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I. Introduction

This is the forth year of the training grant, which supports predoctoral students and
postdocs for pursuing breast cancer research using NMR techniques. There are four predoctoral
students (Shani Ross, O’tega Ejofodomi, Emmanuel Agwu, and Raymond Malveaux) and three
postdoctoral research associates (Ercheng Li, Renshu Zhang and Lisa Kinnard) supported by this
grant. Shani Ross and O’tega Ejofodomi are seniors in the Department of Electrical Engineering.
Dr. Emmanuel Agwu is a 4% PhD student (the 8™ year in the MD/PhD program) from the
Department of Molecular Biology and Biochemistry. Dr. Agwu has finished his M.D. program
and is continuing his Ph.D. program. Raymond Malveaux is a third year medical student who
started research in this lab during the summer of 2003. Dr. Lisa Kinnard graduated from the
Department of Electrical Engineering in June 2003 and continued as a postdoctoral fellow at
Howard University Cancer Center. Dr. Ercheng Li is a NMR/MRI specialist. Dr. Renshu Zhang
is a radiologist. Both Dr. Li and Dr. Zhang are research associates.

All the trainees have rotated through the mammography service in the Department of
Radiology to learn the mammography procedures. Besides attending the weekly seminars in the
Cancer Center, the trainees also have attended a special seminar series on breast imaging
sponsored by this grant and the Department of Electrical Engineering. Dr. Li and Dr. Zhang have
also attended the annual meeting of the AACR (Association of American Cancer Research).
Each trainee has actively participated in one of the research projects. Based on the experimental
findings, three papers were published. Three abstracts have been presented and two other
abstracts will be presented to national and international scientific meetings. A list of the
publications and presentations are included in the reportable outcomes section. The PI has
submitted three grant applications. One has been funded and the other two are in pending. Dr.
Kinnard has also received a postdoctoral grant from the USAMRMC.

II. Body

In the 4™ year, we conducted studies in two key research areas: (1) imaging processing
techniques to separate the malignant and benign masses on digital mammograms (2) the role of
P-glycoprotein modulation in drug-drug interaction. We have also started two new research
projects: (3) Establishment of an Image Database for Computer-Aided-Diagnosis (CAD)
research development (Dr. Lisa Kinnard, Shani Ross and O’tega Ejofodomi ) (4) Tumor-targeted
MR contrast enhancement by anti-transferrin receptor scFv-Immunoliposome nanoparticles. (Dr.
Ercheng Li and Dr. Zhang)

Continued Research Projects:
(I)  Segmentation of Mammographic Masses Project (Dr. Kinnard)

Mammography combined with clinical examination is a standard method used for the
detection and diagnosis of breast cancer. However, mammography alone can produce a high
percentage of false positives. A computer-aided diagnostic (CADx) system can serve as a more
accurate clinical tool for the radiologist, consequently lowering the rate of missed breast cancer
and ultimately lowering morbidity and mortality. Breast cancer can exist not only in the form of




masses, but also in the forms of microcalcifications, asymmetric density, and architectural
distortion. These abnormalities can be seen using imaging techniques such as mammography,
ultrasound and magnetic resonance imaging (MRI). Breast images have different appearances
based upon their amounts of fibroglandular and fatty tissue. Masses can have unclear borders and
sometimes overlap with glandular tissue in mammograms, therefore the radiologists may
overlook these masses during their search of suspicious areas. Proper segmentation to include the
shape and boundary characteristics is an essential step in aiding the computer for the analysis and
malignancy determination of the mass. While many CADx systems have been developed, the
development of effective image segmentation algorithms for breast masses remains unsolved in
this field, particularly in the cases where the breast tissue is dense. Since cancerous masses often
appear to be light and have ill-defined borders, it is quite challenging for mammographers to
extract them from surrounding tissue. It is even more difficult to automatically segment masses
from dense tissue. In this research, a fully automated segmentation algorithm has been developed.
It delineates the complete masses with minimum normal structures in dense and mixed tissue
mammograms.

2) P-glycoprotein Modulation Project (Dr. Agwu, Dr. Li, Dr. Zhang, Malveaux)

Cancer patients are often treated with combination therapy for secondary symptoms such
as depression, and cardiopulmonary diseases. The potential for drug-drug interaction under these
conditions is high. Such interactions may cause changes in the pharmacokinetics, especially for
drugs with narrow therapeutic indices. These changes can alter efficacy and toxicity of the
administered drugs. Drug-drug interactions may occur due to common metabolic pathways, but
are also a result of interference at the P-glycoprotein (Pgp) level. Pgp, which is a nonspecific
transport protein, is expressed constitutively at the blood-brain-barrier (BBB), intestine, kidney,
liver, and in activated T-cells. Interaction at the blood-brain-barrier may occur if one of the two
concomitantly administered drugs blocks Pgp, thus allowing the other drug to penetrate the brain
freely. The potential for drug-drug interactions is not routinely studied at the Pgp level during
drug development. Its presence is assumed only after unexpected clinical symptoms arise. In this
study, we have demonstrated the drug penetration through the blood-brain-barrier due to Pgp
modulation using a dynamic NMR method based on detection of a fluorinated drug,
trifluoperazine (TFP).

New Research Projects:

(3)  Establishment of an Image Database for Computer-Aided-Diagnosis (CAD) Research
Development. (Dr. Lisa Kinnard, Shani Ross and O’tega Ejofodomi)

The success of CAD is based on the accuracy and completeness of the mammographic
image database, of which the CAD extracts the features of different types of pathology. The
current available mammographic image databases are all obtained from the Caucasian
population. There are very few African American cases. It is well known that African
American women generally have denser breasts. The appearance of mammograms from
African American breast cancer patients may not be the same as those ‘images from
Caucasian breast cancer patients. Howard University Cancer Center has a well maintained
cancer registry. It has more than 200 new African American breast cancer cases each year.
We have digitized 1000 mammograms from 220 patients’ records. Our intention is to




establish a breast cancer image database based on this African American population. This
database will be available on the internet to the CAD software developers and researchers.

(4)  Tumor-targeted MR Contrast Enhancement by Anti-transferrin Receptor scFv-
Immunoliposome Nanoparticles. (Dr. Li, Dr. Zhang)

In recent years, advances in molecular and cell biology techniques have had a marked
effect on our understanding of the cellular and molecular mechanisms of cancers including breast
cancer. Significant efforts have also been made toward the development of a noninvasive, high-
resolution in vivo imaging technology such as positron emission tomography (PET), magnetic
resonance imaging (MRI), and optical imaging techniques for the better imaging of tumors. In
vivo molecular imaging, which utilizes these two fronts, opens up an extraordinary opportunity
for studying diseases noninvasively and—in many cases—quantitatively at the molecular level.
The success of molecular imaging will lead to an understanding of the molecular changes that
underlie the diseases, and, may potentially lead to the early detection of breast cancer.

Magnetic resonance molecular imaging strategies have been explored by specifically
targeting oncogenes such as HER-2 (c-erbB-2, Neu), bcl-2/bel-xL, protein kinase A, and the
transferrin receptor gene. The human transferrin receptor (hTfR) has been used as a molecular
target to direct therapeutic agents to tumor cells and to shuttle drugs across the blood-brain
barrier. NMR imaging can visualize expression and regulation of hTfR receptors by studying the
receptors with a sterically protecting iron-containing magnetic hTfR probe. A cationic
immunoliposome system, which covalently conjugates the single-chain antibody variable region
fragment (scFv) against the hTfR has been used to improve p53 tumor suppressor gene therapy
employed in the human breast cancer metastasis model. This scFv-immunoliposome can
systematically deliver the complexed gene to tumors in vivo. In comparison to a whole antibody
or transferrin molecule, scFv has a much smaller size, enabling it to penetrate more easily
through solid tumors. In this study we will utilize the TfR scFv-immunoliposome along with
MR contrast agents to improve contrast agent-tumor affinity and specificity. This will enhance
MR diagnostic imaging capabilities, particularly those needed for early detection.

no1. Key Research Accomplishments
Statement of Work: (expected in year 4)

Predoctoral Student:

¢ Conclude the thesis project and write up thesis

Ms. Shani Ross and Ms. O’tega Ejofodomi finished their senior research projects and
graduated in June 2004. Dr. Emmanuel Agwu finished medical school and he is in the 4th
year of his PhD program. Dr. Agwu is continuing pursuing his doctoral thesis research. Dr.
Agwu’s research has been delayed due to his health condition. Dr. Agwu is originally from
Nigeria. He has an inherited sickle cell disease. After his graduation from the medical school
last summer, he has experienced four severe crises and had to be hospitalized for few days to
a few weeks throughout the year. He has participated in a NIH clinical trial for sickle cell
disease. The PI and his thesis committee members have discussed the situation and decided



not to put any extra pressure on him under this special circumstance. The thesis committee
agrees that he has been a responsible and intelligent student throughout the past few years in
his MD/PhD program. The thesis committee would like to support him to continue his PhD
program. Dr. Agwu plans to finish his research work by the end of 2004 and write up the
thesis in the spring of 2005. The PI has submitted an extension of this grant, which is
supposed to end by June 30, 2004 in order to continue to support this student and the research.

