Cold Regions Engineering

U.S. Army Engineer Research and Development Center, Hanover, New Hampshire

Combined Effects of Temperature and Soils on Infiltration

More people are living and working in towns near rivers and coasts, with the result that losses due to flooding are becoming increasingly more common and severe. These consequences are not solely due to development within floodplains, but also to the cumulative effects of historical watershed alterations that have changed the hydrologic, hydraulic, and sediment-carrying capacity of the watersheds. Increased emphasis on environmental and socioeconomic aspects of floods and flood damage reduction requires the development of improved methods for the planning, design, construction, maintenance, operation, and monitoring of urban flood damage reduction projects to maximize benefits in a manner that is morphologically, environmentally, socially, and economically sustainable. The U.S. Army Corps of Engineers is now engaged in innovative planning, design, operation and maintenance, construction, and emergency response methods to provide flood damage reduction for current and projected growth in urbanized inland and coastal areas. The lead research program for this effort is called Technologies and Operational Innovations for Urban Watershed Networks (TOWNS), which has been strategically designed to develop technical products targeted at the needs expressed by those involved in urban flood damage reduction.

Census data show that population growth in the arid and semi-arid west is outpacing population growth in other regions of the country (Fig. 1). Six of the ten largest cities in the United States are in arid or semi-arid areas (Table 1). Three of these (San Diego, Phoenix, and San Antonio) showed double-digit percentage increases in population between 1990 and 2000. Dramatic population growth was seen in smaller cities over the same period, with seven of the ten largest percent increases in population for cities over 50,000 population occurring in Arizona, Texas, Nevada, and California (Table 2).

Figure 1. Population growth in the arid and semi-arid west is outpacing population growth in other regions of the country.
Ice Engineering: Combined Effects of Temperature and Soils on Infiltration

1. REPORT DATE
JUN 2004

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Ice Engineering: Combined Effects of Temperature and Soils on Infiltration

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
-

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Engineer Research and Development Center 72 Lyme Road Hanover, NH 03755-1290

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR’S ACRONYM(S)
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
6

19a. NAME OF RESPONSIBLE PERSON
-

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Table 1. Census information for the 10 largest U.S. cities, 1990 and 2000.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New York, New York</td>
<td>7,323</td>
<td>1</td>
<td>8,008</td>
<td>1</td>
<td>9.4</td>
</tr>
<tr>
<td>Los Angeles, California</td>
<td>3,485</td>
<td>2</td>
<td>3,694</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Chicago, Illinois</td>
<td>2,784</td>
<td>3</td>
<td>2,896</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Houston, Texas</td>
<td>1,631</td>
<td>4</td>
<td>1,953</td>
<td>4</td>
<td>19.8</td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania</td>
<td>1,586</td>
<td>5</td>
<td>1,517</td>
<td>5</td>
<td>–4.3</td>
</tr>
<tr>
<td>San Diego, California</td>
<td>1,111</td>
<td>6</td>
<td>1,223</td>
<td>7</td>
<td>10.2</td>
</tr>
<tr>
<td>Detroit, Michigan</td>
<td>1,028</td>
<td>7</td>
<td>951</td>
<td>10</td>
<td>–7.5</td>
</tr>
<tr>
<td>Dallas, Texas</td>
<td>1,007</td>
<td>8</td>
<td>1,189</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>Phoenix, Arizona</td>
<td>983</td>
<td>9</td>
<td>1,321</td>
<td>6</td>
<td>34.3</td>
</tr>
<tr>
<td>San Antonio, Texas</td>
<td>936</td>
<td>10</td>
<td>1,145</td>
<td>9</td>
<td>22.3</td>
</tr>
</tbody>
</table>

