Award Number: DAMD17-03-1-0744

TITLE: Bisphosphonate-Based Contrast Agents for Radiological Imaging of Microcalcifications

PRINCIPAL INVESTIGATOR: Matthew R. Palmer, Ph.D.

CONTRACTING ORGANIZATION: Beth Israel Deaconess Medical Center
 Boston, Massachusetts 02215

REPORT DATE: September 2004

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
 Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Bisphosphonate-Based Contrast Agents for Radiological Imaging of Microcalcifications

Matthew R. Palmer, Ph.D.

Beth Israel Deaconess Medical Center
Boston, Massachusetts 02215

E-Mail: mpalmer@bidmc.harvard.edu

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

The overall objective of this project is to develop biochemical markers for calcium that serve as contrast agents in advanced imaging procedures. We have had significant delays in starting this project and so a no-cost extension was requested and granted in August 2004. No reportable outcomes are yet available.
Table of Contents

Cover...1
SF 298...2
Introduction...3
Body..4
Key Research Accomplishments..4
Reportable Outcomes...4
Conclusions..4
References...4
Appendices..
INTRODUCTION
The overall objective of this work is to develop biochemical markers for calcium that serve as contrast agents in advanced imaging procedures. We will focus on alendronate derivatives as targeting compounds for imaging soft tissue calcium. Specifically we intend to develop a molybdenum-bisphosphonate complex for use in dual energy digital subtraction mammography and a bisphosphonate-gadolinium chelate for use in MR breast imaging. We will perform associated initial testing and small animal imaging experiments. Because of its unique ability to reveal microcalcifications, mammography can detect small carcinomas at an early stage. A MR contrast agent that targets calcium deposited in soft tissue could potentially have a very high impact in the field of diagnostic imaging in breast cancer. Similarly, a potent and specific marker for calcium could greatly enhance the diagnostic potential of dual-energy digital subtraction mammographic breast imaging.

BODY
During the past year, the principal investigator has undergone significant changes in his job responsibilities and has become increasingly involved in medical physics activities in the Division of Nuclear Medicine. Consequently, there was a significant delay in starting this project. A no-cost extension of the project was requested and granted in August 2004. The focus for the coming year will be on completing the original project objectives.

KEY RESEARCH ACCOMPLISHMENTS

REPORTABLE OUTCOMES
None to date

CONCLUSIONS
Significant delays in starting this project have occurred. We now expect to complete the project, as originally proposed, during the extension year.