
  

AFRL-IF-RS-TR-2004-338 
Final Technical Report 
December 2004 
 
 
 
 
 
 
MITIGATING THE INSIDER THREAT WITH 
HIGH-DIMENSIONAL ANOMALY DETECTION 
  
Telcordia Technologies 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. N125 
  
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
 
The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the 
Defense Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 



  

STINFO FINAL REPORT 
 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2004-338 has been reviewed and is approved for publication. 
 
 
 
 
 
 
 
APPROVED:   /s/ 
   THOMAS M. BLAKE 
   Project Engineer 
 
 
 
 
 
 
 
 FOR THE DIRECTOR:   /s/ 
     WARREN H. DEBANY, JR. 
     Technical Director 
     Information Grid Division 
     Information Directorate 
 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
DECEMBER 2004

3. REPORT TYPE AND DATES COVERED 
FINAL                  Aug 02 – Aug 03 

4. TITLE AND SUBTITLE 
 
MITIGATING THE INSIDER THREAT WITH HIGH-DIMENSIONAL 
ANOMALY DETECTION 

6. AUTHOR(S) 
S. Pramanick 
S. Rajagopalan 
Eric van den Berg 

5.  FUNDING NUMBERS 
C     - F30602-02-C-0115 
PE   - 63760E  
PR   - N125 
TA   -  96 
WU  -  10 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 
Telcordia Technologies 
445 South Street 
Morristown NJ 07960-6438 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 
N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
Defense Advanced Research Projects Agency          AFRL/IFGB 
3701 North Fairfax Drive                                             525 Brooks Road 
Arlington VA 22203-1714                                            Rome NY 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 
AFRL-IF-RS-TR-2004-338 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  Thomas M. Blake/IFGB/(315) 330-1482                           Thomas.Blake @rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
In this project, we explored new techniques for detecting the threat of insider attacks in enterprise networks.  In 
particular, we explored the use of high-dimensional search techniques such as Latent Semantic Indexing to mitigate the 
problem of high dimensionality that is inherent in intrusion detection.  This new technique can be used for both labeled 
and unlabeled detection, and shows promise for detecting attacks and anomalies earlier than previously possible and 
detecting attacks that are similar to past ones. 
 

15. NUMBER OF PAGES14. SUBJECT TERMS  
Intrusion Detection, Anomaly Detection, Semantic Analysis 

16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 

UL 

NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 

31



 

 i

Table of Contents 
1 Introduction ............................................................................................................................................ 1 
2 Motivation .............................................................................................................................................. 2 
3 Measurement and detection .................................................................................................................... 3 

3.1 Intrusion Detection Architecture .................................................................................................... 4 
3.2 Detection of anomalies in single measurement data....................................................................... 5 
3.3 Detection of anomalies in multidimensional measurement data..................................................... 7 

4 Latent Semantic Analysis ....................................................................................................................... 7 
4.1 Summary of LSI/SVD approach for anomaly detection................................................................. 8 

4.1.1 Labeled Anomaly Detection ................................................................................................... 9 
5 Network state description ....................................................................................................................... 9 

5.1 Mapping Attacks to Documents ..................................................................................................... 9 
5.2 Mapping Alerts to Queries ........................................................................................................... 10 

6 Attack Scenario for Evaluation – Description of Queries .................................................................... 12 
7 Related Work........................................................................................................................................ 13 
8 Conclusions .......................................................................................................................................... 17 
9      References ............................................................................................................................................ 17 

Appendix A .............................................................................................................................................. 21 
Appendix B............................................................................................................................................... 22 
Appendix C............................................................................................................................................... 23 
Appendix D .............................................................................................................................................. 24 
D.1 Linear algebra background: Singular Value Decomposition ............................................................. 24 
D.2 Latent Semantic indexing .................................................................................................................. 25 
D.3 Queries............................................................................................................................................... 26 

D.3.1 Search for similar documents ..................................................................................................... 26 
D.3.2 Anomalous queries ..................................................................................................................... 26 

D.4 Updating ............................................................................................................................................ 26 
D.5 Implementation issues ....................................................................................................................... 27 

 
List of Figures 

 
Figure 1:    Detection Framework................................................................................................................... 5 
Figure 2:    XCISL document of a web attack .............................................................................................. 11 
Figure 3:   Encoding system measurements into XCISL style queries......................................................... 12 
Figure 4:   A two-dimensional plot of terms and documents along with the query application theory ........ 14 

 
List of Tables 

 
Table 1:   Database of system state measurements for attacks and normal behavior ................................... 13 
Table 2:   Returned documents based on different numbers of LSI factors.................................................. 17 
Table 3:   The 16X17 term-document matrix corresponding to the system states in Table 2....................... 23 

 



 

 1

 
1 Introduction 
 
In the March 2003, NRRC workshop on Cyber Indications and Warnings, the basic question was 
asked: How can we detect new large-scale attacks as early as possible? Early attack detection or 
Cyber Indications as it is also known, is not a new topic.  However, it is not a well-solved 
problem either.  Every year the world loses billions of dollars in lost data, services, and 
productivity due to cyber attacks that ravage the network infrastructure.  Indeed, all indications 
are that attacks are rising in scale, effectiveness, and frequency.  Setting aside the question of 
attack prevention, one may simply ask a basic question: what are these “attacks,” how do we 
recognize them, and what would constitute a robust response to a specific attack.  We address 
some aspects of these questions in this paper. 
 
Any cursory analysis of attacks and responses would reveal that we are in an “arms race” with 
defenders and attackers almost evenly matched. Almost as quickly as new defenses are put up, 
attacks apparently get modified to defeat them.  While we may not be able to eliminate the arms 
race nature of the equation, it is imperative to make a significant quantum jump in defensive 
mechanisms to make headway against our adversaries.  A significant new phenomenon that has 
complicated the problem is the emergence of “multi-dimensional” attacks.  “Code Red” and other 
such worms, in effect, exploited vulnerabilities in multiple technologies together to penetrate 
systems.  This has made the problem more complex because of the combinatorial explosion of 
possible combinations of technologies.  Surprisingly, the White House Report on Cyber 
Infrastructure Protection of 2002 explicitly mentions the multi-dimensional attack problem in the 
list of top priority problems for the national infrastructure.    
 
A particular kind of attack that is of considerable interest today is the “Insider” attack.  The 
general notion of Insider attacks as those that originate inside the network (as opposed to the 
Internet or other extranet) is not usable for two reasons: modern network topologies no longer 
allow a useful distinction of “inside” and “outside” and origins of attacks are not well-defined 
because of the wide-spread use of “zombied” machines.   Rather, Insider attacks are generally 
considered to be those that are launched (or launchable) from a position of relative privilege in 
the existing system (the “insiders”) where the privilege may vary from resource access level to 
simply the ability to put illegitimate packets on the network.  What makes this problem especially 
hard is that we cannot foresee which users are bad or will launch an insider attack, we may have 
to assume the worst, namely, that any user or group of users may launch an attack.  Because of 
the privileged starting point for insiders, these attacks are in a position to inflict wider damage 
faster than other attacks.  Hence being able to detect an attack as quickly as possible is critical to 
infrastructure protection.      
 
