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ABASTRACT

A micromechanical model for three-dimensional open-cell foams is developed by using the matrix
method for space frames in structural mechanics and tetrakaidecahedral unit cells. The effective elastic
properties of foams are determined employing unit cells subjected to three different modes of loading.
The thirty-six struts of each tetrakaidecahedral unit cell are treated as uniform slender beams, and the
twenty-four vertices as rigid joints. All four deformation mechanisms (i.e., stretching, shearing, bending
and twisting) possible under the specified loadings are incorporated, and four different strut cross section
shapes (i.e., circle, square, equilateral triangle and Plateau border) are treated in a unified manner. The
formulas for determining the effective Young's modulus, Poisson's ratio and shear modulus of open-cell
foams that are undergoing linearly elastic deformations are derived using the composite homogenization
theory. The new formulas include all necessary parameters, unlike those provided by existing models.
These formulas indicate that the foam elastic properties depend on the relative foam density, the shape
and size of the strut cross section, and the Young's modulus and Poisson’s ratio of the strut material. By
applying the new model, a parametric study of sample cases is conducted for carbon foams, whose
modeling motivated this study. The predicted values of the effective properties agree favorably with those
based on existing models and experimental data for the Mode [ loading case, which is the only case that
has been well studied in the literature. Comparisons of the effective elastic properties for the three loading
cases quantitatively show that carbon foams exhibit certain degree of anisotropy.

KEYWORDS: Micromechanics; Open-cell foams; Effective elastic properties; Matrix method;
Composite homogenization theory

L. INTRODUCTION

Microcellular graphitic carbon foams first developed at the Air Force Research Laboratory (AFRL) in
1990s (e.g., Hall and Hager, 1996) are rapidly emerging as a new class of ultra-light cellular materials for
structural and thermal management applications because of their excellent mechanical and thermal
properties (Roy et al., 1998). Reliable structural applications of these carbon foams depend on accurate
understanding of their mechanical behavior. Carbon foams, like other cellular solids, are topology-
sensitive and, therefore, their mechanical modeling requires the incorporation of cell's microstructural
features,

AFRL graphitic carbon foams are blown from anisotropic pitch through a bubble forming process (e.g.,
Anderson et al., 2000), and, as a result, microstructures of the solidified carbon foams are controlled by
the principle of minimum surface energy. As shown in Fig. |, the microstructure of an AFRL carbon
foam has a three-dimensional (3-D) open-cell topology. As a first approximation, a regular
tetrakaidecahedron (see Fig. 2(a)) can be adopted as the repeating unit to represent this foam

* Corresponding author. Tel: (906)487-1898; Fax: (906)487-2822; E-mail: xgao@mtu.edu. :
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microstructure. Tetrakaidecahedron is known to be the only polyhedron that can pack with identical units
to fill space and nearly minimize the surface energy (e.g., Weaire and Fortes, 1994). With all of its
vertices connected by struts and each vertex shared by four struts, such a fourteen-sided polyhedron can
be generated by uniformly truncating the six comers of an octahedron and contains eight regular
hexagonal faces and six square faces.

Fig. |. Micrograph of an AFRL carbon foam (Roy et al., 1998).
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Fig. 2. Tetrakaidecahedral unit cell under loading: (a) Mode I, (b) Mode II, (c) Mode III.

Several micromechanical models for 3-D open-cell foams have been developed utilizing
tetrakaidecahedral unit cells, which are reviewed in Li et al. (2003). Very recently, a micromechanics
model for predicting effective Young's modulus and Poisson's ratio of such foams was provided by Li et
al. (2003) using an energy method based on Castighano’s second theorem, whose predictions compare
favorably with those based on available experimental data and finite element analyses. However, only
Mode I loading (see Fig. 2) was considered there, as was the case with almost all previous studies on the
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topic. Also, how to predict effective shear modulus was not addressed in Li et al. (2003). When loads are
not applied on two opposite square faces of a tetrakaidecahedral cell, the elastic properties obtained might
be different from those when the cell is subjected to Mode [ loading. For example, cubic symmetry is
present under Mode I loading, but is absent under Mode II or III loading. For the latter cases, anisotropy
involved can be significant. Hence, new micromechanical models capable of accounting for the
differences in mechanical behavior of foams (cells) under three distinct modes of loading are necessitated.

