Fire Resistant Closed Cell Foams for Aircraft Shelters Technical Review

The objective of the overall effort is to develop a fire resisting closed cell foam with intumescent capabilities in order to effectively increase fire insulation and enhance safe egress time from aircraft shelters in cases of fire. The present report addresses the technical review of the state-of-the-art in intumescence matrix components.
NOTICES

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE 5285 PORT ROYAL RD. SPRINGFIELD VA 22161 TELEPHONE 703-487-4650; 703-487-4639 (TDD for the hearing-impaired) E-MAIL orders@ntis.fedworld.gov WWW http://www.ntis.gov/index.html

AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

//[a/]

VIRGIL J. CARR
Leader, Fire Research Group

//[a/]

RICHARD N. VICKERS
Chief, Deployed Base Systems Branch

//[a/]

JIMMY L. POLLARD, Colonel, USAF
Chief, Airbase Technologies Division

Do not return copies of this report unless contractual obligations or notice on a specific document requires its return.
PREFACE

This report was prepared by the Georgia Tech Research Institute, Electro Optics Environment and Materials Laboratory, at the Georgia Institute of Technology, Atlanta, GA, for the Fire Fighting Research Section of Air Force Research Laboratory (AFRL/MLQD), Tyndall Air Force Base, Florida, and RBX Corporation, Roanoke, VA, under Air Force Contract F08637-03-C-4009, GTRI/EOEML 97838. This document is a review of the literature as it pertains to intumescent of materials as they apply to closed cells foams and similar polymer based materials.

The Start Date for the overall program was 1 October 2003, and the End Date is June 30 2004. The AFRL/MLQD Project Officer is Mr. Paul Carpenter, the RBX Project Officer is Mr. Lynn Bakker, and the GTRI Principal Investigator is Dr. Juan Vitali.

GTRI/EOEML OA7277-01

(The reverse of this page is blank.)
EXECUTIVE SUMMARY

The objective of this program is to develop a fire proof shelter material that is lightweight and meets or exceeds current USAF aircraft shelter specifications. The program is focusing on the development of innovative materials that provide passive and active fire protection. The passive material resistance is proposed to be accomplished by a novel approach that includes the phenomenon of intumescence, and the active protection, is propose to be achieved by the inclusion of non-volatile precursors of fire suppressing gases that activate upon exposure to high heat fluxes. These materials are to be incorporated into shelter covers without any loss of mechanical strength or shelf life.

This report outlines the current state of the art in intumescent chemistries and reviews the current literature on the subject. Over 70% of the current use of intumescent materials is based on its application to plastics. However, the intumescent set of chemicals has been shown to be used in elastomers-based materials as well although it is not very frequent. The common composition of an intumescent matrix includes acid catalysts, a carbonizing agent, and a blowing agent. The most commonly used acid catalysts include ammonium polyphosphate, the most common carbonizing agent includes pentaerythritol, and the most common blowing agent used is melamines. The metric of performance of the use of these compounds is based on a first order estimate of the ability for the final material to insulate against a directly impinging flame. Other characterization techniques include the use of thermo gravimetric analyses to determine the rate of decomposition of the materials.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TECHNICAL REVIEW</td>
<td>1</td>
</tr>
<tr>
<td>A. BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>B. LITERATURE REVIEW</td>
<td>2</td>
</tr>
<tr>
<td>B.1 CATALYSTS (ACID SOURCE)</td>
<td>4</td>
</tr>
<tr>
<td>B.2 CARBONIZING AGENTS</td>
<td>6</td>
</tr>
<tr>
<td>B.3 BLOWING AGENTS</td>
<td>7</td>
</tr>
<tr>
<td>C. TYPICAL EXAMPLES OF INTUMESCENT POLYMERIC MATERIALS</td>
<td>8</td>
</tr>
<tr>
<td>D. TYPICAL LOADING LEVELS</td>
<td>10</td>
</tr>
<tr>
<td>E. CHARACTERIZATION</td>
<td>11</td>
</tr>
<tr>
<td>F. REFERENCES</td>
<td>13</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1</td>
<td>ACID CATALYSTS</td>
</tr>
<tr>
<td>2</td>
<td>CARBONIZING AGENTS</td>
</tr>
<tr>
<td>3</td>
<td>BLOWING AGENTS</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>AFRL</td>
<td>Air Force Research Laboratory</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>APP</td>
<td>Ammonium Polyphosphate</td>
</tr>
<tr>
<td>BP</td>
<td>Burning Percentage</td>
</tr>
<tr>
<td>EVA</td>
<td>Ethyl Vinyl Acetate</td>
</tr>
<tr>
<td>FR</td>
<td>Fire Resisting or Resistant</td>
</tr>
<tr>
<td>HRR</td>
<td>Heat Release Rate</td>
</tr>
<tr>
<td>LOI</td>
<td>Limiting Oxygen Index</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PU</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>SI</td>
<td>Smoke Index</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric Analysis</td>
</tr>
<tr>
<td>TTI</td>
<td>Time to Ignition</td>
</tr>
<tr>
<td>USAF</td>
<td>U.S. Air Force</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
</tbody>
</table>
A. SECTION I
TECHNICAL REVIEW

