

The Morphware Stable Interface:
A Software Framework for Polymorphous Computing Architectures

Daniel P. Campbell
Mark A. Richards

Dennis M. Cottel
Randall R. Judd

Kenneth M.
Mackenzie

Georgia Institute of Technology SPAWAR Systems Center Reservoir Labs, Inc.
Atlanta, GA San Diego, CA New York, NY

770-528-7541 / dan.campbell@gtri.gatech.edu

Abstract
Polymorphous Computing Architectures (PCAs) are computing
devices that are capable of significant, rapid reconfiguration
directed by software. Composed of several groups of computing
elements, PCA devices can be configured to achieve high
performance on a wide variety of problem types and processing
demands. We describe an emerging concept called the
Morphware Stable Interface (MSI), a portable, scalable software
development framework to harness the power and complexity of
PCAs, while allowing productive software development, and
rapid adoption of PCA devices.

1. INTRODUCTION
The Polymorphous Computing Architectures (PCA) program is a
Defense Advanced Research Projects Agency (DARPA) effort to
develop new embedded computing platforms with very strong,
rapid in-mission reconfigurability. Target applications range
from military platforms that must adapt to rapidly changing
mission parameters, to embedded network controllers, whose
optimal configuration of hardware resources will change in
response to the traffic and environmental conditions it faces.
The PCA program “core projects” working to develop
microprocessors that implement polymorphous capabilities
include Smart Memories [1], Raw [2], M3T [3], TRIPS [4], and
MONARCH [5]. The chips under development in these projects
have several characteristics in common. These are typically tiled
structures composed from replicated, fully capable computing
cores, reconfigurable memory and cache elements, and a rich set
of reconfigurable data paths, network interfaces, and I/O paths.
Each can operate in streaming or threaded modes. Each has

mechanisms for aggregating individual processor tiles into larger
compound processor units. They differ in their approach for
aggregating processors and in their emphasis on processor,
memory, or communication design. Figure 1 illustrates a generic
PCA microarchitecture.
The increased capability of PCA systems comes at the expense of
increased software complexity. Applications written with
knowledge about the platform embedded into the structure of the
application can make use of the reconfigurability of such
resources, but suffer from a lack of scalability and portability.
Applications written with no such knowledge are completely
dependent on build and run-time systems to utilize the capabilities
of reconfigurable systems.
An important goal of the PCA program is therefore to create an
application development framework, called the Morphware Stable
Interface (MSI), that will exploit the capabilities of PCA
hardware while retaining as much portability and performance as
possible. The MSI should:

• Support dynamic hardware reorganization and optimization
• Obtain nearly optimal performance
• Abstract configurable computing elements
• Abstract hardware reconfiguration
• Mitigate development and runtime complexity
• Leverage existing technologies.

This paper presents the early results of the MSI design effort.

2. THE MORPHWARE FORUM
To facilitate the development of the cross-project consensus and
design effort needed to realize the MSI, the PCA program has
formed the Morphware Forum, an informal consortium of the
PCA contractors and other selected participants. Organized and
led by Georgia Tech under DARPA sponsorship, the Forum meets
quarterly, with other interim activities as required, to develop and
debate proposals for the MSI. The Forum will ultimately develop
a set of publicly available standards documents that define the
architecture and details of the MSI.

PCA chip

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

re
pl

ic
at

ed
 ti

le
re

pl
ic

at
ed

 ti
le

replicated tile
replicated tile

P Reconfigurable processor

M Reconfigurable memory

C Reconfigurable cache

Fixed communication

Configurable communication

PCA chip

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

re
pl

ic
at

ed
 ti

le
re

pl
ic

at
ed

 ti
le

replicated tile
replicated tile

P Reconfigurable processor

M Reconfigurable memory

C Reconfigurable cache

Fixed communication

Configurable communication

Georgia Tech maintains a Morphware Forum web site at
http://www.morphware.org that provides a vehicle for meeting
planning, collaborative exchange, and public information about
the MSI effort. At this writing, the public portion of the site is
limited to introductory papers and briefings on the MSI effort and
the PCA systems, and links to program participants’ web sites.
MSI standards documents will be available at this site as the
Forum approves them.

