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ABSTRACT

This report presents an algorithm for efficiently solving the Simultaneous Localisation
and Map Building (SLAM) problem. The SLAM problem requires both the dynamic
estimation of the sensor location and the tracking of features of interest in the environ-
ment using the sensor measurements. The problem is difficult because the unknown
sensor and feature locations are coupled through the sensor measurement. It has been
shown that under linear Gaussian conditions, a Kalman Filter solution converges to a
solution relative to the unknown starting location. However, this approach does not
scale well with the number of features in the scene, and is unfeasible for large maps.
The algorithm introduced here is based on the Probabilistic Multi-Hypothesis Tracker
(PMHT) and exploits a factorisation of the problem to reduce the computational re-
quirements of the Kalman Filter approach. The new algorithm is demonstrated on a
benchmark data set recorded in Victoria Park.
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Simultaneous Localisation and Map Building using the Probabilistic
Multi-Hypothesis Tracker

EXECUTIVE SUMMARY

This report introduces a new algorithm for solving the feature-based Simultaneous Localisa-
tion and Map Building problem (SLAM). In feature-based SLAM, one or more platforms move
through an unknown environment containing stationary objects (landmarks) that can be observed
with onboard sensors. The aim is to simultaneously estimate the position and orientation of the
platform, while producing a map of the landmarks. SLAM provides a method for frame-to-frame
registration of sensor observations when navigation information is lacking, or not of high enough
accuracy.

The standard approach to feature-based SLAM is to stack all of the unknowns into a system
state vector, and then use a Kalman Filter to estimate the state values. However, this state vector
becomes very large as the number of landmarks increases, and the algorithm resource requirements
scale as the square of the number of unknowns. This makes the direct Kalman Filter approach
infeasible for large maps. In addition, the Kalman Filter approach assumes that the association
of measurements to landmarks is known, and is only compatible with simple data association
methods.

The algorithm presented here is based on the Probabilistic Multi-Hypothesis Tracker (PMHT),
which is a multi-target tracking approach that provides good scaling properties with the problem
size. By generalising the standard PMHT, an algorithm is found that scales lincarly with the
number of landmarks in the map, while offering performance at least as good as the Kalman Filter
approach.

The performance of the PMHT SLAM algorithm is analysed using simulated data and com-
pared with that of the Kalman Filter approach. PMHT incorporates a kind of probabilistic data
association, and this is demonstrated to give significant performance improvements when mea-
surement errors are high. The performance of the algorithm is also presented for a benchmark
SLAM data set recorded by the University of Sydney. The algorithm output is shown to be com-
parable with that achieved by state-of-the-art algorithms, even when navigation measurements are
denied.
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Notation

assignment index for the rth measurement from sensor n at scan ¢
(the true measurement source)

all assignments for sensor n at scan ¢

all assignments at scan ¢

all assignments

number of landmarks (targets) in world
number of landmarks in field-of-view
number of sensors

EM auxiliary function

number of scans (batch length)

state of landmark m at scan ¢

all landmark of target m

all landmark states

state of sensor 7 at scan ¢

all states of sensor 1

all sensor states

the rth measurement at scan ¢ from sensor n
all measurements at scan ¢ from sensor 7

all measurements at scan ¢

all measurements

measurement pdf

number of observations at from sensor n at scan ¢
assignment prior, Pk, = m)

set of all assignment priors

the state prior for sensor n

the state evolution pdf for sensor n

the state prior for target m

the state evolution pdf for target m

estimate calculated on the ¢th EM iteration
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1 Introduction

The standard target tracking problem is to estimate the location (and perhaps other parameters)
of scatterers in the sensor ficld of view using sensor measurements. It is usually assumed that the
sensor location and orientation are known with sufficient accuracy [Blackman & Popoli 1999].
A notable exception is the registration problem, when multiple sensors are fused together. In
registration, the sensor position and orientation are known to within a small error, and this error
is estimated by comparing measurements or tracks on common targets (¢.g. [Bar-Shalom & Blair
2000]). Navigation is the reverse of the tracking problem. Here the locations of the features are
known (the sensor has a map) and the dynamic sensor position is estimated (e.g. [Bar-Shalom
et al. 2001]).

The problem where both the sensor position and the feature (target) locations are to be esti-
mated is referred to as Simultaneous Localisation and Map Building (SLAM) or Concurrent Map
Building and Localisation (CML). The inherent difficulty in the SLAM problem is that the sensor
data is generally a nonlinear function of the relative difference between the sensor and feature
positions. This coupling of the unknowns through the observation process necessitates a joint
estimation scheme.

Numerous methods have been used to address the SLAM problem. [Thrun 2002] gives a
good overview of mapping and SLAM approaches. This report will be concerned with feature-
based SLAM where the environmental map is composed of a set of discrete stationary objects
(landmarks). The benchmark method for solving this problem is to use a Kalman Filter with a
state vector consisting of the platform location and all of the landmark locations stacked together.
When the system is linear and the random elements are Gaussian, this is an optimal approach,
and it has been shown that the map derived converges to a relative map with zero uncertainty
[Dissanayake et al. 2001]. However, the approach does not scale well with large maps. If there are
M landmarks, then the length of the state vector is proportional to M and the covariance matrix is
proportional to M? (ignoring the contribution of the sensor state). This means that the algorithm’s
memory requirement grows as M2 and its computation requirement grows at least as M2 1. For
this reason, the stacked state vector approach is infeasible for large maps (large M).

One solution to the complexity of the stacked state vector approach is to update only those
landmarks within the locale of the platform for most measurements. The information about other
landmarks garnered from these measurements comes only through improved knowledge of the
platform, and can be incorporated using global updates at a slower rate. An algorithm based on this
principle is presented in [Guivant & Nebot 2001a]. This method still has quadratic complexity in
the number of landmarks inside the field of view, but it is somewhat insensitive to the total number
of landmarks in the world. In contrast, the standard stacked state vector has quadratic complexity
in the total number of landmarks. If the number of landmarks currently in view is much smaller
than the total number (which is the case for many problems) then this represents a considerable
saving.

The stacked state vector methods explicitly assume that the association of measurements to
landmarks is known. In practice, this means that nearest neighbour association would be used.
Other data association approaches, such as probabilistic data association, or Multi-Hypothesis
Tracking could be adapted, but given that the problem generally has a large number of landmarks,

"Multiplications involving the covariance matrix will be order M® unless the special structure of the matrices in-
volved is exploited.
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and the computation cost with even nearest neighbours is prohibitive, it is unlikely that these
approaches could be feasibly implemented.