A. Background

Fire is a major cause of casualties in the US military during peacetime. Fire resistant materials are part of the military’s strategy to increase readiness while better protecting our war fighters and our material assets. The development of lightweight shelters is critical to the Air Expeditionary Forces (AEF) mission of providing prompt logistics support for forward base operations. Deployable airbase systems are to be developed to reduce airlift, setup times, manpower requirements, and sustaining costs. Structures should also have characteristics that enable these shelters to be flexible, and in the case of containing ignitable fuels and other assets such as aircraft, these structures are required to be fire resistant. A key property in providing resistance to fires is the ability of a structure to withstand heat fluxes for a relative long period of time. In addition to these properties, a surface structure that is capable of generating effective fire suppressing gases that would enable the extinguishment of fires in a shelter structure would be a useful and life saving feature.

Although the concept of intumesence is not new, the use of intumescent matrices in closed cell foams is. The objective of this program is to develop intumescent closed cell foams that are fire proof and at the same time is capable of emitting fire suppressing gases to suppress or extinguish fires. Following is a review of the state of the art in intumesence and preliminary recommendations on the components for an intumescent matrix.
B. Literature Review

Intumescence, from the Latin intumescere meaning to swell, has been employed in polymeric systems as an effective halogen-free method of fire retardance. Upon heating, the polymeric material develops a foamed char at the surface that serves as a barrier to heat and mass transfer between the gas and condensed phases. A tremendous variety of polymeric materials have been modified for intumescence. Three general components are needed: (1) char-forming or carbonizing agent, (2) catalyst, typically an acid to decompose the carbonizing agent, and (3) a blowing or foaming agent. The catalyst has often been referred to as a dehydrating agent because many of the carbonizing agents have been polyols that are dehydrated by the acid. In some cases, one or more of these components may already be present in the material, so that imparting intumescence may not always require the addition of all three as separate components in the formulation. For example, polyurethanes and polyamides, which are typical commodity polymers, can act as carbonizing agents.* Thus, only a catalyst and blowing agent would need to be added to materials containing a sufficient fraction of one of these two polymers. When the catalyst and blowing agent are the same material, as is the case with ammonium polyphosphate (APP), then simply incorporating this additive into the formulation may lead to an intumescent material.

For effective intumescence, it is important that the following occur nearly simultaneously, but in this sequence: (1) liquefaction of a char-forming agent, (2) generation of gases for foam formation, and (3) crosslinking for char formation. If formation of the liquid char-forming agent needs activation by

the release of an acid catalyst, then this must occur slightly before step (1). Mechanical properties of the liquefied tar and resulting char are important to consider. The tar should be viscous enough that the generated gases do not simply bubble through, but expand under the force of the escaping gases. Crosslinking of the tar should occur simultaneously so that the char is formed at the point of maximum expansion. The char shield should remain intact and its integrity not compromised so that it can protect the underlying substrate. Thus, the char should not crack under strain at the temperatures experienced during combustion. The char should remain viscoelastic and tough during formation.

Thus, component selection and relative fraction in the formulation must be optimized for a given polymeric material. Much of the successful intumescent formulations have been developed empirically, although recent mathematical models hold promise as a more efficient methodology.*

Established intumescents are based on ammonium polyphosphate, melamine phosphates, and pentaerythritol derivatives. All of these materials are hydrophilic, which could be problematic for applications that require water resistance. Non-hydrophilic alternatives include polyol phosphoryl chloride† and expandable graphite.