Figure 1. Generic PCA chip micro-architecture.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 AUG 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
The Morphware Stable Interface: A Software Framework for
Polymorphous Computing Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology Atlanta, GA; SPAWAR Systems Center,
San Diego, CA; Reservoir Labs, Inc. New York, Inc

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001694, HPEC-6-Vol 1 ESC-TR-2003-081; High Performance Embedded Computing
(HPEC) Workshop (7th)., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

27

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

3. MORPHWARE STABLE INTERFACE
The MSI is a framework consisting of several major elements.
Some of the most significant aspects of the MSI are described.

3.1 The Streaming Virtual Machine
Several of the projects have developed specialized languages to
exploit the differences between PCAs and traditional CPUs. The
highly parallelized, low unit-to-unit latency of PCA devices
exposes a need for compilers to more fully understand data
dependencies and control flow within an application than is
possible with languages such as C. In order to expose these
elements more clearly to compilers, the projects have developed
variants of C and C++ that introduce and enforce data-stream, and
operational kernel constructs. These language express programs
as directed data flow graphs connecting various computational
kernels. The restrictions on data and control flow allow compilers
to map algorithms very effectively to PCA-style devices, while
simplifying source code for a wide range of applications. These
languages express a fundamentally different underlying virtual
machine than languages such as C, and form an important aspect
of the MSI.

3.2 MSI Portability Layers
From its inception, the PCA program has advocated dual
portability layers for the MSI. The MSI provides portability via
the upper “Stable API” (SAPI) and the lower “Stable Architecture
Abstraction Layer” (SAAL). Figure 2 illustrates the concept. It
reduces development effort for application build systems by
providing a common middle layer; allows addition of new top
level application approaches without breaking existing build
systems; provides a stable, platform-independent target for top
level build tools; allows dynamic compilation, and increases
specialization opportunities in the builder/middleware
marketplace.
The SAPI consists of multiple platform-independent, high-level
languages and metadata representations. These languages will be
extensions to existing languages such as C or C++ that express
each of the virtual machine abstractions present in the SAAL.
The SAAL will be a portable C-based representation of a virtual
machine with both streaming and threaded modes. It will be both
platform- and SAPI language-independent. Finally, it will be
lower level than SAPI languages, and able to support dynamic
compilation. The Morphware Forum is currently actively
developing detailed proposals for the SAAL VM.

3.3 Component-Based Framework
The ability of applications to intelligently reconfigure host
platforms is a critical element of PCA software. In order to
facilitate morphing, a component-based software framework has
been proposed. Components provide natural and intuitive
boundaries for run-time reconfiguration of hardware. Software
components will be built for varying hardware configurations, and
the appropriate version may be loaded and executed on the fly as
portions of the host platform are reconfigured by the PCA system
or application software.

3.4 Metadata
PCA systems must to be aware of and reactive to application,
resource, and constraint goals and requirements. Examples
include SWEPT (size, weight, energy, performance, and time)
constraints, quality of service requirements (e.g. latency,
throughput), morph policy, security requirements, and so forth.
Metadata provides a means for the MSI to represent the
information needed to implement this capability.
Metadata are non-functional descriptions of requirements,
constraints, desired resource management policy, hardware
configuration options or any other information that expresses
information about system operation independent of the
application functional description. Each of the uses of metadata
constitutes a unique context that must be standardized and
described. A standard method for describing metadata contexts
has been proposed and is currently under consideration by the
Morphware Forum. Specifications for several metadata contexts
have been proposed, and standard appropriate storage, retrieval,
and query mechanisms for the metadata are currently being
designed.

4. REFERENCES
[1] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz,

“Smart Memories: A Modular Reconfigurable Architecture”,
Proceedings International Symposium on Computer Architecture,
June 2000.

[2] M. B. Taylor, J. Kim, et al., “The Raw Microprocessor: A
Computational Fabric for Software Circuits and General Purpose
Programs”, IEEE Micro, April/March 2002.

[3] C. Cascaval et al, “Evaluation of a Multithreaded Architecture for
Cellular Computing”, Proceedings Eighth International Symposium
on High-Performance Computer Architecture (HPCA), February
2002.

[4] R. Nagarajan et al, “A Design Space Evaluation of Grid Processor
Architectures”, Proceedings 34th Annual International Symposium
on Microarchitecture, pp.40-51, December, 2001.