Another problem in the management of complex systems is the poor understanding of the 
interdependence between technologies.  For example, though we know that DNS forms a 
significant part of the backbone traffic, our ability to correlate DNS failures and traffic load 
changes is anecdotal at best.  This can be explained, at least partly, by the fact that the various 
technologies have overlapping effects on each other and causality is hard to determine from 
correlation.  Going forward this problem will continue to get worse and we have to find ways of 
reducing the complexity of the problem.  This is traditionally done by increasing the amount of 
monitoring in the system by adding new attributes or increasing the granularity of the monitoring.  
However adding new attributes increases the complexity of the correlation task.  The main 
contribution of this paper is that we address the problem of “dimension creep” in correlation by 
reducing the dimensionality of the problem but at the same time not losing the correlations 
between the various attributes that need to be extracted for analysis.  Because of the difficulty of 
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differentiating anomalies from attacks in a general sense we will use the more general term 
anomaly in this paper with the understanding that whenever possible we categorize an anomaly as 
an attack based on past history or by explicit assertion. 
 
Finally, we have the problem that attacks change over time. Signature-based analysis has to be 
made sufficiently abstract and general in order to catch variants of previously known attacks.  The 
challenge here is to be able to detect new kinds of attacks that have not been seen in the past.  
These new attacks may be able to elude our radar by adopting new signatures, vectors, and 
strategies.  Today’s approaches use existing attacks as models of future ones.  This paper makes 
the first step of going past this model.  The intuition here is that rather than analyze traffic with a 
priori models of attacks, we let the data define the distributions that correspond to attacks.  Since 
we do not know which attributes the attack will manifest on we have to formulate an approach 
that takes all or as many as possible into account in the analysis.  We still need a precise notion of 
attack to define the problem and for the purposes of our current work we assume that human 
annotation of past history will provide the concept of attack by way of example.  Our problem 
then reduces to looking for network phenomena that are statistically “close” to any attack that has 
been seen.  The hope here is that, to take an example, any variant of the Slammer work that uses a 
different vector will still show the same or similar traffic characteristics in an abstract sense.    
We propose to test the general hypothesis that attacks can be classified into classes where attacks 
in a class share some abstract pattern of traffic that is not necessarily tied down to port numbers 
or applications.  We also conjecture that a high dimension search for such attack patterns will 
lead to earlier discovery of these attacks.  We do in this in two ways.  In the “labeled” approach, 
we have annotated states of the network that are used to compare with the current state.  The 
current state is compared with the history of past network states and is labeled with the annotation 
of the nearest state using some distance metric.  The intuition is that in a high dimensional space 
it is hard for a human to compare multiple attributes at the same time.  By providing the 
comparison metric, the algorithm classifies the current state into various classes of choice, 
examples could be, “network instability”, “worm attack” etc.  The second option is unlabeled 
classification wherein our algorithm merely finds the historical states of the system that are 
closest but without classifying them into particular good or bad states.  It will then be up to a 
human to label the current state based on the query results.  We note that in both cases the 
objective is to bring to bear the “experience” of the network in categorizing large attribute sets. 
 
The attendant question with attack detection is generating the appropriate response.  We have not 
addressed the question of response in this paper due to space limitations. Suffice it to say that 
high-dimensional methods of detection enable sophisticated response techniques based on history 
because our query results also provide comparisons of the current state with similar states in the 
past and if the responses of the past are also stored they can provide guidelines for the new 
response. 
 
2 Motivation 
 
Quick and accurate identification of anomalies is of great importance in large, complex computer 
networks. Anomalies may indicate operational problems such as congestion or element faults. 
Alternatively, they might signal security problems such as an intrusion or a network attack. For 
both these classes of problems, rapid detection is critical, and automated anomaly detection tools 
greatly facilitate network management.  
 
In this paper, we focus on the particular application of intrusion detection. Current intrusion 
detection systems are often signature-based, which allows them to detect known attacks quickly, 
but they are defenseless against novel attacks. Anomaly detection systems have the capability of 
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detecting previously unknown intrusions. They work by learning ‘normal behavior’, and flag 
deviations from such ‘normal’ behavior.  
 
In recent years several researchers have applied data mining techniques in systems to find 
anomalies in (multidimensional) network data. These systems try to construct or ‘learn’ 
classifiers to distinguish ‘normal’ and ‘anomalous’ data. They need a training data set to practice 
the classifier.  Often, the training set events are assumed to be correctly labeled as either normal 
or attack. Constructing such a labeled training set is often a laborious and expensive task. 
Therefore, interest has increased in ‘unsupervised’ anomaly detection of unlabeled data. See for 
instance [1,2]. This type of anomaly detection relies on the assumption that anomalous elements 
are very rare compared to normal elements, and exhibit some features that clearly distinguish 
them from normal elements. It is related to the problem of finding ‘change points’ in single 
dimensional data, or to finding outliers and clustering in multivariate data. 
 
Depending on the type of data that an Intrusion Detection System uses as input, it is either 
classified as host-based, or network-based. Typically, a host-based IDS uses data such as audit 
trails and system logs. A network-based IDS analyzes traces of captured network packets. Data 
mining techniques can in principle be used for anomaly detection in both types of IDS. For 
instance, they can operate on connection records abstracted from the captured packet headers, or 
on (sub) sequences of system calls from a system log [1].  
 
Despite its power and generality, there are several challenges for data mining-based intrusion 
detection. To mention a few: modeling temporal data (detecting trends, frequency analysis), 
scalability (efficiency problems for large, high-dimensional feature spaces), and incremental 
mining (smoothly incorporating new information, without having to reanalyze the entire dataset 
from scratch). 
 
In the current paper, we propose an anomaly detection system that overcomes many of the 
problems mentioned above. The system is based on Latent Semantic Analysis, a data-mining 
technique, which has been shown to be very effective for retrieving information in high-
dimensional spaces. Its scalability and options for incremental mining are very well studied. 
Furthermore, the system incorporates detectors for individual network features, to better detect 
temporal trends.   
 
Latent Semantic Analysis is a data-driven technique, based on Singular Value Decomposition of 
an appropriately constructed ‘term-document’ matrix. In this initial work, we show the potential 
of this technique for use in an anomaly detection system.  
 
This paper is organized as follows: in Section 3, we describe our system architecture, as well as 
methods for data collection and simplex detection. In Section 4, we describe Latent Semantic 
Analysis, our data-mining system for detecting anomalies in high dimensional data. In Section 5, 
we describe the mapping of incoming data to our data-mining system. An example of our system 
on a small database is given in Section 6.  Finally, related work is discussed in Section 7, and our 
conclusions are presented in Section 8. 
 
 
3 Measurement and detection 
 
A typical intrusion detection system (IDS) has three components – data collection (and 
reduction), data classification and data reporting. Since data reporting is normally trivial, in this 
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section, we focus on the means of collecting data regarding the dynamic state of the system and 
classifying it either as normal or anomalous.  
 

3.1 Intrusion Detection Architecture 
 
The generic architecture of our intrusion detection system is illustrated in Figure 1. It introduces a 
hierarchically layered approach to system surveillance that includes sensors/observables, simplex 
anomaly and/or misuse detection systems, mapping modules, an alert classifier, a database of 
observed behavior and a warning module. The sensors are responsible for collecting a target-
specific event stream. The event stream may be derived from a variety of sources including audit 
data, network packets etc. Each event stream is connected to its corresponding anomaly and/or 
misuse detection system. The detection modules receive large volumes of event logs and produce 
smaller volumes of intrusion or suspicion reports (alerts) that are then fed to their associated 
mapping modules. Detailed description of the event streams and their detection modules is given 
in section 3.2. The mapping module is responsible for normalizing the alerts and converting them 
into a format understandable by the LSI classifier (see Section 5.2). The LSI classifier enables 
analysis of diverse alerts and can detect unknown attacks such as Internet worms and coordinated 
attacks. The known behavior is kept in the attack history database in the form of documents and 
the observed anomalous behavior is added to the database from time to time. The feedback 
mechanism is provided so that LSI module can increase the threshold of an anomaly detector if 
the false positive rate of that detector is too high and reduce it if the false negative is high. It can 
also be used to ask for more information from the mapping modules.  
 
