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SUMMARY

Situational awareness plays a major role in many military and civilian operations. Apart from the identity, type,
location and dynamics of targets of interest, the situational picture may also provide other target information,
such as weapons state, fuel status and intent. Many legacy systems incorporate an automatic tracking capabil-
ity, with identification, situational assessment and decision-making being left to the operators. The automation
of many of these functions is the focus of much research and development.

A necessary prerequisite for updating the state of a target is the correct association of measurements or
other information to the track. The ability of Bayesian belief networks (BBNs) to model the uncertain rela-
tionships between continuous and discrete variables make them excellent candidates for incorporating both
kinematic and attribute information in the association process. A BBN model for a single scan data associa-
tion problem is presented and used to develop a global nearest neighbours solution using both kinematic and
attribute information. Monte Carlo simulations demonstrate the benefit of using attribute information in the
association process.

1 INTRODUCTION

Situational awareness plays a major role in many military and civilian operations. The automated situational
picture traditionally displayed the position, speed and heading of targets within a region of interest, with the
operator manually adding identity and other information. However, modern multi-source algorithms have the
potential to automaticially update additional target information or attributes, such as identity, class, category,
weapons state, fuel status, threat level and intent, using the kinematic and attribute information from a variety
of disparate sensors and sources. The Australian Defence Organisation is currently acquiring a number of
capabilities, such as the Airborne Early Warning and Control, Air Defence Ground Environment and Joint
Strike Fighter that will, or are expected to, provide some level of automation in this area.

The most critical and difficult problem in state estimation or tracking problems is that of data association.
The use of attribute information in data association has the potential to provide greater discrimination and
reduce association ambiguities. This paper addresses the joint kinematic and attribute data association problem,
using a common probabilistic framework defined for both kinematic and attribute data using Bayesian Belief
Networks (BBNs). This framework accomodates the uncertainty inherent in all sensor data, which is ignored
in simple attribute gating techniques.

The paper is organised as follows. Following this introduction, an overview of relevant previous work is
presented in Section 2, and a brief tutorial on BBNs is provided in Section 3. In Section 4, the joint kinematic

c© Commonwealth of Australia 2003.
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and attribute data association algorithm is developed, with the results of the Monte Carlo analysis in Section 4,
and conclusions in Section 6.

2 BACKGROUND

Tracking the dynamic or kinematic state of a target is well documented [1]. However, the dynamic behaviour of
a target and information from other sensors and sources, such as secondary surveillance radar (SSR), electronic
surveillance (ES), tactical data links and intelligence sources, can be used to estimate other attributes of a target,
such as its identity, class, threat level and intent. Two key challenges are to successfully combine the disparate
information or data, and to handle the uncertainty or errors in the data. Bayesian and Dempster-Shafer are
two approaches that are able to accommodate these challenges. Bayesian techniques use Bayesian probability
theory to handle uncertainty, whereas Dempster-Shafer introduces the concepts of support and plausibility
[2, 3]. Bayesian probability theory provides a common frame of reference for the kinematic and attribute
variables, and has previously been exploited for joint tracking and classification [4, 5].

Bayesian belief networks (BBNs) are causal belief networks that model the dependencies between vari-
ables or network nodes using Bayesian probability [6]. The ability of BBNs to model both continuous and
discrete variables, and the relationships between such variables, make them excellent candidates for devel-
oping Bayesian approaches to attribute tracking and fusion systems. Korpisaari and Saarinen [7] proposed
a generalised Bayesian network structure with a many-dimensional association vector for applying attribute
data in a Joint Probabilistic Data Association (JPDA) context. With Hautaniemi [8], these authors recognised
how the dependencies between attributes generally produce non-singly connected networks for attributes that
evolve over time. Chang and Fung [9] used a BBN to incorporate attribute information into a multiple hypoth-
esis tracking algorithm. Krieg [10] showed how BBNs may be used as a basis for deriving the Kalman filter
tracking algorithm and a joint kinematic and attribute nearest neighbours data association algorithm. He also
developed an attribute estimation algorithm, which he applied to the target tracking and recognition application.
In [11], he used BBNs to develop a joint tracking and classification solution.

3 OVERVIEW OF BAYESIAN BELIEF NETWORKS

A Bayesian belief network (BBN) is a causal network that is represented by a directed acyclic graph, where the
nodes represent stochastic variables and the directed links or arcs represent the direct causal influences between
the variables [12]. Bayesian calculus, in particular predetermined prior and conditional probabilities, is used
to determine the posterior node probabilities from the data or evidence applied to the network. Although the
network provides a complete probabilistic model of all the variables in a specific domain, its design is based
on local interactions between variables that directly influence one another. Therefore, it is only necessary to
determine the conditional probabilities for each variable [6]; a conceptually simpler task than defining the entire
joint probability.

The belief or posterior probability of the state of each variable in a BBN is dynamically calculated from
the static conditional probabilities and the propagation of evidence. When applied to the network, evidence
is propagated in the direction of the causal links by π messages and against the direction of the links by λ
messages. On receipt of a message from another node, a node will update its belief and propagate new messages
to each node directly connected to it, thereby ensuring the evidence is propagated throughout the network. The
belief at any node is the normalised product of the λ and π information at that node.