An alternative approach to stacking the state vector is to exploit the Bayesian factorisation
of the problem. Conditioned on the sensor location, the landmark estimation problem is in-
dependent for the different landmarks. This allows parallel filtering, which is hence linear in
the number of landmarks. The difficulty then becomes tracking the sensor position. One algo-
rithm based on this approach is referred to as FastSLAM [Montemerlo et al. 2002, Montemerlo
et al. 2003, Montemerlo 2003]. FastSLAM uses a particle filter to track the sensor location, and
parallel Extended Kalman Filters to track the landmarks. The particle filter is a Monte Carlo based
estimation technique [Doucet et al. 2001]. The sensor pdf is represented by a collection of MP
random samples, referred to as particles. For FastSLAM, cach particle performs parallel EKFs
for each landmark. Since the conditional pdf of the landmarks is tracked, no information about a
landmark is gained unless it is observed. FastSLAM uses this fact to reduce the work it needs to
do for the unobserved landmarks. FastSLAM claims a complexity of loge M and MP M, where
Mrovy is the number of landmarks currently in the sensor filed of view. If Mroy < M and N
is not too large, then FastSLAM is more efficient than the Kalman Filter approach. Although the
computation requirements scale well, they remain quite high [Guivant & Nebot 20015].

Besides the computational aspects of FastSLAM, there are other advantages of the approach.
The particle filter it uses is not based on linear Gaussian assumptions, and is a preferred method
for nonlinear non-Gaussian filtering (e.g. [Ristic et al. 2004]). In applications where the sensor
passes close to landmarks, such as with ground vehicles, the nonlinearity may be high, and the
Extended Kalman Filter may not be adequate for the problem. FastSLAM also has an in-built data
association ability by using the particles to sample the different possible assignment combinations.
Thus the sensor filter uses a Monte Carlo approximation for the data association problem as well
as the nonlinear filtering.

This report will present a different algorithm, similarly based on the Bayesian factorisation
of the SLAM problem. This algorithm uses Probabilistic Multi-Hypothesis Tracking to achieve
a complexity only linear in the number of targets, and uses probabilistic data association. The
Probabilistic Multi-Hypothesis Tracker (PMHT) of [Streit & Luginbuhl 1995] is an algorithm
derived from the application of the Expectation Maximisation (EM) of [Dempster et al. 1977] to
the tracking problem. The standard PMHT models the assignment of measurements to targets
as hidden variables (nuisance parameters) and estimates target states by taking the expectation
over the assignments. Unlike other tracking approaches, PMHT assumes that the assignment of
cach measurement is an independent realisation of a random process. This assumption allows
the PMHT to be optimally realised with linear complexity in the number of targets (i.e. Mpov ).
PMHT is a data association approach, and the estimation scheme used depends on the problem.
For linear Gaussian statistics, the PMHT can be implemented as a bank of parallel Kalman Filters.
For nonlinear problems, particle filters have been used.

This report demonstrates how a generalisation of the PMHT can be used to realise a solution
for the multi-vehicle SLAM problem. This solution can be implemented as an iterative scheme,
alternating between a bank of parallel filters for the landmarks, and a bank of parallel filters for the
sensor platforms. For the application considered, there is only a single platform, and the PMHT
algorithm is realised with Mroy + 1 independent EKFs.

The remainder of the report is set out as follows. Section 2 defines the multi-vehicle SLAM
problem, and summarises the stacked state vector and FastSLLAM methods for solving it. Section 3
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derives a PMHT algorithm for multi-vehicle SLAM. Section 4 compares the PMHT algorithm with
the stacked state vector EKF and FastSLAM using simulations. The PMHT algorithm is applied
to a benchmark data set recorded in Victoria Park in section 5. Section 6 presents a summary.
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2 Problem Definition

Consider the multi-vehicle SLAM problem where there are /N sensors observing M land-
marks. Not all landmarks are necessarily visible to all sensors at any particular time. At discrete
epochs, the sensors observe their environment, but the time between epochs is not necessarily reg-
ular, and the sensors may or may not make observations at the same time. The PMHT is derived
over a batch of data, but it can be implemented as a sliding window, or a recursive estimator, de-
pending on the requirements of the application. Each of these latter forms is simply obtained from
the batch processor, and so a batch will be assumed.

Suppose that there are T observation times (scans). The time of the #th scan will be denoted
7+ and the number of observations from sensor n as n. n;* may be zero. Let zy,, denote the rth
observation from sensor n at scan ¢, and Z,, be the set of all observations from sensor n at scan t.
If sensor n does not collect observations at time 74, then n]* = 0 and Zy,, = 0, the empty set. Z; is
the set of all measurements at scan £, and Z is the grand collection of all of the observed data.

Let the state of sensor n at scan ¢ be denoted by y7. The set of states for all scans is denoted as
Y™, and the set of all sensor states as Y. Similarly, let the state of landmark m at scan ¢ be denoted
by 3. The set of landmark states for all scans is denoted as X™, and the set of all landmark states
as X,

Let k4, denote the true source of measurement zy,,.. The index k;,,- gives the landmark that
gave rise to measurement Zin,, thus ke € 1... M. kg, is referred to as the assignment index
and is unknown (or else data association is unnecessary). The sets Ky,, K, and K are defined as
above.

Assume that the prior distribution of the state of each sensor is known, and is given by ¢? (y2)
for sensor n. Similarly, the known prior distribution of each landmark is given by ¥ () for
landmark m. If these are unknown, then it is assumed that an estimation scheme exists based on
measurements (a la track initiation).

The sensor dynamics are described by the evolution pdf ¢7 (y? |yf_1), and the landmark dy-
namics by ;" (az?|azﬂl). Both of these are assumed known.

Finally, the observation process is described by a known measurement pdf that is denoted as
¢ (Zenr|YE, 7, kine = m). This pdf may be different for each sensor.

2.1 Stacked State Vector Solution
The standard Kalman Filter solution is based on stacking the state vectors of the various un-
known objects. This approach was first introduced in [Smith et al. 1990].

The problem described above contains M unknown landmark state vectors and N unknown
sensor positions. Let the system state be defined as

T
- 1T NT _aT MT
Ht:[yt U TP FuR 5 . e

That is, =; is the stacked vector of all the states at scan ¢.
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Assume that the assignments are known, and that the random processes are lincar and Gaus-
sian. That is,

oo (¥5) ~ N(yg,Pe™), 2)

¢r (Yrlyis) ~ N (F/™yi, Q") 3)

Yo' (xzp) ~ N(zg',Pg™), 4

ot (@eily) ~ N (FP™ e, Q) (5)

G (Zinr |yt @ binr = m)  ~ N (H{ ™y + HY "z, RY), (6)

where N{u, ) is a normal density function with mean p and covariance matrix 3.

The evolution pdf for the system state is then also linear and Gaussian, given by
P (Et|Zi-1) ~ N (FiEi-1, Q1) (7N

where F; and Q; are block diagonal matrices, ¢.g.

[FYl 0 0 ]
0
FPY o
Fi = f
0o Fp!
L0
0 0o FPM

Similarly the system prior is given by
p(Z0) ~ N (Z0,Po), 3

where =g is the stacked vector of the prior means, and Py is the block diagonal prior covariance
matrix.

The mean of the measurement pdf for measurement z;,,,- can be written as
HY ™ y? + H "2 = Hine B, 9)
where Hyy,,- is a sparse matrix with HY"™ and H;”" positioned appropriately

Hine = [...0...H/™ .0 H®™...0..].