The novelty of the work lies in combining high-dimensional and diverse alerts together to make 
more accurate attack detection. To achieve this goal, we obtain a significant reduction in the 
dimension of the alert space, by projecting these alerts on a suitably chosen subspace. This is 
done using a Singular Value Decomposition of a particular matrix of alerts by documented 
network states. The technique is known in information retrieval as Latent Semantic Indexing, or 
LSI. First, attacks and alerts are converted to pseudo-documents, or queries, containing terms. 
Similarly, each network state is described in a pseudo-document, in terms of the alerts generated 
by it. Then, LSI performs data mining on these documents to retrieve a ranked list of documents 
matching the given query. The framework can be used for both supervised and unsupervised 
learning.  When unsupervised learning is done, the framework will have high rate of false alarms 
in the beginning but as more and more system behavior get classified as normal the false alarm 
rates go down and newer and unknown attacks get caught. Alternatively, weights can be assigned 
to the incoming arcs of LSI so that less importance is given to the detection modules having high 
rate of false positives. The remaining sections explain these features in greater detail.  
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Figure 1:    Detection Framework 

3.2 Detection of anomalies in single measurement data 
 
Intrusion detection systems rely on a wide variety of observable data to distinguish between 
legitimate and illegitimate activities. Most systems collect profiles of user behavior (for example 
IDES/NIDES [28]), generated by audit logs. Other systems look at network traffic, for example 
NSM [56]. Other approaches include program specification methods, which attempt to 
characterize the behavior of privileged processes. Various methods of data collection are 
described below.  
 
In UNIX systems, system calls provide a natural observable for detecting anomalous behavior, 
because processes access system resources through the use of system calls. Short sequences of 
system calls executed by running processes provide a good discrimination between normal and 
abnormal operating characteristics of several common UNIX programs [49]. System calls can be 
recorded either by using a tool such as “trace” or by activating the auditing system. In S. Forrest’s 
work [52], [53], a table of characteristic subsequences of system calls is constructed for well-
suited processes such as ftpd and sendmail. During real time operation, a pattern-matching 
algorithm is applied to match on the fly the system calls generated by the process with entries in 
the pattern table to detect anomalies.  
 
One of the serious threats to the security of computer systems is the masquerade attack, in which 
one user impersonates another. In the UNIX operating system users execute commands to get 
their job done. By classifying the sequences of user-command data into either category - self and 
non-self, the problem of masquerade detection can be addressed. User commands can be captured 
using the UNIX “acct” auditing mechanism. Schonlau [54], and Maxion [55], have applied 
various classification techniques on the sequence of truncated user-commands (no arguments) for 
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automatic discovery of masqueraders. By observing the truncated user-commands one can detect 
insider attacks more thoroughly.  
 
Portscanning is a common activity used by computer attackers to characterize hosts or networks, 
which they are considering hostile activity against. It is also one of the techniques used by 
computer worms to multiply themselves. Thus it is useful for system administrators and other 
network defenders to detect portscans as possible preliminaries to a more serious attack. Various 
systems such as NSM [56], GrIDS [57], snort [58], Emerald [59], and Spice [60] generate alerts 
for portscan activities.  
 
Monitoring the server applications provides further insights than the traditional network-based 
and host-based collection methods, since it can monitor transactions that are encrypted. In [61], 
an approach for collecting real-time transaction information from a server application is presented 
that uses a module coupled with the application to extract the desired information. Their 
experimental results show that the performance impact on the application is tolerable. This 
application level information can be fed into the anomaly detection unit to get more accurate 
decision.  
 
Various other common network, host and user measurements are used in anomaly detection. The 
network measurements include the overall link bandwidth and features of individual connections 
such as duration, protocol type, number of bytes transferred etc. These measurements can be 
collected using tools like “tcpdump” an “Iperf” [62]. The host based measurements include the 
CPU usage parameters, gathered from the “/proc” filesystem, time since last reboot etc. The user 
measurements include the user profiles such as time of login, duration of user session, cumulative 
CPU time, names of files accessed, and so forth.  
 
Once the measurements are available, quick detection of potential anomalies is more important 
than having a high rate of false alarms, as long as evaluating low level alarms is relatively cheap. 
In Sections 4 and 5 below we describe an efficient method for evaluation of alerts. Fast, online 
detection can be performed using methods from statistical process control. Methods range from 
simple direct thresholding to more sophisticated sequential change point detection.  Recently, 
change point detection techniques have been applied to detect SYN flood attacks [43], monitor 
audit logs [44], and detect DoS attacks [45]. A detailed discussion of statistical change point 
detection is outside of the scope of this paper. However, such methods aim to minimize the 
average or maximum detection delay given a fixed false positive rate, or satisfy a related 
optimality criterion. See e.g. [46]. In general, a test statistic based on the incoming data sequence 
is incrementally updated, and then compared to a critical threshold. If the threshold is exceeded, 
an alert is generated.  
 
Separate detectors can be constructed on (possibly transformed) incoming measurement streams, 
to detect for instance saturation level, rate of increase, individually. In our framework, new 
aspects of the measurement stream can be monitored by adding a new detector. 
 
To reduce the number of false alarms, as well as increase the number of correct detections, we 
incorporate a method for aggregating alerts over time. In statistical process control, such 
aggregations are common in the form of run tests, where an alarm is only generated if the test 
statistic for the monitored process exceeds a threshold for a given number of times in sequence. 
Here, we can aggregate alerts over windows of varying (increasing) widths, to collect more and 
more alerts. The values of alerts can for instance be exponentially smoothed, in order to 
gracefully de-emphasize old data. 
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As a side-effect, our usage of alerts functions as a preliminary data filter, as we will see below. 

3.3 Detection of anomalies in multidimensional measurement data 
 
We can make use of the alerts generated by individual detectors, in order to define our network 
state in higher dimensions. In general, we can define our network state as a vector of detector 
values.  When an alert is generated by a specific detector, the corresponding vector element is 
non-zero. Otherwise, i.e. when no alert is generated, the vector element matching a detector is set 
to zero. Since typically only a few alerts are expected to be generated in a particular network 
state, this results in a sparse network state description. Note that this approach assumes a potential 
anomaly generates at least one alert. While this may appear restrictive, we can in fact use two 
different alert thresholds: the first is purely for the single, individual measurement under 
consideration. This threshold is set to correspond approximately to a given false alarm rate. A 
second, lower threshold is used to generate alerts for the higher dimensional analysis described 
below. In this way, the alerts retain power to signal anomalies for individual measurements, while 
also retaining flexibility in detecting higher dimensional anomalies where no individual alert is 
generated (yet). This assumption represents our first cut at this problem, and may be relaxed in 
later work. As an alternative approach the individual anomaly detectors can supply periodic 
updates if no alerts are seen within a period.  
 
Further details on the specific values generated by detectors are given in Section 5. In the next 
section, we describe our method for analysis of network state described by a vector of generated 
alerts. 
 
