Calculating the Training Demand in an Expanding Military Organisation: an Analytical Solution

Jun Wang, Armando Vozzo and George Galanis

Land Operations Division
Systems Sciences Laboratory

DSTO-TN-0608

ABSTRACT

The note presents an analytical solution for the calculation of training demand of an expanding military force. Two methods for deriving the solution for this problem have been proposed. The first method is based on a geometric series and demonstrates the method currently used by the Australian Army (a method the Army calls the "cyclic" process). The second method is based on a top down formulation of the same problem, and does not require infinite series and has fewer terms involved in the derivation of a solution. This method is potentially easier for Army officers to use for solving similar manpower planning problems in the future.

RELEASE LIMITATION

Approved for public release
Calculating the Training Demand in an Expanding Military Organisation: an Analytical Solution

Executive Summary

The work provides an analytical solution for the calculation of training demand of expanding military organisations.

A military manpower system is a form of closed system — trained staff and instructors for training are produced within the system except the lowest-rank newcomers. It is also hierarchical — higher rank staff are trained and promoted from lower rank staff. These features of military manpower systems complicate the calculation of training demands of an expanding military organisation. The complication arising from this closed manpower system can be stated in the following way: Expansion needs more trainees and hence more instructors from the combat force; a larger number of instructors reduces the assets of the combat force which creates further training demands; the further training demand needs to bring more staff from the combat force to do the instructing job. The calculation of the total training demand for this cyclic process poses some difficulty for the military situation and an analytical solution is presented in this report.

We present the solution to the training demand calculation for an expanding force for the typical Australian army four-rank training system. We also provide two methods for deriving a solution so that readers can apply the method they consider most appropriate to the particular training situation that they are considering.
Authors

Jun Wang
Land Operations Division

Dr Wang completed his PhD in Statistical Physics of Liquids at La Trobe University in 1992 and undertook post-doctoral research in Theoretical Chemistry and Theoretical Condensed Matter Physics at Sydney University, University of Western Australia and Griffith University between 1992 and 2002. He joined DSTO in 2002 to work in the area of Operations Research and Analysis.

Armando Vozzo
Land Operations Division

Mr Vozzo is a member of the Training Technology Mission in Land Operations Division and his current work is centred on investigating individual and collective training aspects of simulation training environments. Mr Vozzo has returned from a posting as the Staff Officer (Science) to the Australian Army Training Command, where he provided science and technology advice to the command as a civilian member of their headquarters. Prior to this role, Mr Vozzo was undertaking research and evaluation of the tactical battlefield command support system being introduced by the Australian Army. Mr Vozzo has had experience working for Defence industry where he was involved in the design and development of a software support and training facility for a substantial acquisition project by the Royal Australian Air Force. Prior to this work, he had experience in the research and development of sensor related technologies and platforms as well as teaching experience at the University of South Australia. Mr Vozzo has an Honours Degree in Engineering and a Graduate Diploma in Adult Education from the University of South Australia. He also holds a Graduate Certificate in Scientific Leadership from Melbourne University.

George Galanis
Land Operations Division

Dr Galanis joined Land Operations Division as the Head of Training Technology in June of 2001. For ten years prior to joining LOD he worked in the field of Simulation Research at the Air Operations Division. Prior to joining DSTO his experience included software and systems engineering, as well as flight instructing and working as a commercial pilot. Dr Galanis holds an Associate Diploma in Music Performance from Melbourne University, a Bachelor of Science from Monash University, and a Doctor of Philosophy from the RMIT. He also holds a commercial pilot’s licence (ATPL) with multi-engine instrument and instructor rating.
1. Background

Training Command – Army (TC-A) have tasked LOD, DSTO, to find a better way of calculating training demand for the training of Private (PTE) soldiers at the Army Recruitment Training Center (ARTC). Before this work was undertaken staff at TC-A were encountering a ‘circular reference’ error in their spreadsheet application when calculating numbers of trainees for an expanding course, trade, or wing of school. This report describes how TC-A’s problem can be formulated as a geometric series, and hence an equation representing the solution can be written that does not contain circular references.