A stacked measurement matrix can now be constructed

Hii1

H
Hy= | | (10)
Heog

L Hth,fV n
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and a stacked measurement vector

-
Zi= |z, oz 2 gy | (11)

so that the probability of all of the measurements in scan ¢ is
P(Ze]Y 1, Xy, Ky) = p (24e]E4, Ky) ~ N (HiZEg, Re) (12)

where R; is a block diagonal matrix made up of the covariances corresponding to each individual
measurement.

It should now be clear that a Kalman Filter can be implemented to estimate =4 from Z;. Under
the linear Gaussian conditions, this will be an optimal estimator.

The primary difficulty with this approach is that the solution does not scale well with the prob-
lem size. The length of the system state vector, =, grows linearly with the number of landmarks,
M. This means that the covariance matrix used by the Kalman Filter will grow as M 2. The sparse-
ness of the matrices F: andQ; can be exploited to reduce the required computation overhead, but
the system covariance matrix will not be sparse because the measurement process couples the
states. For problems with a large number of landmarks, this approach becomes infeasible.

2.1.1 Data Association

The above analysis assumed that the assignment of measurements to landmarks was known,
i.e. ki is known, This will usually not be true. To relax this assumption, an association process
such as global nearest neighbours can be used. The algorithm requires hard assignments, so it may
perform poorly in ambiguous situations.

2.1.2 Nonlinearity

The obvious way to extend the Kalman Filter approach for nonlinear problems is to use an
Extended Kalman Filter. This replaces the true state evolution and measurement functions with
linear approximations based on a truncated Taylor series expansion. The matrices J; and ‘H; are
then formed using Jacobians. The EKF is known to perform poorly for highly nonlinear systems,
and may diverge.

Alternatively, the stacked state vector problem could be tackled with a nonlinear filter, such as
a particle filter. However, particle filters are not well suited to problems with a high dimensional
state, because one needs to use a large number of particles to populate the state space.

2.1.3 Large Maps

When the number of landmarks is large, the Kalman Filter approach is infeasible. One solution
is to only update a subset of the landmarks in the locale of the sensor [Guivant & Nebot 2001a].
When the sensor moves to a new locale, the measurements not included for these landmarks can
be lumped together and the map corrected.
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2.2 FastSLAM

The FastSLAM? approach of [Montemerlo 2003] is based on the exact Bayesian factorisation
of the problem,

M
P(X,Y|Z) = P(Y|Z) || P(X™|Y,2). (13)

m=1

The landmark terms on the right hand side can each be solved with independent EKFs, but the
sensor term is more difficult. FastSLAM uses a particle filter approach to approximate this. To the
author’s knowledge, FastSLAM has only been applied to single platform problems.

There are two published versions of the FastSLAM algorithm, referred to as FastSLAMI1.0
[Montemerlo et al. 2002] and FastSLAM2.0 [Montemerlo et al. 2003] respectively. These algo-
rithms are substantially the same, except that the FastSLAM?2.0 uses a different proposal distri-
bution. Under FastSLLAM?2.0, each particle does more work, but the algorithm can get by with
fewer particles. In the limit, as the number of particles becomes large, the two are equivalent.
[Montemerlo 2003] gives a comparison of the two variants, and demonstrates under which condi-
tions one is preferred over the other.

2.2.1 Data Association

FastSLAM naturally incorporates probabilistic data association. It does this by sampling the
possible association combinations with the particles. So, the collection of particles spans the set of
assignment hypotheses, and it is hoped that the particles that survive are those carrying the correct
hypotheses.

2.2.2 Nonlinearity

The heart of FastSLAM is a particle filter for estimating the platform state. The particle filter
is a natural choice for nonlinear problems, and it should be anticipated that FastSLAM would offer
an advantage in this type of problem.

2.2.3 Large Maps

The landmark estimates are conditional estimates given the platform state. Since each particle
has (at least potentially) a different state value, each particle must carry out its own landmark esti-
mation. However, since the landmarks are not dynamic, there is no prediction, and the conditional
density only changes when a landmark is observed, so the algorithm needs to do M? X Mpoy
landmark updates, where M? is the number of particles and Moy is the number of landmarks in
the field of view. This means that there are M — Moy landmarks that are not updated for each
particle.

After the update, each particle has a weight, and the weighted combination of the particles is
the pdf estimate. It turns out that particles will become degenerate and have zero weight unless

2This section will have to be evolutionary as my understanding of this algorithm improves
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resampling is done. In resampling, the new set of particles is drawn from the updated set using the
weights as a pmf for the selection. This means that the filter has to do M particle copies during
resampling. Results presented in [Montemerlo 2003] demonstrate that the particle copy process
actually limits the performance of the algorithm since each particle contains M state estimates. It
turns out that many of the landmark estimates that are out of the current field of view will be the
same because the resampling causes the higher weight particles to be selected more frequently.
This means that some of the resampling copy process is creating duplicate copies of the same data
which is wasteful of memory and computation. By using pointers to trees of landmark estimates,
FastSLAM has an efficient method for handling these out of sight landmarks. [Montemerlo 2003]
argues that the complexity of this scheme is logarithmic in M since the binary tree used to store
landmark estimates has depth log, M. So, assuming that M roy < M, then the computation time
of the algorithm is limited by M? logy, M.

Arriving at a complexity only logarithmic in the number of landmarks seems remarkable (less
than linear!) but this conclusion is a little deceptive. The algorithm must do MP? particle updates
cach of which consists of a platform prediction (requiring only a random number draw), M roy
local landmark updates, a weight calculation, and M resamplings, each of which is heuristically
logy M in complexity. In comparison the stacked state vector using only local landmarks needs to
assign measurements and perform a Moy stacked state EKE The particle filter weight calcula-
tion requires M? x Moy pdf evaluations, each of which is expensive. Even considering only the
landmark updates, the particle filter uses M? x Moy EKFs whereas the stacked EKF uses one of
size Mroy. Although the single stacked EKF is costly, FastSLAM does numerous small filters.
Overall, the stacked state vector on the local area is independent of M except on global updates,
and FastSLAM is not. So, it appears that the low complexity claims of FastSLAM are overstated.
However, FastSLLAM does have advantages for data association and nonlinear problems.
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3 Probabilistic Multi-Hypothesis Tracker for SLAM

The fundamental philosophy behind the PMHT approach to SLAM presented here is an itera-
tive application of partial Expectation Maximisation (EM). This will be explained by first briefly
explaining EM for the simpler tracking problem, where Y is known (i.e. the standard PMHT).

The task is to estimate the target states, X, given the observed data Z. However, the assignment
of the measurements, K, is unknown. In an EM context, the assignments are treated as missing
data or nuisance parameters; it is unimportant what K are, except that it appears one must solve
for the joint posterior P(X, K|Z) to obtain the optimal X. EM theory applied to this problem
defines an auxiliary function

Q(X|X) = > P(K|X,Z)log P(X,K,Z) (14)
K

that is the expectation of the joint likelihood over the assignments. The probability of the assign-
ments is evaluated at some guess of the states, X. One finds the state X that maximises Q(X |X)
and this becomes an improved guess of the states. EM theory states that the iterative application
of this process converges to the same X that optimises P(X, K|Z), subject to local maxima. This
is useful if Q(X|X) is easy to maximise, which it is for the tracking case.

