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Abstract
“Embedded software processing requirements for DSP, especially for radar, are ex-
pected to exceed1×1012 operations per second within five years [3].” Therefore,
the efficient use of memory at all levels of the hierarchy is essential. These array
based computations involve the composition of linear and multi-linear operators.
Previous work illustrated how a general array algebra (MoA), and a “suitably rich
compatible index calculus [3]” (Psi-Calculus), could be used to develop software
for radar and other DSP applications. This software needs to be tuned to use the
levels of memory hierarchies efficiently without the materialization of array val-
ued temporaries [3]. Monolithic compiler experiments presented in [4] illustrated
how these theories could be mechanized using expression templates in C++. The
present work continues these investigations by defining an N-dimensionalarray
class with shape in order to support the mechanization of linear transformations
in the Psi-Calculus (ψ-Calculus). We show that this class extends the support for
array operations in the Portable Expression Template Engine (<PETE>) while
offering performance that is competitive with hand coded C. Such extensions are
needed to support the dimension lifting which maps arrays to all levels of a mem-
ory/processor hierarchy.

Keywords: embedded digital systems, radar, signal processing, arrays,
high performance, index calculus, shapes, psi, MoA.

Introduction
Motivating this paper is the development of efficient algorithms for radar and more
generally DSP applications. “Reasoning about radar, from acomputational per-
spective, entails reasoning about the data structures underlying the algorithms for
radar computations [3].” Arrays are the data structures underlying algorithms for
radar computations. These algorithms are characterized by linear and multi-linear
matrix operations. Therefore, a high level array algebra can facilitate an efficient,
scalable and portable algorithm design. “Consequently, we believe that the future
development of efficient, scalable, portable algorithms, for radar, more generally
for DSP applications, will be greatly facilitated by the use of a high-level array
algebra during algorithm design. Additionally, since program efficiency depends
critically upon the efficient use of memory/processor hierarchies, this array al-
gebra should be combined with a suitably powerful index calculus. This calculus
should facilitate data layout, movement, and manipulation at all levels of the mem-
ory/processor hierarchy. [3].” In [5, 1] it is shown that MoA andψ-Calculus are
suitable for such an algebra and calculus. For example, [1] presents in detail how
MoA and theψ-Calculus can be integrated into a Time Domain (TD) convolution
algorithm. The algorithm development presented in [1] entailed array dimension
lifting and data restructuring. These were driven by the memory/processor hierar-
chy, coincident with array decompositions and layouts. This process was shown to
minimize temporary array materializations using these theories. Prior to this, com-
piler experiments were presented in [4] which demonstrated the machanization of
these theories via expression templates in C++.
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Figure 1:Array class with shape for N-dimensional support.

TD Convolution
Synthetic aperture radar (SAR) has many application (i.e. target detection, contin-
uous observation of dynamic phenomena and classification of vegetation [6]). This
is due to its high resolution imaging capabilities under varying conditions (day and
night, all-weather). Various SAR signal processing methods have been developed
(i.e. spectral analysis (FFT) and frequency domain convolution). However, the
time-domain (TD) analysis is the simplest and most accurate algorithm for SAR
signal processing [6]. The TD algorithm is also the most computational intensive
which makes it useful only with SAR data of limited size [6]. Consequently, faster
TD algorithms are needed as the size and resolution requirements increase.

TD Convolution: MoA Design
In [4] a C++ vector class to define the TD convolution was presented. The related
experiments showed that the creation of array valued temporaries could be avoided,
enabling performance competitive with hand coded C.

A uni-processor using vector arguments on the vector class presented in [4]
was sufficient for those experiments. However, to support mapping to processor
memory hierarchies, vector arguments must be algebraically abstracted to higher
dimensional arrays. When processors are added to the design, the dimension of the
problem is lifted up. Adding a cache loop adds yet another dimension. Thus, we
started with a 1-dimensional problem, then abstracted the computation to a second
(time) dimension. Adding processor and cache mapping ultimately resulted in a 4-
dimensional problem. In addition, if we desire to support 3-dimensional or higher
array arguments, dimension lifting may require 10 or more dimensions. Such a
high dimensionality is not typically supported in today’s languages or libraries.
Figure 1 illustrates our ability to do so.