 
4 Latent Semantic Analysis  
 
In this section we describe our approach analyzing and classifying network alerts, which is based 
on Latent Semantic Analysis. Latent semantic analysis or indexing (LSI) has been developed and 
used successfully for information retrieval [39], finding relevant documents in a database given a 
query of search terms. This method improves on literal or lexical matching, by solving two 
problems connected to information retrieval based on queries: synonymy and polysemy. 
Synonymy broadly refers to the fact that there are many ways to refer to the same object. 
Polysemy refers to the general fact that most words have more than one distinct meaning. 
 
In the context of anomaly detection, these two problems have the following analogues: first, 
different combinations of alerts can signal the same form of anomaly. Second, most alerts have 
different meanings in different (anomalous) network states. 
 
LSI works on a matrix with indexed search terms as rows, and documents as columns. Each entry 
in the matrix represents the number of times the search term in its row occurs in the document of 
its column. (In fact, it works on a matrix of weighted counts, where each term and even each 
entry may be assigned a weight, to indicate relative importance of term or entry).  
 
At the heart of the LSI method is a Singular Value Decomposition (SVD) of the weighted term-
document matrix. The SVD is very similar to eigenvalue decomposition, and expresses the 
original matrix in a combination of linearly independent components or ‘factors’. Most of these 
factors only contribute little to the overall sum. Therefore, it is possible to reduce the number of 
factors significantly, without loosing much accuracy. In other words, the original matrix is 
projected on the smaller, lower dimensional space of most significant factors. All term-term, 
document-document and document-term similarities are now approximated by their values in this 
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smaller dimensional space.  For information retrieval purposes, SVD can be seen as a method for 
deriving a set of uncorrelated indexing variables or factors. Each term and document is 
represented by its vector of factor values. Terms and documents are therefore represented in the 
same space. Moreover, because the factor space has fewer dimensions, it is possible for 
documents with somewhat different term usage to be mapped into the same vector of factor 
values. By replacing the original terms with derived orthogonal factor values, the SVD helps to 
solve both the synonymy and polysemy problems discussed above. In fact, it deals with 
synonymy well, but offers only a partial solution for the polysemy problem. 
 
The SVD based approach of LSI has three desirable properties: 

1. Adjustable representational richness. By varying the number of factors k , we can refine 
our representation of terms and documents for better precision in retrieval, or coarsen it, 
to achieve higher data reduction. 

2. Explicit representation of both terms and documents. Since terms and documents are 
represented in the same (factor) space, relevant documents for a search query are simply 
those, which are close to the query in the factor subspace, by some appropriate distance 
measure. Moreover, it is relatively simple to add new terms and documents to the factor 
space, as we will see below. 

3. Computational tractability for large datasets. Since the number of factors k  is much 
smaller than the number of terms plus documents N , the computational complexity of 
this method compares favorably to standard vector space based methods. Still, computing 
the SVD is expensive. 

 

4.1 Summary of LSI/SVD approach for anomaly detection 
As mentioned in Section 3.3, in our model, network state is described by a vector of detector alert 
values. In this paper, we stay close to the text based LSI methodology. First, we map 
(normalized) individual detector values to a semantic description. This is done via ‘qualitative 
quantization’, by mapping numerical values to words such as ‘high’ ‘medium’ or ‘low’. The 
detector name is added to the semantic description. Our network state description now consists of 
a vector of all possible detector-alert terms. When a particular alert is generated by a detector, the 
vector-element corresponding to the detector alert term is non-zero. When no alert is generated, 
the corresponding vector element is set to 0. The vector of alert-values so generated is like a 
query for a search engine. The query is compared to various ‘documents’ consisting of known 
network state descriptions (in the labeled case), or of previous alerts (in the unlabeled case).  
 
Most search engines perform lexical matching, looking for exact matches with search terms only. 
Instead, Latent Semantic Indexing first performs a Singular Value Decomposition of the matrix of 
known ‘search terms’ (the set of detector-alert values) and ‘documented’ network states, 
consisting, say, of counts of a particular search term (generated alert) in a particular documented 
network state description (labeled), or previous alert vector (unlabeled). We then construct a 
subspace spanned by the  k  most significant factors of this matrix. A new query is projected onto 
this subspace.  The idea behind LSI is that similar network states and queries, including non-
exact, ‘higher-order’ matches, get mapped to the same area of the subspace. Retrieval of related 
documented network states now consists of finding documented network states close to the query 
in the subspace. Closeness or similarity can be measured by various metrics. Since LSA operates 
on a vector space, a popular measure of similarity is the inner product between the projected 
query vector and potential projected document vectors. Other measures are possible, such as the 
distance between two vectors in the subspace. Returned documents typically satisfy a distance 
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threshold, like a minimum inner product threshold. If not enough documents satisfy this 
minimum inner product threshold, then the query is flagged as an anomaly. Note that the 
projection of our query on the subspace results in a reduction in dimensionality, but also in some 
information loss. By choosing the basis of our subspace in an optimal way using the SVD, this 
information loss is minimized for the given document and term vectors. However, if for a 
particular query, the amount of information lost, as measured by the difference in vector norm 
between the original query and its subspace projection, exceeds a given threshold, then the query 
is also designated an anomaly.  
 

4.1.1 Labeled Anomaly Detection 
The previous description of anomalous queries applies to unsupervised anomaly detection. If the 
previous ‘documented’ network states have instead been classified (off-line) according to their 
anomaly-type (e.g. normal, DoS attack, worm attack, insider attack, etc), then we can return more 
specific information. In this case, the returned ‘retrieved document list’ is a sequence of likely 
states of the network. We can use this list of documented network states together with their 
likelihood (e.g. as measured by the similarity metric) to further investigate the alert query.  When 
an anomaly is classified as either normal, or some new attack, it can be added to the list of known 
network states, or ‘documents’. This can be done in various ways, from fast and not very accurate 
‘folding in’, via SVD-updating, to full recomputation of the SVD.  Labeled anomaly detection 
allows us to detect attacks in high-dimensional space with more confidence.  If the network has 
encountered attacks that have been annotated correctly, new attacks that are similar but not 
necessarily identical are now possible to detect using our technique.   
 
In Appendix D, we describe the LSI method in more detail based on [40]. 
 
5 Network state description 

5.1 Mapping Attacks to Documents 
 
Different types of attacks such as worm or virus attacks, denial of service attacks, intrusion 
attacks and insider threats have surfaced in the past decade. These attacks lead the network into 
some bad state causing unavailability of services, network congestion, reduced quality of service, 
leak of confidential information and so on.  
 
A Common Intrusion Specification Language (CISL) provides terms for describing an attack in 
terms of the time, source, target, observer, outcome, attack identity (in terms of a list of well-
known attacks and attack classes), and cause [51]. Appendix B shows a typical CISL document 
for the slammer worm attack. In this work we extend the CISL specifics to represent attacks as 
documents. We call the new language Extended Common Intrusion Specification Language 
(XCISL). We chose to extend CISL because it is used by the intrusion detection systems to share 
information about the attacks among themselves. Three new Semantic IDentifiers (SID) are 
added to XCISL – the system state, the network state and the application state. The system state 
captures features such as the CPU usage, the system call sequence variation from the norm etc. 
during the attack. The network state captures the bandwidth usage, the rate of increase in 
bandwidth demand etc. The application state captures the application in demand during the 
attack. All the observed intrusive system state are represented as a XCISL document and stored in 
the attack history database.  
 
Attacks are identified and classified by their attributes, which include the following: 
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• Observer/Sensor: The entity making the attack diagnosis.  
• Initiator: The entity responsible for carrying out the attack.  
• Target: The entity that is the target of the attack.  
• Attack Description: The high level information about the attack. Here we can describe the 

attack signature, the events that led to the attack, the consequences of the attack and 
network state when the attack occurred.  