The objective of this paper is to present such a new model. The tetrakaidecahedral unit cells illustrated
in Fig. 2 are adopted, and the matrix method for space frame structures and the homogenization theory for
composite materials are employed in the formulation.

2. MATRIX METHOD FOR SPACE FRAME STRUCTURES

2.1 Method

In this matrix method the members of a space frame structure are regarded as rigidly connected at
joints (or nodes), each of which has six degrees of freedom - three translational and three rotational —
when unrestrained. The twelve possible displacements of the two joints of a member may be described
relative to the (global) reference axes x, y and z or to the (local) member-oriented axes xy, Yo and z,,, as
shown in Fig. 3. The xy axis is set to be along the axis of the member from i to j, and the yy, and z), axes
are chosen as the principal axes of the cross section at joint ¢ of the member.

In terms of the member coordinates {xy, var, zu. ], the forces at the ends of a member are related to the
displacements at the ends by the member stiffness matnx, 1.e.,

{E“] = [!‘j'_::_ !{_“:Hf'! ] (1
fy) kg iky][8y

where &y and By are, respectively, displacement vectors at nodes i and j, and fyy and fj, respectively, force
vectors at nodes ¢ and j for member “f, /. The member stiffness matrix in Eq. (1) is composed of four

submatrices ki, k;. k; and kh, The first subscript of each submatrix represents the forces arising at

the end associated with this subscript caused by unit displacements occurring at the other end (associated
with the second subscript).
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Fig. 3. Numbering system for a space frame member.

When expressed in terms of the reference coordinates {x, y, z}, Eq. (1) becomes
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where Fy; and F), are, respectively, force vectors at nodes i and j, A; and A, are, respectively, displacement
vectors at nodes { and j, and
Kfl :Tulk:iTur Ku =TulkuTu. Kj; =Tu‘k”T“. KIH = TuikLT“, (3a-d)
are the global stiffness submatrices, with Tj; being the transformation matrix for member “i, /" (from
global to local).
Nodal equilibrium requires that the applied loads at a node be balanced by the intemal member end
forces. Suppose that members “i, a”, “i, b", ..., “i, n" are connected to node i. Then, the equilibrium of
node i requires

P,=F,+F, +--+F_, (4)
where Py is the applied load vector at node i. Using Eq. (2) in Eq. (4) gives
P =K,A +K A, +K 4, ++K A, )
where K, =K} + K} +--+K} . Subsequently, enforcing the equilibrium of all nodes results in
P, K, Ky, - Kyl|4,
P K K - K A
:: i . :n :21 :IN :z (6)
Py Ku Ku - KyllAs

In Eq. (6), which is called the initial stiffness equation, each nodal force/displacement vector has six
components. The coefficient matrix of these equations, denoted as K, is known as the initial structure
stiffness matrix. Each submatrix of K, is a 6 x 6 square matrix. Equation (6) can be rearranged as

Pe| _[Ker : Ken |]Ar )
PR Ku F Ku &R :

where the subscripts F and R refer to free and restrained displacements, respectively. From Eg. (7) the
free nodal displacements can then be obtained as

A=K 1P ' (8)

2.2 Member Stiffness Matrix

By following the procedure used in Spillers (1972) for 2-D frames, the member stiffness submatrices
for 3-D frames undergoing transverse shearing deformations as well as axial, flexural and torsional
deformations are obtained, for the first time, as

% 0 0 0 0 0
12AEGI k, 6AEGI k
0 e 0 0 0 FrRe A TR ok AR
I12EI L+AGk L' 12E1, + AGKk L’
2 5 12AEGI k. —6AEGI k, :
; 12E1 L+ AGk L’ 121, + AGk L
[ku L = el
0 0 0 = 0 0
: ~6AEGI k, ; 4El [3EI, +AGK, L) %
12E1, + AGk L} 12El,L+AGk L’
6AEGI k, » . i 4E1 (3E1, + AGK, L)
12E1, + AGk [ 1261 L+ AGK,L' |