In the case of SLAM, the problem has an additional unknown, Y, the sensor states. So the
direct application of PMHT would require the joint estimation of X and Y, as with the Kalman
Filter method. However, if partial EM is used instead, the problem is much simpler. Partial EM is
where one seeks not to estimate all of the states, but to estimate some of them, and keep the others
fixed. If Y is kept fixed, it is equivalent to assuming that the current estimated sensor trajectory is
the true trajectory, and then doing the standard tracking problem. One iteration of the EM for this
would be

e Calculate the probability of the assignments given the assumed sensor trajectory, Y, and the
current landmark state estimates X;_. This defines the auxiliary function.

e Determine a new landmark state estimate X; by optimising the auxiliary function. This can
be done in parallel for each landmark - the auxiliary function contains independent terms.

A similar EM process can be obtained by only updating the sensor states. Here the landmark
positions are assumed known. For this case, the sensor states can be independently estimated by a
bank of filters. By combining the two partial updates, an iterative scheme is achieved which will
converge, subject to local maxima. The algorithm is thus of the form

e Choose an initial guess of the landmark positions, Xo, and the sensor trajectories, ?0.
e Calculate the assignment probabilities to determine the auxiliary function.

e Refine the sensor trajectory estimates to find Y, by maximising the auxiliary function with
landmarks fixed at X = X;_;.

e Calculate the assignment probabilities to determine the auxiliary function.

e Refine the landmark estimates to find X by maximising the auxiliary function with sensors
fixedatY =Y, 1.

e Repeat 2 ...5 until convergence.
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3.1 The Algorithm

Assume that all state sequences are independent of each other, and all measurements are con-
ditionally independent, given the relevant states. Assume that all measurements from the same
sensor are identically distributed given the relevant states. Assume that the assignments are 11D
random variables from a prior distribution 7* = P(k;. = m).

Due to the independence assumptions, the complete data likelihood is given by:

P(X,Y,K,Z) = P(X)P(Y)P(K)P(Z|X,Y,K) (15)
where,
N T
PY) = J[& @) ]]¢r wrlvra) (16)
n=1 t=1
M T
PX) = [ @ ]]vr (@) (17)
m=1 =1
T mny
PK) = [[][~* (18)
t=1r=1
T ngy
PZX, Y K) = J]T]¢ (zurluis o) (19)
t=1r=1
So,

log P(X,Y,K,Z) =log P(X) +log P(Y) + log P(K) + log P(Z|X,Y,K)  (20)
where cach of the terms to the right above is itself a sum of terms due to the factorised nature of

the problem.

The assignments are missing data, so the EM auxiliary function requires P(K|X, Y, Z) which
can be found using Bayes’ Rule and some simple manipulations:

P(X,Y,K,Z)
PX,Y,Z)
P(X,Y,K,Z)

Y P(X,Y,K,Z)
K

P(X)P(Y)P(K)P(Z|X,Y,K)
P(X)P(Y) ) P(K)P(ZX,Y,K)

P(K[X,Y,Z)

K
P(K)P(Z|X,Y,K)
Y P(K)P(Z|X,Y,K)

K

T ny

kir n n ki
H H TG (ztr|yt » L T>
t=1r=1
T e

S TTTT e (zlyi, i)
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t=1r=1

So, the conditional probability of the assignments is given by the product of individual per
measurement terms. In common PMHT parlance, the w,,,;, is referred to as the weight for mea-
surement zy,. and target model m. Notice that this weight is simply a likelihood ratio evaluated
using the current state estimates.

Combining all this leads to the auxiliary function

QX Y[X,Y) = > P(KX,Y,Z)log P(X,Y,K,Z)
K

T M m
= log P(X) +1log P(Y) + Z Z Z Wty log )"
t=1 m=1r=1

T M +
33T W log (2 lyl, ) (23)

t=1 m=1r=1

Notice that the measurement term is composed of pairs of states, each with one sensor and
one target, coupled together by the measurement function. Thus (at worst) all the targets and all
the sensors are coupled together through this term. However, none of the targets are coupled with
each other, and none of the sensors are coupled with each other. This is pretty much the standard
PMHT result which allows the normal algorithm to be achieved with linear complexity in the
number of targets. So, if X were known, Y could be estimated with independent filters for each
sensor. Similarly, if Y were known, X could be estimated with independent filters for each target.
These are the standard navigation and tracking (mapping) functions respectively. This means the
problem is amenable to partial EM.

3.2 Statement of Algorithm

The PMHT can be implemented cither as a batch algorithm, or recursively. Here the batch
form is presented. The recursive algorithm is trivially recovered by choosing a unit length batch.
1. Initialise the target and sensor states, X (0) and Y (0).
2. Calculate the assignment weights, w,,¢,

3. Refine the sensor estimates, Y (i), assuming the target states are fixed (ic X = X (i — 1)).
This is independent for the sensors; N parallel filters/smoothers.

4, Recalculate the assignment weights, w,,,,-

11
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5. Refine the target estimates, X (i), assuming the target states are fixed (ie Y = Y (i)). This
is independent for the targets; M parallel filters/smoothers.

6. Return to step 2 until convergence.

In theory, convergence should be checked by evaluating the auxiliary function and monitoring
its growth (each step should increase it by an asymptotically smaller amount). However, in practice
calculating the auxiliary function is more expensive than the rest of the algorithm, and most of the
time it converges in only two or three iterations. So, a practical scheme is likely to rather run the
EM process for a fixed number of iterations (perhaps three).

Under linear Gaussian statistics, the state estimates can all be determined with Kalman Fil-
ters/Smoothers. The sensor filters can be implemented using synthetic measurements which are
effectively a mean pseudo-measurement, combining the various observations, with an associated
synthetic covariance.

3.3 Data Association

PMHT is inherently a data association algorithm. The algorithm assumes that the data asso-
ciation is unknown and uses EM to treat it as nuisance parameters. The resulting algorithm is
somewhat like a probabilistic data association approach.

3.4 Nonlinearity

PMHT is not restricted to a particular estimation algorithm. In the general statement of the
algorithm, it simply requires that the implementation use the optimal estimator for the problem.
For nonlinear problems, an EKF could be used, or a particle filter could be implemented. Both
forms have been used by various authors, and the choice depends on what estimator is appropriate
for the problem.

So far, the example problem presented in the next section has assumed that the state estimation
can be adequately solved using Extended Kalman Filters/Smoothers. Further work is required to
obtain an analytic result demonstrating that this is indeed the linear approximate solution - or to
determine what is, if something else.

