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Introduction  
 Polyhedral Oligomeric Silsesquioxanes (POSS) are nanoparticles that 
are used to enhance the thermal and mechanical properties of polymeric 
systems.  There has been extensive research in understanding how POSS 
affects these properties.1-15 POSS macromers can be blended with polymers or 
copolymerized with a wide variety of organic monomers.  Three typical 
examples are shown in Figure 1.  A model is emerging for how addition 
polymerized POSS copolymers can undergo a type of self assembly to form a 
nanocomposite.5 
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Figure 1.  Typical POSS materials that are incorporated into polymers. 
 
 To help define the microstructure of the addition copolymers, the POSS 
macromer and organic monomer reactivity ratios need to be known.  When 
two monomers are copolymerized, their reactivity ratios (r1 and r2) dictate the 
copolymer microstructure.  When r1 and r2 are both >1, the product will be a 
block copolymer. If r1 and r2 are very close to 0, the copolymer will be 
alternating.  If r1 and r2 are each close to 1, the copolymer will be random.16

 The styrene/POSS-styrene copolymers (See Figure 2) represent a family 
of glassy materials which we have extensively examined.15 To obtain detailed 
properties of these materials, we have determined methods of producing 
highly entangled materials with good mechanical properties.  To help 
understand their microstructure we are now developing methods of 
determining POSS-macromer reactivity ratios.  
 

x y

Si

Si

O

O

Si

Si

Si

Si

O

O

O

O

Si
O

Si

O

O
O

O
O

R R

R

R

R

R

R

n

Si

Si

O

O

Si

Si

Si

Si

O

O

O

O

Si
O

Si

O

O
O

O
O

R R

R

R

R

R

R
AIBN
Toluene
60 οC

R = isobutyl  
 
Figure 2.  Synthesis of iBuPOSS-PS copolymer. 
 
Experimental  
 Materials. IsobutylPOSS-styrene monomer, (C4H9)7(Si8O12)(C8H7),  was 
synthesized according to the literature method.15c  Styrene was obtained from 

Aldrich, and was filtered through a column to remove inhibitor.  2,2’-
azobisisobutronitrile was obtained from Aldrich and was used without further 
purification.  Toluene was passed through an alumina column to remove 
water, and then freeze-pumped-thawed to remove oxygen.  Diethyl ether and 
methanol were obtained from Aldrich and were used without further 
purification. 
 Instrumentation. 1H NMR spectra were obtained on a Bruker 400-MHz 
spectrometer using 5 mm o.d. tubes.  Sample concentrations were about 10% 
(w/v) in CDCl3 and were referenced internally to residual CHCl3 at 7.26 ppm.  
Spectra were run with 10 second delays to ensure accurate integrals. 
 Copolymerizations The copolymerization of POSS-styrene and styrene 
was initiated by AIBN at 60º C (Figure 2).  A stock AIBN toluene solution 
was prepared by adding AIBN (0.042 mg, 0.256 mmol) in a 100 mL 
volumetric flask.  For the 47 mole % reaction, the POSS-styrene (1.386 g, 
1.507 mmol) was weighed into a 15 mL test tube which contained a stir bar.  
The test tube was then brought into a dry box under nitrogen atmosphere.  
Styrene (0.176 g, 1.690 mmol) was then added into the test tube. The 
AIBN/toluene solution (1.500 mL) was added to the reaction using a syringe.  
The monomer concentration was 2.13 M, and the AIBN concentration was 
0.002 M.  The test tube was then capped, sealed with Parafilm, and brought 
out of the dry box.  The reaction was placed in an oil bath set at 60º C.  After 
three hours the reaction was removed from the heat to stop the 
copolymerization before reaching 5% completion.  Other reactions followed 
this same procedure.  Methanol was added to the reaction to precipitate out the 
copolymer.  To remove any POSS-styrene monomer from the copolymers, a 
typical workup procedure is to re-dissolve the precipitate in minimal 
chloroform and then slowly add methanol until the solution becomes cloudy.  
Centrifuging the cloudy suspension affords a clear decantate in which the 
unreacted POSS-styrene is soluble.  The copolymers were dried overnight 
under vacuum at about 45 ˚C. 
 