For simplicity, the following description of evidence propagation in BBNs is restricted to tree network
structures. Unless stated otherwise, a node or variable is denoted by an uppercase alphabetic character, and its
value is denoted by its lowercase equivalent.

Consider the propagation of evidence through the BBN in Figure 1. The evidence influencing the proposi-
tion X = x is separated into two disjoint subsets, namely that introduced to X through the arcs between X and its
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Figure 1. Evidence propagation in a BBN

children, Y1, . . . ,YN , and that introduced through the arc between X and its parent, W . The former is aggregated
into the likelihood λ (x), representing the diagnostic or retrospective support for the proposition X = x, and the
latter the prior probability π(x), representing the causal or predictive support for X = x. The belief of X = x is
then simply

Bel(x) = α π(x)λ (x), (1)

where α is a normalising constant.
For simplicity, and without loss of generality, it is assumed that all evidence is introduced into the BBN

through leaf nodes. Then the retrospective support provided by the evidence on each leaf node Yi, i = 1, . . . ,N,
is reflected by the message λ (yi), which takes the value δyiy′i , if instantiated with y′i, or some other value
representing the probability that Yi = yi. This support is then propagated to X as

λYi(x) = ∑
yi

p(yi | x)λ (yi), (2)

and combined with the support from the other children of X using

λ (x) =
N

∏
i=1

λYi(x). (3)

The retrospective support is then propagated to W according to

λX(w) = ∑
x
p(x |w)λ (x). (4)

The π messages propagate predictive support in the direction of the links. The support provided by the root
node W is simply the prior probability of W , that is, π(w) = p(w), and this is propagated to X using

π(x) = ∑
w
p(x | w)π(w). (5)
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The propagation continues from X to the children of X using

πYi(x) = α
N

∏
k=1\i

λYk(x)π(x) = α
Bel(x)
λYi(x)

, (6)

and
π(yi) = ∑

x
p(yi | x)πYi(x). (7)

The belief at all nodes may now be calculated.

4 JOINT KINEMATIC AND ATTRIBUTE FUSION
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Figure 2. BBN for associating measurements to tracks

Consider the problem of associating N measurements at some time t to M tracks or other entities. Denoting
the measurements as z(n)

t , n = 1,2, . . . ,N, and the track states as x(m)
t , m = 1,2, . . . ,M, and introducing an N×1

association vector, kt = (k(1)
t ,k(2)

t , . . . ,k(N)
t )T, k(i)

t ∈ {1,2, . . . ,M}, where the value of the ith element indicates
the track to which the ith measurement is associated, the problem becomes one of estimating the value of kt .
This may be represented by the BBN in Figure 2. Both the measurements and track states may contain both
attribute and kinematic information, and the corresponding probabilities represent the joint probabilities of all
the attribute and kinematic elements.

The BBN of Figure 2 is not singly connected, that is, it contains loops in the underlying Markov network.
Therefore, the clustering approach [6, 13] is used here to produce the tree structure of Figure 3, where the
clustered variable At = {X (1)

t ,X (2)
t , . . . ,X (M)

t ,Kt}. The conditional probabilities are now given as

p
(

z(n)
t | At

)
= p

(
z(n)
t | kt ,x

(k(n)
t )

t

)
, n = 1,2, . . . ,N. (8)

From (1), the posterior probability, or belief, of At is given by

Bel(At) = αλ (At)π(At). (9)

The predictive support is simply the prior probability of At , namely

π(At) = p(At) = p(kt)
M

∏
m=1

p
(

x(m)
t

)
, (10)
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Figure 3. Cluster BBN for associating N measurements to M tracks

assuming that the track prior probabilites are independent, which is valid if it is assumed that a measurement
can only be associated with a single track.

Denoting the known value of z(n)
t as z(n)′

t ,

λ (z(n)
t ) = δ

z(n)
t z(n)′

t
, (11)

where δ
z(n)
t z(n)′

t
equals 1 when z(n)

t = z(n)′
t and 0 otherwise. Using (2) and (8), the retrospective support to At from

the nth measurement becomes

λ
Z(n)

t
(At) = p

(
z(n)′
t | kt ,x

(k(n)
t )

t

)
, (12)

and, from (3), the support for At from all measurements is

λ (At) =
N

∏
n=1

p

(
z(n)′
t | kt ,x

(k(n)
t )

t

)
. (13)

Invoking (9) with (10) and (13) gives

Bel(At) = αp(kt)
M

∏
m=1

p
(

x(m)
t

) N

∏
n=1

p

(
z(n)′
t | kt ,x

(k(n)
t )

t

)
. (14)