Expandable graphite, also called vermicular graphite, is an intumescent material prepared from graphite and sulfuric acid. The sulfuric acid is intercalated between the graphite layers at high pressure. When exposed to temperatures between 160 and 220 °C, the sulfuric acid vaporizes

and causes separation of the graphitic sheets. The result is a bulk volumetric expansion. It serves as both blowing agent and carbonization compound. Polyolefins* and polurethane foams have been made intumescent with expandable graphite. It can be used alone or in conjunction with other compounds.

Intumescent materials are much safer than earlier flame retardant systems that used halogenated materials to reduce gas-phase combustion. The halogen-based flame-retardant systems release toxic smoke and corrosive gases into the air upon combustion. The combustion products of the intumescent systems are no more harmful or toxic than the combustion products of the bulk material. In fact, due to the physical barrier created by the carbonaceous mass, the volume of combustion products is much less than from the combustion of the bulk material alone. Another disadvantage of the halogen-based systems is that these materials are only effective for as along as the halogenated additive is present. Following intumescence, a char shield effectively protects the substrate.

B.1. Catalysts (Acid Source)

These compounds release an acid during thermal decomposition that catalyzes the decomposition of the carbonizing agent. These acid catalysts help promote the formation of carbonaceous char.

Table 1. Acid Catalysts.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Empirical Formula</th>
<th>Decomposition Temp (°C)</th>
</tr>
</thead>
</table>

Monoammonium phosphate \(\text{NH}_4\text{H}_2\text{PO}_4 \) 147
Diammonium phosphate \((\text{NH}_4)_2\text{HPO}_4 \) 87-147
Ammonium polyphosphate \((\text{NH}_4\text{PO}_3)_n \) 215
Melamine phosphate \(\text{C}_6\text{H}_6\text{N}_6\cdot\text{H}_3\text{PO}_4 \) ~300
Urea phosphate \(\text{CO}(\text{NH}_2)_2\cdot\text{H}_3\text{PO}_4 \) 130
Diammonium sulfate \((\text{NH}_4)_2\text{SO}_4 \) 400

Ammonium polyphosphate (APP) is a commonly used intumescent additive, often in combination with pentaerythritol. The APP acts as both acid catalyst and blowing agent for the carbonizing pentaerythritol. The following have been used as synergistic agents in APP/PER intumescent mixtures: various metallic compounds,\(^*\) zeolites, clays, fluid catalytic cracking catalyst waste (zeolites and clays),\(^†\) and borosilicone.

Ammonium polyphosphate has been used with pentaerythritol and melamine as an intumescent additive. One noted problem is that this trimixture is hydrophilic and therefore can phase separate from hydrophobic polymers like polypropylene. Methods of compatibilization have proved successful,\(^‡\) but it is unclear whether truly necessary for materials that are melt-processed.

A potential new intumescent additive is calcium gluconate monohydrate. This material expands by loss of water of hydration as well as dehydration of hydroxyl groups, primarily between 120 and 250 °C. As opposed to all of the other intumescent additives, this one is base-catalyzed.

B.2 Carbonizing Agents

First-generation carbonizing agents are compounds with high carbon and hydroxyl contents, or at least high hydroxyl content upon thermal degradation so that esterification with acids can occur. These materials are referred to as polyols in the literature. Examples include pentaerythritol, starch, and their derivatives; they react with the acids liberated from the acid precursor catalysts. Upon reaction with acids, the resulting esters thermally degrade at higher temperatures to yield water and carbon dioxide for foaming to yield a carbonaceous char.

Table 2. Carbonizing Agents

<table>
<thead>
<tr>
<th>Compound</th>
<th>Empirical Formula</th>
<th>Carbon Content (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythritol</td>
<td>C₆H₁₂(OH)₆</td>
<td>39</td>
</tr>
<tr>
<td>Pentaerythritol</td>
<td>C₁₅H₂₂(OH)₁₀</td>
<td>44</td>
</tr>
<tr>
<td>Pentaerythritol dimer</td>
<td>C₁₅H₁₀(OH)₁₀</td>
<td>50</td>
</tr>
<tr>
<td>Pentaerythritol trimer</td>
<td>C₁₅H₁₂(OH)₁₀</td>
<td>53</td>
</tr>
<tr>
<td>Dextrin</td>
<td>(C₆H₁₀O₃)₁₀</td>
<td>44</td>
</tr>
</tbody>
</table>