 
We consider web attacks to give an example of a XCISL document. A web attack has a particular 
attack life cycle – entry point, vulnerability, threat, action, input length, target, scope and 
privileges. The attack life cycle describes a succession of steps followed by an attacker to carry 
out some malicious activity on the web server. For example, buffer overflow vulnerability in 
ISAPI extension (idq.dll) in Index Server 2.0 and Indexing Service 2000 in IIS 6.0 beta and 
earlier allows remote attackers to execute arbitrary commands via a long argument to Internet 
Data Administration (.ida) and Internet Data Query (.idq) files [50]. The attacker first probes the 
network for the presence of an IIS web server having the above vulnerability. This is followed by 
exploitation of the vulnerability by an action, using an HTTP element of certain length. Thus the 
attacker is able to execute arbitrary commands (deleting, overwriting etc.) at the system level on 
the web server.  
 
The web attack exhibits anomaly at various levels of the network stack. Probing the subnet for 
vulnerable web server might trigger off the network based IDS, receiving a message of a 
particular length and signature might trigger off the host based misuse detection system and 
executing arbitrary commands that violate the system call sequence norm can trigger off the host 
based anomaly detection systems. All these events can be collected along with the observations of 
the IDSs to represent a particular web attack. Figure 2 shows the XCISL document of a web 
attack [50]. The actual attributes of the attack are fictitious. In the example, the attack was 
detected by a misuse-based IDS which observed that the system call sequence of the 
webserver_software was above the desired threshold. The rest of the document is self-
explanatory.  
 

5.2 Mapping Alerts to Queries 
 
The alerts generated by the individual event-based detection modules are measured under 
different dimensions and time scales. In order to perform anomaly detection in multidimensional 
measurement data these alerts need to be combined. To facilitate this operation, mapping modules 
are added after the detection modules in the hierarchy (see Figure 1). The mapping modules 
receive the alerts from the detection modules and generate a pseudo-document of XCISL terms 
called the “query”. The XCISL query is then fed to LSI for data mining purposes. Figure 3 
illustrates the working of the detection module and mapping module in tandem. 
 
The mapping module performs four major operations on the local alerts and filtered audit 
received from the detection module. It first normalizes the parameter-values of the input. This is 
important because a server with a capacity of 100 connections per second is overloaded when 
more than 100 connections arrive in second but a server with a capacity of 10 connections per 
second is overloaded when just 11 connections are received in a second. The comparisons will be 
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( And 
 ( ByMeansOf 
  ( Attack 
   ( Initiator 
    ( IPV4Address remote_user ) 
   ) 
   ( Observer 
    ( ProcessName intrusion 
detection_system) 
               (Mechanism misuse_detection) 
               (Threat authorization_violation) 
   ) 
   ( Target 
    ( IPV4Address webserver_software) 
   ) 
   ( AttackSpecifics 
    ( Certainty 100 ) 
    ( Severity 20 ) 
    ( AttackID httpget_oracle) 
   ) 
   ( Outcome 
    ( CIDFReturnCode success ) 
   ) 
   ( When 
    ( BeginTime Wed Jun 16 09:07:46 
2000 EDT ) 
    ( EndTime Wed Jun 16 09:08:46 2000 
EDT ) 
   ) 
  ) 
 

    ( SystemState  
           (CommandSeqChange  10%) 
           (SyscallSeqChange   70%) 
       ) 
       ( NetworkState 
   ( Initiator 
     ( IPV4Address remote_user ) 
   ) 
   ( Receiver 
    ( TCPPort 80 ) 
    ( IPV4Address webserver_software ) 
   ) 
      (LinkBandwidth LOW) 
           (LinkBandwidthRate  +0.2) 
           (PortScanRate  LOW) 
   ( When 
    ( BeginTime Wed Jun 16 08:57:46 
2000 EDT ) 
    ( EndTime Wed Jun 16 09:08:46 2000 
EDT ) 
   ) 
  ) 
       (ApplicationState 
           (InDemandService oracle) 
           (MessageLength  fixed) 
       ) 
 ) 
) 

Figure 2:    XCISL document of a web attack 

made simple if the readings are recorded as a percentage of the server capacity rather than the 
actual values. The same concept holds for other measurements such as bandwidth, deviation of 
system calls etc. The normalization operation is provided a table of weighing factors and 
normalization schemes for different measurements. The weighing factors in this table can be 
changed based on the feedback of the LSI classifier (see Figure 1).  
 
Once the normalization is done we end up with a list of parameter value pairs that are filtered 
further based on the requirements of XCISL. Filtering is done because the XCISL has a fixed set 
of keywords with which it creates a document. As more and more keywords are added to XCISL 
less and less parameters will be filtered. An XCISL keyword table is fed to the filtering unit to 
help it select the desired parameter value pairs.  
 
The final member of the mapping module is the query generator. It receives the filtered parameter 
value pairs and outputs a pseudo-document in XCISL terms called the XCISL query.   
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Figure 3:   Encoding system measurements into XCISL style queries 

 
6 Attack Scenario for Evaluation – Description of Queries 
 
In this section, LSI is applied to a small labeled database of attacks and normal behavior. Three 
kinds of attacks are considered – insider attack, worm attack and denial of service attack. Without 
loss of generality, for evaluation purposes, we have used normal terms rather than using XCISL 
keywords for describing system behavior. The XCISL keywords are converted to normal terms 
by tagging them with their values. For example, (LinkBandwidth LOW) is converted to low_bw, 
(InDemandService httpd) is written as highdemand_httpd and (CommandSeqChange 10%) is 
written as 10_commandseq. Since we are using normalized values for the measurements, the 
number of terms created will be finite. For simplicity of understanding we have used two levels 
for all the measurements – normal and high usage.  
 
In Table 1, 17 system states are listed. All the italicized terms are used as referents to the system 
states. In total 16 terms have been identified. Detailed description of the terms is given in 
Appendix A. The cluster {S1, S2, S4, S6, S8, S10, S13, S14, and S15} belongs to the normal 
behavior, {S5 and S16} belongs to the DoS attack, {S11 and S12} belong to the insider attack 
and {S3, S7 and S17} belong to the worm attack. Keeping to LSI terminology the system states 
are henceforth referred as documents. Corresponding to the measurements in Table 1 is the 16×17 
term-document matrix is shown in Table 3 (Appendix C). The elements of this matrix are the 
frequencies in which a term occurs in a document. The truncated SVD (with k = 2) of the 16×17 
matrix in Table 3 is shown in Figure 4.  
 