In this report we focus on the calculation of training demand at ARTC, although in principle the method described here could be applied to any training centre. The problem as described by TC-A consists of two parts:

- Computation of the steady-state training demand due to vacancies created by PTE soldiers being promoted, discharged or laterally transferred. This part of the calculation is straightforward, and TC-A staff consider this problem solved, as long as the yearly percentages of promotion, discharge, lateral transfer and training completion are known.
- Expansionary training demand due to increasing personnel in all four ranks of soldiers: PTE, Corporal (CPL), Sergeant (Sgt) and Warrant Officers (WO). TC-A staffs consider this computation to be not as well understood and so this part of the calculation is the focus of the discussion below.

Two aspects in the calculation of expanding training demand are considered by TC-A. These are:

- The demand caused by what the Army call the “suck-up” effect. The effect occurs when there is an expansion in the number of staff in higher ranks and these positions must be filled from service staff in the lower ranks. TC-A have solved this problem for the four-rank case by explicitly summing the expansion demand for each rank.
- The demand caused by the “Dynamic” effect, which is the additional training demand caused by vacancies in the combat force cause by shifting staff from the combat force to the training force to fill the increased demand in instructing jobs. This problem has not been solved by TC-A, because it leads to a large series (in theory this is an infinite series, but in practice the series can be terminated to provide an approximate answer). In this report we address this effect in the case for planning for the next course, that is we only investigate demand for one time period. We do not consider delays in the supply of staff from the combat force or potential subsequent long-term consequences that would occur if the

1 We confine our discussion to soldiers undergoing training. The conclusion is equally applicable to officer education and training.
2 This is not a term that is normally used in the Army training literature, but rather a term used by the Army officers conducting training planning at TC-A.
3 We adopt the word “Dynamic” as used by TC-A for easy communication while it is not really dynamic in the scientific sense because, as can be seen in the derivation later, the solution does not depend on time. For convenience, we refer to the extra training demand caused by the “Dynamic” effect simply as Dynamic Training Demand.
computation were iterated over a number of periods. The solution over a number of time-periods would require the solution to a set of difference (or differential) equations and at this stage is beyond the scope of this particular investigation, but it has been partially addressed in another report on manpower planning [1].

A solution to the “Dynamic” training demand is presented in the next section. The derivation for the solution is presented in the appendices so that TC-A can apply the methods in different scenarios.

2. Analytical Solution for the Calculation of “Dynamic” Training Demand

We frame the problem as follows:

The Army wants to expand and sustain at the expanded level, a combat force that contains four ranks of A, B, C and D, with rank D the highest, by the amount of a, b, c and d, respectively. What are the training demands (number of trainees) TA, TB, TC and TD for each of these four ranks with given instructor/trainee ratios \(R_a, R_b, R_c, R_d \) and average graduation rates \(G_a, G_b, G_c, G_d \)?\

We summarise the situation in Table 1:

<table>
<thead>
<tr>
<th>Rank</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>Raw Graduates Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduates Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to “suck-up” (Promotion)</td>
<td>b+c+d</td>
<td>c+d</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Initial Graduates</td>
<td>(A_0 = a + b + c + d) & (B_0 = b + c + d) & (C_0 = c + d) & (D_0 = d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Trainee A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trainee B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trainee C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trainee D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Training Demand</td>
<td>(A_1 = A_0 / G_a) & (B_1 = B_0 / G_b) & (C_1 = C_0 / G_c) & (D_1 = D_0 / G_d)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first two rows of Table 1 define the expansion requirements in the system. The new positions are to be filled by graduates. There are extra graduate demands because graduates (except the rank A) are from lower rank officers (and hence the Army’s so-

4 We assume the graduation rates are available by statistical average of historical data or from “expert opinion”.
called “suck-up” effect). The “suck-up” effect is displayed in the 4th row, which adds to the “raw graduates demand” in the 3rd row to give the “Initial Graduates Expected”. We note that the actual numbers of graduates depend the actual graduation rates g_a, g_b, g_c and g_d, which are random numbers.