* Thesis defense and writing of scientific papers for publication
Dr. Agwu’s research has slowed down because of his health condition. He will finish his
thesis in the spring of 2005 and graduate in June 2005. He plans to publish his PhD work and
present the research results at the AACR meeting.

Postdoctoral Student.:

* Select a new research project approved by the Executive Committee

There are two new research projects that have been developed and approved by the Executive
Committee: '

(1) Establishment of an Image Database for Computer-Aided-Diagnosis (CAD) Research
Development. (Dr. Lisa Kinnard)

(2) Tumor-targeted MR Contrast Enhancement by Anti-transferrin Receptor scFv-
Immunoliposome Nanoparticles. (Dr. Ercheng Li and Dr. Zhang)

* Clinical preceptorship (half a day per week)

Dr. Li and Dr. Zhang have worked with radiologists in the Department of Radiology to study
breast cancer image patterns, clinically indeterminate cases, image pattern analysis of masses
vs. microcalcifications, and biopsy procedures.

¢ Conduct the new research project

(1) We have been digitized 1,000 mammograms from 220 breast cancer patients as an important
initial step for establishing a web-based breast cancer image database. The intended database
will be available on the internet and will be used for CAD software development and
teaching purposes.

(2) Dr. Li and Dr. Zhang have conducted a proof-of-principle study to validate the proposed
MRI image contrast enhancement strategy using immunoliposomes attached with specialized
ligands to recognize transferrin receptors, which are overly expressed on breast cancer cells.

* Present progress report to the Executive Committee once every six months
The progress of the research was reported to the Executive Committee routinely.

¢ Present research results to the Cancer Center faculty and National Meeting
Three papers have been presented in the national and international meetings. Two other
papers have been accepted for presentation later this year.

e Writing Scientific papers
The trainees and PI have published two papers and the third paper has been accepted for
publication. The titles of the scientific papers are listed in the reportable outcomes.

IV.  REPORTATBLE OUTCOMES

Papers:




. Kinnard L, Lo SB, Makariou E, Osicka T, Wang PC, Freeman M, Chouikha M.

Likelihood Function Analysis For Segmentation of Mammographic Masses For Various
Margin Groups. Proc of IEEE Symposium on Biomedical Imaging. pp 113-116, 2004.
Liang XJ, Yin JJ, Zhou JW, Wang PC, Taylor B, Cardarelli C, Kozar M, Forte R,
Aszalos A, Gottesman M. Lipid Composition and Biophysical Differences in the Plasma
Membrane Relate to Cisplatin Resistance in Human Epidermal Carcinoma Cells. Exp
Cell Research 293:283-291, 2004.

. Kinnard L, Lo SB, Makariou E, Osicka T, Wang PC, Chouikha M, Freeman M. Steepest

Changes of a Probability-based Cost Function for Delineation of Mammographic Masses:
A Validation Study. Med Phys 2004 (accepted for publication)

Presentations:

L.

Wang PC, Aszalos A, Li E, Zhang R, Song H. A Pharmacokinetic Study of
Trifluoperazine Crossing Blood-Brain-Barrier Due to P-glycoprotein Modulation.
ISMRM, Workshop on Dynamic Spectroscopy and Measurement of Physiology and
Function. September 6-8, 2003, Orlando, FI.

Kinnard L, Lo SB, Makariou E, Osicka T, Wang PC, Freeman M, Chouikha M.
Likelihood Function Analysis For Segmentation of Mammographic Masses For Various
Margin Groups. International Society of Biomedical Imaging, April 15-18, 2004,
Arlington, VA.

Wang PC, Aszalos A, Li E, Zhang R, Song H, Malveaux R. A NMR Study of
Tnﬂuoperazme Crossing Blood-Brain-Barrier Due to P-glycoprotein Modulation.
ISMRM 12 Annual Meeting, May 17-21, 2004, Kyoto, Japan.

Wang PC, Li E, Zhang R, Song H, P1rollo K, Chang EH. MR Image Enhancement by
Tumor Cell Targeted Immunohposome Complex Delivered Contrast Agent. Society for
Molecular Imaging 3™ Annual Meeting, September 9-12, 2004, St. Louis, MO.

Manaye KF, Wang PC, O’Neil J, Oei A, Song H, Tizabi Y, Ingram DK, Mouton PR. In
vivo and In vitro Stereological Analysis of Hippocampal and Brain Volumes in Young
and Old APP/PS1 Mice Using Magnetic Resonance Neuroimages. Society of
Neuroscience 34™ Annual Meeting, October 23-27, 2004 San Diego, CA.

Degrees Awarded:

1.

Ms. Shani Ross received her B.S. degree in June 2004 from the Department of Electrical
Engineering. She is going to the graduate program in the Department of B1omed1cal
Engineering at the University of Michigan.

Ms. O’tega Ejofodomi received her B.S. degree in June 2004 from the Department of
Electrical Engineering. She is going to the graduate program in the Department of
Electrical Engineering at the Howard University pursuing medical imaging research.

Funding Applied and Received:

Received:




1. 06/04-05/05 Tumor-targeted MR Contrast Enhancement by Anti-transferrin Receptor
scFV-Immunoliposome Nanoparticles. Dr. Paul Wang is the principal investigator of this
pilot project, which is funded through a Johns Hopkins center grant (NIH SPORE, P50
CA88843-04). Dr. Nancy Davidson is the PI of the program.

2. 07/03-06/05 Automatic Segmentation of Malignant and Benign Masses in Dense
Breast Tissue, Dr. Lisa Kinnard is the PI of this postdoctoral grant, which is funded by
USAMRMC (DAMD17-03-1-0314).

Applied:

1. A Partnership Training Program in Breast Cancer Research Using Molecular Imaging
Techniques (BC043167). This is a four year training grant partnership with the Johns
Hopkins University, In vivo Cellulous and Molecular Imaging Center. The proposal was
submitted to the U.S. Army Medical Research and Materiel Command

2. Tumor-targeted MR Contrast Enhancement Using Molecular Imaging Techniques.
National Cancer Institute's Minority Institution/Cancer Center Partnership (MI/CCP)
program Pilot Project Initiative (submitted on 03/22/04)

V. Conclusion

In the fourth year, this program has supported four predoctoral students (two new students from
the Electrical Engineering Department, one medical student and one MD/PhD student from Biochemistry)
and three postdoctoral fellows. The MD/PhD student has suffered iliness due to the inherited Sickle Cell
disease. His PhD thesis work has been delayed. The graduate committee has discussed his special
condition and granted him an extension for him to continue his pursuit. The PI has filed an extension of
this grant (which will expire by June 30, 2004) in order to continue supporting the students and the
research study. The new students have been introduced to the Biomedical NMR Laboratory and the
Howard University Cancer Center. The trainees have continued to learn the theory and instrumentation of
nuclear MRI. The trainees have rotated through the mammography service in the Radiology Department
to learn mammography procedures. Besides attending weekly seminars in the Cancer Center, the trainees
have also attended a special seminar series on breast imaging sponsored by this grant.

Each trainee has actively participated in one of the four research projects. Dr. Kinnard
has developed a fully automated segmentation algorithm to delineate the complete masses with
minimum normal structures in dense and mixed tissue mammograms. Drs. Li, Malveaux, and
Zhang have demonstrated the drug penetration through the blood-brain-barrier due to P-
glycoprotein modulation using a dynamic NMR method of detecting trifluoperazine in the brain.
Shani Ross and O’tega Ejofodomi with Dr. Kinnard have digitized 1000 mammograms from 220
patients’ records to establish an image database for CAD research and software development.
Drs. Li and Zhang have developed a new MRI contrast enhacement method using molecular
imaging technique specifically targeted to the cancer cells.

_ This year two papers were published and another one has been accepted for publication.
Three abstracts have been presented and another two will be presented later this year to the
national and international scientific meetings. Two predoctoral students who have received B.S.
degrees will attend graduate schools to continue their biomedical imaging research. Two new
research initiatives have been developed to conduct molecular imaging of breast cancer and to
establish a breast cancer image database for computer-aided-diagnosis research. Four grant
applications have been submitted. Two have received funding and the other two are pending.
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APPENDIX 1

LIKELTHOOD FUNCTION ANALYSIS FOR SEGMENTATION OF MAMMOGRAPHIC
MASSES FOR VARIOUS MARGIN GROUPS

Lisa Kinnard®>°, Shih- Chung B. Lo°, Erini Makariou®, Teresa 0szcka“’ Paul Wang®,
Matthew T. Freedman®, Mohamed Chouikha®

“ISIS Center, Dept. of Radiology, Georgetown University Medical Center, Washington, D.C., USA
®Department of Electrical and Computer Engineering, Howard University, Washington, D.C., USA
‘Biomedical NMR Laboratory, Department of Radiology, Howard University, Washington, D.C.,
USA
Department of Electrical Engineering and Computer Science, The Catholic University of America,
Washington DC, USA

ABSTRACT

The purpose of this work was to develop an automatic boundary
detection method for mammographic masses and to observe the
method’s performance on different four of the five margin groups
as defined by the ACR, namely, spiculated, ill-defined,
circumscribed, and obscured. The segmentation method utilized a
maximum likelihood steep change analysis technique that is
capable of delineating ill-defined borders of the masses. Previous
investigators have shown that the maximum kikelihood function
can be utilized to determine the border of the mass body. The
method was tested on 122 digitized mammograms selected from
the University of South Florida’s Digital Database for Screening
Mammography (DDSM). The segmentation results were
validated using overlap and accuracy statistics, where the gold
standards were manual traces provided by two expert
radiologists. We have concluded that the intensity threshold that
produces the best contour corresponds to a particular steep
change location within the likelihood function.