In Figure 4, we find that LSI does a nice job of clustering the system states belonging to the same 
type close to each other except for S6. Since S6 states that a critical web resource is in heavy 
demand, a typical starting point of DoS, it got clustered with the DoS attacks even though the 
system call sequence of the process was normal. As more documents that pay stress on the system 
call sequence are added, S6 will get clustered in the set of normal behavior.  
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Table 1:   Database of system state measurements for attacks and normal behavior 

Label Measurements 
S1 Opnet_simulation; high_cpu; normal_portscan 
S2 Periodic_update; normal_portscan 
S3 High_bw; highdev_syscallseq; highdev_httpd; high_portscan 
S4 Resource_request; norm_res; norm_bw; norm_portscan 
S5 High_bw; highdemand_httpd 
S6 Highdemand_httpd; norm_syscallseq; critical_resource 
S7 Critical_resource; high_bw; highdev_httpd 
S8 Norm_commandseq; norm_syscallseq; norm_httpd; norm_portscan; 

norm_bw 
S9 Norm_cpu; norm_syscall 
S10 Norm_httpd; norm_bw; norm_portscan 
S11 Copying_files; High_passwdattempts; highdev_syscallseq; norm_bw; 

norm_portscan; highdev_commandseq 
S12 Deleting_files; High_passwdattempts; highdev_syscallseq; norm_bw; 

norm_portscan; highdev_commandseq 
S13 Norm_cpu; norm_res; norm_bw; norm_portscan 
S14 Norm_commandseq; norm_bw; norm_portscan 
S15 Norm_bw; norm_portscan 
S16 High_cpu; critical_resource 
S17 High_cpu; high_portscan; highdev_syscall 
 
Once the SVD is done we wait for a new system state and try to compare it with the previously 
observed behavior to detect anomalies. The new system state is converted to a query and fed into 
the LSI. For our evaluation we consider a new worm attack that exhibits system alerts of 
high_portscan and highdev_syscallseq, which has not been observed before by the system. Figure 
4 shows the mapping of this query to the already formed clusters. All documents whose cosine 
with the query vector is greater than 0.90 are in the shaded region. The matched documents 
include {S17, S3, S6, S16, S5 and S7}. A different cosine threshold could be used so that a larger 
or smaller set of documents is returned. In this example, using a cosine threshold of 0.55 returns 
S11 and S12 as well (S11 and S12 are somewhat related). With lexical-matching only four 
documents {S3, S11, S12 and S17} are returned. Hence, the LSI approach can extract four 
additional documents {S5, S6, S7, S16}, which are relevant to the query yet, share no common 
terms. 
 
Table 2 lists the LSI-ranked documents with different numbers of factors (k). The documents 
returned in this table are within a cosine-threshold of 0.20 of the query. It is evident that the rank 
ordering of the documents can vary significantly with changes in the number of factors k. As the 
value of k increases more appropriate matches are returned, e.g., S6 which was a normal state and 
was returned as a match with k=2 is not present in k=4 and k=8.  
 
 
7 Related Work 
 
The related work in this area is divided into two categories – first, clustering and dimensionality 
reduction schemes used for data mining and second, intrusion detection schemes using data 
mining.  
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Clustering 
Clustering is a well-known problem and has been studied in many fields including statistics [8], 
machine learning [9], databases [10], and visualization. Many data-mining algorithms in the 
literature find outliers as a side-product of clustering algorithms [24, 25, 26, 27, 28, 29]. These 
techniques define outliers as points that do not lie in clusters, thus implicitly defining outliers as 
background noise. Another class of techniques [34, 35, 36] defines outliers as points that are 
neither a part of a cluster nor a part of the background noise; rather, they are points that behave 
very differently from the norm. But they are not methods that are specifically designed in order to 
deal with the curse of dimensionality. In [37], the data points are modeled using a stochastic 
distribution, and points are determined to be outliers depending upon their relationship with this 
model. However, with increasing dimensionality, it becomes difficult and inaccurate to estimate 
the multidimensional distributions of the data points. Two algorithms [35], [36] define outliers by 
using the full dimensional distances of the points from one another. However, in high 
dimensional space, the data is sparse and the notion of proximity fails to retain its 
meaningfulness.  
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application theory. 
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One solution to the problem of high dimensionality is to project the data onto lower dimensions 
and then compare the data density. The most obvious class is dimensional models, like 
multidimensional scaling and factor analysis, where representational power can be controlled by 
choosing the number, k, of dimensions (i.e. k parameters per object). In [11] two algorithms for 
outlier detection have been presented for high dimensional problems. The basic approach is the 
naïve brute force algorithm that examines all possible subsets of k-dimensional candidate 
projection and retains the one that has the most negative sparsity coefficient. The brute force 
algorithm is very slow at finding the best patterns because of its exhaustive search of the entire 
space. In the second scheme ideas from a class of evolutionary search methods are used to create 
an algorithm determining the most effective subset of dimensions for outlier detection. For real 
time analysis, recomputing the data classes for every outlier detection is expensive, so we work 
with a fixed set of dimensions. Our scheme, LSI, uses SVD [33] to estimate the original 
relationships in the high-order structure into k linearly independent vectors or factor values 
(dimensions). The evolutionary algorithm suggested in [11] could be used periodically to update 
the most effective dimensions on which the high-dimensional data is projected.  
 
Intrusion Detection 
Our work represents a new approach to anomaly detection in high-dimensional feature spaces. It 
is interesting to compare this to other data-mining based approaches to anomaly detection, see for 
instance [1, 2]. In [2], the authors perform intrusion detection with unlabeled data using clustering 
techniques. In [1], the authors present a general geometric framework for unsupervised anomaly 
detection, using besides clustering also k-nearest neighbor search and One Class SVM as 
techniques for detecting intrusions. In both applications, choice of an appropriate feature space 
and distance metric is crucial to performance. Feature vectors are either labeled ‘normal’ or 
‘anomalous’. As mentioned before, a major assumption underlying the labeling is that anomalies 
are 1) significantly different from normal behavior, and 2) normal instances vastly outnumber 
anomalies. Several efficiency improvements are suggested, but implementation in a real-time 
system is challenging. 
 
In many ways, our approach to anomaly detection is similar to the one described above. However, 
the new LSI/SVD methodology has two main advantages: 
 
- Dimension reduction: After computing the SVD, similarity search is performed in a much 

smaller dimensional space. 
- Addresses synonymy: Different alerts that signal the same attack, may be far apart in feature 

space, but are close together in the k-factor space. For unlabeled anomaly detection, this will 
tend to reduce the number of clusters. For labeled anomaly detection, this can indicate 
possible attacks where none might be suspected otherwise. 

 
Furthermore, the scaling behavior of LSI is well studied, and it has already been implemented in a 
real-time system for information retrieval [3].  
 
A technique developed at SRI in the Emerald system [22] uses historical records as its normal 
training data. It then compares distributions of new data to the distributions obtained from those 
historical records. Discrepancies between distributions signify an intrusion. The problem with this 
approach, however, is that if the historical distributions contain intrusions the system may not be 
able to detect similar intrusions in the new instances. Our approach is able to handle noise in the 
data based on the assumptions that the normal data greatly outnumbers the occurrence of 
intrusions and anomalies are significantly different from normal behavior. The eBayes [23] 
system is a newly developed component for the statistical anomaly detection in EMERALD. 
Given a naïve Bayes model, training data and a set of hypothesis, a conditional probability table 
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is built for the hypothesis and variables, and is adjusted for the current observations. But eBayes 
may be computationally expensive as the number of hypothesis states increases. By performing 
SVD on alerts rather than the raw data we overcome the need for heavy computation.  
 
Because anomaly detectors look for abnormalities, many of the data mining techniques that seek 
to identify outliers in data become readily applicable. In one such scheme [5], the target system is 
first exercised in an attack free environment and data collected at the process, system and network 
levels. Principal Component Analysis (PCA) [6], [7] is used to reduce the dimensionality of the 
collected data. Fuzzy clustering is then performed on the data to obtain clusters that model the 
normal behavior of the system. Finally, the system is placed under attack and data containing 
anomalous behavior is collected and compared to the clusters for anomaly detection. Drawback of 
this approach is that low-level kernel data at the process, system and network levels are collected 
and this increases the overhead of the clustering algorithms. Furthermore, during the training 
phase the scheme works on labeled data, which is difficult to obtain. Though our scheme for 
dimensionality reduction, LSI, is based on PCA it has major improvements over [5]. It uses inner 
product of feature vectors for recall, which is less time consuming as compared to fuzzy 
clustering used in [5]. Another improvement of our approach over [5] is that considering alerts 
rather than low-level system data reduces the input data fed to the classification engine. Also the 
scheme in [5] uses a subset of 12 dimensions, which can be small for proper classification 
whereas LSI has been shown to perform well in real-time environment for more than 100 
dimensions [3]. 
 