We put the title of trainee category in the table to denote that while A rank trainees are recruited “off the street”, the trainees at B, C and D ranks are from the personnel at ranks A, B and C in the combat force. The numbers of trainees required to deliver Initial Graduates Expected are displayed in the last row of the above table.

It is noted by TC-A, and has also been described using causal diagram analysis of system dynamics [1], that because of the closed nature of the military training system, more instructors are needed to train more trainees, which reduces the assets of the combat force. The reduction of the assets of the combat force creates a further training demand because these new vacancies now also need to be filled. That is, shifting personnel to work as instructors in training organisations, leads to a new requirement for more staff for the combat force. This cyclic process causes Army some difficulty in computation because of cyclic references in their spreadsheets. Here we provide an analytical solution below and the derivation of this solution is given in the appendix.

Assume that all instructors are from one rank above, the total training demands, including the “Dynamic” Training Demands, for four ranks, TA, TB, TC and TD are:

\[
TA = \frac{A_0}{G_a - R_a} + \frac{R_b B_0}{(G_a - R_a)(G_b - R_b)} + \frac{G_c R_c C_0}{G_b G_c R_c D_0} + \frac{G_d R_d D_0}{(G_a - R_a)(G_b - R_b)(G_c - R_c)(G_d - R_d)}, \tag{1}
\]

\[
TB = \frac{B_0}{G_b - R_b} + \frac{R_c C_0}{(G_b - R_b)(G_c - R_c)} + \frac{G_d R_d D_0}{(G_b - R_b)(G_c - R_c)(G_d - R_d)}, \tag{2}
\]

\[
TC = \frac{C_0}{G_c - R_c} + \frac{R_d D_0}{(G_c - R_c)(G_d - R_d)}, \tag{3}
\]

\[
TD = \frac{D_0}{G_d - R_d}, \tag{4}
\]

where A_0, B_0, C_0, D_0 are Initial Graduates Expected defined in Table 1. Equations (1) – (4) are constrained by (see the Appendix):

\[
0 < R_\lambda < G_\lambda \leq 1 \quad (\lambda = a, b, c, d), \tag{5}
\]

which is applicable to all discussions in this work.

5 We believe that there is an implicit policy decision that has been made in this view of the problem. This is addressed in the conclusion.

6 This is, on average, an acceptable assumption according to TC-A.
3. Conclusion

An analytical solution is presented for TC-A’s expansion problem. While the solution is based on the assumption that all instructors are from one rank above, the methods used in the derivation can be applied to any situations where the “dynamic” process is a consideration in calculation of training demands — that is, where an expanded force requires new instructors to come from operations, and where these additional vacancies require even more graduates to be recruited to fill the operational vacancies.

Two methods of deriving the solution for the “dynamic” process are presented in the Appendix for those interested in extending the solution beyond the assumptions of the original problem. However, it should be noted that the implementation of the solution in this report does not require an understanding of the derivations given in the main body of the report.

We note that the “Dynamic” training effect occurs because of an implicit training policy that is based on the assumption that an increase in instructors leads to a reduction in combat force that creates an immediate further training demand. We believe that this is only one of many possible training policies, and the solution given in this report may not be representative of an optimum policy. An analysis of this policy and its implications and other policy options that may be more efficient is expected to follow in another report.

4. Acknowledgements

We would like to thank Dr Chris Woodruff for providing some insightful comments and advice in the framing of this report. We also would like to thank Major Mark Nolan of TC-A for presenting the problem of training demand calculation and Ms Katie Walters in her involvement in discussions with TC-A in the articulation of this problem.