These polyols often suffer from low compatibility with the host polymeric matrix which can lead to diffusion out of the product, referred to as blooming of the additive. One possible solution is replacement of the polyols with true polymeric carbonizing agents like polyamides or polyurethanes. Polyamides and polyurethanes can be used as the carbonizing agents because of an acid-catalyzed depolycondensation reaction that takes place at elevated temperatures. Upon decomposition a carbonaceous mass is produced. Generally, ammonium polyphosphate (APP) is used as the catalyst in these systems.

B.3 Blowing Agents

These compounds release copious amounts of non-flammable gases (NH₃, CO₂, H₂O) during thermal decomposition, thus expanding the carbonaceous layer and forming a “foam” structure. In order to form an intumescent layer, the decomposition temperature of the blowing agent should be near or greater than the decomposition temperature of the catalyst.¹³
Table 3. Blowing Agents.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Empirical Formula</th>
<th>Decomposition Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea</td>
<td>CH₅N₂O</td>
<td>130</td>
</tr>
<tr>
<td>Guanidine</td>
<td>CH₅N₂</td>
<td>190</td>
</tr>
<tr>
<td>Dicyandiamide</td>
<td>C₆H₅N₄</td>
<td>210</td>
</tr>
<tr>
<td>Glycine</td>
<td>C₅H₈NO₂</td>
<td>233</td>
</tr>
<tr>
<td>Melamine</td>
<td>C₆H₅N₅</td>
<td>250</td>
</tr>
</tbody>
</table>

Melamine and melamine derivatives can be used as solitary flame retardants in polyurethane foams. These compounds can act as both catalysts and blowing agents.

C. Typical Examples of Intumescent Polymeric Materials

Polypropylene: APP/pentaerythritol/boroxo silicone

These components have been combined with boroxo silicone in a polypropylene matrix to increase the melt viscosity and char viscoelasticity. This results in better fire retardancy due to decreased dripping.*

Polypropylene: APP/polyamide (nylon 6)/ethyl vinyl acetate copolymer (EVA)

Ethyl vinyl acetate is a surfactant here to compatibilize APP and the polyamide. *

Polyurethane: APP†

Char formation is favored by chemical reaction of polyurethane with APP. Phosphorus is incorporated in the char as crosslinks between PU chain fragments.

Polyurethane: expandable graphite‡

There is no chemical reaction between the polyurethane and the expandable graphite. Less char is formed as compared to polyurethane:APP. The char consists of separate expanded graphite and degraded polyurethane.

Polypropylene: melamine phosphate- pentaerythritol §

Reactive extrusion of polypropylene with melamine phosphate and pentaerythritol yields a compatible intumescent material. By reacting melamine phosphate with pentaerythritol, an intumescent additive is prepared with all three components for intumescence in a single compound.

‡ Duquesne, Sophie; Le Bras, Michel; Bourbigot, Serge; Delobel, Rene; Camino, Giovanni; Elting, Berend; Lindsay, Chris; Roels, Toon. Thermal degradation of polyurethane and polyurethane/expandable graphite coatings. Polymer Degradation and Stability (2001), 74(3), 493-499.
§ Chen, Yinghong; Liu, Yuan; Wang, Qi; Yin, Huan; Aelmans, Nico; Kierkels, Rene. Performance of intumescent flame retardant master batch synthesized through twin-screw reactively.
D. Typical Loading Levels

The following system was incorporated into a polypropylene (PP) matrix which resulted in formation of a successful intumescent layer and little change to mechanical properties:*

Based on wt of PP:
23 wt% ammonium polyphosphate (n=700)
14 wt% pentaerythritol
13 wt% melamine

A successful flame-retardant layer was formed by adding 40 wt% APP to a soft polyurethane (PU) foam. An intumescent foam-char structure is not formed; however, the material becomes non-dripping and self-extinguishing.†

Two other formulations that have been used on soft PU foams include the following:‡

- 30 wt% total additives with 3:1:1 molar ratio of APP:pentaerythritol:melamine
- 30 wt% total additives with 1:2:1 molar ratio of melamine phosphate:dipentaerythritol

Formulations for soft PU foam which include expandable graphite:

- 15 wt% melamine and 5-10% expandable graphite*

• 15-25 wt% expandable graphite and 3 wt% triethyl phosphate (decreases CO/CO₂ ratio)†

E. Characterization

Thermogravimetric analysis provides mass versus temperature at a constant heating rate. From these data, the degradation onset temperature and profile may be determined, along with the char yield. The degradation onset temperature can be defined as the temperature of 2% weight loss. The degradation profile reveals information on the degradation mechanism.