3.5 Large Maps

The PMHT approach is well suited to large maps. Due to the conditional factorisation, there
is no need to update the estimates of landmarks outside of the field of view. The complexity in the
number of landmarks inside the ficld of view is linear, so the total cost of the algorithm comparable
to FastSLAM with a single particle, and much less than that of the stacked state vector Kalman
Filter.
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4 Comparison of PMHT SLLAM with Other Approaches

The previous section derived a PMHT based algorithm for solving the SLAM problem. As
stated carlier, this is far from the first solution to SLAM, so it is important to compare it with ex-
isting approaches to the problem. Three metrics will be considered for this comparison: platform
position estimation accuracy, computation time requirement, and data storage requirement. The
first measures the quality of the algorithm output, and the others measure the cost of using the
algorithm. The performance of the PMHT will be compared with the stacked state vector EKF
approach and FastSLAM. In the EKF case, implementation is relatively simple, and quantitative
results are readily obtained. However, implementation of FastSLAM is more difficult. To avoid
erroncous results due to poor implementation, inferences about performance compared with Fast-
SLAM will be made using the results comparing FastSLAM performance and EKF performance
given in [Montemerlo 2003].

4.1 Estimation Accuracy

To measure estimation accuracy, it is necessary to compare the algorithm output with truth.
For the real experiment in section 5, the only truth available is a set of GPS reports, that fluctuate
by several metres between reports. This fluctuation is comparable, if not greater than the SLAM
output error, so this data does not provide a useful set for quantitative error analysis. In order to
get reliable error statistics, simulated data was be used.

The simulated scenario contained a single platform that observed landmarks using a radial
sensor (range and bearing). The accuracy of this sensor was varied by scaling a base measurement
variance according to

012 0
2
R(k) = r [ 0 0.05° } @9

When « was large, then data association became important.

The platform state was the same as was used for the Victoria Park experiment described later.
Namely,
X position
Y position
Yy, = heading , (25)
speed

steering angle ) ,

with white Gaussian process noise on the speed and steering angle to emulate manocuvres. The
platform is initialised at the origin with zero heading, a speed of 7/2 and a steering angle of
tan=1(L/50), where L is the axle length of the vehicle from the Victoria Park experiment, i.c.
2.83 metres. This corresponds to a 50 metre radius turn at one revolution per 200 seconds. The
state evolution equations for this model are given in (36) ... (40). Two process noise examples
were considered. The low process noise case had no process noise on the speed and noise with
a standard deviation of 0.0001 radians on the steering angle. This is effectively no process noise.
The high process noise case had standard deviations of 0.04 metres per second and 0.02 radians
respectively.

13



DSTO-TR-1691

14

®
g
3t
g

X positon (mh “Zis0 —100 50

(a) Example platform trajectories (b) Example low Q trial

Figure 1: Simulation examples

A fixed number of landmarks was randomly placed inside the world volume. To avoid extreme
non-linearity, any landmark that was within three metres of the vehicle path was removed. The
scenario runs for 200 sensor updates at the same rate as the laser sensor in the Victoria Park
experiment, approximately 4.7 Hertz.

Figure 1(a) shows a few realisations of the high process noise example. The trajectory with
zero process noise is shown as a dashed line. This demonstrates that the process noise is indeed
high, but the true trajectories are still smooth due to the integration effect of the state model.
Figure 1(b) shows an example trial with low process noise. The sensor field-of-view is shown as a
semi-circle. Due to the random landmark placement, some landmarks are quite close together.

Monte Carlo trials were run for varying sensor accuracy (x) and the two process noise values.
Estimation performance was measured using two quantities

Divergent track rate is the percentage of trials on which the worst estimation error is more than
3 metres.

RMS estimation error is averaged over time and trials for non-divergent trials.

Figure 2 shows the RMS estimation error for the two algorithms as a function of the mea-
surement accuracy. As expected, the error is higher for the high process noise case. For the high
process noise and high measurement error case, both the PMHT and the EKF give similar error
performance, but for all other cases, the PMHT has lower error.

Table 1 gives the percentage of divergent platform estimates. The PMHT is clearly far superior
to the EKF in this area. In fact, the PMHT only ever diverges for the most difficult scenario where
process and measurement noise are both high.

From these results, it is clear that the PMHT algorithm gives much better estimation perfor-
mance than the EKF. This is primarily because of data association. The EKF here uses a nearest
neighbour based data association method. The EKF has relatively poor performance for the low-
est measurement noise case (k = 1). This is because the low measurement noise results in a high
Kalman gain, and when incorrect assignments are made, the spurious measurement correction
causes the platform estimate to diverge.
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Figure 2: RMS position estimation error

EKF PMHT EKF PMHT
k|lowQ lowQ highQ highQ

1 34 0 74 0

2 3 0 24 0

5 14 0 38 0
10 71 0 83 30

Table 1: Percentage of divergent tracks
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No attempt was made to implement FastSLAM, so there are no simulation results. However,
it is assumed that it would have been able to achieve similar RMS and divergence performance
as the PMHT, if enough particles were used. Since FastSLAM uses a sampling approach to data
association, the number of particles would need to be high enough to at least enumerate all proba-
ble association hypotheses, which in the more challenging parameter combinations was very high.
The cost of using many particles is explored in the following sections.

4.2 Computation Overheads

The computation requirements of the algorithm were also tested using simulated data. The
scenario was similar to that used above, except that the process noise was set to zero for both
speed and steering angle. This meant that the true platform trajectory was always a circular orbit. A
longer duration was used: one thousand sensor measurements were simulated, which corresponded
to slightly more than one circuit of the orbit. In the accuracy experiment, the landmarks were
randomly placed, but here they were positioned in a regular grid to make it easier to control
the landmark density. The sensor measurement noise was made low (¢ = 1) to simplify data
association. Since the process noise was zero, the Kalman gain was also always zero, with the
result that the state estimate was simply predicted from the starting point. This was an unrealistic
scenario, but it doesn’t change the computation resource required for the problem.

The cpu time elapsed for a single scan update was recorded for every scan and over a number
of Monte Carlo trials. This time was measured as a function of the number of landmarks in the
sensor field-of-view, and the total number of landmarks in the map. The number of landmarks in
the ficld-of-view changes from scan to scan depending on the sensor position and orientation, and
was varied by running trials with different landmark densities. For a particular landmark density,
the number of landmarks in the map was varied by simply using a proportionally larger map.
When the map size was very large, most of the landmarks were never observed. However, the
SLAM algorithm is initialised with an estimate for each landmark, so it is functionally equivalent
to a scenario where the sensor has observed every landmark at some past time.

The computation requirements of each of the PMHT SLAM steps are now discussed to pro-
duce an expected complexity for the algorithm.

Initialisation Before measurements are processed, all states are initialised. This is linearly depen-
dent on the total map size, but very cheap, and not expected to impact on overall computation
cost. For each scan, the sensor state is initialised by predicting ahead from the previous time.
This is independent of the map size, and also cheap.

Gate landmarks The simplest realisation of this process is to measure the range and angle to
cach landmark, using current estimates, and test whether these are within the sensor field of
view. This is linear in the number of landmarks.