5. Reference

Appendix A: Methods of Derivation

Two methods used in solving the TC-A’s problem are explained in this Appendix. The first method is based on an iterative formulation of the problem, while the formulation in the second appendix is based on a recursive definition. Although the body of this report contains a solution to the specific problem for the ARTC four-rank problem, the derivations are included here for future reference if other “dynamic” training problems are to be addressed. The iterative formulation of the problem exists as it more closely reflects the way Army currently view the Dynamic Training problem. However, this type of formulation leads to an expansion with many terms. Because of the large equations that result, we have also included a Recursive formulation of the problem. Although this is not the way the Army currently formulates the problem, it may be advantageous from an Army perspective since the intermediate steps do not lead to equations as large as those for the iterative formulation. The recursive formulation will also lead to derivations with fewer terms for other types of scenarios, for example, where instructors are not necessarily taken from the rank immediately above, but from several ranks above.

A.1. Iterative view of the expansion problem

Table 2 shows the cyclic process in the planning of “Dynamic” training demand.

<table>
<thead>
<tr>
<th>Rank</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>Initial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trainee A</td>
<td>$A_0 = a + b + c + d$</td>
<td>$B_0 = b + c + d$</td>
<td>$C_0 = c + d$</td>
<td>$D_0 = d$</td>
</tr>
<tr>
<td>1st Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>$A_1 = A_0 / G_a$</td>
<td>$B_1 = B_0 / G_b$</td>
<td>$C_1 = C_0 / G_c$</td>
<td>$D_1 = D_0 / G_d$</td>
</tr>
<tr>
<td>Extra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructors</td>
<td>$R_a A_1$</td>
<td>$R_b B_1$</td>
<td>$R_c C_1$</td>
<td>$R_d D_1$</td>
</tr>
<tr>
<td>2nd Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>$A_2 = (R_a A_1 + R_b B_1 + R_c C_1 + R_d D_1) / G_a$</td>
<td>$B_2 = (R_a B_1 + R_c C_1 + R_d D_1) / G_b$</td>
<td>$C_2 = (R_c C_1 + R_d D_1) / G_c$</td>
<td>$D_2 = R_d D_1 / G_d$</td>
</tr>
<tr>
<td>Extra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructors</td>
<td>$R_a A_2$</td>
<td>$R_b B_2$</td>
<td>$R_c C_2$</td>
<td>$R_d D_2$</td>
</tr>
<tr>
<td>……</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i-th Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>$A_i = (R_a A_{i-1} + R_b B_{i-1} + R_c C_{i-1} + R_d D_{i-1}) / G_a$</td>
<td>$B_i = (R_a B_{i-1} + R_c C_{i-1} + R_d D_{i-1}) / G_b$</td>
<td>$C_i = (R_c C_{i-1} + R_d D_{i-1}) / G_c$</td>
<td>$D_i = R_d D_{i-1} / G_d$</td>
</tr>
<tr>
<td>……</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$TA = \sum_{i=1}^{\infty} A_i$</td>
<td>$TB = \sum_{i=1}^{\infty} B_i$</td>
<td>$TC = \sum_{i=1}^{\infty} C_i$</td>
<td>$TD = \sum_{i=1}^{\infty} D_i$</td>
</tr>
</tbody>
</table>

Table 2: Iterative procedure for the calculation of "Dynamic" training demand.
Now we show that Equations (1) –(4) in the main body of the text can be derived by summing the four infinite series defined in the last row of Table 2. We do not display the intermediate step in the calculation because it is straightforward but tedious.

For rank D:

\[TD = (1 + r_d + r_d^2 + r_d^3 + \ldots)D_1 = \left(\sum_{n=0}^{\infty} r_d^n \right)D_1 \equiv S(r_d)D_1 = \frac{D_1}{1 - r_d} = \frac{D_0}{G_a - R_d}, \]

(A.1.1)

where \(r_d \equiv R_d / G_d \) and we have used the definition \(D_1 = D_0 / G_d \) to get the final expression, which is Equation (4). We require \(G_d > R_d > 0 \) for \(TD \) to be positive and \(1 \geq G_d \) by definition of graduation rate, which explains the constraint Equation (5).

Notice that we have defined: \(S(x) \equiv \sum_{n=0}^{\infty} x^n = \frac{1}{1 - x} \) for convenience.

In the derivation below, we denote \(r_\lambda \equiv R_\lambda / G_\lambda \) (\(\lambda = a, b, c \)).

