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ABSTRACT

We present a multi-resolution approach to update
and refine coarse 3D models of urban environments
from a sequence of intensity images using surface par-
allax. A coarse and potentially incomplete depth map
of the scene obtained from a Digital Elevation Map
(DEM) is used as a reference surface which is refined
and updated using this approach. We first estimate
the camera motion using the reference depth map.
Using the estimated camera motion, at each level in
the multi-resolution framework, motion of 3D points
on the reference surface is compensated, and the resid-
ual flow field, which is an epipolar field, is estimated
and used to refine the depth map at that level. At a
coarse resolution, the difference between the reference
depth and the true depth will be small, leading to
a small parallax field. The refined depth map from
the coarser level is then propagated to the finer level
and is used as a reference depth map at that level.
Thus, significant deviations of an available model
from a true model can be handled using this approach.

1 INTRODUCTION

There has been considerable interest recently in
using autonomous mobile robots in surveillance. The
ability to send mobile, sensor-equipped robots into
environments that are potentially hazardous to hu-
mans is of vital importance in a number of scenarios
(e.g.  nuclear/biological/chemical contamination).
There is a need for robust, real-time algorithms that
exploit data collected by sensors mounted on the
robots in order to improve the operators awareness
of the scene. The operator’s control station often has
access to some meta-data, e.g. elevation data of the
environment in which the robots are operating. In
such a situation, it would be very useful to be able to
integrate video from the robots with elevation data
to provide the operator with a more accurate picture
of the environment. Elevation data is often available
in the form of a Digital Elevation Map (DEM), which

gives the elevation of terrain over a geographical area.
Thus the available DEM can be used to obtain the
reference surface (depth map) of the scene. In general,
these depth maps are coarse and may contain partial
information about the area due to structural changes
(e.g. construction, demolition of buildings). This
coarse reference surface can be updated and refined
using information from a sequence of 2D images of
the scene. The enhanced scene can provide a remote
operator a better understanding of the scene in which
robot is operating. In addition, changes in urban
environments such as addition of new buildings, de-
molition of old buildings or other structural changes,
can be incorporated in the DEM without requiring
additional dedicated DEM data collection.

2 THEORY

For any two views of a scene under perspective pro-
jection, if the motion of the 3D points on a surface is
compensated, the resulting parallax field is an epipo-
lar field. Referring to Figure 1, let C; and Cs rep-
resent the camera center for two views and S be the
reference surface which is aligned. Let @ be the 3D
point on the reference surface, P be the true loca-
tion of the 3D point and the projection of these points
in reference image C; be ¢ and p respectively. The
residual parallax can be shown to be equal to (Kumar,
1994;Agrawal, 2004)

— Tz(Qz - Pz)
Qz(Pz - Tz)

where e denotes the epipole and T, denotes the trans-
lation in Z direction. If T, = 0,

—f(Q.—P.)
Qsz

where f is the focal length and t = [T, Ty]T denotes
the 2 x 1 translation vector in z,y space. Without
loss of generality, for the rest of the paper we assume
T, >0.

(p—e) (1)

ou=q—p

(t) (2)

du=q—p=



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED
00 DEC 2004 N/A -
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Hierarchical Dem Refinement Using Surface Par allax £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Maryland College Park, MD - 20770 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM 001736, Proceedings for the Army Science Conference (24th) Held on 29 November - 2
December 2004 in Orlando, Florida., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE UU 7
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



image plane

_ - -ifmage plane

Figure 1: Parallax due to surface S

Since (1) has the unknown correspondence p on the
right hand side, it is solved for parallax in terms of ¢
as

TZ(QZ - Pz)
u=q—p=——"—"""(qg—c¢ 3
P.(Q. = TZ)( ) (3)
Then § = %H(q — e)|| denotes the parallax
magnitude and v = % denotes the parallax di-

rection. The true depth P, can be estimated using the
parallax magnitude as
TZ z
P, = B Q (4)
Taor (@ —T2) + T

3 APPROACH

Our approach uses a hierarchical framework to align
a non-planar surface (hereby referred to as the refer-
ence surface) in images and estimate the deviations
from the reference surface by calculating the residual
parallax field. The algorithm uses two frames from
the image sequence, one of them being the reference
frame for which the depth map is refined. For the
rest of the paper, we refer to the reference image
as key image and the second image as the offset image.

3.1 Estimating Camera Motion

We begin by first estimating the camera motion
assuming that the camera calibration is known. We
identify a small planar region in the 3D scene (orien-
tation and distance in the camera coordinate system)
using the reference depth map and its corresponding
region in the key image. Since the optical flow of a
planar surface is parametric (quadratic in image pix-
els), we fit a parametric optical flow (Bergen, 1992)
to the region and obtain the parameters for that re-
gion. For a planar surface, the relationship among the
optical flow parameters, the orientation and distance
of the plane from the origin and motion parameters

is well known (Trucco, 1998). Due to a coarse initial
depth map, the motion parameters estimated using
these equations may not be very accurate. However,
they can be used as an initial estimate for refining the
motion parameters as explained below.

