Award Number: DAMD17-03-1-0570

TITLE: Development of a Mouse Model for Determination of the Role of the Catechol Metabolites of Estradiol in Mammary Tumorigenesis

PRINCIPAL INVESTIGATOR: James D. Yager, Ph.D.

CONTRACTING ORGANIZATION: Johns Hopkins University
Baltimore, Maryland 21287-3654

REPORT DATE: August 2004

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Development of a Mouse Model for Determination of the Role of the Catechol Metabolites of Estradiol in Mammary Tumorigenesis

James D. Yager, Ph.D.

Johns Hopkins University
Baltimore, Maryland 21287-3654

E-Mail: jyager@jhsp.edu

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

The purpose of the proposed research is to develop a catechol-o-methyltransferase knockout (COMTKO)-estrogen receptor/Wnt-1 (ERKO/Wnt-1) mouse model for use in studies on the role of estrogen catechol metabolites in mammary tumorigenesis. The scope of the project involves: 1) Through genetic crossing, introduce the COMTKO genotype into the ERKO/Wnt-1 mice; 2) Initiate studies to determine the effects of the absence of COMTKO on estrogen catechol metabolite, glutathione-estrogen quinone adduct levels (which reflect oxidative metabolism of estrogen catechol to estrogen quinones), oxidative DNA damage levels, mammary gland development and tumorigenesis in the resulting COMTKO/ERKO/Wnt-1 female mice. ERKO/Wnt-1 mice were obtained after notification of award; COMTKO mice were on-hand. However, unanticipated difficulties were encountered. The COMTKO mice went through a period where their breeding stopped. Additional breeding pairs were obtained from the originator of the strain at Rockefeller University. These mice began breeding and at that point, the first aim could proceed, although we were already about 6 months behind given the time required to obtain additional breeding pairs, time in quarantine, and time for them to adapt and produce off-spring for the desired crosses. As detailed in the progress report, breeding is now proceeding. The project period has been extended 1 year to 20 August, 2005.

No subject terms provided.
Table of Contents

Cover...1
SF 298..2
Table of Contents..3
Introduction..4
Body...4
Reportable Outcomes..6
Conclusions..6
References..6
Appendices...7
Introduction

The main risk factors associated with the development of breast cancer implicate estradiol (E2) as a causative agent. The accepted hypothesis is that prolonged exposure to estrogen leads to persistent enhanced proliferation mediated through the binding of E2 to the estrogen receptor. However, E2 also undergoes cytochrome P450 (CYP)-mediated oxidative biotransformation to catechol metabolites, 2-hydroxy (2-OH) and 4-hydroxy (4-OH) E2. 4-OH E2 in particular has been shown to cause/contribute to estrogen carcinogenesis through further oxidative metabolism to quinones that form adducts with adenine and guanine in DNA and cause oxidative DNA damage through participation in redox cycling processes. These catechol estrogen metabolites are present in mouse mammary gland tissue at concentrations of pmoles/mg tissue. CEIs are primarily inactivated by O-methylation catalyzed by catechol-O-methyltransferase (COMT). Inhibition of COMT enhanced E2-induced renal tumorigenesis in the Syrian hamster model and DNA damage in human MCF-7 cells, suggesting that COMT is highly protective against adverse effects caused by the catechol metabolites of E2. COMT is polymorphic in humans and several, but not all, epidemiology studies have observed that the genotype encoding a low activity COMT is associated with an increased risk for developing breast cancer in certain women. These observations implicate the catechol metabolites of E2 in breast cancer causation. Experimental investigation of the extent and mechanisms of contribution of the estrogen catechol metabolites would be greatly facilitated by the availability of an appropriate animal model. Mammary tumor incidence in intact estrogen receptor knockout (ERKO)/Wnt-1 female mice is 20%, whereas it is reduced to 8% in ovariectomized females (Richard Santen, University of Virginia, personal communication). These results demonstrate that in the absence of ER expression, estrogen still contributes to mammary tumor formation. The concept/hypothesis regarding the role of estrogen in these mice is that the catechol metabolites undergo oxidative biotransformation to quinones which then form DNA adducts directly, or oxidative DNA damage indirectly through redox cycling, and subsequently mutations, which contribute to mammary tumor formation. Since COMT is protective, the absence of COMT would be expected to increase the incidence and/or shorten the latency of tumorigenesis in the ERKO/Wnt-1 mice. Thus, the purpose of the proposed research is to develop a catechol-o-methyltransferase knockout (COMTKO)-estrogen receptor/Wnt-1 (ERKO/Wnt-1) mouse model for use in studies on the role of estrogen catechol metabolites in mammary tumorigenesis. The scope of the project involves: 1) Through genetic crossing, introduce the COMTKO genotype into the ERKO/Wnt-1 mice; 2) Initiate studies to determine the effects of the absence of COMT on estrogen catechol metabolite, glutathione-estrogen quinone adduct levels (which reflect oxidative metabolism of estrogen catechol to estrogen quinones), oxidative DNA damage levels, mammary gland development and tumorigenesis in the resulting COMTKO/ERKO/Wnt-1 female mice.