Heat release capacity‡ can be measured with a pyrolysis-combustion flow calorimeter. This device is used to separate fuel generation from combustion, as they occur at the surface and in the flame respectively, in a fire. Samples are heated in an inert gas stream at a fixed heating rate. The evolved fuel gases are swept away and mixed with excess oxygen and completely oxidized at 900 °C. The combustion products are removed from the gas stream and the oxygen concentration and mass flow rate measured. The oxygen consumed is then used to calculate the heat release rate from the sample.§

Smoke generation, heat release rate, and total heat release in forced flaring combustion are measured using a cone calorimeter. A standard method is employed and the calculations based on

11
the oxygen consumption principle. Most measurements in the literature use a cone calorimeter and follow ISO 5660 and ASTM-E-1354/6 guidelines for the measurement of TTI (time to ignition), BP (burning percentage), and HRR (heat release rate). The TTI of a FR material should be higher than that of a non-FR material. BP and HRR should be minimized when compounded with FR materials.

Another important measurement is the LOI (limiting oxygen index) which measures the necessary amount of oxygen present for combustion. The LOI test follows ASTM-D-2863. When performing the cone calorimeter tests, the general heat flux levels for testing are 25, 35, and 50 kW/m².

Evolved gases can be monitored by infrared or mass spectrometry of the effluent stream from the cone calorimeter or thermogravimetric analyzer.

The thickness of the intumescent layer of these materials when exposed to elevated temperatures has been reported to increase anywhere from 50 to upwards of 500%. This can be monitored with optical microscopy using a heated stage.

F. REFERENCES

Grexa, Ondrej; Poutch, Franck; Manikova, Desana; Martvonova, Helena; Bartekova, Andrea. Intumescence in fire retardancy of lignocellulosic panels. Polymer Degradation and Stability (2003), 82(2), 373-377.

Tang, Yong; Hu, Yuan; Wang, Shaofeng; Gu, Zhou; Chen, Zoyou; Fan, Wei. **Intumescent flame retardant-montmorillonite synergism in polypropylene-layered silicate nanocomposites.** Polymer International (2003), 52(8), 1396-1400.

Balabanovich, Alexander I.; Balabanovich, Alia M.; Engelmann, Jochen. **Intumescence in poly(butylene terephthalate): the effect of 2-methyl-1,2-oxaphospholane-5-one 2-oxide and ammonium polyphosphate.** Polymer International (2003), 52(8), 1309-1314.

Chen, Yinghong; Li, Yuan; Wang, Qi; Yin, Huan; Aelmans, Nico; Kiekebusch, Rene. **Performance of intumescent flame retardant master batch synthesized through twin-screw reactively extruding technology: effect of component ratio.** Polymer Degradation and Stability (2003), 81(2), 215-224.

Lewin, Menachem; Endo, Makoto. **Catalysis of intumescent flame retardancy of polypropylene by metallic compounds.** Polymers for Advanced Technologies (2003), 14(1), 3-11.

Vijayakumar, Chinnaswamy Thangavel; Sivasamy, Palanichamy; Geetha, Bashyam; Fink, Johannes Karl. Structural basis for intumescence - study of model compounds containing spiro

Le Bras, M.; Bourbigot, S. Use of carbonizing polymers as additives in intumescent polymer blends. ACS Symposium Series (2001), 797(Fire and Polymers), 136-149.

Ma, Zhi-Ling; Zhao, Min; Hu, Han-Fang; Ding, Hai-Tao; Zhang, Jie. Compatibilization of intumescent flame retardant/polypropylene composites based on α-methacrylic acid grafted polypropylene. Journal of Applied Polymer Science (2002), 83(14), 3128-3132.