Consider the equations relating the image motion
of a rigid body with depth and camera motion (Horn,
1986)
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where (x7,yy) denotes the FOE in image coordinates,
(22,9,9.)7 denotes the camera rotation velocities,
Z' is the scaled depth, Z’ = %, and (u,v)T de-
notes the 2-D velocities accordirfg to the reference
depth Z,.r. We use the initial motion estimate
x5, yr, QL Qy, Q, to estimate Z’ and use the estimated
7' to refine the motion estimates. This is iterated un-
til the motion estimates are stable or a specified num-
ber of iterations are reached. Finally, we obtain an
estimate of T, as T, = <<Z§‘i§ ) where () denotes the
averaging operator over the planar surface.

Note that the FOE values are not affected by the
estimated T, because we are refining over the FOE
values first and then estimating 7, using the refined
scaled depths. In fact, since depth and T, are coupled,
we can use the scaled depth throughout our algorithm
without explicitly computing 7, .

3.2 Hierarchical Framework

Let the superscript [ denotes the resolution level, i.e.
x! denotes a variable at level [ with { = 1...L where



L is the coarsest level. Dividing each side of (3) by 2!,
we get
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where QL = %, P! = £ denotes the assumed and
true depth at level [ and ¢! = 3 el = 57 are the image
pixel coordinates at level [. The above equation shows
the relationship between the parallax and depths at
level [. Thus we can see that at coarser levels, the
parallax field is small. The hierarchical estimation al-

gorithm proceeds as follows

1. Estimate the camera motion. Construct pyramids
for the key and offset images and for the reference
depth map.

2. Initialize [ = L. Use the reference depth map and
the motion estimates at coarsest level to estimate
the parallax field (as described in the Appendix).
Refine the depths using the parallax.

3. Propagate the depths to level [ — 1. [ — [ — 1.

4. Warp the offset image according to the propa-
gated depth at the current level and use it to es-
timate the parallax field. Refine the depths using
the estimated parallax.

5. Iterate steps 3 and 4 until [ = 1.

4 EXPERIMENTS

We present results on both semi-synthetic and real
world 3D models. In all experiments, images contain
640 x 480 pixels.

4.1 Semi-synthetic Models

For semi-synthetic models (with real textures), we
rendered a 3D model of a city with buildings and ob-
jects in OpenGL. We simulated a sequence of images
by moving a virtual camera in the scene. The depth
maps were obtained from the OpenGL Z buffer. The
depth maps are color coded (with brighter regions
nearer to camera). Figures 2(a) and 2(b) show two
frames from a synthetic image sequence respectively.
Figure 2(c) shows the true depth map for the key frame
and Figure 2(d) shows the reference depth map which
was used as a surface for alignment. The background
is kept at a depth of 1000 units. A portion of ground

Table 1: True and estimated motion parameters for
semi-synthetic example

T, T, T. W, W, W.

True 376 060 526 002 -1.29 1.47
Estimated -3.68 0.57 4.93 0.01 -1.34 145

Table 2: Percentage depth error between the true
depth map and the reference and estimated depth
maps using different number of levels L

Depth Map Percentage Depth Error

Reference 35.59
Estimated: L =1 23.94
Estimated: L = 2 16.21
Estimated: L = 3 03.74

plane was used for camera motion estimation as ex-
plained in Section 3.1. The true and estimated cam-
era motion parameters are as shown in Table 1 (with
rotation angles in degrees).

Figures 2(e), 2(f) and 2(g) show the estimated depth
maps using different numbers of levels L in multi-
resolution framework. Notice that for L = 1, the depth
of the portion of the building (in the center of the
depth map image) which overlaps with the building at
the back are estimated correctly, whereas for the por-
tion which overlaps with the background, the depths
are not estimated properly, because for pixels in that
region the parallax magnitude due to high depth dif-
ference (from the background) is much higher. The
maximum parallax magnitude at levels 1,2 and 3 are
10.37,5.17 and 2.57 pixels respectively. The estimated
depth map using L = 3 is better than those obtained
using L =1 and 2.

We define the relative percentage depth error be-
tween the true depth map Zy,e and some other depth
map Z as 100 x 1 Zf[(%f where IV denotes the
total number of pixels in the image. Table 2 gives the
percentage depth error between the true depth map
and the initial reference and estimated depth maps
using different numbers of levels L. Thus, the hierar-
chical approach was able to estimate the parallax for
regions with high parallax magnitude. The results ob-
tained using the hierarchical approach are much better
both qualitatively and quantitatively.