1. INTRODUCTION

In a CAD, system, segmentation is arguably one of the most
important aspects — particularly for masses — because strong
diagnostic predictors for masses are shape and margin type [2,9].
The margin of a mass is defined as the interface between the mass
and surrounding tissue [2]. Furthermore, breast masses can have
unclear borders and are sometimes obscured by glandular tissue
in mammograms. A spiculated mass consists of a central mass
body surrounded by fibrous projections, hence the resulting
stellate  shape. ~ For the aforementioned reasons, proper
segmentation - to include the body and periphery - is extremely
important and is essential for the computer to analyze, and in
turn, determine the malignancy of the mass in mammographic
CAD; systems.

Over the years researchers have used many methods to segment
masses in mammograms. Petrick [7] et al. developed the Density
Weighted Contrast Enhancement (DWCE) method, in which
series of filters are applied to the image in an attempt to extract
masses. Comer et al. [1] segmented digitized mammograms into

0-7803-8388-5/04/$20.00 ©2004 IEEE

. homogeneous texture regions by assigning each pixel to one of a

set of classes such that the number incorrectly classified pixels
was minimized via Maximum Likelihood (ML) analysis. Li [5]
developed a method that employs k-means classification to
classify pixels as belonging to the region of interest (ROI) or
background.

Kupinski and Giger developed a method [4], which uses ML
analysis to determine final segmentation. In their method, the
likelihood function is formed from likelihood values determined
by a set of image contours produced by the region growing
method. This method is a highly effective one that was also
implemented by Te Brake and Karssemeijer in their comparison
between the discrete dynamic contour model and the likelihood
method [9]. For this reason we chose to investigate its use as a
possible starting point from which a second method could be
developed. Consequently in our implementation of this work we
discovered an important result, i.e., the maximum likelihood steep
change. It appears that in many cases this method produces
contour choices that encapsulate important borders such as mass
spiculations and ill-defined borders.

2. METHODS

2.1 Initial Contours

As an initial segmentation step, we followed the overall region
similarity concept to aggregate the area of interest [1, 4]. Used
alone, a sequence of contours representing the mass is generated;
however, the computer is not able to choose the contour that is
most closely correlated with the experts’ delineations.
Furthermore, we have devised an ML function steep change
analysis method that chooses the best contour that delineates the
mass body as well as its extended borders, ie., extensions into
spiculations and areas in which the borders are ill-defined or
obscured. This method is an extension of the method developed
by Kupinski and Giger [4] that uses ML function analysis to
select the contour which best represents the mass, as compared to
expert radiologist traces. We have determined that this technique
can select the contour that accurately represents the mass body
contour for a given set of parameters; however, further analysis
of the likelihood function revealed that the computer could
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choose a set of three segmentation contour choices from the
entire set of contour choices, and then make a final decision from
these three choices.

The algorithm can be summarized in several steps. Initially, we
use an intensity based thresholding scheme to generate a
sequence of grown contours (S;), where gray value is the
similarity criterion. The image is also multiplied by a 2D
trapezoidal membership function (2D shadow), whose upper base
measures 40 pixels and lower base measures 250 pixels (1 pixel =
50 microns). The image to which the shadow has been applied is
henceforth referred to as the "fuzzy" image. The original image
and its fuzzy version were used to compute the likelihood of the
mass’s boundaries. The computation method is comprised of
two components for a given boundary: (1) formulation of the
composite probability and (2) evaluation of likelihood.

In addition, we chose to aggregate contours using the original
image. This accounts for the major difference from that
implemented by the previous investigators. Since smoother
contours were not used, the likelihood function showed greater
variations. In many situations, the greatest variations occurred
when there was a sudden increase of the likelihood, and this was
strongly correlated with the end of the mass border growth. This
phenomenon would be suppressed if the fuzzy image was used to
generate the contours. The fuzzy image was used mainly to
construct the likelihood function.

2.2 Composite Probability Formation
For a contour (S;), the composite probability (C;) is calculated:
cls,=plr ks xplntey)s)
The quantity fi(x,y) is the area to which the 2D shadow has been
multiplied, p(fi(x,y)IS;) is the probability density function of the
pixels inside S; where ‘i’ is the region growing step associated
with a given intensity threshold. The quantity m(x,y) is the area
outside S; (non-fuzzy), and p(mi(x,y)IS,) is the probability density
function of the pixels outside S;. Next we find the logarithm of
the compos1te Srobablhty of the two regions, C;:

Log(c)s,)=10g(p(f (. y}s. )+ loglplm (x y)s.) @

2.3 Evaluation of Likelihood Function
The likelihood that the contour represents the fibrous portion of
the mass, i.e., mass body is determined by assessing the maximum
likelihood function:

argmax(LoglC|s, }5,i=1..n (3

Equation (3) intends to find the maximum value of the
aforementioned likelihood values as a function of intensity
threshold. It has been assessed (also by other investigators [4])
that the intensity value corresponding to this maximum likelihood
value is the optimal intensity needed to delineate the mass body
contour. However, in our implementation it was discovered that
the intensity threshold corresponding to the maximum likelihood
value confines the contour to the mass body. In our study many
of these contours did not include the extended borders. We,
therefore, hypothesize that the contour represents the mass’s
extended borders may well be determined by assessing the
maximum changes of the likelihood function, ie., locate the
steepest likelihood value changes within the function:

d (Log(cls) Spi=l.n @)

Based on this assumption, we have carefully analyzed the
behavior of maximum likelihood function. The analysis reveals
that we have successfully discovered that the most accurate mass
delineation is usually obtained by using the intensity value
corresponding to the first or second steep change locations within
the likelihood function immediately following the maximum
likelihood value on the likelihood function.

700000 4
705006 7

d Group 1
710000 max likelihood location
715000 !\ ( )
220000 Group 2
225000 (first steep change location)
730000 Group 3

135000 Eememmmmem——  (second steep change location)
Figure 1: A likelihood function with steep change indicators

2.4 Steep change definition
The term "steep change" is rather subjective and can defined as a
location between two or more points in the function where the
likelihood values experience a significant change. In some cases
the likelihood function increases at a slow rate. The algorithm
design accounts for this issue by calculating the difference
between likelihood values in steps over several values and
comparing the results to two thresholds. The difference equation
is given by:

h(t)= fz—wt)- flz~wlt+1)), t=0...N (5
where f is the likelihood function, z is the maximum intensity, w is
the width of the interval over which the likelihood differences are
calculated (e.g. — for w=7 differences are calculated every 7
points), and N is the total number of points in the searchable area
divided by w. If the calculation in question yields a value greater
than or equal to a given threshold, then the intensity
corresponding to this location is considered to be a steep change
location. The threshold algorithm occurs as follows:

I (h(thw, > MLpy); t=0,..

Then choice 1 = intensity where that condition is satisfied
If (h(t)yp > MLpp); t=m,..

Then choice 2 = intensity where that condition is satisfied

where h(t)yy is the steep change value given by equation (5),
MLy, and MLy, are pre-defined threshold values, m is the
location in the function where the choice 1 condition is satisfied,
and z is the location in the function where the choice 2 condition
is satisfied. Once the condition is satisfied for the first threshold
value (ML) then its corresponding intensity value is used to
produce the segmentation contour for the first steep change
location. Once the condition is satisfied for MLy, then its
corresponding intensity value is used to produce the segmentation
contour for the second steep change location.

2.5 Validation
The segmentation method was validated on the basis of overlap
and accuracy [8,10]:

NTF

6
o TN +N,, ©)

Overlap =



N, +N,,

Accuracy =
N,,+N,+N_,+N_,

9

where Nzp is the true positive fraction, Nyy true negative fraction,
Npp is the false positive fraction, and Npy is the false negative
fraction. The gold standards used for the validation study were
mass contours, which have been traced by expert radiologists.
Our experiments produced contours for the intensity values
resulting from three locations within the likelihood functions: (1)
The intensity for which a value within the likelihood function is
maximum (group 1 contour) (2) The intensity for which the
likelihood' function experiences its first steep change (group 2
contour) and (3) The intensity for which the likelihood function
experiences its second steep change (group 3 contour). We have
observed that the intensity for which the likelihood function
experiences its first steep change produces the contour trace that
is most highly correlated with the gold standard traces, regarding
overlap and accuracy.

