REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

Please do not return your form to the above address.

1. REPORT DATE (DD-MM-YYYY) 24-01-2005
2. REPORT TYPE Final
3. DATES COVERED (From - To) July 1997 to September 2004

4. **TITLE AND SUBTITLE**
 Femtosecond Real-Time Probing of Energetic Reactions: Complex Organics and Advanced Techniques.

5a. CONTRACT NUMBER
5b. GRANT NUMBER
 N00014-97-1-0901
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
 Ahmed H. Zewail

5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 California Institute of Technology
 1200 East California Boulevard
 Pasadena, CA 91125

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 Office of Naval Research Regional Office, San Diego
 4520 Executive Drive Suite 300
 San Diego, CA 92121-3019

10. SPONSOR/MONITOR'S ACRONYM(S) ONR
11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for Public Release

13. **SUPPLEMENTARY NOTES**

14. **ABSTRACT**
 The research was focused on two major areas. The first area is the advancement of new techniques to elucidate elementary steps of reactions in complex molecular systems. In the second area, the effort was on the applications of these techniques to: (i) the studies of reactive intermediates of energetic reactions, and (ii) the dynamics of prototype molecular explosives. We have succeeded in advancing the new techniques for the studies of structure and dynamics of highly-excited and energetic molecules, and the progress in theoretical and experimental studies has been published in a series of papers.

15. **SUBJECT TERMS**
 Probing of energetic molecules and reactions.

16. **SECURITY CLASSIFICATION OF:**
 a. REPORT U
 b. ABSTRACT U
 c. THIS PAGE U

17. **LIMITATION OF ABSTRACT**
 UU

18. **NUMBER OF PAGES**
19. **NAME OF RESPONSIBLE PERSON**
 Ahmed H. Zewail
19b. TELEPHONE NUMBER (Include area code)
 626.395.6536

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18
ABSTRACT

The research was focused on two major areas. The first area is the advancement of new techniques to elucidate elementary steps of reactions in complex molecular systems. In the second area, the effort was on the applications of these techniques to: (i) the studies of reactive intermediates of energetic reactions, and (ii) the dynamics of prototype molecular explosives. We have succeeded in advancing the new techniques for the studies of structure and dynamics of highly-excited and energetic molecules, and the progress in theoretical and experimental studies has been published in a series of papers.

TECHNICAL SECTION (Including Objectives, Approach, and Progress)

Technical Objectives:

Three major areas of research represent the focus of this proposal. The first area is the advancement of new techniques to elucidate elementary steps of reactions in complex molecular systems. In the second area, the effort was on the applications of these techniques to: (i) the studies of reactive intermediates of energetic reactions, (ii) the dynamics of prototype molecular explosives, and the third area (iii) involves theoretical studies, ab initio, and molecular dynamics of complex organic reactions. We made major advances (see publications) in areas (i) and (iii), but did not have the chance (lack of continuing funds) to complete area (ii).

Technical Approach:

Three graduate students, four postdoctoral fellows, and a visiting scholar have been part of these projects; other postdocs and students were supported through fellowships. We have also initiated a strong theoretical program in ab initio structural and dynamical calculations to compare theory with experiment and new appointments were made for this
purpose. With the efforts of these persons we advanced new methodology for femtosecond-resolved mass spectrometry and for ultrafast electron diffraction. Our plans were in accord with the objective of the original proposal. The following represents the progress made.

Technical Progress:

Our accomplishments have been in three major areas. First, in the area of new techniques we have reported, following the publication in *Nature* of London, on the first clocking of molecular structures using ultrafast electron diffraction, a second publication in *Science* (U.S.A.). We also reported in Chemical Physics Letters on the structures of intermediate carbenes. We have also reported recently the transient structure involved in elimination reactions and more recently we published the structural dynamics of systems far from equilibrium at high energies.

 Boyd M. Goodson, Chong-Yu-Ruan, Vladimir A. Lobastov, Ramesh Srinivasan and A. H. Zewail

 H. Ihee, J. S. Feenstra, J. Cao, and A. H. Zewail

 H. Ihee, B. M. Goodson, R. Srinivasan, A. Lobastov, and A. H. Zewail

 V. A. Lobastov, R. Srinivasan, B. M. Goodson, C.-Y. Ruan, J. S. Feenstra, and A. H. Zewail
In the area of reactive intermediates of reactions, we have had success in identifying critical intermediates hitherto unobserved in a variety of reactions. We published on the new finding of nitrogen extrusion reactions, and on the dynamics of diradical intermediates in nonconcerted reactions. We have extended these studies to numerous reactions activated at high energies, including the important class of carbonyl and amine compounds.