Application Software

Stable APIs (SAPI)

Stable Architecture
Abstraction Layer (SAAL)

Binary Executables
Hardware

Algorithm descriptions, Constraints,
Performance Requirements

Collection of portable APIs

Portable, low-level hardware
abstractions

Application Software

Stable APIs (SAPI)

Stable Architecture
Abstraction Layer (SAAL)

Binary Executables
Hardware

Algorithm descriptions, Constraints,
Performance Requirements

Collection of portable APIs

Portable, low-level hardware
abstractions

[5] J. Granacki and M. Vahey, “MONARCH: A Morphable Networked
micro-ARCHitecture”, High Performance Embedded Computing
Workshop, October 2002.

Figure 2. SAPI and SAAL MSI portability layers.

r e s e r voir a b s

The Morphware Stable Interface: A
Software Framework for Polymorphous

Computing Architectures

D. Campbell1, D. Cottel2, R. Judd2, K. MacKenzie3, M.
Richards4

1Georgia Tech Research Institute, Smyrna, GA
2U.S. Navy SPAWAR Systems Center, San Diego, CA

3Reservoir Labs, Inc. New York, NY
4Georgia Institute of Technology, Atlanta, GA

r e s e r voir a b s

Acknowledgements

r e s e r voir a b s

Polymorphous Computing Architectures

DARPA effort for high performance
embedded platforms with strong, rapid,
reactive in-mission configurability

Support dynamic and multi-mission requirements
Support collaborative, information-centric missions

PCA will develop processing architectures
that “morph”

Hardware and software resources reconfigure to balance
resource requirements and availability

at multiple levels: micro-architecture, network, system
at multiple time scales: in-mission, between-mission

r e s e r voir a b s

Generic PCA Microarchitecture

PCA chip

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

re
p

lic
at

ed
 t

ile
re

p
lic

at
ed

 t
ile

replicated
 tile

rep
licated

 tile

P Reconfigurable processor

M Reconfigurable memory

C Reconfigurable cache

Fixed communication

Configurable communication

High Speed off-chip I/O

r e s e r voir a b s

Generic PCA Microarchitecture

Tiled structure
Fully capable computing cores

Configurable memory and cache

Configurable data paths, network interfaces, and I/O

Streaming and Threaded modes

Methods to aggregate tiles into larger processing units

Core projects differ in
aggregation mechanisms
relative emphasis on processor, memory, or comm design

Performance on the order of (per chip)
4 – 64 GFLOPS / 4 – 16 GOPS
25 – 32 GB/s off-chip I/O

r e s e r voir a b s

Software and PCA

Increased hardware flexibility and complexity
brings increased software complexity

If we build target platform reconfigurability and performance
info into the application, we lose scalability and portability
If we don’t, the build and run-time systems will be entirely
responsible for leveraging the platform capability, and we
still lose fine-grain morphability
Applications must be reactive to feedback from the hardware

resource collisions, SWEPT, faults

Solution: the Morphware Stable Interface (MSI)

r e s e r voir a b s

The Morphware Stable Interface (MSI)

Application Development Framework for PCAs

Comprised of a software architecture and a suite of
open standard APIs

Goals
Dynamically optimize PCA resources for application functionality,
service requirements, and constraints
Obtain nearly optimal performance from PCA hardware
Be highly reactive to PCA hardware and user inputs
Manage PCA software complexity
Leverage existing and already-developing technologies

Cross-project effort, developed in parallel with the
hardware

r e s e r voir a b s

The Morphware Forum

Informal consortium of the PCA contractors and
other selected participants

Organized and led by the Georgia Tech/SPAWAR
team

Meets quarterly
interim meetings and activities as required

Propose, debate, develop, test, validate,
document, and demonstrate standards that define
the MSI

r e s e r voir a b s

The Morphware Forum

Applied Photonics

Georgia Institute of Technology

George Mason University

IBM

Lockheed Martin Company

Massachusetts Institute of Technology

MIT/Lincoln Laboratory

Mercury Computing Systems

Mississippi State University

MPI Software Technology, Inc.

Northrup Grumman

Reservoir Labs, Inc.