For rank C:

\[TC = S(r_c)C_1 + \frac{R_cS(r_c)S(r_d)D_1}{G_c} = \frac{C_0}{G_c - R_c} + \frac{R_cD_0}{(G_c - R_c)(G_d - R_d)}, \]

(A.1.2)

for \(1 \geq G_c > R_c > 0 \).

For rank B:

\[TB = S(r_b)B_1 + \frac{R_bS(r_b)S(r_c)C_1}{G_b} = \frac{B_0}{G_b - R_b} + \frac{R_bC_0}{(G_b - R_b)(G_c - R_c)} + \frac{R_cD_0}{(G_c - R_c)(G_d - R_d)}, \]

(A.1.3)

for \(1 \geq G_b > R_b > 0 \).

Finally for Equation (1) of rank A:

\[TA = S(r_a)A_1 + \frac{R_aS(r_a)S(r_b)B_1}{G_a} = \frac{A_0}{G_a - R_a} + \frac{R_bB_0}{(G_a - R_a)(G_b - R_b)} + \frac{R_cC_0}{(G_a - R_a)(G_c - R_c)} + \frac{R_dD_0}{(G_a - R_a)(G_b - R_b)(G_c - R_c)(G_d - R_d)}, \]

(A.1.4)

for \(1 \geq G_a > R_a > 0 \).

We present the iterative method here purely for illustrating the cyclic nature in the calculation of “Dynamic” training demand. As can be seen from the equations above, the solution requires expansion of nested series, and leads to algebra containing a large number of terms. The second method presented below avoids the problem of nested series and is recommended when applying this method to other problems.
A.2. Recursive view of the expansion problem

The method is to obtain the solution recursively, starting from the top rank D. The key equation to find Total Training Demand, \(TA, TB, TC \) and \(TD \) for ranks A, B, C and D, is the algebraic relation:

Total Graduates Expected = TTD0 + TTD1 + TTD2,

where TTD0 is the Initial Graduates Expected defined Table 1, TTD1 is the graduates expected to pay back instructors at higher ranks due to suck up and TTD2 is the graduates expected to pay back instructors at the current rank. See the concrete example below.

For rank D

\[
G_d * TD = D_0 + R_d * TD, \tag{A.2.1}
\]

which leads to

\[
TD = \frac{D_0}{G_d - R_d}, \tag{A.2.2}
\]

where \(1 \geq G_d > R_d > 0 \).

For the rank C, there is a need for the graduates of \(R_c * TC \) instructors for rank C and the need for the graduates of \(R_d * TD \) to fill vacancies created by C-rank staff becoming rank D trainees, which is due to the “suck-up” effect. Therefore, we have

\[
G_c * TC = C_0 + R_d * TD + R_c * TC, \tag{A.2.3}
\]

By solving Equation (A.2.3) for \(TC \) and then inserting Equation (A.2.2), \(TC \) reads

\[
TC = \frac{C_0}{G_c - R_c} + \frac{R_d}{G_c - R_c} TD = \frac{C_0}{G_c - R_c} + \frac{R_d}{(G_c - R_c)(G_d - R_d)} D_0, \tag{A.2.4}
\]

where \(1 \geq G_c > R_c > 0 \).

Note that the following relation is to be used in the rank-B derivation below

\[
R_c * TC + R_d * TD = \frac{R_c}{G_c - R_c} C_0 + \left(1 + \frac{R_c}{G_c - R_c}\right) * \frac{R_d D_0}{(G_d - R_d)}. \tag{A.2.5}
\]

For the rank B:

\[
G_b * TB = B_0 + (R_c * TC + R_d * TD) + R_b * TB \tag{A.2.6}
\]

Solving Equation (A.2.6) for \(TB \) and using Equation (A.2.5), we have:
\[
TB = \frac{B_0}{G_b - R_b} + \frac{1}{G_b - R_b} (R_c \cdot TC + R_d \cdot TD)
\]

\[
= \frac{B_0}{G_b - R_b} + \frac{R_c}{(G_b - R_b)(G_c - R_c)} C_0 + \frac{G_c R_d}{(G_b - R_b)(G_c - R_c)(G_d - R_d)} D_0
\]

(A.2.7)

where \(1 \geq G_b > R_b > 0\).