Table 2. Census information for largest increases in population growth for U.S. cities over 50,000 (not due to county consolidation).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gilbert, Arizona</td>
<td>109,697</td>
<td>29,188</td>
<td>80,509</td>
<td>276%</td>
</tr>
<tr>
<td>2</td>
<td>Flower Mound, Texas</td>
<td>50,702</td>
<td>15,527</td>
<td>35,175</td>
<td>227%</td>
</tr>
<tr>
<td>3</td>
<td>Vancouver, Washington</td>
<td>143,560</td>
<td>46,380</td>
<td>97,180</td>
<td>210%</td>
</tr>
<tr>
<td>4</td>
<td>Henderson, Nevada</td>
<td>175,381</td>
<td>64,942</td>
<td>110,439</td>
<td>170%</td>
</tr>
<tr>
<td>5</td>
<td>Sugar Land, Texas</td>
<td>63,328</td>
<td>24,529</td>
<td>38,799</td>
<td>158%</td>
</tr>
<tr>
<td>6</td>
<td>McKinney, Texas</td>
<td>54,369</td>
<td>21,283</td>
<td>33,086</td>
<td>156%</td>
</tr>
<tr>
<td>7</td>
<td>Bend, Oregon</td>
<td>52,029</td>
<td>20,469</td>
<td>31,560</td>
<td>154%</td>
</tr>
<tr>
<td>8</td>
<td>North Las Vegas, Nevada</td>
<td>115,488</td>
<td>47,707</td>
<td>67,781</td>
<td>142%</td>
</tr>
<tr>
<td>9</td>
<td>Chino Hills, California</td>
<td>66,787</td>
<td>27,608</td>
<td>39,179</td>
<td>142%</td>
</tr>
<tr>
<td>10</td>
<td>Jacksonville, North Carolina</td>
<td>66,715</td>
<td>30,013</td>
<td>36,702</td>
<td>122%</td>
</tr>
</tbody>
</table>

Consideration of urban flood problems that are characteristic of the arid and semi-arid west is critical. The Urban Flood Demonstration Program (UFDP), developed through collaboration between the Corps’ Engineer Research and Development Center (ERDC) and the Desert Research Institute (DRI), is exploring urban flooding in arid and semi-arid regions. Research topics are similar to those pursued in TOWNS, and include hydrology, hydraulics, sediment transport, channel stability and restoration, and ecological aspects of flooding in arid and semi-arid regions. One important aspect of hydrology and hydraulics is the estimation of the rainfall–runoff relationship for flash floods, particularly those occurring during the summer months. Anecdotal evidence suggests that there are seasonal effects on the rainfall–runoff relationship; however, this has not been studied in depth. This technical note addresses a knowledge gap: the combined effects of soil and temperature on infiltration rate.

Background

The hydrographic response of watersheds to precipitation is determined by their morphologies and their abilities to abstract rainfall. The abstraction ability of a soil is determined by its infiltration rate, which in turn is a function of its hydraulic properties and antecedent water content. Loss rate parameters in runoff models are typically determined by the type, condition, and cover for the hydrographic unit being considered. Seasonal effects are rarely, if ever considered. Recent research by scientists at ERDC and DRI has found that temperature can have a strong influence on loss rates. Modeling studies funded by the UFDP in the Las Vegas Valley indicate that temperature also can have a strong effect on infiltration. Further, these studies indicate that the nature of the temperature effect is strongly affected by the soil. Accordingly, modeling of hydrographic response may be improved by including temperature effects, but only if the temperature–soil interaction is included explicitly.
Infiltration

The Green and Ampt model is a widely used analytic expression of cumulative infiltration:

\[I = (\theta_0 - \theta_i) \left(2K_0 \frac{h_0 - h_i}{\theta_0 - \theta_i}\right)^{1/2} \]

(1)

where \(I \) is cumulative infiltration (m); \(t \), time (s); \(\theta_0 \), volumetric soil water content at saturated surface (m\(^3\)m\(^{-3}\)); \(\theta_i \), antecedent volumetric soil water content (m\(^3\)m\(^{-3}\)); \(K_0 \), hydraulic conductivity at the saturated surface (m\(\cdot\)s\(^{-1}\)); \(h_0 \), hydraulic head at the saturated surface (m); and \(h_i \), antecedent hydraulic head in the soil profile (m) (Jury et al. 1991). Temperature has strong influence on two of the parameters in equation (1), the hydraulic conductivity (via the effect of temperature on water’s viscosity) and the antecedent hydraulic head (via an as-yet-unknown mechanism).