_— .
_ET 0 0 0 0 0
~12AEGIk, " é n 6AEGk,
12EI,L+AGk, L’ 12E1, + AGk, L
-12AEGI k, ~6AEGH k.
0 0 —_—i_ 0 —— 0
k) = 12E1 L+ AGk L 12E!, + AGk L
[/ h
0 0 0 -% 0 0
6AEGI k. —2EI (6E1, - AGK.L*)
0 0 —i ) 0
12E], + AGk.L’ 12Ef L+ AGk, L'
~6AEGIk, . ] o ~2El_(6EI, - AGk, L)
12E!_ + AGk L - 12ELL+AGKL |
{kjt)m - (kij-):'
% 0 0 0 0 0
; 12AEG! k, ; " 5 -6AEGI k,
12E1.L+AGk L’ I12El, + AGk L
12AEG k. 6AEGI k.
0 0 — ' _ _— 0
&) 12E! L+AGk, L’ 12Ef + AGk L'
Wi, = H
0 0 0 %—'- 0 0
p 5 6AEGI k. 4El [BEI, + AGK, L) i
12Ef, + AGk L? 12E1 L+ AGk, L’
-6AEGI k, ; : ; aEl (3EI. + AGK,I?)
d 12El. + AGk L' 12E1 L+ AGk I
; (9a-d)

where A, L are, respectively, the cross-sectional area and length of the member, /, and /, are the second
moments of area of the member cross section, J is the polar second moment of area, E and G are,
respectively, the Young's modulus and shear modulus of the member material, and k, and k, are the
transverse shear factors. It is noted that when k, and &, approach infinity, Egs. (9a—d) will be reduced to
the member stiffness submatrices for members involving only axial, flexural and torsional deformations
(e.g., Balfour, 1986). Substituting Eqs. (9a—d) for the member stiffness submatrices into Egs. (3a—d)
results in the following global stiffness submatrices: |

Ki). =15 (ki) T, (Ky), =77k, T, (K, ), =T5'k,) T, (K}), =T;'(k}). T,. (10a—d)
J. FORMULATION

Analysis of a space frame structure can be conducted by following a computer-oriented procedure
outlined here. First, the 6 x 6 global stiffness submatrices in terms of the reference coordinates (x, y, z)
are generated for each member in the structure (e.g., member “i, /* shown in Fig. 3) using Egs. (10a—d).
Member “i, j” contributes to the stiffness matrices of nodes / and j at the ends of the member. Hence,
corresponding elements from the global stiffness submatrices for this member may be transferred to the
overall stiffness matrix by use of suitable indices (e.g., Weaver and Gere, 1990). The six possible
displacements at a particular node { are denoted by the following indices:

6(i — 1) + 1 = index for the x component of translation,
6(i - 1) + 2 = index for the y component of translation,
6(i - 1) + 3 = index for the z component of translation,



6(i — 1) + 4 = index for the x component of rotation,
6(i - 1) + 5 = index for the y component of rotation,
6(i = 1) + 6 = index for the z component of rotation.

The transferring rule is that element (ir, ji) (i1, jy € {1, 2, -, 6]) of submatrices (K}),. (K,) . (K,)
and {[{L:]“ 15 added, respectively, to locations (6i =6 + £, 6i— 6 + ), (Bi =6 + i1, 6/ =6+ /), (6j — 6 + i),

6i — 6 + ji), (6 = 6 + iy, 6 — 6 + j) in the initial structure stiffness matrix K;. Construction of the
complete K; involves forming and transferring {Kil| }...- {K“]IM. (K 5 ]m and {KL }... for all members of the
structure,

The second phase of the analysis is to generate initial load vectors. As shown in Fig. 3, the actions
applied at node i, (Py),, (P); and (Py);, are the x, y and z components of the concentrated forces, and the
actions (Py)y, (Py)s and (Py)s are the x, y and z components of the moments applied at node i. They are put,
respectively, at the locations (6i = 5), (6i — 4), (6i — 3), (6i = 2), (6 — 1) and (6/) in the initial load vector.

After the construction of the required matrices is completed, substituting them into Eqgs. (7) and (8)
finally gives, with the boundary conditions enforced, the solution for free nodal displacements.