Shape : a newclass
< PETE> facilitates the creation of optimized C++ code to do various mathe-
matical operations. However,< PETE> operates on scalars and does not provide
an interface for multi-dimensional array computations that are required for theψ-
Calculus. In addition to the dimension limitation,< PETE> does not support
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Array.h
template <class T = int>
class Array
{

. . .
template<class RHS>
Array &operator=(const Expression<RHS> &rhs)
{

for(long i=0; i<this->size; i++)  
d[i] = forEach(rhs, EvalLeaf1(i), OpCombine()); 

return *this;     //equivalent to: a.d[i] = b.d[i]+c.d[i]+d.d[i]
}
. . .
private:

T * d;
vector <int> shape;
long size; 

}
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the shape notion which is a component used to calculate the attribute evaluation
rules needed to rewrite an Abstract Syntax Tree (AST) defining array expressions.
Fortunately,< PETE> is designed to be extendable. To that end, we have imple-
mented a multi-dimensional array object extension to support shape. The shape
vector uses the Standard Template Library (STL)vector<int> class which
conveniently enables the needed N-dimensionality. The shape vector is passed to a
specializedArray class which constructs the multi-dimensional array and enables
assignments and arithmetic using operator overloading and expression templates
respectively.

Our experiments test the efficiency of our implementation and show that ours
is much faster than a standard C++ implementation and is similar in speed to an
implementation in hand-coded C. It also shows that the N-dimensional function-
ality of our Array class does not increase the overhead compared to a typical
PETE implementation.

Implementation
In a previous paper [4], experimental results were presented for computing 1-
Dimensional Arrays. To demonstrate our efforts to extend these ideas to multi-
dimensional arrays, we present experimental results of our multi-dimensionalArray
object implementation. The class is templated and therefore supports any data
type. This is necessary so that we can use common scientific computing data types
such asfloat anddouble. The experiments, therefore, test theinteger and
float data types for basic math operations which are fundamental toψ-Calculus
(i.e. distributing indexing over scalar operations).

The results presented here are for the addition1 of three multi-dimensional
arrays and the assignment of their result to a forth multi-dimensional array.

The Array is defined through a shape vector. This vector stores the size
of each dimension of anArray and is passed to theArray class constructor.
Default and copy constructors are also defined. This class incorporates operator
overloading and< PETE> related expression tree definitions. Our class gets its
efficiency by defining and implementing the high level operation of the expression
template. This allows our class to interface with< PETE>, utilizing its standard
mathematical operations and expression tree operation evaluation ordering.The
shape vector mentioned above is a relevant feature ofψ-Calculus.

Essentially, theψ-Calculus rules can be implemented at the iterator level.
Basically, we have complex non-algebraic array expressions that can be reduced
to memory access patterns. The multiple levels of indirection can be handled by
the iterator abstraction (the pointer on steroids).

Experiments
Our tests were compiled on two COTS platforms: an 800 MHz Pentium III pro-
cessor with 320MB of memory running Redhat Linux 7.2 and a 200 MHz IBM
PowerPC with 4GB of memory running AIX Version 5. The test code was com-
piled using Intel C++ and GCC respectively.

Figure 2 and 3 show our results which measure the differences between six
implementations of multi-dimensional array addition2: C++ (static, int),
Array class (dynamic, float), Array class (dynamic, int), < PETE>
(dynamic, int), C (dynamic, int) and C (static, int).

The results were similar on both platforms. Specifically, the C (static,
int) version performed the fastest and the C++ (static, int) version per-
formed the slowest. It is clear that the Object Oriented Programming (OOP) con-
structs of C++ affect performance. However, it is well known that OOP constructs
improve programmability (ease of use, extendibility, reusability and quality [2])
over C, in particular when extending the implementation to complex applications.
With < PETE> and our C++ Array class, we achieved similar performance as
is obtained using C where the loops are optimized by hand. This is shown by the
results using theinteger type which performed the same as the pure< PETE>
coded results. However, thefloat data type version was still significantly faster
than the traditional C++ (static, int) implementation. These results further
validate that we can integrate the high performance of optimized C loops into the
OO/C++ paradigm.

Overall, these experiments show that extending< PETE> to N-Dimensional
Array operations via theψ-Calculus shape notion is viable. The speed of the
computations is impressive even when using templated types including thefloat
data type.

1All < PETE> scalar operations are included.
2This could be any binary scalar operation: divide, ceiling, etc.

Figure 2: Five implementations of multi-dimensional addition.

Figure 3: Six implementations of multi-dimensional addition.

Conclusion and Future Work
The results shown demonstrate the viability of using< PETE> as a means to
optimize operations that are essential to a fully functionalψ-Calculus library. They
represent a very important step: inclusion of the shape notion into theArray
class.

These results are encouraging. Future work may be in reducing the detri-
mental performance caused by templating theArray type and adding additional
algorithm methods to enableψ-Calculus operations.
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