Duquesne, Sophie; Le Bras, Michel; Bourbigot, Serge; Delobel, Rene; Camino, Giovanni; Eling, Berend; Lindsay, Chris; Roels, Toon. **Thermal degradation of polyurethane and polyurethane/expandable graphite coatings.** Polymer Degradation and Stability (2001), 74(3), 493-499.

Duquesne, Sophie; Le Bras, Michel; Bourbigot, Serge; Delobel, Rene; Camino, Giovanni; Eling, Berend; Lindsay, Chris; Roels, Toon; Vezin, Herve. **Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate.** Journal of Applied Polymer Science (2001), 82(13), 3262-3274.

Wu, Qiang; Qu, Baojun. **Synergistic effects of silicotungstic acid on intumescent flame retardant polypropylene.** Polymer Degradation and Stability (2001), 74(2), 255-261.

Davies, Philip J.; Horrocks, A. Richard; Minaftab, Mohsen. Scanning electron microscopic studies of wool/intumescent char formation. Polymer International (2000), 49(10), 1125-1132.

Le Bras, Michel; Bagajny, Michel; Lefebvre, Jean-Marc; Bourbigot, Serge. Use of polyurethanes as char-forming agents in polypropylene intumescent formulations. Polymer International (2000), 49(10), 1115-1124.

Bourbigot, Serge; Le Bras, Michel; Dabrowski, Francois; Gilman, Jeffrey W.; Kashiwagi, Takashi. PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire and Materials (2000), 24(4), 201-208.

Rudakova, T. A.; Demicheva, O. V.; Ergov, V. V.; Khalturinskij, N. A. *The influence of pressure and oxidizing atmosphere composition on foam coke layer formation under heat action on polymer coating.* Low Flammability Polymeric Materials (1999), 33-42.

Bugajny, Michel; Le Bras, Michel; Noel, Alain; Bourbigot, Serge. *Use of thermoplastic polyurethanes as carbonisation agents in intumescent blends. Part 3: modification of the dynamic properties of polypropylene/thermoplastic polyurethane/ammonium polyphosphate*

Pagella, C.; De Faveri, D. M. Vitreous fillers as a smoke suppressor in intumescent coatings. Recent Advances in Flame Retardancy of Polymeric Materials (1999), 10 228-240.

Bugajny, Michel; Le Bras, Michel; Bourbigot, Serge. The use of thermoplastic polyurethanes as carbonization agent in polypropylene-based intumescent materials. Recent Advances in Flame Retardancy of Polymeric Materials (1999), 10 196-212.

Le Bras, M.; Bourbigot, S. Comprehensive study of the degradation of an intumescent EVA-

Wladyka-Przybylak, Maria; Kozlowski, Ryszard. The thermal characteristics of different intumescent coatings. Fire and Materials (1999), 23(1), 33-43.

Bugajny, Michel; Le Bras, Michel; Bourbigot, Serge. Short communication: new approach to the dynamic properties of an intumescent material. Fire and Materials (1999), 23(1), 49-51.

Snyder, Donald M.; Samas, Brian. Investigation of the effects of amino-bis-phosphonic acid derivatives on char formation of cellulosics and in intumescent compositions. Recent Advances in Flame Retardancy of Polymeric Materials (1998), 9 218-236.

Bagajewicz, Michel; Le Bras, Michel; Bourbigot, Serge; Delobel, Rene. Thermal behavior of ethylene-propylene rubber/polyurethane/ammonium polyphosphate intumescent formulations - a kinetic study. Polymer Degradation and Stability (1999), 64(1), 157-163.

Reshetnikov, I. S.; Khalturinskij, N. A. The role of radiation over intumescent systems burning. Special Publication - Royal Society of Chemistry (1998), 224(Fire Retardancy of Polymers), 152-158.

Bourbigot, S.; Leroy, J.-M. Modeling of thermal diffusivity during combustion - application to
intumescent materials. Special Publication - Royal Society of Chemistry (1998), 224(Fire Retardancy of Polymers), 129-139.

Le Bras, M.; Bourbigot, S. Fire retarded intumescent thermoplastics formulations, synergy and synergistic agents-a review. Special Publication - Royal Society of Chemistry (1998), 224(Fire Retardancy of Polymers), 64-75.

