
 – Interference (rate improvement > 5)
 – Jamming (rate improvement > 1000)

• Demonstrated experimental MCMUD immunity to jamming
Acknowledgements

- MIT Lincoln Laboratory
 - New Technology Initiative Board
- Experiment team
 - Sean Tobin, Jeff Nowak, Lee Duter, John Mann, Bob Downing, Peter Priestner, Bob Devine, Tony Tavilla, Andy McKellips, Gary Hatke
- Code, algorithm and experiment design
 - Keith Forsythe, Peter Wu, Ali Yegulalp
- Analysis support
 - Amanda Chan
- Students
 - Nick Chang (U. Mich), Naveen Sunkavally (MIT)
Backups
Experimental Results
Successive MCMUD Iterations

Receiver Bit Error Rate

Mean SISO SNR (dB)

Iteration #3

Bit Error Rate

Space-Time-Frequency Filter
With Multiuser Detection

Training-based
Space-Frequency Filter

Data-Directed
Space-Time-Frequency Filter

MIT Lincoln Laboratory
Channel Modes
Experimental Results

Transmit Array

Receive Array

Cambridge

Relative Power (dB)

Mode #

1 2 3 4

Relative Power (dB)

Mode #

1 2 3 4

MIT Lincoln Laboratory
Adaptive Beamforming in Multipath

Space-Time-Frequency Adaptive Processing

- Delayed and Doppler Shifted Signal
- Receive Array
- Space-Time-Frequency Filter Cube
- Moving Transmitter

- Delay Taps
- Frequency Taps

Adapted Coefficients

Filters weights jointly take into account space-time-frequency correlations

MIT Lincoln Laboratory