3. EXPERIMENTS AND RESULTS

Here we describe the database used, describe the experiments,
provide visual results obtained by the algorithm, as well as report
the results obtained by the ANOVA test.

3.1 Database

For this study, a total of 122 masses were chosen from the
University of South Florida's Digital Database for Screening
Mammography (DDSM) [3]. The films were digitized at
resolutions of 43.5 or 50 pm's using either the Howtek or
Lumisys digitizers, respectively. The DDSM cases have been
ranked by expert radiologists on a scale from 1 to 5, where 1
represents the most subtle masses and 5 represents the most
obvious masses. The images were of varying subtlety ratings.
The first set of expert traces was provided by an attending
physician of the GUMC, and is hereafter referred to as the Expert
A traces. The second set of expert traces was provided by the
DDSM, and is hereafter referred to as the Expert B traces.

3.2 Experiments and Results

As mentioned previously, the term “steep change” is very
subjective and therefore a set of thresholds needed to be set in an
effort to define a particular location within the likelihood function
as a “steep change location”. For this study the following
thresholds ~ were  experimentally chosen: MLy;=1800,
MLr,=1300, where MLr;= threshold for steep change location 1
for the likelihood function, and MLy, = threshold for steep
change location 2 for the likelihood function. We performed a
number of experiments in an effort to prove that the intensity for
which the likelihood function experiences the first steep change
location produces the contour trace, which is most highly
correlated with the gold standard traces regarding overlap and
accuracy.

First we present segmentation results for two malignant cases
followed segmentation results for two benign cases. Each figure
contains an original image, traces for Experts A and B, and
computer segmentation results for groups 1, 2, and 3. Second,
we present data that plots the mean values for various margin
groups for both overlap and accuracy measurements. The plots

present data for the spiculated and ill-defined groups of malignant
masses, and ill-defined and circumscribed groups of benign
masses. Data was not presented for the other categories because
there was not a sufficient amount of cases.
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4. DISCUSSION AND CONCLUSION

The visual results (see Figures 2-6) reveal that the group 2 trace
appears to delineate the masses better than the group 1 and group
3 contours in most cases. Visually, it appears that the method
has performed equally well on all margin groups. This is an
encouraging result because some of the more difficult masses to
segment are typically those that are spiculated, obscured, and
those that have ill-defined borders. The plots shown in Figures 7-
8 confirm that the group 2 trace performs better than the other

groups on the basis of overlap and accuracy for all margin
groups, therefore supporting our visual observations.

In future work, a worthwhile study would be to test gather more
data for all margin groups in an effort to see if the various groups
require different parameter values to maximize the algorithm’s
robustness. Our ultimate goal is to optimize its performance for
those masses falling in the ill-defined and obscured margin groups
because segmentation of masses falling into those categories is
exceedingly difficult.
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Abstract

The mechanism of resistance of cancer cells to the anticancer drug cisplatin is not fully understood. Using cisplatin-sensitive KB-3-1 and -
resistant KCP-20 cells, we found that the resistant cells have higher membrane potential, as determined by membrane potential sensing oxonol
dye. Electron spin resonance and fluorescence polarization studies revealed that the resistant cells have more “fluid” plasma membranes than
the sensitive cells. Because of this observed difference in membrane “fluidity,” we attempted modification of the plasma membrane fluidity by
the incorporation of heptadecanoic acid into KB-3-1 and KCP-20 cell membranes. We found that such treatment resulted in increased
heptadecanoic acid content and increased fluidity in the plasma membranes of both cell types, and also resulted in increased cisplatin resistance
in the KCP-20 cells. This finding is in accord with our results, which showed that the cisplatin-resistant KCP-20 cells have more fluid
membranes than the cisplatin-sensitive KB-3-1 cells. It remains to be determined whether the observed differences in biophysical status and/or
fatty acid composition alone, or the secondary effect of these differences on the structure or function of some transmembrane protein(s), is the
reason for increased cisplatin resistance. :
© 2003 Elsevier Inc. All rights reserved.

Keywords: Cisplatin resistance; Heptadecanoic acid; Plasma membrane fluidity; Membrane potential; Fluorescence polarization; Human epidermal carcinoma
KB cells

Introduction ation of apoptotic signaling [3,4]. Reports also indicate that

alterations in growth regulating proteins, such as c-Myc

Cis-diamminodichloroplatinum II (cisplatin) is one of
the most useful anticancer drugs. Treatment protocols for
solid tumors of the esophagus, bladder, ovary, testes, head,
and neck include this drug. As for most antitumor agents,
resistance develops in cancer cells, limiting their efficacy.
The reason for resistance against cisplatin is not fully
understood. Several mechanisms have been suggested,
including decreased cisplatin accumulation [1,2], and alter-
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[5], inhibition of caspase-9 [6], and reduced inhibition of
DNA synthesis [7] are associated with cisplatin resistance.
Involvement of plasma membrane lipids in cisplatin resis-
tance has also been implicated [8]. Britz et al. [9] suc-
ceeded in decreasing cisplatin resistance by treating
monoclonal cells with a free or liposome-encapsulated bile
acid derivative.

Our interest was focused on the biophysical status of
plasma membranes in relation to cisplatin resistance. We
investigated the biophysical differences between cisplatin-
resistant and -sensitive cells and the influence of a fatty acid
inserted into the plasma membranes on cisplatin sensitivity
of human epidermal carcinoma KB cells.



284 X.-J. Liang et al. / Experimental Cell Research 293 (2004) 283-291

Materials and methods
Cell lines
The KB-3-1 cell line was derived from a single clone of

human KB epidermal carcinoma cells (a HeLa subclone),
after two subclonings, as described by Akiyama et al. [10].

The cisplatin-resistant subline of KB-3-1 cells was selected

by exposure to 0.5 pg/ml cisplatin (KB-CP.5) for 42 days.
After that, single clones were picked and propagated in
medium containing 0.5 pg/ml cisplatin. One other cisplatin-
resistant cell line, KCP-20, was obtained after 6 months’
exposure of KB-3-1 cells to increasing concentrations of
cisplatin, up to 20 pg/ml [11]. KCP-20 cells were maintained
in medium containing 5 pg/ml cisplatin and taken out of
cisplatin before making the measurements. All cell lines were
grown in Dulbecco’s modified Fagle medium (Invitrogen,
Grand Island, NY), supplemented with L-glutamine, penicil-
lin, streptomycin (Quality Biological, Gaithersburg, MD),
and 10% fetal bovine serum (Whittaker Bioproducts, Wal-
kersville, MD).

Membrane potential measurements

Membrane potential measurements were performed by
flow cytometry, using the negatively charged DiBaC4 (3)
oxonol dye (Molecular Probes, Eugene, OR), essentially as
described earlier [12]. Briefly, a cell suspension of 1 x 106
cells/ml was equilibrated for 1 min in PBS followed by the
addition of oxonol dye, 150 M. After exactly 2 min
equilibration at room temperature, histograms were collect-
ed from 10* cells. Reproducibility was determined by
measuring membrane potentials of the cells on different
days, from separate cultures, and by comparing the relative
fluorescence of the oxonol-stained cell types.

Oxonol fluorescence intensity measures membrane po-
tential when the extracellular potassium concentration is
changed from 5 to 150 mM, resulting in increased fluores-
cence intensity of the oxonol-stained cells and thus making
the cells depolarized. All measurements were made with a
Becton Dickinson FACSCalibur flow cytometer (Becton
Dickinson, Mountain View, CA), operated with a 15-mW
argon ion laser tuned to 488-nm excitation wavelength.
Fluorescence emission was collected at 525 nm. Results are
expressed in comparative histograms of representative series.

Polarity of fluorescent membrane probes in live cells

Measurements of steady-state fluorescence polarization
were done with a spectrofluorometer LS50B (Perkin Elmer,
Norwalk, CT) and the lipid-soluble fluorophore, 1-(4-trime-
thylammoniumphenyl1)-6-phenyl-1,3,5-hexatriene (TMA-
DPH) (Molecular Probes). This fluorophore is known to
probe plasma membranes of cells at the surface. TMA-DPH
was dissolved in tetrahydrofurane at a concentration of 2
mM and was kept in the dark at 4°C. Cells (10%/ml) were

labeled with TMA-DPH at a concentration of 2 pM in PBS.
After 10 min incubation time at 4°C, the cell suspension
was centrifuged and washed two times in the centrifuge with
PBS. After resuspension in PBS, fluorescence anisotropy
was measured at 25°C. The excitation wavelength was 355
nm and the emission was measured at 430 nm with a slit
width of 5. Polarization values were calculated according to
Collins and Scott [13] by the equation P=(Ipg — G * Jys0)/
(lo,o + G * Iy g) from the measured fluorescence intensities.

