Laser Ablation of Metal Doped Polymers with CO$_2$ Laser

EOARD Grant FA8655-03-1-3061
Properties of Laser Ablation Products of Delrin with CO$_2$ Laser

Wolfgang O. Schall
DLR – Institute of Technical Physics, Stuttgart, Germany
Laser Ablation of Metal Doped Polymers with CO2 Laser

1. REPORT DATE
00 JUL 2004

2. REPORT TYPE
N/A

4. TITLE AND SUBTITLE
Laser Ablation of Metal Doped Polymers with CO2 Laser

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
DLR Institute of Technical Physics, Stuttgart, Germany

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001699, EOARD-SPC 03-3061., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
35

19. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
OUTLINE

- Who is DLR – Institute of Technical Physics (TP)?
- Lightcraft Research at TP
- Experimental Setup and Sample Types
- Results: Flat samples in air
 - 3-D expansion
 - Vacuum
 - Comparison of different sample types
 - Tests with a light concentrating structure
- Scanning electron micrographs
- Conclusions and proposal
DLR - INSTITUTE OF TECHNICAL PHYSICS

German Aerospace Center

Astronautics
Traffic
Energy
Aeronautics

Institute of Technical Physics

HEL / COIL
SSL / NLO
Active opt. Systems

Studies & Concepts
Akquisition & Support
HOW IT ALL BEGAN ... (1998)

Bicycle Headlight Reflector
LIGHTCRAFT FLIGHT
ACKNOWLEDGEMENT

Our special thanks go to

Dr. Franklin B. Mead Jr. and Dr. Carl W. Larson
(AFRL – Propulsion Directorate, Edwards AFB, CA)

Dr. Ingrid Wysong (EOARD - London)
(and all the others in the background)

for making our research and this visit possible.
EXPERIMENTAL EQUIPMENT

Lightcraft
- Parabola with Diameter 10 cm
- Focal Distance 1 cm

Vacuum Tank
- Diameter 80 cm
- Height 110 cm

E-beam sustained CO₂ Laser
- Pulse Energy ... 420 J
- Repetition Rate ... 100 Hz
- Wavelength 10.6 µm
- Pulse Length 3 ... 12 µs

Institute of Technical Physics, Stuttgart, Germany
INVESTIGATIONS FOR EOARD (Phase I – 2002)

Comparison of measurement techniques and performance of US and German lightcraft

![Graph showing comparison of coupling coefficient and pulse energy for US and German lightcraft with and without Delrin.]
Air breathing propulsion possible to altitudes of about 30 km!

With Delrin in vacuum $v_{ex} = 2400 \pm 200$ m/s
LASER LAUNCH SYSTEM DEVELOPMENT ROADMAP

Phase 1
Basic Research
16 Mio Euro

Phase 2
Pre-Prototype
85 Mio Euro

Phase 3
Commercial
275 Mio Euro

Launch of sounding rockets
Launch of satellites

LASER POWER (kW)
EXPERIMENTAL SETUP

- CO2 Laser
- PD2
- Energy Meter
- Target
- Focusing Cu Mirror \(R = 2 \) m
- Bending Cu Mirror \(R = \infty \)
- Range Finder
- PD1
- KCl Wedge
- Focussing Cu Mirror \(R = 2 \) m
- Tank Windows
- Bending Mirror
- Attenuation Screen
- CO2 Laser
- PD2
- HeNe Laser
- Scatter Plate
- Energy Meter
- Tank Windows

Institute of Technical Physics, Stuttgart, Germany
EXPERIMENTAL SETUP

Laser Pulse Profile

Sample
SAMPLE HOLDER

Guiding Tube

Sample

Guiding Tube for 1-D Expansion

41 mm

15.5 mm

20 mm
SAMPLE FORMULATIONS

POM = PolyOxyMethylene = Polyacetal = Delrin®

POM + Al 0, 20, 40, 60 % by wt.
Epoxy + Al 0, 3, 5, 10, 17, 30, 40, 50 % by wt.
Epoxy + Mg 0, 3, 5, 10, 17, 30, 40 % by wt.