Other applications of data mining to anomaly detection include ADAM (Audit Data Analysis and 
Mining) [18, 19, 20], IDDM (Intrusion Detection using Data Mining) [21] and MINDS 
(Minnesota Intrusion Detection System) [30, 31]. ADAM (developed at George Mason 
University for Secure Information Systems) uses a combination of association rules for mining 
and classification to discover attacks in TCP dump data. It builds a repository of normal frequent 
classes and attack classes by mining on labeled data. During runtime connections are classified 
either as normal, known type of attack, unknown type of attack or a false alarm. There are two 
significant differences between ADAM and our scheme. First, our scheme can handle unlabeled 
data and second it handles data at higher dimensions than TCP data. IDDM characterizes change 
between network data description at different times, and produces alarms when detecting large 
deviations between descriptions. However, IDDM has problems achieving real-time operation. 
MINDS anomaly detection module assigns a degree of being an outlier to each data point, which 
is called the local outlier factor (LOF) [32]. Since LOF involves calculating pairwise distances 
between all data points, which makes it computationally infeasible for millions of data points, 
MINDS uses a sample training set from the data and compares all data points to this small set 
which reduces the complexity. The drawback of this approach is that for high-dimensional data it 
becomes difficult to obtain a training set from the input data, which we overcome by letting the 
data define the distribution. Moreover, all the above approaches don’t involve any dimensionality 
reduction so they don’t scale well for high dimensional data.  
 
Data mining techniques have been widely used in misuse based intrusion detection 
systems as well. Examples are JAM (Java Agents for Metalearning) [12, 13, 14, 15, 16], 
MADAM ID [16], and Automated Discovery of Concise Predictive Rules for Intrusion 
Detection [14]. They apply data mining to audit data to compute models that accurately 
capture behavioral patterns of intrusions and normal activities. Researchers at Iowa State 
University report on Automated Discovery of Concise Predictive Rules for Intrusion 
Detection [17]. A genetic algorithm selects feature subsets to reduce the number of 
observed features while maintaining or improving learning accuracy. Our scheme 
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performs dimensional reduction in an anomaly based intrusion detection system because 
misuse based systems are ineffective in detecting attacks that have not already been 
specified.  
Table 2:   Returned documents based on different numbers of LSI factors 

Number of Factors 
k = 2 k = 4 k = 8 
S17 .99 S17 .87 S17 .88 
S3 .99 S3 .82 S3 .78 
S6 .99 S12 .57 S12 .37 
S16 .99 S11 .57 S11 .37 
S5 .98 S16 .38 - - 
S7 .98 S7 .38 - - 
S12 .55 S1 .35 - - 
S11 .55 S5 .22 - - 
S1 .38 - - - - 
 
 
8 Conclusions 
 
A self-regenerating system can automatically recover all or most of its function or capacity 
through failures and attacks. In this paper we addressed a fundamental issue that goes to the heart 
of self-regeneration, namely early and robust anomaly detection. In particular, we focused on the 
particular task of intrusion and attack detection. We described a system based on evaluating alerts 
generated by multiple detectors on individual measurement streams. The underlying idea is that 
search for anomalies in such a higher dimensional space will lead to earlier discovery of attacks 
and discovery of new attacks that are modifications of old ones. We have also proposed a 
methodology, based on Singular Value Decomposition of a suitably constructed alert-state 
matrix, that significantly reduces the dimensionality of the search space, and helps mitigate the 
‘curse of dimensionality’. Using the specific method of Latent Semantic Indexing, we showed the 
potential of this technique for use in a self-regenerating anomaly detection system.  
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Appendix A 
 
 
Terms Descriptions 

High_bw High bandwidth consumption 

High_portscan The port scanning rate is very high 

Highdev_commandseq The command line sequence of the user is deviating from the normal 
profile 

Norm_bw The bandwidth consumption is normal 

Norm_porscan The port scanning rate is normal 

Highdev_httpd The httpd server is deviating from its normal behavior 

High_cpu The CPU is in heavy use 

Highdemand_httpd The httpd server is in heavy demand 

Norm_commandseq The command line sequence of the user is according to his profile 

Norm_cpu The CPU usage is normal 

Norm_httpd There is a normal demand on httpd server 

High_passwdattempts Large number of password attempts is being done 

Normal_resource Requests are coming for a non-critical resource 

Crtitical_rsource Requests are coming for a very critical resource 

Norm_syscallseq The system call sequence is according to the expected behavior 

Highdev_syscallseq The system call sequence is deviating from the normal behavior 
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Appendix B 
CISL representation of the slammer worm attack 
( And 
 ( ByMeansOf 
  ( Attack 
   ( Initiator 
    ( IPV4Address 4.22.160.163 ) 
   ) 
   ( Observer 
    ( ProcessName NetworkRadar ) 
               (Attributes 
                    (Mechanism signature-based) 
                    (Measurement  network-packets) 
                    (MisusePattern  payload-contents) 
               ) 
   ) 
   ( Target 
    ( IPV4Address 4.22.160.140 ) 
   ) 
   ( AttackSpecifics 
    ( Certainty 100 ) 
    ( Severity 50 ) 
    ( AttackID Slammer_worm) 
   ) 
   ( Outcome 
    ( CIDFReturnCode success ) 
   ) 
   ( When 
    ( BeginTime Wed Jan 16 09:07:46 2003 
EDT ) 
    ( EndTime Wed Jan 16 09:08:46 2003 
EDT ) 
   ) 
  ) 
  ( SendMessage 
   ( Initiator 
    ( UDPPort 28033 ) 
    ( IPV4Address 4.22.160.163 ) 
   ) 
   ( Receiver 
    ( UDPPort 1434 ) 
    ( IPV4Address 4.22.160.140 ) 
   )   

( When 
    ( BeginTime Wed Jan 16 08:57:46 2003 
EDT ) 
    ( EndTime Wed Jan 16 09:08:46 2003 
EDT ) 
   )   ) 
 )  
( Do 
  ( TraceMessage 
   ( When 
    ( BeginTime Wed Jan 16 09:07:46 2003 
EDT ) 
    ( EndTime Wed Jan 16 09:08:46 2003 EDT 
) 
   ) 
   ( Initiator 
    ( IPV4Address 4.22.160.163 ) 
   ) 
   ( Message 
    ( ReferTo 0 ) 
   ) 
  ) 
 ) 
 ( Do 
  ( BlockMessage 
   ( Message 
    ( IPV4Protocol 6 ) 
    ( UDPDestinationPort 1434 ) 
    ( SourceIPV4Address 4.22.160.163 ) 
    ( DestinationIPV4Address 4.22.160.140 ) 
   ) 
   ( When 
    ( BeginTime Wed Jan 16 09:07:46 2003 
EDT ) 
    ( EndTime Wed Jan 16 09:18:46 2003 EDT 
) 
   ) 
  ) 
 ) 
) 
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Appendix C 
 

 

Table 3:   The 16X17 term-document matrix corresponding to the system states in Table 2. 

