Award Number: DAMD17-02-1-0354

TITLE: Association Between Offspring's hCG Genotype and Breast Cancer Risk in Mothers: A Novel Approach

PRINCIPAL INVESTIGATOR: Habibul Ahsan, M.D.

CONTRACTING ORGANIZATION: Columbia University in the City of New York
New York, New York 10032-3702

REPORT DATE: June 2004

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Association Between Offspring's hCG Genotype and Breast Cancer Risk in Mothers: A Novel Approach

Habibul Ahsan, M.D.

Columbia University in the City of New York
New York, New York 10032-3702
E-Mail: ha37@columbia.edu

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

We proposed to examine the novel hypothesis that the hCG genotype of a woman's offspring is associated with her breast cancer risk. Using the existing Metropolitan New York Registry (MNYR) resources, a case-control study was designed to examine the hypothesis whether first-born offspring's hCGβ 5 genotype (i.e., placental hCGβ 5 genotype during first FTP) is associated with a woman's breast cancer risk. To date, the three tasks in the approved Statement of Work for year 1 have been accomplished, and we are in the process of laboratory analyses.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>1</td>
</tr>
<tr>
<td>SF 298</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>4</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>5</td>
</tr>
<tr>
<td>Conclusions</td>
<td>5</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
<tr>
<td>Appendices</td>
<td>5</td>
</tr>
</tbody>
</table>
INTRODUCTION:

It has long been known that both early age at first birth and total number of full-term pregnancies (FTP) reduce breast cancer risk1-5. The underlying biology of this protection is yet to be clearly known. One or more of the hormonal changes during pregnancy are the logical candidates for this effect. Based on the published animal, human and epidemiological data, human chorionic gonadotropin (hCG), a glycoprotein hormone exclusively produced during pregnancy by the fetal part of placenta, has emerged as the most promising candidate6,7. The level of protection conferred by FTP may not be the same for all women, suggesting that there may be inherent variability in the protective effect across individuals. The hCG genes are well-known. Of the three trophoblastic hCG genes, hCG\textbeta\text{5} is the most expressed gene in placenta, most highly conserved and the major contributor of hCG function during pregnancy8,9. The genotype of the fetal placenta is actually the genotype of the developing fetus. We proposed to examine the novel hypothesis that \textit{the hCG genotype of a woman’s offspring is associated with her breast cancer risk}. The data and biospecimens for this study are banked in the repository of the Metropolitan New York Registry (MNYR), one of six collaborating sites of the NCI funded Cooperative Family Registry for Breast Cancer Studies (CFRBCS). Since 1995, MNYR assembled 1,150 families with more than 3,500 individuals. Using the existing MNYR resources, a case-control study was designed to examine the hypothesis whether first-born offspring's hCG\textbeta\text{5} genotype (i.e., placental hCG\textbeta\text{5} genotype during first FTP) is associated with a woman's breast cancer risk. We proposed to evaluate our hypothesis by comparing the hCG\textbeta\text{5} genotypes of first-born children of women with breast cancer (cases) and women without breast cancer (controls).

BODY:

This is the annual report for year 2 of the study. We have aimed to finish tasks 4-6 listed below during year 2 in the approved Statement of Work. To date, all three tasks for year 1 have been accomplished, and we are in the process of laboratory analyses. Questionnaire data on all participants are currently maintained in a relational database in Access which undergoes continuous quality-control checks. For the proposed study, a separate database specific for this project has been created containing all relevant data. Standard data cleaning and editing have been performed on these data to ensure that the case-control status, the relationship between the cases and controls and their first-born children, and the relevant risk factor information are accurate and consistent.

KEY RESEARCH ACCOMPLISHMENTS:

Year 1

Task 1: Identification of 1,106 eligible breast cancer cases and unaffected controls and their first-born children in MNYR database who are eligible for the study.
Task 2: Cleaning and editing of the questionnaire and family history data on the eligible study participants.
Task 3: Obtaining the DNA samples from the MNYR biospecimen bank on the 1,106 eligible study participants.

Year 2

Task 4: Genotyping 1,106 samples for the four SNPs in hCG\textbeta\text{5} gene using fluorescent polarization technique in 96 micro-well plate format.
Task 5: Cleaning and editing of the laboratory data
Task 6: Combining questionnaire and family history data with the laboratory data
REPORTABLE OUTCOMES:

Not applicable

CONCLUSIONS:

We have accomplished the three tasks in the approved Statement of Work for year 1 as planned and we are in the process of laboratory genotyping analyses. All tasks for year 1-2 should be accomplished the end of 2004.

REFERENCES:

APPENDICES:

Not applicable