Results and Discussion 
 Copolymer Synthesis and Characterization. To obtain valid 
reactivity ratio data, it is crucial to perform a series of copolymerizations 
spanning the full range of mole % POSS-styrene and styrene compositions.  It 
is also necessary to use the same concentrations of monomers and initiator in 
all cases, and to stop the copolymerizations before 5 % conversion to prevent 
compositional drift from adversely skewing the results.  This was achieved 
following the procedure detailed in the experimental section.  The % POSS in 
the feed and % POSS measured in the copolymers is tabulated below. 
 
Table 1.  The mole % of POSS in the nine reactions ranged from 9 to 88 %. 

 
 The mole % POSS data in Table 1 is plotted in Figure 3.  Clearly the % 
POSS incorporation into the copolymers drops as higher POSS feed levels are 
used.  The relationship is fairly linear, as a least squares fit to the data yields a 
straight line with a correlation coefficient of 0.997.   

Experiment # POSS in Feed POSS in Copolymer 
 weight % mole % weight % mole % 

1 48.91 9.78 53.60 11.57 
2 70.42 21.24 69.33 20.38 
3 78.98 29.85 77.19 27.71 
4 88.73 47.14 85.39 39.83 
5 90.01 50.50 86.98 43.07 
6 92.53 58.38 89.97 50.39 
7 94.58 66.40 91.40 54.62 
8 95.42 70.24 92.85 59.53 
9 98.42 87.57 96.43 75.38 
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Figure 3.  Comparison of the mole % POSS in the feed and the mole % POSS 
found in the copolymer.  The dotted line is what was observed.  The solid line 
is the theoretical composition if both monomers reacted equally. 
 
  Characterization The copolymer compositions were determined by 
analysis of 1H NMR spectra.  To determine the two unknowns, mole fraction 
POSS-styrene (x) and mole fraction styrene (y), we need two equations.  
Equation 1 is simply stating the reasonable assumption that the copolymer 
composition is based on just these two monomers. 
 
 1=+ yx  (Eq. 1) 
 
The second equation is based on the fact that POSS-styrene and styrene both 
have different numbers of protons in the aliphatic and aromatic region.  We 
define a term IR (Integral Ratio) as equal to the ratio of the integral value of 
the aromatic region divided by the integral value of the aliphatic region.  
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In every copolymer, the POSS-styrene (x component) provides 4 aromatic and 
66 aliphatic and protons, relative to the styrene (y component) which has 5 
aromatic and 3 aliphatic protons.  By combining the equations 1 and 2 and 
solving for mole fraction POSS-styrene (x) one obtains equation 3.  
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For each 1H NMR spectrum the aromatic integrals and aliphatic integrals were 
measured and equation 3 was used to determine the % POSS-styrene 
incorporation.  Figure 2 shows a typical 1H NMR spectrum.  The increase in 
the aromatic integral by the CHCl3 present in the NMR solvent could be 
compensated for.   

 
Figure 3 1H NMR spectrum of copolymerized POSS-Styrene/Styrene. 

 
 Reactivity Ratio Determination. The method used for determining 
reactivity ratios was the Tidwell & Mortimer Non-Linear Least Squares 
equation.17  The mole % POSS data in Table 1 yielded results that rstyrene = 
0.84 and rposs-styrene = 0.38.   
 
Conclusions  
 Copolymers of styrene and POSS-styrene were synthesized and the 
reactivity ratio for the two monomers was calculated.  POSS-styrene was 
shown to be reactive when copolymerized with styrene with reactivity ratios 
of rstyrene = 0.84 and rposs-styrene = 0.38.  What this means, is that one expects a 
free radical polymerization to yield random copolymers.  A growing polymer 
chain with a regular styrene on its terminus only favors reaction with styrene 
over a POSS-styrene by a factor of 1.2 (1/0.84).  A growing polymer chain 
with a POSS-styrene on its terminus prefers reaction with styrene over POSS-
styrene by a factor of 2.6 (1/0.38).  For a polymerization taken to completion, 
compositional drift will certainly result in polymers produced late in the 
reaction having a higher POSS component than polymers initially formed.  
However, because POSS is typically used in low mole %’s (10 mole % is 
around 50 weight %) it is highly unlikely that free radical polymerization will 
ever generate blocky copolymers.  The consequences of this observation are 
that the POSS aggregation phenomena observed for many different 
copolymers is a self assembly process and not simply caused by block 
copolymerization. 
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