Electron spin resonance (ESR) studies on live cells

ESR studies were conducted with 5-doxyl stearic acid (5-
doxyl-SA) and with 2,2,6,6-tetramethyl piperidin-1-oxyl-4-
yl-octadecenoate (T-SASL) probes (Molecular Probes). The
first probe intercalates to the 5 carbon depth in the outer
leaflet of the plasma membrane [14] and T-SASL at the
surface of the plasma membranes [15]. Labeling the cells
with the spin probes was done as follows: 5-doxyl-SA was
dissolved in ethanol, 1 mg/ml, and was kept at 4°C. Then, 1 x
107 cells were mixed with 8 X 10~% mol spin label in 0.02 ml
volume of PBS. After 1 min contact time, the cell suspension
was transferred into a 50-ul micropipette capillary tube and
sealed at the bottom with Critoseal (Syva Co., Palo Alto, CA).
The micropipette with the cells was placed into the cavity ofa
Varian E-9 Century series spectrometer (Syva Co.). ESR
spectra were recorded at X-band, at 9.5 kHz, 100-field
modulation, 4-Gous modulation amplitude, 100-Gous sweep
range, and at 10 mW microwave power. The temperature of
the probe was set to 24°C by the variable temperature
accessory using N, gas flow. Evaluation of the obtained
ESR spectra, when 5-doxyl-SA was used, was by the equation
expressing the order parameter S:

S =0.5407 (T — T1)/ay, where ag = (T +27)/3

and T, and T are the outer and inner tensors obtained from
the ESR spectra,

When the T-SASL probe was used, the same instrument
parameters were applied, except that the incident microwave
power was 20 mW. The spectral parameters, ko and h_, are
the spectral amplitudes and the ratio ho/h_; defines the
motional freedom of the probe according to Yin et al. [15].
With both spin labels, the ESR spectra show contribution
from spin labels of restricted motion with no contribution
from the free-moving spin label.

Lipid packing of plasma membranes in live cells

Plasma membrane lipid packing can be studied by insert-
ing the fluorescence probe merocyanine 540 (MRC 540)
(Molecular Probes) into cell membranes and assessing the
degree of insertion by fluorescence intensity measurement,
using flow cytometry [16,17]. The experiment was according
to Schlegel et al. [16] with some modifications. Briefly, 1 x
107 cells, suspended in 1 ml of PBS were treated with 10 plof
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a MC540 stock solution of 1 mg/ml, in 60% ethanol, 40%
water. After a 10-min incubation at room temperature, cells
were pelleted in a centrifuge, washed once in PBS by
centrifugation, resuspended in 1 ml PBS, and fluorescence
histograms were obtained. A Becton Dickinson FACSCalibur
flow cytometer (Becton Dickinson, Franklin Lakes, NJ) was
used at 488-nm excitation and 575-nm emission wavelength.
Histograms were collected with 10* cells. Results are
expressed as means of fluorescence of the histograms
obtained from duplicate measurements of one typical set of
cells.

Preparation of cells for NMR spectrometry

KB-3-1 and KCP-20 cells were grown to 90% conflu-
ence, harvested with 0.05% trypsin, 0.53 uM EDTA, centri-
fuged at 4°C at 730 x g for 10 min, and washed twice with
growth medium. To perform a long-term NMR study, the
cells were restrained in an agarose thread [18,19]; 0.5 ml of
(9 x 107 cells) was mixed with an equal volume of liquid
agarose in phosphate-buffered saline, and immersed in a
bath at 37°C for 5~7 min. The mixture was extruded under
low pressure through cooled tubing (0.5 mm ID) into a 10-
mm NMR tube containing growth medium. Using 0.5-mm
threads ensures that there is no metabolic compromise, and
the cells are viable and in stable energetic status for a long
period of time, while the threads maintain their mechanical
strength. The gel threads, which fill the tube, are concen-
trated without compression at the bottom of the NMR tube
by insertion of a plastic insert with the perfusion fitting. A
Teflon inflow tube (0.5 mm ID) was placed near the bottom
of the tube. The gel threads were perfused with growth
medium at 0.9 ml/min. Cells were continuously perfused for
more than 40 h, Accumulation of data was started within 30
min after the harvest.

NMR spectrometry of live cells

The *'P NMR spectra were recorded at 37°C on a Varian
XL-400 machine (Varian Associates, Inc., Palo Alto, CA) at
162 MHz using RF pulse corresponding to a 72° flip angle
and 2 s repetition time. The flip angle used was the Ernst
angle for phosphocreatine (PCr) (T1 relaxation time, 3 ).
There were more than 40 spectra obtained. Each spectrum
contained 1800 transients and took 1 h. During the entire
study, the system was deuterium locked with an external
source (99.9% D,0 in a capillary, Sigma, St. Louis, MO) to
avoid magnetic field drift.

All the spectra were transformed and viewed separately to
confirm that the spectra did not change during the experi-
ment. There were 25,000 data points collected and zero-
filled to 8k before Fourier transformation. The spectra were
added and 10-Hz line broadening was applied to obtain Fig.
3. The chemical shifts were standardized to B-adenosinetri-
phosphate (B-ATP) set to —18.70 ppm. Many phosphorus
metabolites were identified, including phosphocholine (PC,

3.57 ppm), inorganic phosphate (Pi, 2.59 ppm), glycero-
phosphoethanolamine (GPE, 0.81 ppm), glycerophospho-
choline (GPC, 0.26 ppm), phosphocreatine (PCr, —2.69
ppm), y-adenosine triphosphate (y-ATP, —5.12 ppm), a-
adenosine triphosphate (a-ATP, —10.19 ppm), and diphos-
phodiesters (dPdE, —10.86, —12.58 ppm). Chemical shifts
of these molecules are also listed in the literature [18,19].

Treatment of cells with heptadecanoic acid and cell
proliferation studies

Treatment of KB-3-1 and KCP-20 cells with heptadeca-
noic acid was carried out in 24-well plates (Corning Inc.,
Corning, NY), with modification of the method used by
Callaghan et al. [20]. After exploratory dose selection studies
for cisplatin and heptadecanoic acid, the final conditions
were as follows: cells (10%m1) were incubated in appropriate
medium, as described above for both cell types, and after 2—
3 days of incubation, the medium was withdrawn and
replaced by serum-free medium. Following 6 h incubation
at 37°C, 5% CO, medium was replaced by serum-free
medium containing different concentrations of heptadeca-
noic acid or nothing. This incubation was followed by
replacement of the medium with complete medium contain-
ing cisplatin or nothing. KB-3-1 cells were treated with 0.08
png/ml and KCP-20 cells with 5 pg/ml cisplatin from a stock
solution of 500 pg/ml aqueous solution. Cells were harvested
after 5-6 days’ incubation and treated with heptadecanoic
acid alone, with cisplatin alone, heptadecanoic acid plus
cisplatin or nothing, and were counted after trypsinization by
a Coulter Particle Counter (Coulter Electronics, Luton, UK).
Calculation of proliferation was based on cells treated with
nothing as 100%. The expected yield was: cell count of cells
treated with heptadecanoic acid alone multiplied by cell
count of cells treated with cisplatin alone. The cell count
of cells treated with both reagents was then related to the
previous cell count product and tabulated.

Preparation of plasma membranes for determination of
relative fatty acid composition

For the purpose of plasma membrane preparation, 10’
cells from each cell line were harvested at log phase and
washed with ‘ice-cold PBS. Cells were sedimented by
centrifugation and then suspended in ice-cold hypotonic
solution (0.5 mM KH,PO,4, 0.1 mM EDTA containing 1%
protease inhibitor aprotonin, pH 8.0) for 5 min. Cells were
disrupted on ice by a tight Dounce homogenizer with
constant 40 strokes. Samples were checked for complete
disruption in a phase-contrast microscope. Homogenates
were centrifuged at 2000 X g for 10 min at 4°C to discard
the nuclei and then the supernatant was centrifuged at
25,000 x g for 25 min to pellet all other organelles. The
resulting supernatant was further centrifuged for 55 min at
4°C. The membranes sedimented at the bottom and were
stored at —80°C before fatty acid analysis. To determine
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that the sediment contained only plasma membranes and no
membranes of organelles, markers were used in connection
with Western blot analyses. For a positive marker, the anti-
integrin antibody anti-2/VLA-2a was used according to
Emsley et al. [21].

