Air Intakes for Subsonic UCAV Applications - Some Design Considerations

Peter G Martin
Defence Science and Technology Laboratory
UK

Tel: +44 (0)1234 716442
pgmartin@dstl.gov.uk
<table>
<thead>
<tr>
<th>Report Documentation Page</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 JUL 2004</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Intakes for Subsonic UCAV Applications - Some Design Considerations</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Defence Science and Technology Laboratory UK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also ADM001685, CSP 02-5078, Proceedings for Aerodynamic Issues of Unmanned Air Vehicles (UAV)., The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
<td>UU</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Outline

• Some first expectations from theory
• Practical considerations
• Research requirements
Mission Assumptions

• Modest manoeuvre requirements
• Subsonic cruise
What’s New?

• Some additional positioning and packaging freedoms
 – Upper surface front position is available

• ... But many new constraints due to a need for low observability
 – No diverter
 – High lip sweep / edge alignment
 – Engine compressor face obscuration
 – Fixed geometry and no auxiliary intakes (ideally)
Intake Configuration Examples

• Pitot
• Diverter-less pitot
• Semi-flush
• Flush

getting easier to satisfy LO constraints

... but

Increasing aerodynamic integration difficulty

Photos © Jane’s
Practical Considerations:

Vehicle Packaging

- Tendency for fuel, releasable payload and engine to need to be near to the CG

- Intake options
 - At or near to the front of the vehicle
 . . . but avoiding wing leading-edge vortex ingestion

- Diffuser options:
 - Very short diffusers with compressor-face screening devices
 - Short, highly off-set, obscuring diffusers
Idealised Pitot Intakes

Intake capture area = A_C

Area of approach surface = S

Intake aspect ratio = width / height = AR

δ is boundary layer thickness at l
Divert, Ingest or a Bit of Both?

Comparison based on intakes at the same streamwise location, \(l \). Datum is \(AR = 2 \) pitot intake with a \(1\delta \) diverter height.

Small UCAV
Turbofan, BPR=0.1
Cruise at \(A_0/A_C=0.67 \)
M=0.8, 9Km ISA

Sized for \(M_{\text{throat}}=0.85 \) in 2g sustained turn, M=0.8, 9Km ISA

Based on Seddon’s approximate theory of skin friction loss (incompressible)

Change in Thrust-minus-Drag / Datum Thrust (%)
Contributions to $\Delta(T-D)/T$

\[
\frac{\delta}{l} = 0.016
\]

\[
\text{AR} = 5
\]

\[
\text{BPR} = 0.1
\]
Divert, Ingest or a Bit of Both?

Datum is AR=2 pitot intake located at l with 1δ diverter

Small UCAV
Turbofan, BPR=1.0
Cruise at $A_0/A_C=0.73$
M=0.8, 9Km ISA
Sized for $M_{\text{throat}}=0.85$ in 2g sustained turn, M=0.8, 9Km ISA

Intake aspect ratio = $\frac{\text{width}}{\text{height}}$
Divert, Ingest or a Bit of Both?

Datum is AR=2 pitot intake located at \(l \) with 1\(\delta \) diverter

Small UCAV
Turbofan, BPR=1.0
Cruise at \(A_0/A_C=0.73 \)
\(M=0.8, 9\text{Km ISA} \)
Sized for \(M_{\text{throat}}=0.85 \) in 2g sustained turn, \(M=0.8, 9\text{Km ISA} \)

Approximate UCAV design space

High AR UCAV, e.g. X-47?

Manned, e.g. F-35

Change in Thrust-minus-Drag / Datum Thrust (%)

Position Ratio, \(S/A_c \)
Practical Considerations:
Avoidance of Distortion and Swirl

• Boundary layer ingestion can look like a good idea in principle but:
 – Distorted flow at the diffuser entry can adversely influence the diffuser flow

 . . . leading to additional loss, increased distortion and swirl at the compressor face

• The classical diverter gap is a convenient way of avoiding this problem and is seen on almost all non-LO aircraft that operate above M=0.6
Flow Capture Ratio Effects

\[\Delta P/q_c \]

Theory, ‘\(\mu^3 \)’ law

Design

Lip Separation

Static

Increasing B.L. Diversion

Pre-entry Separation

Duct

Static

Increasing B.L. Diversion

Design

Lip Separation

Duct

\[A_c/A_0 \]
Practical Considerations:
Pre-Entry Separation Problem

- Design for operation at higher cruise mass flow ratio than normal will lead to:
 - Lower spillage drag at cruise

 ... but increased losses at all conditions due to:
 - A smaller intake capture area with higher throat Mach number
 - An increased internal diffusion requirement

- Static/take-off or manoeuvre thrust requirement and cruise performance requirement are thus likely to conflict
Research Requirements:
Intake Pre-Entry Flows

• Ways of controlling the pre-entry flow e.g:
 – Boundary layer conditioning via surface shaping (e.g. bumps)
 – Boundary layer diversion via intake shaping (forward swept intakes, NACA intakes)

• Efficient ways of accommodating distorted in-flows
Practical Considerations:

Lip Separation Problem (1)

- Lip planform
 - Highly swept planforms can lead to locally high lip loading which is potentially a problem for high mass flow ratio operation (e.g. static and take-off regimes)

- Contraction ratio
 - High CR desirable for performance and compatibility at static, take-off and manoeuvre conditions
 - But, combining high CR and high cruise mass flow ratio would mean:
 - Even higher throat Mach number
 - Even higher internal diffusion requirement
Practical Considerations:

Lip Separation Problem (2)

- **Spillage drag**
 - High cruise mass flow ratio, so spill drag issue should tend to be of reduced significance
 - But still potentially an issue in the case of very high lip sweep and/or sharp lips
Research Requirements:
Intake Entry and Lip Shaping

• Ways of improving the static and take-off performance of fixed-geometry intakes

• Aerodynamics of highly compromised intake lip profiles (e.g. sharp / bi-convex of varying thickness)
Practical Considerations: Diffuser Flows

• Diffuser likely to provide the most significant contribution to thrust loss at cruise

• High diffuser off-set will tend to significantly increase pressure loss, distortion and swirl so great care is required in design

• Benefits likely through tailoring of area distribution, cross sectional shape / local wall curvature

• Flow control systems could offer very significant benefits
 – Suppression of flow separation
 – Re-distribution of low energy flow
Research Requirements:

Diffusers

• Parametric study of compact diffusers with high aspect ratio entries (both with and without obscuration) using a combination of experiment and CFD

• Ways of reducing total pressure distortion and swirl in compact diffusers with minimal additional diffuser loss
 – e.g. flow control systems of various forms

• Novel approaches to diffusion and screening
Research Requirements: Prediction Methods

- Effective, rapid, methods for the estimation of the contribution of intake components to intake performance (e.g. semi-empirical) for preliminary design
- Methods for the prediction of complex flows (including time-variant flows) in complex intake and diffuser combinations both with and without flow control systems
- Methods for the optimisation of complex intake and diffuser combinations both with and without flow control systems
Conclusions

- Unmanned and LO . . . New freedoms but many new design challenges
- Systematic research on basic intake and duct parameters is required to extend the current knowledge into the full UCAV intake design space
- There is plenty of scope for novel solutions
- A high degree of integration with the airframe is likely to be required . . . so rapid estimation methods are needed more than ever at the conceptual design stage
- High-order CFD systems can capture key flow features of interest . . . target is cost-effective prediction of absolute performance levels
- Optimisation methods could be of great assistance in the later stages of the design process
Thanks for your attention!