Tapping the Operational Art Portfolio

George D. Howard

Problem. In today’s environment of contingency operations and AEFs where training and continuity are some of the first operational casualties, the Air Force is not adequately using one of its strongest resources: the experience, operational expertise and corporate memory—operational art, if you will—of its military, GS and contractor professionals. Over the past 14 years the USAF has devoted much time and energy into refining its planning procedures. We’ve written and refined our basic service doctrine, made strong inputs into joint doctrine for air and space power use, developed PCE courses to educate our airmen and we’ve shared this knowledge with our allies and coalition partners. Joint Publication (JP) 3-30 Command And Control For Joint Air Operations, does an excellent job of identifying staff and functional requirements for planning and executing the air and space portion joint force commander’s (JFC) campaign. It even identifies some of the skill sets desired for personnel serving on the joint air and space commander’s (JFACC) staff. How the JFACC gets people with the knowledge required on his staff is not addressed. Today’s operational environment demonstrates US military forces routinely face adversaries who understand US doctrine and actively use asymmetric methods to combat us. By allowing untapped operational art expertise to languish, our planning is not as effective or as efficient as it should be. This leads to operations that may cost more in terms of treasure, time opportunities and even lives.

Discussion. Before proceeding, two terms that are interrelated and central to the subject require definition: operational science and operational art. First, the term operational science is not defined within joint or Air Force doctrine. However, within the context of this paper, it’s defined as knowledge and understanding of systems used to implement theater-level plans. Systems include aircraft, other weapons, munitions, C4I, supporting networks and infrastructure—basically all the toys and technology that makes the USAF physically what it is! For the most part, this knowledge and understanding is gained by training either in formal courses or on the job training and refined through actual use of the system. This definition is not all-inclusive but will suffice. Operational art is defined by the DOD as “The employment of military forces to attain strategic and/or operational objectives through the design, organization, integration, and conduct of strategies, campaigns, major operations, and battles. Operational art translates the joint force commander’s strategy into operational design and, ultimately tactical action, by integrating the key activities at all levels of war” (JP 1-02). Operational art implies an existing understanding of and expertise in operational science. The converse is not true.

Winning conflicts as effectively and efficiently as possible requires an understanding of operational science and operational art. The USAF has traditionally done a good job of training its airmen in operational science, but has not done as well at growing an understanding of operational art. Once you think about it, it’s relatively easy to see why. Science is quantifiable; results are measurable, repeatable and predictable. Art defies codification; you know good art when you see it, but describing why it’s good or how it was created can be a challenge! Where we are today in effective operational planning and where we can be in the near future depends on our ability to tap expertise the USAF already possesses in operational art and science and harness it to new and ongoing operations.

The Way Ahead. Improving our planning can be accomplished by tapping into the operational expertise we already have. Those with the expertise we need come from a variety of sources: some are self-taught by avocation, others were stimulated by educational opportunities, others still have developed it by long-term involvement in contingency operations. However they acquired it, these folks have shown a greater understanding of air and military operations than their peers. We need to have these people routinely involved in planning air and space operations. To do this they must be identified along with their areas of expertise, status, location, availability, etc. This would be a subjective process with
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
CADRE Quick-Look: Tapping the Operational Art Portfolio

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Air Command and Staff College Air University 225 Chennault Circle Maxwell AFB, AL 36112-6428

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT unclassified
b. ABSTRACT unclassified
c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES 2

19a. NAME OF RESPONSIBLE PERSON
several entry portals. For example, commander nomination would be one way to enter; teaching at schools where operational-level planning and thought are exercised (like SAASS, the Joint Flag Officer Courses, and the Command and Control Warfare Advanced Course among others) might be another. Additional criteria could be applied as needed.

Once assembled, the pool could be used in a variety of ways. In contingency operations, personnel from the pool could augment the JAOC/CAOC, especially in areas like strategy, intelligence, surveillance, and reconnaissance (ISR), and combat plans division. This might be done virtually with reach back, minimizing the impact on pool members in their normal jobs. Deployment of key members might also be an option. The pool could be used to enhance ongoing operations in a similar manner.

The cost of developing and implementing the planning pool should be minimal. It would require a database with maintenance. Virtual reachback will require robust collaboration tools, with the capability to share and work detailed graphics and charts, but these are already being developed to support strategy and course of action selection tools, so should not entail extra expense beyond additional collaborative nodes. Depending on how much the pool’s services were required there might be TDY costs involved as well. These would be weighted against the benefit of a much broader expertise (several heads versus one or a few) for contingency planning and a more standardized method for acquiring expertise versus the ad hoc method presently used at times.

Disclaimer: Opinions, conclusions, and recommendations expressed or implied within are solely those of the author and do not necessarily represent the views of CADRE, Air University, the United States Air Force, the Department of Defense, or any other US Government agency. Cleared for public release: distribution unlimited.

Quick-Look 05-02