Conversion of plasma membrane lipids to methyl esters and
Jatty acid analysis

Fats were extracted into organic phase by vortexing the
membrane preparations obtained as described above, with
minor modification of the methods of Kozar et al. [22]. In
brief, 2 ml of HPLC-grade water (Fisher Scientific, Pitts-
burgh, PA) was added to the membranes together with 3.75
ml of 2:1 (v/v) methanol/chloroform (Fisher Scientific) and
the suspension was vortexed for 15 min. Then, after addition
of 1 ml chloroform and 1 min vortexing, the suspension was
centrifuged for 10 min at 2000 rpm. The separated organic
phase was dried in an N, stream and heated in 1 ml 2 M
methanolic HCI (11 ml methanol with dropwise addition of
2.5 ml acetyl chloride (Sigma)] at 85°C for 18 h in a screw-
capped tube. The fatty acid methyl esters which formed were
then extracted into heptane for GC-MS analysis. Samples
were analyzed on a Hewlett-Packard 6890 plus GC equipped
with 7683 auto-injector. The injection port was held at
constant 280°C with 2 pl injected in the spitless mode onto
a DB-5 ms capillary column with 30 m X 0.25 mm ID X
0.25 um film thickness (J&W Scientific, Folsom, CA). Initial
oven temperature was 80°C with a ramp of 40°C/min to a
final temperature of 290°C and hold for 0.75 min. Helium
was used as the carrier gas at a constant velocity of 41 cm/s.
Electron impact ionization at 70 eV was performed using
standard autotune conditions. The source temperature was
maintained at 230°C while the quadrupoles were maintained
at 150°C. FAMEs were analyzed in full scan mode for
qualitative identification as well as in selected ion monitor-
ing mode for ratio determination. Location of the analyzed
two fatty acids in the obtained chromatograms was ascer-
tained by standards of hexa- and heptadecanoic acid methyl
esters (Sigma). The ratio of heptadecanoic acid to hexade-
canoic acid methyl esters was determined since heptadeca-
noic acid was used to treat the cells and the hexadecanoic
acid content of cells was assumed to be constant. This ratio is
defined as the area under the peak for hexadecanoic acid/area
under the peak for heptadecanoic acid methyl esters.

Visualization of distribution of K* channels in cells by
immunofluorescence microscopy

For visualization of distribution of K* channels in cells,
cells were grown on 189-mm glass coverslips in petri
dishes. Cells were fixed with 3.5% formaldehyde in PBS
for 10 min, followed by 0.1% Triton X-100 treatment for 5
min for permeabilization. After washing, cells were treated
with 3% BSA in PBS for 30 min and subsequently treated
with the primary antibody (Ab) for 1 h. The Ab was TW1K-

2 (P-19) goat polyclonal Ab (Santa Cruz Biotechnology,
Santa Cruz, CA). After five washings, cells were incubated
with CyTM3-conjugated affinity pure donkey anti-goat,
secondary Ab (1:100 dilution) (Jackson Immuno-research
Laboratory). Cells were washed extensively after the sec-
ondary Ab treatment. The slides with the treated cells were
mounted on microscope slides with fluorescence mounting
medium (Dako, Carpinteria, CA). Background fluorescence
was determined from cells treated only with the secondary
Ab, but otherwise treated the same way as described with
the primary Ab. Fluorescent images were collected with a
Bio-Rad 1024 confocal scan head mounted on a Nikon
Optiphot microscope with a 60x planapochromat lens.
Excitation at 568 nm was provided by a krypton—argon
gas laser. An emission filter of 598/40 was used for
collecting red fluorescence in channel one and phase con-
trast images of the same cell were collected in another
channel using a transmitted light detector.

Results

Membrane potential of cisplatin-sensitive and -resistant
cells

Membrane potential was measured using several series of
independently grown cell cultures. For each measurement at
different times and with the different cell lines, we observed
the same pattern of membrane potentials. Fig. 1 shows one
typical result of several measurements with the series of the
cells. The KCP-20 cells, which are highly resistant to
cisplatin, had lower fluorescence intensities and thus are
hyperpolarized as compared to cisplatin sensitive and sin-
gle-step, low-level resistant cells (KB-CP.5). Oxonol is a
negatively charged membrane potential sensing dye and
therefore less dye diffuses into membranes of cells which
are more negative, and thus are hyperpolarized.
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Fig. 1. Relative membrane potential of cisplatin-sensitive KB-3-1 and
~resistant cells is indicated by the fluorescence of oxono! (150 mM)-stained
cells. Oxonol is a negatively charged membrane potential sensing dye and
was used as detailed in Materials and methods. One typical series of
measurement of cells were grown simultaneously in culture (n = 2—3). P <
0.05 between KB-3-1 and KCP-20 cells. No statistical difference exists
between KB-3-1 and KB-CP.5 cells.
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Polarity of the fluorescent TMA-DPH molecule in the
plasma membrane of live cells

The TMA-DPH fluorescence probe was used to measure
the fluidity of plasma membranes because it has been shown
that this probe does not penetrate into the cells and probes at
the upper leaflet of the membrane [13]. Table 1 shows the
results obtained with sensitive KB-3-1 and resistant KB-20
cells treated or not treated with heptadecanoic acid. Cisplat-
in-resistant KCP-20 cells were found to have membranes
which were more fluid; the calculated polarization number,
P, was of lower value. These results parallel those obtained
with ESR measurements (see below). Also, polarization
numbers obtained with the TMA-DPH probe indicate that
heptadecanoic acid treatment of the cells results in lower
polarization numbers. Therefore, the plasma membranes
become more fluid. These results also parallel those
obtained by ESR measurements (see below).

ESR studies on the motional freedom of ESR probes,
3-doxyl-SA and T -SASL, in the plasma membranes of cells

Two ESR probes were used to measure membrane
fluidity in cisplatin-sensitive KB-3-1 and -resistant KCP-
20 cells. 5-doxyl-SA probes at 5 carbon depth in the outer
leaflet, while the T-SASL probes at the surface of the plasma
membrane [14,15]. Table 2 shows both results. The calcu-
lated order parameters, S, for the 5-doxyl-SA yielded lower
numbers for the cisplatin-resistant KCP-20 cells, indicating
more “fluid” membranes of these cells at 24°C. The
calculated ho/h_; parameters also indicate a more fluid
membrane for the cisplatin-resistant KCP-20 cells. These
results are in line with those of the polarization experiments.

To measure membrane fluidity changes of heptadecanoic
acid treated KB-3-1 and KCP-20 cells, we employed the 5-
doxyl-SA ESR probe. Fig. 2 shows the results and indicates
that both types of cells became more fluid (had lower §
values) after heptadecanoic acid treatment. The heptadeca-
noic acid-treated KCP-20 cells were shown to be more
resistant than the nontreated KCP-20 cells. This result is
consistent with the fact that the cisplatin-resistant KCP-20

Table 1

Polarity® of TMA-DPH fluorescence probe, inserted into plasma mem-
branes of heptadecanoic acid®treated and untreated cisplatin-sensitive (KB-
3-1) and -resistant (KCP-20) cells

Cells/treatment Polarity +SD

KB-3-1 untreated 0.3668 0.0018
KB-3-1 treated 0.3590 0.0013
KCP-20 untreated 0.3612 0.0018
KCP-20 treated 0.3556 0.0016

®Mean polarization numbers are calculated from six independent
measurements.

"Heptadecanoic acid treatment is detailed in Materials and methods.
Heptadecanoic acid (40 pM) was used in each experiment. P < 0.05
between treated and untreated cells as well as between KB-3-1 and KCP-20
cells,

Table 2

Motional freedom® of 5-doxyl-SA and T-SASL ESR probes inserted into

the plasma membranes of cisplatin-sensitive and -resistant cells

Cells Temp, 5-doxyl-SA, order parameter, § T-SASL, ho/h_;
°C

S +SD hyh_y  £SD
KB-3-1 24 0.6443 . 0.0038 2423 . 0.093
KCP-20 24 0.6208 0.0111 1.820 0.147

® Order parameter, S, and ho/h_; were calculated as described in Materials
and methods. Experiments were done with several cultures (n = 2~4), and
ESR measurements were in triplicate; P < 0.05.

cells were found to have more fluid plasma membranes than
the sensitive KB-3-1 cells by both ESR and polarization
techniques (Tables 1 and 2). Contrary to this, the cisplatin-
sensitive KB-3-1 cells became even more sensitive after
heptadecanoic acid treatment, despite the fact that their
plasma membranes became more fluid after this treatment
(data not shown).