Again notice that the following relation is to be used in the subsequent rank-A calculation

\[
R_b \cdot TB + R_c \cdot TC + R_d \cdot TD
\]

\[
= \frac{R_b}{G_b - R_b} B_0 + \left[1 + \frac{R_b}{G_b - R_b} \right] \frac{R_c}{G_c - R_c} C_0 + \left[1 + \frac{R_b}{G_b - R_b} \right] \frac{G_c R_d}{(G_c - R_c)(G_d - R_d)} D_0
\]

\[
= \frac{R_b}{G_b - R_b} B_0 + \frac{G_b R_c}{(G_b - R_b)(G_c - R_c)} C_0 + \frac{G_c R_d}{(G_b - R_b)(G_c - R_c)(G_d - R_d)} D_0.
\]

(A.2.8)

Finally for the rank A

\[
G_a \cdot TA = A_0 + (R_b \cdot TB + R_c \cdot TC + R_d \cdot TD) + R_a \cdot TA,
\]

(A.2.9)

therefore:

\[
TA = \frac{1}{G_a - R_a} A_0 + \frac{1}{G_a - R_a} (R_b \cdot TB + R_c \cdot TC + R_d \cdot TD)
\]

\[
= \frac{1}{G_a - R_a} A_0 + \frac{R_b}{(G_a - R_a)(G_b - R_b)} B_0 + \frac{G_c R_d}{(G_a - R_a)(G_b - R_b)(G_c - R_c)} C_0
\]

\[
+ \frac{G_c R_d}{(G_a - R_a)(G_b - R_b)(G_c - R_c)(G_d - R_d)} D_0,
\]

(A.2.10)

for \(1 \geq G_a > R_a > 0\), where Equation (A.2.8) has been used in obtaining the final expression for \(TA\) in Equation (A.2.10).

It is quite clear from the equations from the recursive formulation that nested series have been avoided, and the equations have fewer terms. It is recommended that this formulation be used for future training situations.
Calculating the training demand in an expanding military organisation: an analytical solution

Jun Wang, Armando Vozzo and George Galanis

AUSTRALIA

DEFENCE ORGANISATION

No. of copies
Task Sponsor COMD TC-A 1

S&T Program
Chief Defence Scientist
FAS Science Policy
AS Science Corporate Management
Director General Science Policy Development
Counsellor Defence Science, London
Counsellor Defence Science, Washington
Scientific Adviser to MRDC, Thailand
Scientific Adviser Joint
Navy Scientific Adviser
Scientific Adviser - Army
Air Force Scientific Adviser
Scientific Adviser to the DMO

Systems Sciences Laboratory
Chief of Land Operations Division
Research Leader Human Systems Integration
Head (George Galanis)
Task Manager (Armando Vozzo)
Author: Jun Wang

DSTO Library and Archives
Library Edinburgh
Defence Archives

Capability Systems Division
Director General Maritime Development
Director General Land Development
Director General Capability and Plans
Assistant Secretary Investment Analysis
Director Capability Plans and Programming
Director Trials

Office of the Chief Information Officer
Deputy CIO
Director General Information Policy and Plans Doc Data Sheet
AS Information Strategies and Futures Doc Data Sheet
AS Information Architecture and Management Doc Data Sheet
Director General Australian Defence Simulation Office Doc Data Sheet
Director General Information Services Doc Data Sheet

Strategy Group
Director General Military Strategy Doc Data Sheet
Director General Preparedness Doc Data Sheet
Assistant Secretary Strategic Policy Doc Data Sheet
Assistant Secretary Governance and Counter-Proliferation Doc Data Sheet