4.2 Real World Models

A DEM model of downtown Baltimore (inner harbor
area) was rendered in OpenGL and the reference depth
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Figure 2: Semi-Synthetic example (a) Key frame (b) Offset frame (c) True depth map for key frame (d) Reference
depth map used for alignment (e,f,g) Estimated depth maps using different levels L



map was obtained using the Z buffer as shown in Fig-
ure 3(c). The depth map is color coded (with brighter
regions closer to camera). Video images were captured
using a Sony camcoder placed on a cart (not mounted)
moving across a street. Figures 3(a) and 3(b) show the
key and offset frames from the video sequence respec-
tively. Notice that the reference depth map is quite
coarse. In order to show the effectiveness of the hier-
archical framework, a portion of the reference depth
map was modified to a very small depth value (shown
in Figure 3(d)) so that the difference in depths for
that portion of image is large leading to large paral-
lax values. A portion of ground plane was used for
camera motion estimation. Figures 3(e) and 3(f) show
the estimated depths using the hierarchical algorithm
for L = 1 and 3 respectively. Notice that for L = 1,
the parallax field for the patch where the depths were
modified to a low value is not estimated properly. As
a result, the obtained depths are not correct (they are
in fact much closer). For L = 3, we can see that a bet-
ter estimate of depths is obtained. For example, the
depth of the pole in the foreground is more accurately
recovered.

CONCLUSIONS

A hierarchical framework for refining and updating
a 3D model given a coarse depth map has been pre-
sented. The approach can be viewed as a fusion of
available depth information (metadata) with the in-
formation from intensity images obtained from mobile
robots. Results on both semi-synthetic 3D models and
real models were presented. The estimated depth map
is quite accurate for the semi-synthetic 3D model and
appear plausible for the real model. The enhanced
scene can provide a much better understanding of the
scene in which robot is operating.
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APPENIDX

Let I(z,y,t) and I(xz,y,t — 1) denote the key and
offset frames respectively. Let (u(z,y),v(z,y)) denote
the true optical flow of pixel (z,y) in the key image.
The optical flow can be decomposed as

u(z,y) = uz,,,(2,y) + up(w,y)
v(r,y) = vz, (2,y) +vp(2,y)

(8)

where (uz,,,,vz,,,) denotes the flow due to the ref-
erence surface Z,.; at level [ and (up,v,) denotes the
parallax due to Z,.y. Assuming brightness constancy,
we have

I(x,y,t) = I(x_quef _upvy_vzref _vpvt_ 1) (9)

Assuming a small parallax field, we make the approx-
imation

I(x+up, y+vp,t) = (x—ug, ,,y—vz,.,,t—1) (10)

Expanding the left hand side of the above equation in
Taylor series around (x,y) and neglecting higher order
terms, we have,

Ioup + Iyv, + AT =0 (11)

where I, and I, denote the spatial image gradients and
Al represents the difference between the key image
and the warped offset image according to the reference
Z. ug,,., and vg, . are calculated from the reference Z
and motion estimates using (?7?) and the offset image
is warped towards the key image using bilinear inter-
polation. Since we know the camera motion and hence
the FOE (z¢,yy), we can write the parallax field as

(12)

(z—zy) B
Y (=) +y—ys)* dv(z,y) =

) denotes the parallax direction and

where (du(z,y)

(y—ys)
Y (@—zp)2+(y—ys)?
B(z,y) denotes the parallax magnitude for pixel (z,y).
Equation (11) then becomes

6(Ivy)Ip($7y)+AI(x7y) =0 (13)

where I, = I,du + I,dv denotes the projection of the
intensity gradient in the parallax direction. This is a
linear system for each pixel (z,y). Assuming that the
parallax magnitude is constant over a neighborhood
N x N, for each pixel (Z,7) we minimize the following
error function

J(fa y) = m}}n Z(x,y)ENXN < pTg(:L’, y)g(xa y)Tp >
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Figure 3: Real example (a) Key frame (b) Offset frame (c¢) Reference depth map used for alignment (d) Modified
reference depth map (e,f) Estimated depth maps



where p = { 5 }, glz,y) = { ipl(&zg) } and <>

denotes the smoothing operator defined as

(o)
<fo= [ we-my-pieydy ()
— 00
where w is a smoothing function. Then the parallax
magnitude will be given by (Z,7) = £. To avoid the
trivial solution p = 0, the constraint p”p = 1 is im-
posed. Using Lagrange multipliers, the error function
can be written as

J(Z,7) = mpin Z

(z,y)EN XN

<p gz, y)g(z,y)"p >
+A1=p"p)
(15)

Differentiating with respect to p, we get Gp = Ap
where

The eigen-vector corresponding to the smaller eigen
value of G will be the solution for p from which paral-
lax magnitude can be estimated.
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