The belief of kt may now be found by marginalising At , that is,

Bel(kt) = αp(kt)∑
x(1)

t

∑
x(2)

t

· · · ∑
x(M)

t

M

∏
m=1

p
(

x(m)
t

) N

∏
n=1

p

(
z(n)′
t | kt ,x

(k(n)
t )

t

)
, (15)

which may be rewritten

Bel(kt) = αp(kt) ∏
m:m∈kt

∑
x(m)

t

p
(

x(m)
t

)
∏

n:k(n)
t =m

p
(

z(n)′
t | x(m)

t

)
, (16)

where α is a normalising constant. Using the most probable value as the best estimate for the association vector,
α may be ignored, as the solution is simply

k̂t = argmax
kt

p(kt) ∏
m:m∈kt

∑
x(m)

t

p
(

x(m)
t

)
∏

n:k(n)
t =m

p
(

z(n)′
t | x(m)

t

)
. (17)
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Of particular interest is the prior distribution of kt . If all permutations of the association vector are equi-
probable, then the solution under linear and Gaussian assumptions is equivalent to the nearest neighbours
association algorithm for both kinematic and attribute data. However, zeroing the prior probability of all the
permutations of the association vector that associate more than one measurement from any sensor to one same
target constrains the solution and the result is a global nearest neighbours algorithm for both kinematics and
attributes.

5 RESULTS

The association algorithm of Section 4, with the constraint that each target can only produce one measurement
from each sensor, is applied to the tracking and identification problem for crossing targets. Probabilistic gating
is used to eliminate low probability associations. Measurements are simulated from two sensors, namely a
secondary surveillance radar (SSR) returning range, azimuth and identity, and an Electronic Surveillance (ES)
sensor returning azimuth and platform class, which is related to identity. Kinematic and identity updates are
performed by the Extended Kalman Filter (EKF) and the identity update algorithm of [10], respectively. Two
cases are considered, one with association based only on kinematic data, and the other using both kinematic
and attribute data for association.

Figures 4 and 5 show the track locations for a single run for kinematic only association and joint attribute
and kinematic association, respectively. The track positions are indicated by solid lines, and the ground truth
by dotted lines. The SSR position measurements from each target are shown, where the ‘+’ represents those
from one target, and the ‘◦’ those from the other target.

Frequent track swaps, as illustrated by Figure 4, are observed when only kinematic data is used for data
association. The use of both kinematic and attribute data overcomes this problem. This is reflected in the
assocation accuracy results presented in Table 1, where the percentage of measurements from each target that
are associated with each track is presented for both the SSR and ES sensors. Perfect association would result
in all measurements from target 1 associated with track 1, and all measurements from target 2 associated with
track 2. The results for both sensors reflect the difficulty of associating reports to closely spaced entities using
only kinematic data. The additional discrimination introduced by the attribute data provides the observed
improvement in performance of the joint association over the kinematic only association.

This example demonstrates the advantage of using both attribute and kinematic data for data association.
This is equally applicable to other data fusion applications, where other attribute information may be involved.

Table 1. Association accuracies for kinematic and joint kinematic and attribute association

Sensor Target Track
Assoc. Accuracies (%)
Kinematic Joint

SSR
1

1 86 99
2 13 0·05

2
1 13 0·05
2 85 98

ES
1

1 58 71
2 41 27

2
1 42 28
2 57 71
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Figure 4. Track location using kinematic only association
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Figure 5. Track location using joint kinematic and attribute association
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6 CONCLUSIONS

Accurate data association is a necessary requisite for the fusion of multi-source multi-target information. A
joint kinematic and attribute data association algorithm that incorporates data uncertainty has been developed
using a BBN framework. Significant improvement in association accuracy over kinematic only association has
been demonstrated through simulation.
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•
Problem
– Attribute data or information

– Multiple disparate sensors and sources
– Contribution to automated situational picture

– Data association
– Considered most challenging problem
– Attributes may provide greater discrimination
– Need to consider uncertainty



•
Bayesian Belief Networks

Causal network

– Continuous and discrete variables

– Bayesian calculus

– Uncertainty

– Complete probabilistic model of all variables

– Only need to define local interactions

– Evidence propagation through network
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•
Evidence Propagation in a BBN
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Evidence Propagation in a BBN
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Associating Measurements to Tracks
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Problem: Loops in underlying Markov network
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Associating Measurements to Tracks
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Algorithm

Posterior Probability:

Bel(kt) = αp (kt)
∏

m:m∈kt

∑

x
(m)
t

p

(

x
(m)
t

)

∏

n:k
(n)
t

=m

p

(

z
(n)′
t | x

(m)
t

)

Best estimate:

k̂t = arg max
kt

Bel(kt)
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•
Simulations
– Two targets crossing

– Two sensors:
– Secondary Surveillance Radar
– Electronic Support (ES)

– Association constrained to one
measurement / target / sensor

– Probabilistic gating applied prior to association

– Kinematic state update using EKF

– ID update using algorithm of [Krieg, IDC2002]

– Simulations for both kinematic only and joint
kinematic / attribute association
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•
Association Accuracies

Sensor Target
Assoc. Accuracies (%)
Kinematic Joint

SSR
1 86 99
2 85 98

ES
1 58 71
2 57 71



•
Conclusions
– Accurate data association prerequisite for fusion.

– Developed joint kinematic & attribute association
algorithm that:
– is based on BBN framework;
– incorporates uncertainty;
– improves accuracy over kinematic only.

– May be applied to higher level applications.
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