Body:

Key Accomplishments: ERKO/Wnt-1 mice were obtained after notification of award; COMTKO mice were on-hand. However, unanticipated difficulties were encountered. The COMTKO mice went through a period where their breeding stopped. Additional breeding pairs were obtained from the originator of the strain at Rockefeller University. These mice began breeding and at that point, the first aim could proceed, although we were already about 6 months behind given the time required to obtain additional breeding pairs, time in quarantine, and time for them to adapt and produce off-spring for the desired crosses. Because of these difficulties, a request was made and granted for the project to be extended to 20 August, 2005 without additional funds (see the Amendment of Solicitation/Modification of Contract document in the Appendix).

The breeding scheme has been modified to be more efficient and is shown below.
ERKO/Wnt-1—COMT Interbreeding Project

ER+/-|Wnt-1 ♂ × COMT-/- ♀ Phase I

Approx 1/8 of pups will have COMT+/-|ER+/-|Wnt-1 genotype

COMT+/-|ER+/-|Wnt-1 ♂ × COMT+/-|ER+/- ♀ Phase II

(taking care to avoid brother-sister matings)

Approx 1/32 of pups will have COMT-/-|ER-/-|Wnt-1 genotype

All tumorigenesis studies will involve comparing latency (time to tumor formation) between ER-/-|Wnt-1 females (controls) to COMT-/-|ER-/-|Wnt-1 females

Goal!

Figure 1: Breeding Scheme. Plan for creating COMT-/-|ER-/-|Wnt-1 mouse.

Phase III

Approx 1/16 of pups will have COMT-/-|ER+/-|Wnt-1 genotype

COMT-/-|ER+/-|Wnt-1 ♂ × COMT-/-|ER+/- ♀ (taking care to avoid brother-sister matings)

Goal!

Approx 1/4 of pups will have COMT-/-|ER-/-|Wnt-1 genotype

The PCR methods for genotyping were established in the lab. This is complex in that it involves genotyping for three genes and since both the ERKO/Wnt-1 and COMTKO mice were developed with the same selectable marker, neo, identification of the desired offspring is a bit more involved.

We obtained 32 pups from the Phase I breeding that were used in Phase II.

Phase II

We cannot directly test whether the Phase II breeders are ER+/- or ER-/- and/or COMT +/- or COMT-/. This is because the same neo marker is used in both the ER-/- and the COMT-/- mice. We can only tell from their offspring. Thus far two females have been born of Phase II breeders that are negative for COMT, thus indicating that these parents in these breeding pairs are COMT+/- . The first 5 breeding pairs listed below were bred on 9/8/04, and thus far all have produced at least one litter. The last 3 breeding pairs were bred on 10/7/04, and, as of 10/27/04, have not produced litters, but it is a bit too early, and we do not expect them to produce litter for another week or two.
Phase II Breeders

<table>
<thead>
<tr>
<th>Male genotype</th>
<th>Female genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>neo</td>
<td>Wnt</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

15 Phase II pups have now been weaned and are in the Phase III stage of the breeding plan which will produce the desired ERKO/Wnt-1/COMTKO female mice.

Phase III

Several of the Phase II breeders have produced offspring, 2 of which were females negative for COMT. These two females have been bred to male offspring of Phases I and II, respectively. Their genotypes are shown below. If any of the offspring of these Phase III breeders are negative for ER AND COMT, we will have reached the goal of obtaining a COMT -/- ER -/- Wnt-1 mouse. The first Phase II breeders were put together on 10/27/04, so it will be a few weeks before we see pups.

Phase III Breeders

<table>
<thead>
<tr>
<th>Male genotype</th>
<th>Female genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>neo</td>
<td>Wnt</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

It is important to appreciate that the breeding is a continuous process, and that as the desired mice are obtained they are used in the studies proposed.

Reportable Outcomes: None

Conclusions: The primary goal of funding provided by this grant is to allow us to produce these mice, and this is now in full swing.