Calculate weights The most costly part of the weight calculation is evaluating the measurement
density terms. This cost is reduced by gating the measurements. However, the number of
gated measurements is dependent on the landmark density. This will be only slightly more
than lincar in the number of landmarks in the field of view, provided that the number of
gated measurements is small.
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Figure 3: Computation time as a function of map size

Update platform state The most costly part of the platform update is incorporating the sensor
measurements. By using a composite measurement approach, this is linear in the number of
landmarks.

Update landmark state Each landmark EKF is independent of the number of landmarks, except
through the influence this has on the number of gated measurements. Again, provided this
is small, the landmark update is linear in the number of landmarks in the field of view.

Most of the above steps are independent of the number of total number of landmarks, and only
linear in the number in the field of view. The exception is the initial field-of-view gating, which is
linear in the total map size. This step would be a requirement for any SLAM approach; to remove
it makes the rest of the algorithm dependent on the whole map size, not simply the number in the
field-of-view.

Figure 3 shows how the processing time for a single time update varies as a function of the
number of landmarks in the ficld of view. Each curve shows a particular total map size, M. The
cost is clearly linear in the number of landmarks in the field of view. There is also an offset
between the curves for larger total map sizes. This offset is linearly dependent on the map size,
and is due to the field-of-view gating. Figure 4 shows the computation time excluding that used
for the gating. It is independent of the total map size. The method used here for gating is a simple
direct implementation, and methods exist to improve this. One example might be to group the
landmarks into tiles and to gate the tiles instead. As stated carlier, this process is necessary for any
algorithm, and so optimising it is not explored here.

17
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Figure 4: Computation time excluding FOV gating

421 Comparison

The stacked EKF algorithm will scale quadratically with the total map size. Using local region
updates as in [Guivant & Nebot 2001a], this is reduced to quadratic in the number of landmarks in
the field-of-view with lower rate full cost updates. In either case, the PMHT algorithm is clearly
quicker.

The full algorithm for FastSLAM is laid out in [Montemerlo 2003]. Simplistically, it com-
prises the following steps:

1. For each particle

(a) Sample a new pose

(b) Calculate the likelihood of each measurement-landmark pair
(c) Choose a hard data association

(d) Update features according to data association

(e) Calculate particle weight

2. Re-sample particles

The computation cost is lincarly dependent on the number of particles, much as the PMHT cost
is linearly dependent on the number of EM iterations used. In [Montemerlo 2003], the computation
cost is measured for a fixed landmark density and a varying map size. It shows that the complexity

18
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of FastSLAM is logarithmic in the map size, and the cause of this cost is the maintenance of
landmark estimates in the re-sampling phase of the particle filter. Thus, the dominant cost is step 2
from above. Notice that step 1(b) involves a pdf evaluation for every landmark and measurement
for every particle, which is M x Mpoy x M), if Mpov landmarks are detected in the field-
of-view and there are M, particles. This linear complexity in M is not apparent in the results
of [Montemerlo 2003], which reflects that the resampling is a more costly exercise: a quadratic
will appear linear if the linear coefficient is relatively large. The dominant cost in the PMHT
algorithm for large maps was the field-of-view gating. This step is undertaken to reduce the cost
of likelihood calculations and is cheaper than 1(b). Since step 1(b) is not significant in the overall
FastSLAM cost, it implies that the whole PMHT algorithm cost is insignificant compared with
running FastSLAM.

4.3 Storage Overheads

The data storage requirements for the PMHT algorithm are easy to determine. Each landmark
in the filter has an independent estimator. Assuming that the state vector for landmarks has length
dpyr and an EKF is used, then each landmark requires dps + d?\/l floating points. Similarly, each
platform requires dy -+ d4. This is very much smaller than the stacked EKF, which would require
(Ndy + Mdys) + (Ndy + Mdp)?. For the example in section 5, there are nominally 150
landmarks, leading to a difference of two orders of magnitude. For a two dimensional map with
M > N, the stacked state vector uses approximately M times more memory.

The memory usage of FastSLLAM is presented in section 3.8 of [Montemerlo 2003]. Here Fast-
SLAM is demonstrated to use approximately 3 MB of memory for a map with 50,000 landmarks.
For a map this size, the PMHT SLAM algorithm would require approximately 2.3 MB, around the
same as FastSLAM.

19
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5 Victoria Park Data

The Victoria Park data set is a benchmark SLAM data set recorded by the University of Sydney.
In the experiment, a utility was fitted with various sensors and driven around Victoria Park (at the
University of Sydney), which contains sparse trees. A laser range finder was used to observe the
trees, and inertial measurements of the vehicle’s speed and steering direction were collected. GPS
data was collected to provide ground truth. Due to occlusion, the GPS signal was not available
over the whole experiment, so there are patches where no truth data is available. Partial occlusion
also caused the GPS constellation to vary with platform position. Constellation changes cause
jumps in the GPS position estimate of up to five metres. This makes the GPS reports useful for
gauging gross platform localisation performance, but not for quantifying estimation error. The
data set contains over seven thousand laser measurements, collected over approximately half an
hour, during which time the vehicle moved over four kilometres. The inertial measurements were
collected at a much higher rate than the laser measurements (around 8.5 times faster).

Figure 5 shows the Victoria Park environment. In the experiment, the trees were the intended
landmarks. However, other objects were present, and were detected at various times. Figure 5(a)
is an image taken from the platform’s perspective. It demonstrates how trees close to the sensor
may occlude others farther away. It also shows some of the non-tree objects in the environment,
such as poles, cars and pedestrians. Figure 5(b) shows an aerial image of the park. It highlights
the varying density of the trees in the park, and also environment outside the park. In particular,
there is a road to the South East of the park that has numerous moving vehicles. These vehicles
were detected, but did not satisfy the stationary target assumption. The two images highlight one
of the major difficulties in the data set: track maintenance under occlusion, where some targets
arc stationary but temporarily hidden, but others are not stationary. Non-stationary targets will
degrade the SLAM performance, since it assumes all visible objects are stationary landmarks.
However, discrimination between the various object types visible to the sensor is non-trivial.

Figure 6 contrasts the trajectory obtained purely by integrating the inertial measurements with
the GPS reports. This highlights the inadequacy of the inertial measurements as an assumed truth,
and motivates the need for applying a SLAM algorithm to this data. The main deficiency in the
inertial data is that it tends to over-estimate turns. Numerous loops can be seen in figure 6 that are
not found in the GPS reports. The individual GPS reports are not linked with a line because of
their intermittent nature; putting a straight line through the gaps would not properly represent the
vehicle trajectory.