Ebdon, John R.; Guisti, Lionel; Hunt, Barry J.; Jones, Mark S. The effects of some transition-metal compounds on the flame retardance of poly(styrene-co-4-vinyl pyridine) and poly(methyl methacrylate-co-4-vinyl pyridine). Polymer Degradation and Stability (1998), 60(2-3), 401-407.
Le Bras, Michel; Bourbigot, Serge. **Synergy in FR intumescent polymer formulations.** Recent Advances in Flame Retardancy of Polymeric Materials (1997), 8 407-422.

Bourbigot, Serge; Le Bras, M.; Siat, C. **Use of polymer blends in flame retardancy of thermoplastic polymers.** Recent Advances in Flame Retardancy of Polymeric Materials (1997), 8 146-160.

Siat, Catherine; Bourbigot, Serge; Le Bras, Michel. **Thermal behavior of polyamide-6-based intumescent formulations - a kinetic study.** Polymer Degradation and Stability (1997), 58(3), 303-313.

Bourbigot, Serge; Le Bras, Michel; Delobel, Rene; Gengembre, Leon. *XPS study of an intumescent coating. II. Application to the ammonium polyphosphate/pentaerythritol/ethylenic terpolymer fire retardant system with and without synergistic agent.* Applied Surface Science (1997), 120(1/2), 15-29.

Bourbigot, Serge; Le Bras, Michel; Delobel, Rene; Revel, Betrand; Tremillon, Jean-Michel. *Comparative structural study of intumescent coatings formed from e-bus-mah-ammonium polyphosphate-pentaerythritol formulations with and without zeolite.* Recent Advances in Flame Retardancy of Polymeric Materials (1997), Volume Date 1996, 7 201-211.

Levchik, S. V.; Camino, G.; Costa, L.; Luda, M. P. *Mechanistic study of thermal behavior and combustion performance of carbon fiber-epoxy resin composites fire retarded with a

Bourbigot, Serge; Le Bras, Michel; Delobel, Rene; Breant, Patrice; Tremillon, Jean-Michel. 4A zeolite synergistic agent in new flame retardant intumescence formulations of polyethyleneic polymers - study of the effect of the constituent monomers. Polymer Degradation and Stability (1996), 54(2-3), 275-287.

Camino, Giovanni; Luda, Maria Paola; Costa, Luigi; Guaita, Marino. *Thermal degradation of ethyleneurea formaldehyde polycondensates.* Macromolecular Chemistry and Physics (1996), 197(1), 41-60.

Kim, Jin Kyu; Cho, Yangha; Jung, Ok-Sang; Sohn, Youn Soo. *A potential flame-retardant by*

Marchal, Arnaud; Delobel, Rene; Le Bras, Michel; Leroy, Jean-Marie; Price, Denia. Effect of intumescence on polymer degradation. Polymer Degradation and Stability (1994), 44(3), 263-72.

Bourbigot, Serge; Le Bras, Michel; Delobel, Rene. Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon (1993), 31(8), 1219-30.

Hindersinn, Raymond R. Perspectives on polymer fire retardants. CHEMTECH (1990), 20(11), 672-6.

Delobel, Rene; Le Bras, Michel; Ouassou, Najib; Descressain, Regis. **Fire retardance of polypropylene by diammonium pyrophosphate-pentaerythritol: spectroscopic characterization of the protective coatings.** Polymer Degradation and Stability (1990), 30(1), 41-56.

Bertelli, G.; Marchetti, E.; Canino, G.; Costa, L.; Locatelli, R. **Intumescent fire retardant systems:**

Montaudo, Giorgio; Puglisi, Concetto. Intumescent flame retardant for polymers. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) (1989), 30(1), 524-5.

Ballistreri, Alberto; Montaudo, Giorgio; Scamporinio, Ernilio; Puglisi, Concetto; Vitalini, Daniele; Cucinella, S. Intumescent flame retardants for polymers. IV. The polycarbonate-aromatic sulfonates system. Journal of Polymer Science, Part A: Polymer Chemistry (1988), 26(8), 2113-27.

Severini, Febo; Gallo, Raffaele; Pegoraro, Mario; Audisio, Guido. Reaction products of triglycydyl isocyanurate with orthophosphoric and polyphosphoric acids and their use as flame-retarding agents. FATIPEC Congress (1986), 18th(Vol. 2/A), 201-17.