3.1 Mode I Loading

The tetrakaidecahedral unit cell under Mode [ loading is shown in Fig. 4, with all of its members and
joints numbered. All of the members (struts) of the cell have the same length L and cross-sectional area A.
In addition, the following relations can be identified (Li and Gao, 2003):

2
A=—;§RE, I=I=cA’ J=¢A?, (11)
where R is the relative foam density, and ¢ and ¢, are two geometric constants depending on the strut

cross section shape.
By following the procedure outlined above and using the structural and loading data illustrated in Fig.
4, the nodal displacements for each non-restrained joint of the cellular structure can be obtained. The

effective Young's modulus, E :, of the unit cell, and thus of the foam, can then be determined, using the
average strain theorem in the homogenization theory (e.g., Gao et al., 2003), as (Li and Gao, 2003)

. _22P
e _L‘ET
where A, [= (4y);] is the displacement of the unit cell in the negative-y direction. From Eqgs. (9a—d) and
(11) it follows that that A,, and thus E;. depends on the relative foam density (R), the size and shape of
the strut cross section (c, ¢, k, and &.), and the elastic properties of the strut material (E and G).

The effective Poisson's ratio I-':_}_ can be obtained as (Gao and Li, 2002; Li and Gao, 2003)

V:-.- — —fz.i .__._._{ﬁtl‘h ; [13]
: 8 .-'_‘1._T - ot}
where (4;); stands for the x-component of the (translational) displacement at node i, and x(f) denotes the

x-coordinate of node i. Clearly, V;, = V:_p due to symmetry.

E , (12)

Finally, the effective shear modulus G; can be shown to be (Li and Gao, 2003)

G = 9\2P ‘ 14
T TR



where A, and A,, are, respectively, the displacements of the cell in the x,- and y,-directions, which are
oriented 45° relative to x- and y-axes (see Fig. 5).

zy)

P P
Fig. 5. Equivalent loading configuration for Fig. 6. Configuration for Young's modulus
shear modulus (Mode I loading). and Poisson’s ratios (Mode II loading).

3.2 Mode IT and Mode III Loading

Formulas for predicting the effective foam properties in the Modes II and III loading cases can
be derived by following procedures similar to that used above for the Mode [ loading case.

For the Mode Il loading case (Fig. 6), the effective Young's modulus is obtained as (Li and

Gao, 2003)
942P

B (15)
T4LA"



and the effective Poisson’s ralios as
. @ - V6 L@,

(16a,b)

2 ZU :1" =~ x(i) ' Vs 24 r‘l" 2(i)

where A" and A" are, respectively, the displacements in the Ioading and lateral directions of the

unit cell under Mode II loading, z(i) denotes the z-coordinate of node i, and (A,); stands for the z-
component of the (translational) displacement at node §.
For the Mode III loading case (Fig. 2c), the effective Young's modulus is obtained as (Li and

Gao, 2003)
542P

; =8Lﬁ‘" ’ (17)
and the effective Foissun‘s ratios as .
i (A, ]. . (A;)y
_=,__..._. = . 18a,b
£ 22 AV < x() Ve 15 &Y Z 2(i) tab)

where é.'_:_' and .ﬂ':’ are, respectively, the displacements in the loading and lateral directions of the unit
cell under Mode I1I loading.

4. NUMERICAL RESULTS

To illustrate the new model, a parametric study of sample cases is conducted here for three-dimensional
open-cell carbon foams, whose modeling motivated the present study. The MATLAB program (of The
Mathworks, Inc.) is used in the computations. Young's modulus (E) and Poisson’s ratio (V) of the carbon
strut material, which is assumed as isotropic, are, respectively, taken to be 15.61 GPa and 0.33, and the
maximum value of the relative foam density (R) to be 0.22, as was done in Li et al. (2003). The shapes
used here for the strut cross section also include circle, square, equilateral triangle and Plateau border.

The predicted effective Young's modulus (E_,.‘}, Poisson's ratio {VI,'} and shear modulus (G;} varying
with the relative density (R) for carbon foams with Plateau border strut cross sections and under Mode [

loading are illustrated in Figs. 7, 8 and 9, where they are also compared to the predictions of several
existing models.
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Fig. 7. Young's modulus vs. relative density. Fig. 8. Poisson's ratio vs. relative density.