Raytheon

SPAWAR

South West Research

Stanford University

University of Texas - Austin

University of Illinois

University of Pennsylvania

University of Southern California

Vanderbilt University

r e s e r voir a b s

Dual Portability Layers

Application Software

Stable APIs (SAPI)

Stable Architecture
Abstraction Layer (SAAL)

Binary Executables
Hardware

Stable API (SAPI) and Stable
Architecture Abstraction
Layer (SAAL) provide dual
portability layers

Application SW describes
functionality, constraints, and
performance requirements

SAPI is PCA-aware collection
of standardized language and
service APIs

SAAL is PCA-aware
abstracted low-level machine
representations

r e s e r voir a b s

Why SAAL?

Traditional languages based on a machine model
increasingly incorrect

Single program counter
One operation at a time
Data universally local

All modern high performance computing systems battling
this issue

In order to exploit new hardware, core teams developed
new languages not based on old model

New languages based on similar models

Formalize the models to make it explicit

r e s e r voir a b s

Stream Languages

Compute-intensive portions of many applications have
characteristics of stream operations

fixed data flow graph
large, possibly infinite, data stream
functional kernels not data-dependent
functional kernels independent of one another
little or no retained data or state

Representations that enforce these characteristics ideally
suit PCA architectures, aid compiler in

Optimization
Scheduling
Resource allocation
Data Locality

SENSOR FIR
FILTER FFT

LINEAR
ALGEBRA

DETECTOR DISPLAY

LINEAR
ALGEBRA

r e s e r voir a b s

Morphware Languages

Binary Executables

StreamIt Brook C/C++

Stable Architecture Abstraction Layer (SAAL)

Others…

Stable APIs (SAPI)

Stable Architecture Abstraction Layer (SAAL)

r e s e r voir a b s

SAAL Instantiation

Traditional languages have an implicit SAAL layer

MSI has an explicit SAAL layer, a portable API that exposes
the virtual resources typical of PCA systems

Sacrifices some tool chain flexibility for simpler, more defined, more
analyzable build chain
Factors deployment of new languages and hardware
Allows explicit consideration of model of computer
Formalizes and augments existing model

Creates a two-stage compile process

Example constructs: kernel, stream, processor, etc

r e s e r voir a b s

Morphware Compilation

StreamIt Brook C/C++ Others…

Stable APIs (SAPI)

Stable Architecture
Abstraction Layer
(SAAL)

Binaries

Low Level Compilers

TRIPS M-Chip Smart Memories RAW Others...

High Level Compilers

Virtual Machine API

Stream VM
API

Thread VM
API

r e s e r voir a b s

Metadata in Morphware

PCA Hardware is complex and changing

PCA Missions are complex and changing

Large amount of configuration, constraints,
requirements, etc. information in addition to
functional requirement

Extracting and encapsulating this information
Increases portability, scalability
Facilitates Reconfiguration, Repurposing, Redeployment
Is an important goal of most modern software systems

r e s e r voir a b s

Metadata System

Metadata needed throughout the PCA system
Several contexts
Consistent method of representation & query preferred
Needed to enable processor and compiler developers to progress

Current system stores metadata as XML
Metadata is expressed as relational, hierarchical object oriented structure
Instantiated as XML
Contexts are defined by a Schema and Documentation
Accommodates procedural or static representation queries
Accessible to wide range of API’s, tools, etc.

H a r d w a r e D e s c r i p t i o n M e t a d a t a

V M C o d e M e t a d a t a B i n a r y M e t a d a t a C o m p o n e n t M e t a d a t a
D y n a m i c
R u n - t i m e
M e t a d a t a

V M C o d e B a c k - e n d
C o m p i l e r

A r c h i t e c t u r e-
S p e c i f i c

B i n a r y

C o m p o n e n t
P a c k a g e r C o m p o n e n t E x e c u t i n g

P r o g r a m
R u n - t i m e

L o a d e r
F r o n t - e n d
C o m p i l e r s

U s e r - s p e c i f i e d
C o m p o n e n t M e t a d a t a

A p p l i c a t i o n
C o n f i g u r a t i o n

M e t a d a t a
H a r d w a r e D e s c r i p t i o n M e t a d a t a

V M C o d e M e t a d a t a B i n a r y M e t a d a t a C o m p o n e n t M e t a d a t a
D y n a m i c
R u n - t i m e
M e t a d a t a