5.1 Vehicle Geometry

The geometry of the sensor platform is illustrated in figure 7. The laser range finder is located
on the front left side of the car, and the speed measurement is made at the rear axle. Relevant
dimensions are indicated in the diagram. The physical location of the sensors on board the platform
is of importance because many of the landmarks are observed from very close range, at times less
than 2 metres. In the figure, the distance between the car’s axles is labelled L, the width of the car
is 2H, and the dimensions a and b define the position of the laser sensor relative to the front axle
and the car’s centreline respectively.
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(b) Aerial perspective

Figure 5: The Victoria Park Environment
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Figure 7: Vehicle Geometry
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5.2 Measurements

There are two sensors available, a laser range finder and an inertial sensor. The inertial sensor
measures the vehicle speed and steer direction. The steer direction is the angle between the front
wheels and the direction vector of the vehicle. These are reported in metres per second and radians
respectively. Each measurement has an associated time stamp measured in milliseconds, and the
sensor collects a measurement every twenty five milliseconds (40 Hertz).

The laser range finder provides a scan of 361 angles in a 180 degree arc (i.e. 0.5 degree
resolution) in front of the vehicle. For each angle, the range to the nearest reflector is reported. If
no reflector is found within 80 metres, a null value is given. This data is also accompanied by a time
stamp in milliseconds and the sensor scans at a revisit time of slightly faster than 214 milliseconds
(about 4.7 Hertz). Professor Eduardo Nebot provided a detector with the data set. This detector
takes the raw laser data and produces reports, cach giving the location and size of a reflector. The
processed laser data thus consists of a time stamp, and a set of observations each of which gives a
reflector’s range in metres, relative bearing in radians, and estimated size in metres. The detector
is able to estimate the reflector size because the sensor resolution is high, and the trees are visible
in several azimuth bins. So the processed laser data can be treated as measurements from a polar
sensor that also measures a non-kinematic attribute. For the filter implemented here, it has been
chosen to ignore the size measurement, although it could be exploited for data association.

5.3 Models

The scenario takes place in a two dimensional world (ignoring terrain topography). The land-
marks are modelled as stationary objects, so their state vector is a simple two dimensional position

vector m
m | X position
Tt :{ Y position } | (26)

There is only one sensor platform, and its motion is approximated using a constant speed,
constant steering angle model

X position
Y position
Yy, = heading , 27
speed

steering angle ) ,

with white Gaussian process noise on the speed and steering angle to account for manocuvres.
This model allows for measurement noise in the inertial data by not treating them as simple control
inputs, but rather observations of control inputs. Without perturbations (manocuvres) the model
reverts to a circular orbit with a fixed speed.

It is assumed that there is no slip in the wheels of the car, which is an acceptable approximation
for moderate dynamics, and gives the following relations for the state evolution.

y[1] = yl4]cos(yl3]) (28)
y[2] = yl4]sin(y(3]) (29)
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il = Alien ys) (0)

Time recursions for the state elements are found by integrating the instantancous heading over
the revisit interval

L

Y 1] = 1]+ m {sin (yt+1 [3]) —sin (yt[?’])} ) (31)
wenl2l ) s {eos () — cos (w1 3) (32)
yoald) = yl3 o+ 2D o) 33)
Yepldl = yeld] +wifl], (34
Yep1l5] = yel5] +wi[2]. (35)

When the turn rate is zero (i.e. straight line motion), these simplify in the limit to

Y1l = w1+ y,ld] cos (y,[3]) (141 — 70) (36)
Y112l = (2] + y 4] sin(y,[3]) (41 — 70) (37
Y3l = w3l +y 5] (i1 — 7)), (38)
Y4l = y 4] +well], (39)
Y5l = y[5] +wel2]. (40)

The above time recursions are used to predict ahead the state of the platform at scan £+ 1 given
the state at scan ¢. The straight line equations are used when the estimated turn rate is low to avoid
numerical problems.

The above state models the position and movement of the centre of the rear axle of the car. The
sensor is located at a position y! that is geometrically related to the platform state by the relation

yill] = w1+ /(L +a)® +b2cos (y,[3] + ), (41)

yil2l = w2+ /(L +a)? 1+ bsin (y,[3] + ), (42)
B = arctan (%ﬂ), “43)

where the dimensions L, a, and b are defined as shown in figure 7. Using the values for this
scenario, as shown in the figure, this gives

Y1 =~ wy,[1] + 3.813 cos(y,[3] + 0.1315),
Y2l ~ wu,[2] + 3.813 sin(y,[3] + 0.1315).

The laser measurements give the relative range and bearing to the reflector from the sensor.
Thus the measurement functions are

zll] = (@l — g+ (2p(1] — wtl1) + v 1], (44)
- zp'[2] — yll2]
zur[2] = arctan <m> — yy[3] + vael2], (45)
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where 141, is the measurement noise.

The inertial measurements are purely a function of the platform states. Assuming that there is
no slipping in the front wheels, these are related to the states by

zeor[l] = yf4] + w2 (1], (46)
Z2r [2] - yt[5] + Vor [2] (47)

It is obvious that both the state evolution and the measurement equations are nonlinear, Under
Generalised EM, this does not necessarily require the PMHT to use a nonlinear filter to estimate the
states. Generalised EM states that choosing a new state that increases the auxiliary function, rather
than optimises it, will lead to the same solution on convergence. So, one might look to find a linear
estimator for the states that is guaranteed to increase the auxiliary function, and simply perform
more iterations. Alternatively, a nonlinear estimator could be used, such as a particle filter. For this
problem, the benchmark is a stacked state vector EKF solution, so it will be assumed that the EKF
approximation to the nonlinear problem is sufficient. Namely, the PMHT will be implemented
using a bank of EKFs for the landmarks, and an EKF for the platform.

5.3.1 EKF Implementation

The EKFs used for the landmarks are standard polar measurement, cartesian constant state
filters. So the state evolution matrix, F*, and the process noise matrix, G, are identity. The process
noise covariance is very small, since the landmarks are non-dynamic, Q* = 107181 (where | is the
identity matrix). The measurement matrix is given by the Jacobian of the measurement function

AXE i AY™ [ri

| v ome axe | “
where
AXP — @] -y,
AY — apf2] -2
= @l — 1)+ @l2] - v,l2)’

The sensor platform estimator has been implemented as a stacked measurement Extended
Kalman Smoother. Since the dynamics are nonlinear, the evolution matrix is also a Jacobian

f13 f14 f15
f23 24§25
1 f34 §35 |, (49)
0o 1 0
0o o0 1

FY —

oo oo =
oo~ O

where

L
13 = —m{ cos (y;[3]) — cos (y,_41[3]) }’
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26

f14 = (r— 1) cos(y,[3]),

B L sin _sin (¢ — 1e—1) cos (y[3]) y,[4]

115 = e s @) —sin (g 3) |+ S S
L . .

123 =~ s (wil3) —sin (v l3) |

24 = (r—7_1)sin(y,[3)),

I A SRR (7 — 1) sin (,[3]) w, 4]
125 = i cos @is)) - cos (i 3)) } o+ St T
f34 _ (Tt—Tt_l)L

tan(y; )
(¢ — Te—1) Y |4]

f35 =

The process noise matrix is given by

0 0
0 0
G%’ = 0 0 , (50)
Tt — T—1 0
0 Ty — Ti—1

i.e. the process noise is white noise acceleration in speed and steering angle. The process noise

. . . . 1 0
covariance is the diagonal matrix, QY — [ 0 05 }

For laser measurements, the platform estimator uses a stacked measurement matrix, similar to
(10), but where the elements are of the form of (48).