References:
1. Monographs JNCI: Estrogens as endogenous carcinogens in the breast and prostate. JNCI Monographs 2000, 27:159
Appendix
AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

<table>
<thead>
<tr>
<th>2. AMENDMENT/MODIFICATION NO.</th>
<th>3. EFFECTIVE DATE</th>
<th>4. REQUISITION/PURCHASE REQ. NO.</th>
<th>5. PROJECT NO. (If applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P00001</td>
<td>28-Jul-2004</td>
<td>W28PRX-2157-N665</td>
<td>W81XWH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. ISSUED BY</th>
<th>7. ADMINISTERED BY (If other than item 6)</th>
<th>CODE</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA MED RESEARCH ACTIVITY</td>
<td>USA MED RESEARCH ACTIVITY</td>
<td>W81XWH</td>
<td></td>
</tr>
<tr>
<td>820 CHANDLER ST</td>
<td>ATTN: MARK LORRMANN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORT DETRICK MD 21702-5514</td>
<td>MARK LORRMANN@AMELD ARMY.MIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FORT DETRICK MD 21701</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. NAME AND ADDRESS OF CONTRACTOR</th>
<th>9A. AMENDMENT OF SOLICITATION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DONNA V. HELM</td>
<td></td>
</tr>
<tr>
<td>615 NORTH WOLFE STREET</td>
<td></td>
</tr>
<tr>
<td>BALTIMORE MD 21205</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. THIS ITEM ONLY APPLIES TO AMENDMENTS OF SOLICITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>The above numbered solicitation is amended as set forth in Item 14. The hour and date specified for receipt of offer</td>
</tr>
</tbody>
</table>

Offer must acknowledge receipt of this amendment prior to the hour and date specified in the solicitation; or amended by one of the following methods:
- (a) By completing Items 8 and 15, and returning copies of the amendment; (b) By acknowledging receipt of this amendment on each copy of the offer submitted; or (c) By separate letter or telegram which includes a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGMENT TO BE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtue of this amendment you desire to change an offer already submitted, such change may be made by telegram or letter, provided each telegram or letter makes reference to the solicitation and this amendment, and is received prior to the opening hour and date specified.

12. ACCOUNTING AND APPROPRIATION DATA (If required)

13. THIS ITEM APPLIES ONLY TO MODIFICATIONS OF CONTRACTS/ORDERS. IT MODIFIES THE CONTRACT/ORDER NO. AS DESCRIBED IN ITEM 14.

A. THIS CHANGE ORDER IS ISSUED PURSUANT TO: (Specify authority) THE CHANGES SET FORTH IN ITEM 14 ARE MADE IN THE CONTRACT ORDER NO. IN ITEM 10A.

B. THE ABOVE NUMBERED CONTRACT/ORDER IS MODIFIED TO REFLECT THE ADMINISTRATIVE CHANGES (such as changes in paying office, appropriation date, etc.) SET FORTH IN ITEM 14, PURSUANT TO THE AUTHORITY OF FAR 43.103(B).

C. THIS SUPPLEMENTAL AGREEMENT IS ENTERED INTO PURSUANT TO AUTHORITY OF:

X

D. OTHER (Specify type of modification and authority)

Recipient's Request dated July 7, 2004

E. IMPORTANT: Contractor **X** is not, **☐** is required to sign this document and return copies to the issuing office.

14. DESCRIPTION OF AMENDMENT/MODIFICATION (Organized by UCF section headings, including solicitation/contract subject matter where feasible.)

1. The purpose of this modification is to extend the period of performance for an additional 12 months in accordance with the Recipient's request dated 7 July 2004, which is incorporated herein by reference. The period of performance is changed as follows:

FROM: 21 July 2003 to 20 August 2004 (Research ends 20 July 2004)

TO: 21 July 2003 to 20 August 2005 (Research ends 20 July 2005)

2. No additional funds shall be provided for this extension period.

3. All other terms and conditions remain unchanged.

Except as provided herein, all terms and conditions of the document referenced in Item 9A or 10A, as heretofore changed, remains unchanged and in full force and effect.

15A. NAME AND TITLE OF SIGNER (Type or print)

15B. CONTRACTOR/OFFEROR

15C. DATE SIGNED

15D. IMPORTANT:

16A. NAME AND TITLE OF CONTRACTING OFFICER (Type or print)

16B. UNITED STATES OF AMERICA

16C. DATE SIGNED

STANDARD FORM 30 (Rev. 10-83)

Prescribed by GSA

FAR (48 CFR) 53.243

30-105-04

APPROVED BY OIRM 11-84