![Figure 2. Viscosity of water between 0 and 50 °C.](image)

The viscosity of water decreases with increasing temperature (Fig. 2). The following relation describes the viscosity of water (\(\eta \), Pa\(\cdot\)s) as a function of temperature:

\[\eta_i = \eta_0 \exp \left(\frac{B}{T + T_0}\right) \]

(2)

where \(T \) is temperature (°C) and \(\eta_0 \), B, and \(T_0 \) are fitted constants (Grant 2004). The hydraulic conductivity can be described by

\[K_0 = \frac{k\rho g}{\eta} \]

(3)
where \(\rho \) and \(\eta \) are the density and viscosity of the liquid (kg\(\cdot \)m\(^{-3} \) and Pa\(\cdot \)s, respectively), \(g \) is the gravitational constant (m\(\cdot \)s\(^{-2} \)), and \(k \) is the intrinsic permeability of the porous matrix (m\(^2 \)) (Muskat and Meres 1936). Equations (2) and (3) indicate that hydraulic conductivity will increase exponentially with temperature.

Hydraulic head at constant degree of saturation is a linearly decreasing function of temperature, the slope of which is specific for each soil. The behavior in many soils has been fitted to the following equation:

\[
h = h(T_r) \frac{\beta_0 + T}{\beta_0 + T_r}
\]

where \(h \) is hydraulic head (m), \(h(T_r) \), hydraulic head (m) at \(T_r \), a reference temperature (in degrees kelvin, K = °C + 273.15), and \(\beta_0 \), a fitted parameter (K) (Grant and Salehzadeh 1996). Figure 3 presents soil hydraulic head as a function of water content and the \(\beta_0 \) parameter.

Figure 3. Soil hydraulic head as function of degree of saturation and temperature.

Depending on soil, the \(\beta_0 \) has values from \(-340\) to \(-460\) K. For infiltration or imbibition \(\beta_0 \) is a simple function of the geometric mean soil particle radius (Grant and Or in prep). This relationship is presented in Figure 4. In principle, therefore, the \(\beta_0 \) value of a soil can be estimated if its texture is available in a GIS database.

Cumulative infiltration can therefore be described by

\[
I = \left[2k \rho g(\theta_0 - \theta_i)\right]^{1/2} \left[\frac{-h(T_r) \left(\frac{\beta_0 + T}{\beta_0 + T_r}\right)^{1/2}}{\eta_0 \exp \left(\frac{B}{T + T_0}\right)}\right]
\]

(Grant and Young in prep). Figure 5 presents cumulative infiltration after 180 s divided by cumulative infiltration at 25 °C by a soil with a \(\beta_0 \) parameter value equal to \(-760\) K. Figure 4 shows that temperature has an effect on infiltration and that these effects are soil specific. For soils with \(\beta_0 \) parameter values above \(-400\) K, cumulative infiltration was an increasing function of temperature. Coarse textured soils were likely to have \(\beta_0 \) parameter values equal to or more negative than \(-400\) K. For soils with \(\beta_0 \) parameter values closer to \(-340\) K, which are likely to be finer textured soils, the estimated cumulative infiltration was an increasing function of temperature to roughly 25 °C, but a decreasing function of temperature from 25 to 50 °C.
Figure 4. Relationship between β_0 parameter and average particle diameter.

Future research

Fulfilling the Corps mission to provide flood damage reduction, predict watershed water quality, and to restore safe drinking water requires continuous improvement in watershed management tools. Although season and temperature are rarely considered a factor in hydrographic response of watersheds, field research has indicated that they are factors that deserve consideration. At the present time, no analytic method by which to simulate these effects has been suggested for field use. The results presented here provide an indication of the likely effect of temperature on infiltration, abstraction, and runoff as well as the conceptual tools for including these effects in Corps water-management products. Future research plans include the development of a method that can be included in hydrologic modeling tools such as HEC-HMS or WMS. This method will be verified using field observations collected in an urbanized watershed in the Southwest.

Figure 5. Normalized infiltration as a function of temperature and β_0 parameter value.
References

Acknowledgments

This work was supported by funding from the U.S. Army Corps of Engineers Civil Works Research-and-Development-funded TOWNS Research Program work unit “Technology Transfer, Innovations, and Demonstrations,” CWIS # 39765, and UFDP Work Unit “Assess and Improve Infiltration Analyses to Support Estimates of Recharge and Initial Abstraction,” CWIS # 031329.

* * *

This issue of Cold Regions Engineering was written by Steven A. Grant, PhD, Research Physical Scientist, and Kate White, PhD, PE, Research Hydraulic Engineer, Environmental Sciences Branch, Cold Regions Research and Engineering Laboratory (CRREL), U.S. Army Engineer Research and Development Center (ERDC), Hanover, New Hampshire.