Others: Polybutadiene + Al, POM + Fe, POM + Ti
OUTLINE

- Who is DLR – Institute of Technical Physics (TP)?
- Lightcraft Research at TP
- Experimental Setup and Sample Types
- Results: Flat samples in air
 3-D expansion
 Vacuum
 Comparison of different sample types
 Tests with a light concentrating structure
- Scanning electron micrographs
- Conclusions and proposal
REPRODUCIBILITY

Shot to shot result on one sample

Scatter for individual shots
ABLATED MASS IN AIR

Ablated Mass vs. Pulse Energy

Apparent Deposited Energy

→ Upper limit
EXAMPLE: LIMITS TO THE VELOCITY

Upper Limit: 8500 m/s
No air exhausted

Lower Limit: 1200 m/s
All air in tube exhausted
3-DIMENSIONAL EFFECTS

Mass Loss: 3-D vs. 1-D

Impulse: 3-D vs. 1-D
REDUCED PRESSURE

Ablated Mass vs. Pressure

Apparent Deposited Energy
Correct only in vacuum

Institute of Technical Physics, Stuttgart, Germany
Institute of Technical Physics, Stuttgart, Germany

REDUCED PRESSURE

Coupling Coefficient vs. Pressure

Apparent Jet Velocity

Jet Efficiency in vacuum < 0.03
REduced Pressure

Deposited Energy vs. Pulse Energy

Coupling Coefficient vs. Pulse Energy

Institute of Technical Physics, Stuttgart, Germany
SAMPLE COMPARISONS - Ablated Mass

Pulse Energy
200 J

In Vacuum: Deposited Energy =

- 50 – 70 MJ/kg POM + Al
- 20 – 60 MJ/kg Epoxy + Al
- 30 – 90 MJ/kg Epoxy + Mg
SAMPLE COMPARISONS - Coupling Coefficient

Pulse Energy 200 J
SAMPLE COMPARISONS - Jet Velocity

Pulse Energy 200 J

η < 0.03
COMPARISON WITH LIGHT CONCENTRATING STRUCTURE ("BELL NOZZLE") IN AIR – 200 J

Institute of Technical Physics, Stuttgart, Germany
POWER PROFILES

POM + 40 % Al in air

40 J

Energy 40 J
Atmosphere: POM + 40% Al
Average over 4 pulses

0,000 0,002 0,004 0,006 0,008 0,010
0,012 0,014

Transmission
Reflection
Signal

Time (µs)

Transmission
Reflection

Pulse Energy 120 J
Atmosphere: POM + 40% Al
Average over 4 Pulses

0,000 0,002 0,004 0,006 0,008 0,010
0,012 0,014

Transmission
Reflection
Signal

Time (µs)

Pulse Energy 200 J
Atmosphere: POM + 40% Al
Average over 4 Pulses

0,000 0,005 0,010 0,015 0,020 0,025
0,030 0,035

Transmission
Reflection

Time (µs)

Pulse Energy 280 J
Atmosphere: POM + 40% Al
Average over 4 Pulses

0,000 0,005 0,010 0,015 0,020

Transmission
Reflection

Time (µs)

Institute of Technical Physics, Stuttgart, Germany
OUTLINE

- Who is DLR – Institute of Technical Physics (TP)?
- Lightcraft Research at TP
- Experimental Setup and Sample Types
- Results: Flat samples in air
 - 3-D expansion
 - Vacuum
 - Comparison of different sample types
 - Tests with a light concentrating structure
- Scanning electron micrographs
- Conclusions and proposal
ELECTRON MICROSCOPE PICTURES

Before Laser Irradiation

POM + 20 % Al 400x

RE-Mode

POM + 40 % Al 400x
ELECTRON MICROSCOPE PICTURES

Before Laser Irradiation

Epoxy + 17% Al 1000x

RE-Mode

Epoxy + 17% Mg 100x
ELECTRON MICROSCOPE PICTURES

After Laser Irradiation

POM – edge 100x

SE-Mode

POM - center 100x
ELECTRON MICROSCOPE PICTURES

After Laser Irradiation

SE-Mode 200 J vacuum

POM + 20 % Al - center 100x

POM + 40 % Al 1500x
CONCLUSIONS

- Goals for $I_s = 800$ s not met
- In air → accelerated air fraction unknown
 → all related values are wrong
- In vacuum → deposited energy goes up with increasing metal fraction, but coupling coefficient decreases
- Strong evidence for large energy loss in a decoupled laser absorption wave
- Nature and characteristics of absorption wave need investigation
- Can shorter pulse lengths help prevent decoupling?
PROPOSAL FOR NEW EXPERIMENTS

Absorption TOF-measurement

Sample

CO₂ Probe Laser

CO₂ Laser Pulse

Energy

Variation of pulse length 2 ... 12 µs
THANK YOU

POM after laser irradiation 3000x