For inertial measurements, the measurement matrix is given by

00010} 51)

v _
Ht[o 0001

Both sensors are assumed to have diagonal measurement covariances (e.g. the range measure-
ment is not correlated with the angle measurement). These are given by

0.1 0

Rlaser = [ 0 0.001 } (52)
0.1 0

Rinertial — [ 0 0.1 } : (53)

The values of measurement covariance and process covariance were chosen by trial and error
to give good performance.

5.3.2 Implementation Issues

There are a few other issues that had to be addressed to get good performance on the Victoria
Park data. There are two main issues to deal with: occlusion and loop closing.
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As shown earlier, some of the landmarks in the sensor ficld-of-view may be completely or
partially occluded by other landmarks at closer range. This causes valid tracks to be truncated
if standard target existence type models are used for track maintenance. In addition, the laser
sensor appears to be somewhat unreliable even when there are no occlusions, especially at longer
range. These features make it difficult to properly deal with landmark existence. The approach
taken was to insert new tracks, and if they survived for longer than a threshold duration, then they
were protected and never truncated. A simplistic effort to account for occlusion was incorporated,
but this was conservative: only tracks that were certain to be occluded were discounted, and used
primarily to limit the number of tracks used in data association.

Loop closing becomes an issue because the sensor measurement variance is relatively low.
After the platform completes a loop, there will be some residual alignment error that prevents
data association of the old landmarks. The error is actually in the platform state estimate, but the
algorithm requires that the measurement variance be inflated to allow for correct association. An
ad hoc scaling of the measurement variance was incorporated at times when orientation error is
likely to be high: during turns, and when the platform closes large loops.

5.3.3 Performance without inertial input

The PMHT algorithm was also run without the inertial input data. This did not require re-
tuning of the process or measurement noise matrices, and was simply achieved by not providing
one of the input sources.

5.3.4 Alignment

The GPS reports are given in latitude and longitude in metres relative to an unknown reference
point. In order to compare them with the SLAM estimate, the two need to be registered and time
aligned. The initial GPS report defines the starting position for the vehicle, but the initial heading
needs to be inferred. The GPS reports are not synchronous with the platform sensors, so the
state estimates need to be re-sampled at the GPS times. This is done using the evolution model
and predicting the state ahead from the closest earlier time point. Once the trajectories are time
aligned, the initial heading can be determined using a least squares fit. This is given by

> (AFBY — AIBY)

tan§ — = , (54)
> (AFBf + AYBY)
t

where the GPS report at time ¢ is (A7, AY), and the filter output is (B, BY). This gives an initial
heading of approximately 35 degrees.

5.4 Results

The platform trajectory estimate produced by the PMHT algorithm is shown in figure 8. The
GPS reports are shown as crosses, the PMHT SLAM estimate with all inputs as a solid line, and
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Figure 8: PMHT estimated trajectory

the PMHT SLAM estimate with only laser measurements as a dashed line. Overall, the estimates
are relatively close to the GPS reports. Removing the inertial measurements did not significantly
degrade the performance.

The main discrepancy between the GPS and PMHT estimates is in the North-Eastern part of
the map. This part of the trajectory consists of several loops connected to the main area via a single
path. Just before the path is a turn, and it appears that the PMHT algorithm made a small error
in estimating the magnitude of this turn. This angular error translates to a relatively large position
error at the farther ends of the path.

Figure 9 compares the PMHT SLAM output with that obtained from a stacked state vector
EKEF using the same dynamic models. The EKF was more difficult to tune and required somewhat
different process noise values to provide a reasonable output. The two estimates are very close for
the bulk of the trajectory, but deviate in the North-East and Western parts of the map. As described
above, both of these sections are individual loops with connecting sections along turns. Small
angular discrepancies during these turns lead to large position deviations. The difference between
these two outputs is due to data association.
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Figure 9: PMHT estimate compared with EKF estimate
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54.1 Comparison with other algorithms

At this point in time, other authors have not made numerical output on this data available.
Montemerlo provided an RMS error figure between the FastSLAM output and the GPS reports of
“approximately 4m”. The PMHT SLAM output has an RMS error of 4.2m. As described earlier,
the GPS reports suffer from relatively large jumps as occlusion of the GPS satellites varies, and do
not provide a useful truth source. It is likely that the SLAM output is more accurate than the GPS,
and the figure of 4m is mainly due to errors in the GPS.

Independent of the accuracy of the GPS, RMS error is a poor measure of performance in this
example. As discussed above, small angular errors can lead to large position deviations for long
legs of the path. Thus the RMS position error is not indicative of the algorithm performance.

Along with the data set, Neito provided an image of the estimated trajectory using a stacked
state vector EKF, overlaid on a map of Victoria Park. This image has been used in annual reports of
the Australian Centre for Field Robotics, and represents the output of the algorithm in [Guivant &
Nebot 2001a]. The PMHT output was manually registered onto the image using the tree position
estimates near the starting point of the vehicle. Once again, small angular deviations lead to large
position discrepancies that make the estimated tree locations at the extremes of the map poor
choices for registration. Figure 10 shows the PMHT output overlaid on top of the EKF picture.
The image provided by Neito shows the EKF output as a solid blue line, and the estimated tree
locations as circles with dots at the centre. The GPS reports are overlaid on the image based on
the PMHT registration and are marked as crosses. The PMHT output is marked as a yellow line.

The EKF algorithm does a better job of estimating the trajectory in the North-East corner,
which was identified carlier as a problem with the PMHT. However, the EKF does a poor job
of estimating the trajectory along the Western part of the map, compared with the GPS reports.
There are a few differences between the algorithms: the assumed platform model and assumed
noise variances, and data association.

Overall, it appears that the PMHT SLAM output is roughly equivalent to the FastSLAM out-
put, and superior to that of the EKF.
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Figure 10: PMHT output overlaid on EKF output
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6 Summary

This report has introduced a new approach for solving the Simultancous Localisation and
Map Building problem (SLAM). The algorithm described is based on the Probabilistic Multi-
Hypothesis Tracker, and has the advantage of linear complexity in the number of landmarks in the
sensor field-of-view.

The computation expense of PMHT SLAM was demonstrated to be significantly lower than
current SLAM algorithms, while its estimation performance is superior to that of the standard EKF
approach.

The algorithm was demonstrated on benchmark data from Victoria Park, and showed compa-
rable performance with the published results from other algorithms. The PMHT performance on
this data might be improved by using a better non-linear estimator, such as a particle filter, or an
unscented Kalman filter.

At this stage, no quantitative comparison has been performed with FastSLAM, the current state
of the art algorithm. This was deliberately avoided to prevent perceived implementation faults. In
the future it would be ideal to pursue a collaborative comparison of the two algorithms.
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