Membrane packing as determined by fluorescence intensity
of merocyanine 540-stained cells

Merocyanine (MRC) 540 staining was found to be
indicative of the lipid packing density of cell plasma
membranes [16]. We applied this measurement to cisplat-
in-sensitive KB-3-1 and -resistant KCP-20 cells as detailed
in Materials and methods, and found that cisplatin resistant
cells had lower fluorescence intensity than the sensitive KB-
3-1 cells. The fluorescence intensity of merocyanine540-
stained KB-3-1 cells was 95 + 10 while that of the resistant
KCP-20 cells was 58 + 12 in a typical cell preparation (n =
3). We interpret these results to mean that in KB-3-1 cell
membrane lipids are more tightly packed and intercalate
MRC 540 more tightly than in KCP-20 cells. These results
parallel those of membrane fluidity measurements by the
polarization and ESR methods (Tables 1 and 2).
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Fig. 2. Membrane “fluidity” as expressed by the order parameter, S, of
cisplatin-sensitive KB-3-1 and -resistant KCP-20 cells, treated or not treated
with heptadecanoic acid. Order parameters, S, were calculated from ESR
spectra obtained as described in Materials and methods. Heptadecanoic acid
treatment is also described in Materials and methods. Average of three to
four measurements are shown with SDs. There is a statistically significant
difference between § values of heptadecanoic acid treated and untreated
cells for both types of cells (P < 0.05).
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Assessment of phospholipids in cisplatin-sensitive KB-3-1
and -resistant KCP-20 cells by 3'P NMR spectrometry

Spectra obtained by 400-MHz NMR spectrometry were
compared to detect any difference in phospholipid composi-
tion between cisplatin-sensitive KB-3-1 and -resistant KCP-
20 cells. The two cell line types were grown in the same
media, harvested before confluence, and spectra were
obtained as described in Materials and methods. Similar
experiments have been performed for the detection of such
differences between P-glycoprotein expressing and nonex-
pressing cells [23,24]. Spectra from both cells detected
phospho-ethanolamine, 4.11 ppm; -choline, 3.6 ppm; -crea-
tine, —2.69 ppm; glycerophospoethanolamine, 0.7 ppm, and
choline, 0.1 ppm, besides inorganic phosphate and different
adenosintriphosphates (Fig. 3). No significant differences
could be detected between the two cell lines in the above
listed phospholipid signals with the applied NMR technique.

Cell proliferation of heptadecanoic acid-treated and
untreated cells

Cell proliferation studies were done as described in
Materials and methods. Relative cell counts are shown in
Table 3. Results indicate that heptadecanoic acid treatment
increased resistance of the KCP-20 cells to cisplatin, since

A
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Fig. 3. >'P NMR spectra (400 MHz) of cisplatin-sensitive KB-3-1 (A) and
-resistant KCP-20 (B) cells. Cells (9 X 107) from each culture were
embedded in agarose and packed in 10-mm NMR tubes. Many water-
soluble phosphates were identified, including phosphocholine (PC, 3.57
ppm), inorganic phosphate (Pi, 2.59 ppm), glycerophosphoethanolamine
(GPE, 0.81 ppm), glycerophosphocholine (GPC, 0.26 ppm), phosphoc-
reatine (PCr, —2.69 ppm), y-adenosine triphosphate (y-ATP, —5.12
ppm), e-adenosine triphosphate (a-ATP, —~10.19 ppm), diphosphodiesters
(dPdE, —10.86 ppm, ~12.58 ppm), and B-adenosinetriphosphate (3-ATP,
" ~18.70 ppm).

Table 3

Cell proliferation as expressed in percentage + SD cell growth relative to
nontreated KB-3-1 and KCP-20 cells in the presence and absence of
treatment with heptadecanoic acid or cisplatin or the combination of both

Cells Treatment

% Proliferation

Expected Found
KB-3-1 [a] cisplatin (0.8 pg/ml) - 85+ 6
[b] HAD® (20 uM) - 97 %3
[c] HDA (40 pM) - 94+ 4
[a] X [b] 82+ 8 49 + 15
[a] X [c] 80 £+ 10 68 + 12
KCP-20° [d] cisplatin (5 pg/ml) - 67+ 10
[¢] HDA (40 pM) - 68 %5
[f] HDA (50 uM) - 41+ 11
[d] % [e] 45 £ 14 62+ 6
[d] x [f] 27 + 20 46+5
[g] cisplatin (6 pg/ml) - S1+8
{h] HDA (40 uM) - 68 + 13
[i] HDA (50 uM) - 4 +7
{g] X [h] 34421 475
[g] % [i} 19+ 19 23+7

# HDA: heptadecanoic acid.

P K.CP-20 cells: Each measurement of cell growth was done in triplicate
wells and each dose was used in multiple experiments with separately
grown cell cultures (n = 3-5). P < 0.05 for the difference between expected
growth and actual growth for all experiments, except for KCP20 cells
treated with cisplatin, 6 pg/ml and 50 pM HDA.

the cells grew better in the combination of cisplatin and
heptadecanoic acid than would have been mediated from the
growth of these cells in either agent alone. In contrast,
heptadecanoic acid treatment of the sensitive KB-3-1 cells
increased their sensitivity to cisplatin.

Fatty acid analysis in heptadecanoic acid-treated and
nontreated plasma membranes

Results of the fatty acid analysis are shown in Table 4.
Two sets of membrane preparations were made from

Table 4

Area® and ratios of area of hexadecanoic and heptadecanoic acids as
measured by GC-MS in the membranes of heptadecanoic acid-treated and
untreated KB-3-1 and KCP-20 cells

Cells/treatment ~ Area at m/z 270  Area at m/z 284 Ratio of
heptadecanoic miz 270/m/z 284  hexadecanoic
acid® acid

KB-3-1 5,243,334 65,763 79.73

KB-3-1 + 14,684,547 1,998,304 7.35

treatment

KB-3-1 13,859,715 260,720 53.16

KB-3-1 + 15,527,957 1,789,737 8.68

treatment

KCP-20 17,554,572 321,183 54.66

KCP-20 + 11,695,325 2,260,349 - 5.17

treatment

KCP-20 6,596,479 122,458 53.87

KCP-20 + 7,656,383 1,332,033 5.75

treatment

® Area under peaks obtained by GCMS represents fatty acid methyl esters
analyzed in full scan mode with the instrument software.
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treated and untreated sensitive and resistant cells. For each
preparation, Western blot analyses indicated that only
plasma membranes were collected (not shown). Results
indicated that heptadecanoic acid treatment increased this
fatty acid relative concentration to hexadecanoic acid in
both cell lines. The hexadecanoic acid content of cell
membranes was used to normalize the relative concentra-
tion of heptadecanoic acid.

Fluorescence visualization of K* channels in human
epidermal carcinoma KB cells

Fig. 4 shows fluorescence images of the KB-3-1 and
KCP-20 cells stained with the Cy™®3-conjugated affinity
pure donkey anti-goat Ab after incubation of the cells with
the primary TWIK-2 (P-19) goat polyclonal Ab. The red
fluorescence intensities indicate that there are substantially
more K* channels on the plasma membranes of KCP-20
cells than of KB-3-1 cells.

KB-3-1

KCP-20

Control

Fig. 4. Confocal visualization of K* channels as detected by TWIK-2
primary and Cy™3-conjugated donkey anti-goat secondary Ab. Ab
treatment and confocal microscopy are detailed in Materials and methods.
Several fields of cells were captured and one representative field of each is

shown (n = 5-8). Control: KCP-20 cells treated only with secondary Ab.

Discussion

We used five different methods to study biophysical
differences in the plasma membranes of cisplatin-sensitive
KB-3-1 adenocarcinoma cells and their cisplatin-resistant
counterparts. We also influenced these biophysical differ-
ences in the plasma membranes of KB cells by inserting
heptadecanoic acid into the cell membranes. The alteration
of lipid composition by addition of heptadecanoic acid
resulted in changes in some biophysical parameters of the
membranes along with changes in the cells’ resistance to
cisplatin,

First, we showed that the highly resistant KCP-20 cells
have higher membrane potential, and are therefore more
hyperpolarized than the sensitive, parental KB-3-1 cells and
the low level resistant KCP.5 cells (Fig. 1). We have
attributed this increased membrane potential of KCP-20
cells to the increased expression of K* channels on their
plasma membranes (Fig. 4). Our results are in line with the
observation of Thomson et al. [25] that cisplatin treatment
of cells influences K* channel activity and that of Mahas-
wari et al. [26] that cisplatin can change ion conductivity in
bilayer lipid membranes. Efflux of K* from cells can elevate
membrane potential. Second, polarization studied with the
TMA-DPH fluorescence probe, which probes at the outer
leaflet of plasma membranes, indicates that the resistant
KCP-20 cells have lower polarization values, and thus have
more fluid plasma membranes than the sensitive KB-3-1
cells (Table 1). Third, similar conclusions could be drawn
from the ESR studies, performed with two types of ESR
probes. Results indicate that the order parameter, S, and
parameters of the measurements with the second probe, ho/
h_1, are lower for the resistant cells, indicating more fluid
membranes for these cells as compared to the sensitive cells
(Table 2).