Terms Documents 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S1 

High_bw 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
High_port- 
scan 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Highdev_co- 
mmandseq 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Norm_bw 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0
Norm_por- 
scan 

1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0

Highdev_ht- 
tpd 

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

High_cpu 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Highdeman- 
d_httpd 

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

Norm_com- 
mandseq 

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

Norm_cpu 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
Norm_httpd 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
High_pass- 
wdattempts 

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Normal_re- 
source 

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

Crtitical_r- 
source 

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1

Norm_sys- 
callseq 

0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0

Highdev_s- 
yscallseq 

0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
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Appendix D 

D.1 Linear algebra background: Singular Value Decomposition 
 

Suppose we construct an nm×   matrix ][ ijaA =  with the m available detectors as rows, and 

n documented network states as columns. Here element ija denotes the measured (transformed) 
value corresponding to an alert by detector i  in a particular documented network state j . In case 

there was no alert for detector i  in network state j , then ija = 0. 
The Singular Value Decomposition of A , denoted by SVD( A ), is now defined as: 
 

(1)     TVUA Σ=  
          

where n
TT IVVUU == , and 0),,...,( 1 >=Σ indiag σσσ for ri ≤≤1 , 0=iσ  for 

.1+≥ rj  
The first r columns of the orthogonal matrices ]...[ 21 muuuU = and ]...[ 21 nvvvV = correspond to 

the orthonormal eigenvectors associated with the r nonzero eigenvalues rσσ ,...,1 . The 
remaining columns of the two matrices form an orthonormal basis for the null-space of U and V , 
respectively.  
 
Two theorems show how the SVD can reveal important information about the structure of a 
matrix: 
Theorem 1: Let the SVD of A  be given by equation (1), and  

0...... 121 ===>≥≥≥ + nrr σσσσσ . Let )(AR and )(AN denote the range and null-space 
of A , respectively. Then, 

1. rank( A ) = r , },...,{)( 1 ruuspanAR = and },...,{)( 1 nr vvspanAN +=  

2. dyadic decomposition: 
∑
=

=
r

i

T
iii vuA

1

σ
. 

3. norms: 
22

1
2 ... rF

A σσ ++=  and 
2
1

2

2
σ=A . 

 
Theorem 2:  
 

Let the SVD of matrix A  be given by (1) above, and rank( A ) = ),min( nmpr =≤ and define: 

(2) 
∑
=

Σ=⋅⋅=
k

i

T
kkk

T
iiik VUuA

1

νσ
. 

Then: 

(3)   
22

1
22

)( ...min pkFkFkBrank AABA σσ ++=−=− += . 
Similarly, 
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(4)    
2

1
2

2

2

2)(min += =−=− kkkBrank AABA σ . 
 

This means: kA is the ‘closest’ rank- k matrix to A , and thus is the ‘best rank- k  approximation’ 
to A .  

D.2 Latent Semantic indexing 
 
To implement Latent Semantic Indexing, we first need to construct a matrix of terms by 
documents, as discussed above. For information retrieval, the elements of the term document 
matrix are the number of occurrences of each term in a particular document, as discussed above. 

(5)     ][ ijaA = , 

where ija is the number of times term i  occurs in document j . Usually A  is a sparse matrix, 
since not every word occurs in a particular document. In practice, local and global weights can be 
applied to vary the importance of terms within or between documents. We can write: 

(6)    )(),( iGjiLaij ×= , 
 

where ),( jiL  is the local weight for term i  in document j , and )(iG  is the global weight of 
term i . Recall from equation (1) that A  can be decomposed in three matrices: the left-singular 
vectors U , the singular valuesΣ , and the right-singular vectors V . Furthermore, we can find the 
‘best’ rank- k  approximation to A  by using the singular vectors corresponding to the k  largest 
singular values (see equation (2)). We can summarize the interpretation of SVD components 
within LSI as follows:  
 

- The rows of U  are considered the term vectors. 

- The columns of TV are the document vectors. 
- The diagonal of Σ are the singular values. 
- m is the number of terms. 
- n  is the number of documents. 
- k  is the number of factors. 
- r is the rank of A . 

 

We can think of the truncated SVD of kA in (2), as capturing most of the underlying information 
in the term-document matrix A . Since the number of dimensions k  is much smaller than the 
number of terms m , terms that never co-occur in the same document, but occur in similar 
documents, will nevertheless get mapped near to each other in the k dimensional space spanned 
by the factors.  
 
In our present context: alerts, which are never raised in the same documented network state, but 
nevertheless signal similar network states, will be close together in the subspace. 
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 D.3 Queries 
 
Given a query, we need to represent as a vector in our k -dimensional subspace in order to 
compare it to documents/network states. If the query is given as a vector of words, then the 
projection onto this subspace is: 

(7)     
1ˆ −Σ= kk

TUqq , 
 
where q is simply the vector of words in the query, multiplied by the appropriate term weights. In 
other words, the query is located in the k -dimensional subspace at the weighted sum of its 
constituent terms.  

D.3.1 Search for similar documents 
 
Once the mapping of the query to the k -dimensional subspace has been accomplished, the query 
projection can be compared to document vectors to find similar or nearby documents. One 
measure of similarity is given by the inner product (cosine) between the query vector and a 
document vector. Typically, the documents are searched linearly to find nearby documents. The 
resulting z closest documents, or all documents exceeding some inner product threshold are 
returned to the user. 

D.3.2 Anomalous queries 
 
In the context of anomaly detection, special attention is paid to the case where no 
documents/network states satisfy the similarity threshold for a given alert query. Hence, the 
returned list of network states is empty. In this case, the query is flagged as anomalous.  
Similarly, a query is classified as an anomaly when not enough documents are returned. 
 
However, this is not the only possibility for an anomalous query. During normal network 
operation, relatively few alerts will be generated, resulting in (projected) network states with 
small norm. However, it is also possible, especially in some previously unknown network state, 
that a combination of alerts is generated that is ‘ignored’ by the projection on our k -dimensional 

subspace of most important factors. In other words, this combination of alerts q~ is mostly in the 

null-space of 
T
kk U1−Σ . In this case, the norm of the projection of q~ is much less than the norm of 

the original q~ . Hence, we can also signal an anomalous query when the norm of its projection 
does not exceed a minimum percentage of the norm of the original query. 

D.4 Updating 
 
Suppose we have already performed the SVD of a term-document matrix. If more terms and 
documents must be added (because of the installation of new detectors, or documentation of 
additional network states), then two alternatives for incorporating them are possible: re-
computing the SVD of a new term-document matrix, or ‘folding-in’ of the new terms and 
documents. Re-computing the SVD of a larger term-document matrix results in the most accurate 
subspace projection, but it is quite expensive. Alternatively, we can project the new terms and 
document in the current factor subspace, at the cost of some loss of accuracy. This  ‘folding-in’ of 
new terms and documents is accomplished by computing: 



 

 27

(8)     
1ˆ −Σ= kk

TUdd  
to fold in a new document vector d , or  

(9)     
1ˆ −Σ= kktVt  

to fold in a new term vector t . 
 

D.5 Implementation issues  
 
Besides theoretical refinements, also practical implementation issues have been studied for LSI. 
For instance, automatic document preprocessing, tree-based methods for similarity search [6], and 
distributed implementation [7] have all been investigated.  The existing knowledge base on 
implementation aspects of our project can all be brought to bear in our project. 
 