Navy
DG Navy Personnel and Training 1
Director General Navy Capability, Performance and Plans, Navy Headquarters Doc Data Sheet
Director General Navy Strategic Policy and Futures, Navy Headquarters Doc Data Sheet
Maritime Operational Analysis Centre, Building 89/90 Garden Island Sydney NSW Doc Data Sht & Dist List
SO(Sc) S&T MAT DEV Doc Data Sht

Army
DGPERS 1
ABCA National Standardisation Officer, Land Warfare Development Sector, Puckapunyal e-mailed Doc Data Sheet
SO (Science), LHQ, Victoria Barracks, Paddington NSW 2021 Doc Data Sheet
SO (Science), Deployable Joint Force Headquarters (DJFHQ) (L), MILPO Gallipoli Barracks, Enoggera QLD 4052 Doc Data Sheet
SO (Science), 3 Bde, Lavarack Barracks, MILPO Townsville QLD 4813 Doc Data Sheet
SO (Science), 1 Bde, Robertson Barracks, Palmerston NT 0830 Doc Data Sheet
SO (Science), Training Command – Army, HQ TC-A, Suakin Drive, Georges Heights NSW 2088 1
SO (Science), Special Forces, Maritime Headquarters, Garden Island, NSW Doc Data Sheet

Air Force
CofS HQTC 1
SO(Sc) Williamtown Doc Data Sheet

Joint Operations Command
Director General Joint Operations Doc Data Sheet
Chief of Staff Headquarters Joint Operations Command Doc Data Sheet
Commandant ADF Warfare Centre Doc Data Sheet
Director General Strategic Logistics Doc Data Sheet

Intelligence Program
DGSTA Defence Intelligence Organisation 1
Manager, Information Centre, Defence Intelligence Organisation email pdf
Assistant Secretary Corporate, Defence Imagery and Geospatial Organisation

Defence Materiel Organisation
- Deputy CEO
- Head Aerospace Systems Division
- Head Maritime Systems Division
- Chief Joint Logistics Command

Defence Libraries
- Library Manager, DLS-Canberra
- Library Manager, DLS - Sydney West

OTHER ORGANISATIONS
- National Library of Australia
- NASA (Canberra)

UNIVERSITIES AND COLLEGES
- Australian Defence Force Academy
 - Library
- Head of Aerospace and Mechanical Engineering
- Hargrave Library, Monash University
 - Librarian, Flinders University

OUTSIDE AUSTRALIA

INTERNATIONAL DEFENCE INFORMATION CENTRES
- US Defense Technical Information Center
- United Kingdom - Dstl Knowledge Services
- Canada - Defence Research Directorate R&D Knowledge & Information Management (DRDKIM)
- NZ Defence Information Centre

ABSTRACTING AND INFORMATION ORGANISATIONS
- Library, Chemical Abstracts Reference Service
- Engineering Societies Library, US

SPARES

Total number of copies:
- Printed: 36
- PDF: 1
Calculating the Training Demand in an Expanding Military Organisation: an Analytical Solution

Jun Wang, Armando Vozzo and George Galanis

Systems Sciences Laboratory
PO Box 1500
Edinburgh South Australia 5111 Australia

6a. DSTO NUMBER
DSTO-TN-0608

6b. AR NUMBER
AR 013-305

6c. TYPE OF REPORT
Technical Note

7. DOCUMENT DATE
January 2005

8. FILE NUMBER
2004/1050568

9. TASK NUMBER
ARM 03/017

10. TASK SPONSOR
TC-A

11. NO. OF PAGES
8

12. NO. OF REFERENCES
1

13. URL on the World Wide Web

14. RELEASE AUTHORITY
Chief, Land Operations Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT
Approved for public release

The note presents an analytical solution for the calculation of training demand of an expanding military force. Two methods for deriving the solution for this problem have been proposed. The first method is based on a geometric series and demonstrates the method currently used by the Australian Army (a method the Army calls the "cyclic" process). The second method is based on a top down formulation of the same problem, and does not require infinite series and has fewer terms involved in the derivation of a solution. This method is potentially easier for Army officers to use for solving similar manpower planning problems in the future.