From Fig. 7 it is seen that the values of E,” predicted by the current model and those by the four earlier
models are very close for low-density foams (with R < 0.1). Figure 8 shows that v,  decreases
monaotonically as R increases according to the new model. This trend is the same as that predicted by
three other models. Also, values of v, predicted by the current model (e.g., Vo = 0.346 at R = 0.1) are



close to 1/3, which is a value suggested by Gibson and Ashby (1997) based on available experimental
data (ranging from 0.15 10 0.4).

e (Current maodel | mcede |
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Fig. 9. Shear modulus vs. relative density. Fig. 10. Young's modulus vs. relative density.

It is clear from Fig. 9 that the values of G, predicted by the current model are closer to those provided
by Gibson and Ashby (1997) based on the experimental data than the values given in Warren and Kraynik
(1988). Moreover, Fig. 9 reveals that the predictions of G, by the three models are very close for low-
density foams (with ® <0.1).

Figure 10 compares the predicted values of the effective Young's modulus ( E :] of carbon foams with
Plateau border strut cross sections when the unit cell is under Modes [, Il or III loading. It is shown that
E_: increases monotonically for all the three loading cases as R rises. The values of E. for the Mode I
and II loading cases are very close for low-density foams (with R < 0.15), which conforms to the weak-
anisotropy observed by Warren and Kraynik (1997). In this same low-density region, however, the values

of E. for the mode III loading case are 50% lower than those for the other two loading cases. This
¥ .

For the tetrakaidecahedral unit cell under Modes I, II or III loading, the predicted values of the
effective Poisson's ratios varying with R are illustrated in Figs. 11 and 12. For the Mode II loading case,
V. is0.627 at R = 0 and decreases gradually with the increase of R, while V; starts to descend from

reflects the degree of anisotropy of carbon foams as measured by E

¥

0.212. When the unit cell is loaded at two farthest joints (Mode III loading), the values of both V:? and
lf:_IF are very close to those for the Mode I loading case. However, there are large differences between
V:_, and V_,:, for the same loading case. Furthermore, Figs. 11 and 12 show that for v; or V; the

differences between the values for the Mode [ loading case and those for the Modes II and III loading
cases are significant. This indicates that carbon foams do exhibit distinct anisotropy when viewed in terms

of Poisson’s ratios. Also, it is observed from Fig. 12 that the predicted values of v, for all of the three

loading cases fall within the range of 0.15 - 0.4, which is the experimental data range quoted in Gibson
and Ashby (1997).

The predicted effects of the relative foam density (R) on the effective shear moduli (G, and G,) are

illustrated in Figs. 13 and 14. It is clear that the values of shear moduli are very close for all the three
different loading cases. This agrees with the similarity between the results of the effective shear moduli
for the Modes I and Il loading cases reported in Warren and Kraynik (1997). In addition, it is noticed that

the differences between the values of G, and G, under the same mode of loading are indistinguishable.
These imply that the anisotropy as measured by the shear moduli is insignificant.
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Finally, the order of influence of strut cross section shapes on the effective properties of carbon foams
appears to be the same in all three loading cases. That is, Plateau border, equilateral triangle, square and

circle strut cross sections form a descending order for E., G, and G,,, and a ascending order for both

v, and v, . At R = 0.1, the maximum relative differences of the three elastic moduli and two Poisson’s

ratios, resulting from the use of different shapes of strut cross section, for the three loading cases are
summarized in Table 1. In all of the three loading cases, shear moduli are most sensitive to the strut cross
section shape, which is followed by Young's modulus and Poisson’s ratios. It is noted from Table 1 that
the values of relative differences between different loading cases are very close for all five elastic
properties except for Poisson's ratios in the Mode III loading case, which are substantially lower than
those in the Modes I and Il loading cases. This supplements the observations about anisotropy in foam
elastic behavior drawn from Figs. 11 and 12,

Table | Maximum relative differences due to the use of different strut cross section shapes

Mode I

_E s
V:v 8.93%

,,f.r 8.93%

(;:;” 34.05%

i 34.05%

Mode II

33.02%

8.10%
1.25%
33.63%
33.50%

Mode M1
3225%
1.30%

4.90%
J2.88%
32.01%
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