DESIGN AND FABRICATION OF SENSORS ON FIBERS

R. Sirdeshmukh
B. Panchapakesan, A. Abu-Obaid, D. Heider

UD-CCM • 1 July 2003
1. REPORT DATE
26 AUG 2004

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Design And Fabrication Of Sensors On Fibers

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
-

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Delaware Center for Composite Materials Newark, DE 19716

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR’S ACRONYM(S)
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001700, Advanced Materials Intelligent Processing Center: Phase IV., The original document contains color images.

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:
a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
19

19a. NAME OF RESPONSIBLE PERSON
-

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Overview

- **OBJECTIVE**
 - Develop *Smart Materials* through devices / sensors on fibers

- **APPROACH**
 - Materials and fabrication methods
 - Connectors and traces
 - Sensor design
 - Flow monitoring of Micro-flow
 - Strain sensor
 - Temperature (thermocouple) sensor
 - Others
 - Device design
 - Diode
 - Transistors
 - Microprocessors
Challenges

- **Connections**
 - External
 - Internal

- **Miniaturization of Sensors and Devices**
 - New concept of circular masks for printing on fibers

- **Compatibility**
 - Fiber-Device Interface
 - Device Durability
 - Composite Processing
 - In-Service (Strain, Load, Fatigue, Temperature, etc.)

- **Potential for Scale-up**
 - Continuous processing of fibers
 - SMART preforms
Materials and Methods

- **Fibers**
 - E-glass (diameter: 14µm)
 - Kevlar (diameter: 12µm)
 - Optical fiber (diameter: 250µm)

- **Photoresist**
 - Photosensitive polymeric material sensitive to i-line (365nm) and h-line (405nm) UV radiation

- **Limitations of working with a fiber tow**
 - Photoresist flows through gap between fibers, causes very uneven surfaces
Review: Micro-Device Fabrication

- Fabrication steps
 - Mask
 - Lithography
 - Coat with photoresist
 - Softbake
 - Exposure to UV light
 - Hardbake (in some cases)
 - Develop
 - Metal Deposition
 - Lift-off (of unwanted metal)
New Continuous Photoresist Coating Process

- Method of coating fiber with photo-resist
 - Cross-head frame (Instron)
 - Modification from standard spin coating system
 - Uniformity of layer:
 - Viscosity of photoresist material (lower viscosity favored)
 - Speed

- 1- Die containing photoresist
- 2- Cylindrical heater element for immediate softbake following coat

Setup developed for coating
Continuous Coating Process

Higher viscosity photoresist

Lower viscosity photoresist

E-glass Fiber coated with photoresist by conventional spin-coat method (flat pattern)
Future Work: Continuous Masking of Photoresist for Traces

- Near term future work: Implementation of continuous masking

- Bad patterns due to large gap between fiber and metal sheet
- Modification applied – sidewall of slot inclined to minimize gap by contact with fiber (analogous to contact lithography)
Challenges of Device/Sensor Fabrication on Fibers

- **Masking**
 - To use entire surface area for patterning
 - Standard mask – flat

- **Lithography**
 - To obtain accurate pattern transfer on curved surfaces
 - Non-uniform exposure due to curved shape of fiber

- **Metal Deposition and Lift-off**
 - Accuracy will prevent adhesion problems due to shape of substrate

SOLUTION
- Desired mask – cylindrical
Cylindrical vs. Flat Mask Geometry

Standard flat mask
- Used in standard microfabrication procedures
- Use of less surface area
- Curved structure – distorted images

Cylindrical mask
- Curve of mask corresponds to curve of substrate (fiber)
- Distortion of images reduced
- More uniform UV exposure
- Covers complete surface area
Example of Flat Mask Pattern

Proven that traces can applied to fibers, but distorted pattern due to flat mask
Solution: Cylindrical mask
Sensor Design and Development

- Three basic sensor designs developed
 - Flow monitoring
 - Temperature sensing
 - Strain sensing

- Issues with sensors on fiber
 - Reliability of device/sensor
 - Multiple connectors and traces required for measurements

- Advantages
 - Monitoring of Micro-Flow or local parameters (millimeter size) possible
 - Creation of “smart” composites
Flow Monitoring

- **Basic idea**
 - To detect position of resin within fiber tow

- **Validation of Micro-Flow Models**
 - Flow path of resin to fiber
 - State in between wet and dry stages of fiber

![Diagram showing infiltration time and ratio](image)

- Infiltration Time (seconds)
- Infiltration Ratio ($\frac{r_i}{r_o}$)

- $r_i/r_o = 1$ (Tow Empty)
- $r_i/r_o = 0$ (Tow Full)

- $\gamma = 0.0354 \text{ N/m}$
- $r_f = 3.5 \mu\text{m}$
- $\theta = 30^\circ$
- $\eta = 100 \text{ cps}$

- $60K (v_f=0.8)$
- $24K (v_f=0.8)$
- $6K (v_f=0.8)$
- $60K (v_f=0.5)$
Flow Monitoring

Preliminary designs

- Flow of resin

- Non-conducting Material

Anticipated relations:

Conductance vs. Time

Conductance vs. Time

Conductance vs. Time
Example of thermocouple temperature sensor

- Si-Al thermocouple junction
- Seebeck Coefficient of Polysilicon (S_1): -415.6 µV/K
- Seebeck Coefficient of Aluminum (S_2): -1.7 µV/K
- Sensitivity increased by increasing the number of elements

Application: monitoring local exothermic reactions (micro-kinetics)
Strain Sensor Concept

- **Theory behind piezoelectricity**
 - Mechanical stress applied on materials with non-centro symmetric crystallinity induces formation of dipoles

- **Piezoresistivity**
 - Change in resistance due to strain
 - Gauge factor:
 \[k = \frac{d\rho}{\rho} \]
 - \(\rho \) → intrinsic resistivity of material

- **Application**
 - Residual stress measurement
 - Health monitoring of composite
 - Vibration measurement
Long Term Objectives

- Automated process to make Smart Preforms of fiber-based sensors
 - Sensors embedded within preform continuously generating and transmitting data

- Electronic devices on fibers to make circuits
 - Diodes
 - Transistors
 - Microprocessors!
Example – Diode Fabrication

➢ Simplified procedure of fabricating a GaAS P-I-N diode on fiber
Summary

- Preliminary research on sensors/devices on fibers
- Key hurdles
 - Circular masks
 - Connection to the outside world
- Evaluated photo-resist materials and developed continuous application process
- Applied successful flat mask pattern on fiber
- Developed design concepts for sensors