V M C o d e
A r c h i t e c t u r e-

S p e c i f i c
B i n a r y

C o m p o n e n t
P a c k a g e r C o m p o n e n t E x e c u t i n g

P r o g r a m
R u n - t i m e

L o a d e r
F r o n t - e n d
C o m p i l e r s

H i g h

(H L C)

L e v e l
C o m p i l e r s

U s e r - s p e c i f i e d
C o m p o n e n t M e t a d a t a

A p p l i c a t i o n
C o n f i g u r a t i o n

M e t a d a t a

L o w

(L L C)

L e v e l
C o m p i l e r s

r e s e r voir a b s

Use of Metadata

StreamIt Brook C/C++ Others…

Stable APIs (SAPI)

Stable Architecture
Abstraction Layer
(SAAL)

Binaries

Low Level Compilers

TRIPS M-Chip Smart Memories RAW Others...

High Level Compilers

Virtual Machine API

Stream VM
API

Thread VM
API

Target Platform
Description

r e s e r voir a b s

Platform Description Context

Needed by HLC to improve VM output
Helps allow coarse grain partitioning of applications into
appropriate sized pieces

Nearly complete, minor fixes remain

Describes target platform using common
dictionary of virtual resources and attributes

Processors: type, frequency, max-IPC, latency…
Memories: type, size, cache-linesize, associativity…
Net-Links: senders, receivers, latency, bandwidth

r e s e r voir a b s

Dynamic Configuration

Model so far good for flexible resources, goals &
constraints

Two level compile
structured VM code
Well defined metadata
Good compilers

Dynamic resources, goals, & constraints much
harder problem

Builds have (nearly) infinite time to analyze & search the
solution space, run-time changes must happen quickly
Static, configurable build parameters a hard, but tenable task
Support for dynamic criteria explodes the solution space

r e s e r voir a b s

Alternate Monoliths

Build with several parameters
Traverse build chain with a defined set of constraints, goals,
resources expected
Deploy binaries for each set
Select the best-fit binary at run-time

Benefits
Build chain sooner
Easier problem, faster builds
Known, testable states
Better optimization for known states

Problems
Problems with unexpected hardware states
Not as flexible as the hardware
Only optimal for expected states

r e s e r voir a b s

Component-Based Approach

Flexibility & resilience gained by partitioning physical resources

Configure each partition independently

Build binaries for each partition in various states

Benefits:
Smaller problem makes flexible build criteria more feasible
Hierarchical approach factors the problem of resource management
Able to match run-time needs more closely
Able to achieve top performance in more situations
More easily respond to hardware failures & changes

Problems
Requires a more robust run-time system to fully exploit
Many states possible – complicates testing
Framework bloat

r e s e r voir a b s

Component
Metadata

Component-Building

StreamIt Brook C/C++ Others…

Stable APIs (SAPI)

Stable Architecture
Abstraction Layer
(SAAL)

Components

Low Level Compilers

TRIPS M-Chip Smart Memories RAW Others...

High Level Compilers

Virtual Machine API

Stream VM
API

Thread VM
API

Resource Subset
Description

Component API

Goals/Constraints

r e s e r voir a b s

Morphware Forum Steps

Priority: End-to-End framework that allows an application
that can reconfigure it’s platform

Immediate priorities:
Finish TVM
Finish HWMD
Define HLC / LLC Interaction
Determine run-time services

Load, unload, configure, measure, etc.

Consider component-based approaches

Continue regular activities
Quarterly meetings, interims, draft documents, etc

r e s e r voir a b s

The Morphware Forum
web site provides some
public information

Selected public papers &
briefings
Links to PCA project
sites and related links
Link to DARPA PCA
This paper and
presentation, soon

In the future, it will
provide one-stop
public dissemination
of MSI documents

www.morphware.org

	INTRODUCTION
	THE MORPHWARE FORUM
	MORPHWARE STABLE INTERFACE
	The Streaming Virtual Machine
	MSI Portability Layers
	Component-Based Framework
	Metadata

	REFERENCES

	Abstract button:
	Presentation button:
	Agenda button:
	Next button:

