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SBIR  Phase II Technical Tasks

Develop Chemistry Models for CWA
effort guided by Advisory Panel
use computational chemistry methods
simulants & agents
detailed chemical kinetic mechanisms 

» complete description of CWA decomposition
» include PICs, NOx
» use relevant, publicly available data

Develop Furnace / Equipment Models
Incinerators: furnaces + afterburners
Pollution Abatement System (PAS)
benchmark with available data

Develop Incinerator Simulator Tool Software
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Chemistry Models for CWA’s
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comparable 
molecules
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SBIR Team

WGI
EG&G

Operations
& Field Data

Technology Transfer
StakeholdersBuddy Webster

Military Incinerators 
CMA

Incinerator 
Design 

Conditions
CWA Data

Tooele
Anniston
Umatilla

Pine Bluff
(Johnston)

Army

REI
Dick Magee

Interface to  
CMA &

ChemDemil

CWA Chemistry 
Advisory Panel

F.Gouldin       (Cornell)
J.Bozzelli        (NJIT)
W.Tsang        (NIST) 
C.Westbrook  (LLNL)
A. Sarofim       (REI)

Dick Ward     (CMA)
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Chemical Kinetic Mechanism for H/HD/HT

No test data available – rates from 
computational chemistry
Kinetics for thickeners and impurities 
included
HD  detailed mechanism:

109 species, 477 reactions
Couples to 

» Leeds sulfur mechanism
» Cl chemistry of Procaccini, Ho, Bozzelli, et al

H modeled by 6-specie blend 
5 species for impurities
Add-on to HD mechanism
143 species, 548 reactions

HT modeled by 5-specie blend 
4 species for impurities
Add-on to H/HD mechanism
165 total species, 657  total reactions

Improvements to S-H-O chemistry

k = 1.85×1013e(-58.75/RT) sec-1

|   |       |   |
Cl-C-C-S-C-C-Cl

|   |       |   |

|   |       |    |
Cl-C-C-S-C=C  + HCl 

|   |            |

Dominant destruction pathway: 
HCl elimination from HD
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Thickeners & Impurities

Kinetics for thickeners and impurities
H modeled by 6-specie blend
HT modeled by 5-specie blend
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Calculated Incinerability Rankings

Compound T99(2) Class
Benzene  1150 C 1
Toluene 895 C 2
Vinyl Chloride 770 C 3
Trichloroethane 635 C 4
HD 628 C       4
H                       603 C       4 
HT 578 C       5
T 562 C       5
Chloroform 545 C 5
VX  541 C       5
Hexachloropropene 505 C 5  
GB  491 C       5
Strychnine 320 C       6

Approximation to UDRI 
Incinerability Ranking

(Temperature at which 99% 
of the compound is 
destroyed in 2 seconds)
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CFD Combustion
full 3D combustion flow field 

gas velocity, composition, temperature
shell and wall heat transfer, temperature

localized mixing, turbulence, heat transfer
used for agent destruction predictions
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CFD Model Results & Agent Destruction

CO Agent Destruction

CFD Results provide details about 
agent destruction along streamlines
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Deactivation Furnace System
Kiln and Afterburner

Burner

To Afterburner

Charge End

Discharge End

To Heated Discharge Conveyor

Chute

Shroud Air

Shroud Air

ChuteBurner

To Afterburner

Charge End

Discharge End

To Heated Discharge Conveyor

Chute

Shroud Air

Shroud Air

Chute

Kiln flue gas O2
35 drained GB M55 rocket/hr

afterburner

burnerburner
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Liquid Incinerator Combustor 
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Impact of SBIR Project on Chem Demil Program

JACADS DAL VX event (RIM 57)
Models used to convince regulators to modify DAL clearance criterion
Resulted in significant cost savings

Fate of phosphorus when processing organophosphorus agent
Analysis used in negotiations with regulators

» Obtain “credit” for PFS emissions removal
» Replace surrogate trial burn with agent trial burn
» Eliminate requirement for high temperature test

RIM-65 MPF evaluation for processing undrained mustard 
projectiles (with solid heels)

Analysis to assist TOCDF & ANCDF in negotiations with regulators to 
modify incinerator operation

SBIR Phase II plus
HT mustard chemical kinetic mechanism
Improved understanding of mercury issues
HD TC processing
CMS burner evaluation

Potentially extend models to non-incineration thermal treatment
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Model Results:
Effect of Agent Hg Content on Hg Oxidation
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Shown is calculated Hg 
oxidation at different ratios 
of Cl:Hg in feed
TOCDF HD TCs:

Liquid HD 
Hg ~ 10’s ppm
Cl:Hg ~ O(10,000)

Solid agent
Hg ~ 100’s -1000’s ppm
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Cl:Hg >2000 results in 
complete oxidation of Hg 
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liquid HD  (LIC)
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Ramifications of Hg Removal Modeling

Predicts increased Hg capture when:
increase Cl/Hg ratio in munitions
decrease cooling rate in PAS 

Hg0 capture in PAS can be increased by
Increasing Cl/Hg ratio 

» e.g. add chlorocarbons used in trial burns
Decreasing cooling rate in quench tower 

» control of quench flow rate or droplet size

Control of mercury removal in PAS influences waste 
handling strategies

High Hg removal efficiency 
waste stream contaminated by Hg0 is restricted to brine wastes

Low Hg removal efficiency
carbon in the PFS is also contaminated by Hg0.
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Processing Partially Drained TCs in MPF

Motivation:
Many mustard ton containers can not 
be fully drained 
What level of solid heel in ton 
containers can be processed in MPF in 
a “reasonable time” ?
Use wash-out process or incineration ?
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Feed Cycle (Process) Time 
Partially Drained Ton Container With Solid Heel

Peak Vaporization Rate
2. 5” heel <   600 lb/hr
14” heel  < 1100 lb/hr

If all processing in Zone 1 
(no overlap) will have long 
furnace residence time

Opportunity to increase 
throughput if overlap zone 
1 & 2 processing

Preliminary 
Results
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CMS Burner
Recommendations From Previous Work

Higher temperature 
alumina-based                     
refractory

Lower and/or consistent 
feed rates

Controls improvements

Burner modifications

Partial listing of issues raised in one or Partial listing of issues raised in one or 
more of the following studies:more of the following studies:

••MicroEnergyMicroEnergy Systems, July, 2000Systems, July, 2000

••CR&E, May, 2002CR&E, May, 2002

••WDC, May, 2004WDC, May, 2004
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CMS Burner - Deposition Modeling

Recirculation Regions
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Value of Project to CMA

Demonstrate reliability and performance of 
existing processes and equipment

Assess 
trouble shooting / problem solving
proposed design changes 
process operation options & optimization

Assist Site Operators & Support Contractors
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Path Forward

Opportunities exist to apply modeling tools 
throughout the Chem Demil Program

Baseline sites (TOCDF, ANCDF, UMCDF, PBCDF)
optimize processing
assistance with troubleshooting

Non-baseline sites (where thermal treatment is 
required) 

metal parts, dunnage, carbon
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