(7) Femtosecond Dynamics of Retro Diels-Alder Reactions: The Concept of Concertedness
E. W.-G. Diau, S. De Feyter, and A. H. Zewail

(8) Direct Observation of the Femtosecond Nonradiative Dynamics of Azulene in a Molecular Beam: The Anomalous Behavior in the Isolated Molecule
E. W.-G. Diau, S. De Feyter, and A. H. Zewail

(9) Femtosecond β-Cleavage Dynamics: Observation of the Diradical Intermediate in the Non-concerted Reactions of Cyclic Ethers
A. A. Scala, E. W.-G. Diau, Z. H. Kim, and A. H. Zewail

(10) Femtosecond Dynamics of Transition States and the Concept of Concertedness: Nitrogen Extrusion of Azomethane Reactions
E. W.-G. Diau, O. Abou-Zied, A. A. Scala, and A. H. Zewail
J. Am. Chem. Soc. 120, 3245 (1998)

Finally, in the area of the dynamics of highly energized molecules, we have reported in Science magazine on the non-ergodic behavior of molecules hitherto unobserved in real time, and made extensions to other systems.

(2) The Uncertainty Paradox - The Fog that was Not
A. H. Zewail

(3) CF2XCF2X and CF2XCF2 radicals (X=Cl, Br, I): Ab Initio and DFT Studies and Comparisons with Experiments
H. Ihee, J. Kua, W. A. Goddard III, and A. H. Zewail

(4) Femtosecond Transition State Dynamics of Cis-Stilbene
T. Baumert, T. Frohnmeyer, B. Kiefer, P. Niklaus, M. Strehle, G. Gerber, and A. H. Zewail
Appl. Physics B, Lasers and Optics 72 105 (2001)

(5) Molecular Structure and Orientation: Concepts from Femtosecond Dynamics
J. S. Baskin and A. H. Zewail
(6) Direct Observation of Resonance Motion in Complex Elimination Reactions: Femtosecond Coherent Dynamics in Reduced Space
C. Kutting, E. W.-G. Diau, J. E. Baldwin, and A. H. Zewail

(7) Femtosecond Activation of Reactions and the Concept of Non-Ergodic Molecules
E. W.-G. Diau, J.L. Herek, Z.H. Kim, and A. H. Zewail
Science 279, 847 (1998)

(8) Femtosecond dynamics of hydrogen elimination: benzene formation from cyclohexadiene
S. De Feyter, E. W.-G. Diau, and A. H. Zewail

(9) Femtosecond Dynamics of Norrish type-II Reactions: Non-concerted Hydrogen-Transfer and Diradical Intermediacy
S. De Feyter, E. W.-G. Diau, and A. H. Zewail

TECHNOLOGY TRANSFER

Our interaction in the area of Technology Transfer involves two organizations. With the Jet Propulsion Laboratory we have direct scientific interaction on the development of new detectors for the studies of ultrafast electron diffraction. With the Navy Research Laboratories we plan scientific interactions regarding research on molecular explosives and the dynamics of unique substances which store and transfer energy.

ONR DATABASE STATISTICS

- 25 Papers Published in Refereed Journals Citing ONR Support, 3 Papers in Press in Refereed Journals Citing ONR Support.
- 5 Books or Chapters Published Citing ONR Support, 2 Books or Chapters in Press Citing ONR Support.
- 0 Technical Reports & Non-Refereed Papers, 0 Invention Disclosures Citing ONR Support.
• 0 Patents Granted Citing ONR Support, 0 Patents Pending Citing ONR Support
• 23 Presentations, 3 Degrees Granted

Refereed Journal Articles
1. See Technical Section

Books and Chapters
1. See Technical Section

Presentations
2. Honorary Degree Address, Prix Nobel Conference, University of Liege, Belgium (2000)
5. John C. Polanyi Nobel Laureate lecture, University of Toronto, Canada (2000)
7. Schrodinger's Wave Mechanics (75h) Celebration Lecture, University of Zurich, Switzerland (2001)
11. Leon Pape Lecture Series, California State University, Los Angeles (2002)