Fourth, more MRC 540 fluorescent dye is packed into
the plasma membranes of the sensitive KB-3-1 cells than
into the plasma membranes of the resistant KCP-20 cells
(see Results). We have interpreted this difference by assum-
ing that more “rigid” membranes can bind more of this dye
tightly than the more loosely packed membranes. Both cells
are equal in size, so more dye incorporation into a cell
cannot be interpreted from different cell sizes. Our interpre-
tation, based on our polarization and ESR measurements
done with the same cells with which we performed our
MRC 540 lipid packing experiment, is seemingly contrary
to the interpretation of Schlegel et al. [16] and Stillwell et al.
[17]. However, Schlegel’s experiments with lymphocytes
could not be interpreted in terms of the ability of MRC 540
to distinguish between loosely or tightly packed membranes.
Stillwell found that more MRC 540 dye intercalates into
loosely packed membranes of phospholipid vesicles, but he
made no such comparison with live cells. His experiments
with the T27A leukemia cells demonstrated only that MRC
540 intercalates into docosahexanoic acid modified cells
differently than into the nonmodified cells and no interpre-
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tation was given for the relationship between membrane
fluidity and dye packing. In a previous study [27], MRC 540
intercalated into cisplatin-sensitive and -resistant lung ade-
nocarcinoma cells with the same relative dye ratio as in our
study. Unfortunately, no correlation was made between dye
packing and membrane fluidity in that study.

We have not detected any significant difference between
the 400 MHz *'P NMR spectra of KB-3-1 and KCP-20 cells
(Fig. 3), suggesting that there are no major differences in
measured water-soluble phosphates, including phospholipid
precursors in the cisplatin-sensitive and -resistant cell lines.
Our results reflect relative peak intensities of individual
phosphates which depend on their T1 relaxation times and
the repetition time (2 s) of the applied NMR technique.
Spellman [8] found that phosphatidylserine binds cisplatin
in vitro, but formation of a phosphatidylserine—cisplatin
complex could not be found when experiments were con-
ducted with intact cells [28]. Kaplan et al. [23] found that
there are differences in the glycerophosphocholine and
glycerophosphoethanolamine ratio in some MCF-7 wild
type and P-glycoprotein expressing cell lines by their 3'P
NMR studies. However, these differences proved not con-
sistently present in all such cell lines.

We found differences in biophysical parameters between
the KB-3-1-sensitive and the KB-20-resistant cells, as
described above. Therefore, our next experiment focused
on the introduction of biophysical changes to the plasma
membrane of the sensitive and the resistant KB cells and
determining the cisplatin sensitivity of the altered cells. In a
previous study, Callaghan et al. [20] found that the incor-
poration of heptadecanoic acid into plasma membranes can
hinder the function of a transmembrane protein, P-glyco-
protein, possibly by altering the biophysical milieu of this
transmembrane protein. Therefore, we incorporated this
fatty acid into the plasma membrane of KB-3-1 and KCP-
20 cells. We demonstrated that during a short treatment
period of the cells with this fatty acid, other components of
the plasma membrane, such as the cholesterol content, did
not change significantly.

After heptadecanoic acid treatment of our cells, we
determined changes in membrane biophysical status, rela-
tive heptadecanoic acid content, and sensitivity of the
treated cells to cisplatin. We found that heptadecanoic acid
treatment of the cells increases the relative content of this
fatty acid in cell membranes (Table 4). Simultaneously, this
treatment increased the fluidity of plasma membranes of
both KB-3-1 and KCP-20 cells as measured by polarization
(Table 1) and by ESR (Fig. 2). We also measured the
influence of heptadecanoic acid treatment on cell prolifer-
ation (Table 3). After heptadecanoic acid treatment of KCP-
20 cells, their resistance to cisplatin increased (Table 3) and
their plasma membrane fluidity increased (Fig. 2). This
finding is in accord with our results that the resistant
KCP-20 cells have more fluid plasma membranes than the
sensitive KB-3-1 cells, as discussed above. That a bile acid
derivative increased sensitivity of monoclonal cells to cis-

platin, as reported by Briz et al. [9], is not a direct
contradiction to our findings. First, it was not shown by
Briz et al. whether the bile acid derivative was incorporated
into plasma membranes, and second, no determination was
made on the biophysical status of the membranes of the cells
before and after the treatment.

Contrary to the results with the KCP-20 cells, KB-3-1
cells became more sensitive to cisplatin after heptadecanoic
acid treatment (Table 3). In this case, increasing the fluidity
of the plasma membrane did not result in higher resistance
to cisplatin, as it did with the KCP-20 cells. Nevertheless,
cisplatin sensitivity was altered by heptadecanoic acid
treatment in these cells also. Further experiments with cell
lines of different plasma membrane fluidity and sensitivity
to cisplatin may explain these results. Results detailed
above, that incorporation of heptadecanoic acid into plasma
membranes of KB-3-1 and KCP-20 cells resulted in oppo-
site sensitivity to cisplatin, indicate that this fatty acid per se
is not involved in cisplatin binding. Somewhat different
results were obtained by Timmer-Bosscha et al. [29] who
found that incorporation of docosahexaenonoic acid into the
membranes of a human small cell lung carcinoma line,
GLC4 and its resistant subline, GLC4-CP, decreased resis-
tance of the resistant cells but had no influence on the parent
cell line. However, their experimental results suggested that
DNA-related effects, and not alteration in the plasma
membrane, are the reasons for changes in resistance. Inter-
estingly, these authors also found that their treatment does
not cause the same change in cisplatin resistance in the
parental as in the resistant cells. Our results parallel this
different effect on sensitive and resistant cells. In both cases,
this difference suggests that increased fluidity per se may
not be responsible for cisplatin resistance, but may facilitate
a mechanism of resistance found only in the selected cell
line.

Recent physiological studies on the mechanism of resis-
tance of KCP-20 cells to cisplatin (and cross-resistance to
other compounds such as methotrexate) have revealed the
following phenotype: (1) decreased drug accumulation for
many drugs associated with decreased expression on the cell
membrane of many different transporters, carriers, and
channels [11}; (2) neutralization of the usual acidic pH of
lysosomes and endosomes [30]; (3) hypermethylation of
genes whose expression is decreased in KCP-20 cells (Shen,
D.-W., Liang, X.-J., Pai-Panandiker, A., and Gottesman,
M.M., unpublished data); and (4) mislocalization of mem-
brane proteins with accumulation of certain transporters in
the cytoplasm [31]. Although a single molecular defect is
unlikely to account for all of these changes in cells selected
in multiple steps, alteration of the biophysical properties of
plasma membranes in cisplatin-resistant cells could facilitate
defects in membrane protein trafficking which might under-
lie cisplatin resistance due to decreased accumulation. If
increased membrane fluidity amplifies the effect of another
defect in KB-CP20 cell membranes, rather than indepen-
dently causing resistance to cisplatin, this could explain why
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measured membrane fluidity in the KB-3-1 parental, drug-
sensitive cells does not result in resistance.

To summarize, we have determined that there are differ-
ences in biophysical parameters, membrane potential, mo-
tional freedom of polarization and ESR probes, and MRC
540 dye packing between cisplatin-sensitive and -resistant
human epidermal carcinoma cells in vitro. 3'P NMR studies
indicated no essential differences in water-soluble phos-
phates. Modification of the plasma membrane fluidity of
these cells by incorporation of heptadecanoic acid resulted
in changes in their sensitivity to cisplatin. Whether changes
in membrane fluidity transmitted to some membrane mole-
cules in sensitive and resistant cells cause alterations in
cisplatin sensitivity remains to be determined.
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Abstract

The purpose of this work was to develop an automatic boundary detection method for
mammographic masses and to rigorously test this method via statistical analysis. The
segmentation method utilized a steepest change analysis technique for the determination of the
mass boundaries based on a composed probability density cost function. Previous investigators
have shown that this function can be utilized to determine the border of mass body. We have
further analyzed this method and have discovered that the steepest changes in this function can
produce mass delineations to include extended projections. The method was tested on 124
digitized mammograms selected from the University of South Florida’s Digital Database for
Screening Mammography (DDSM). The segmentation results were validated using overlap,
accuracy, sensitivity, and specificity statistics, where the gold standards were manual traces
provided by two expert radiologists. We have concluded that the best intensity threshold
corresponds to a particular steepest change location within the composed probability density
function. We also found that our results are more closely correlated with one expert than with
the second expert. These findings were verified via Analzysis of Variance (ANOVA) testing.
The ANOVA tests obtained p-values ranging from 1.03x10% — 7.51x10™" for the single observer
studies, 2.03x107 — 9.43x10™ for the two observer studies, and results were categorized using
three significance levels, i.e., p < 0.001 (extremely significant), p < 0.01 (very significant), and p
< 0.05 (significant), respectively .

Index Terms: mass boundary detection, mammography, probability-based cost function




L. INTRODUCTION

In the United States, breast cancer accounts for one-third of all cancer diagnoses among
women and it has the second highest mortality rate of all cancer deaths in women'. In several
studies it has been shown that only 13% - 29% of suspicious masses were d etermined to be
malignant”#, which indicates that there are high false positive rates for biopsied breast masses.
A higher predictive rate is anticipated by combining the mammographer's interpretation and the
computer analysis. Other studies have shown that 7.6% - 14% of the patients have
mammograms that produce false negative diagnoses™®. Alternatively, a Computer Assisted
Diagnosis (CADy) system can serve as a clinical tool for the radiologist and consequently lower
the rate of missed breast cancer.

Generally, CADy systems consist o f three major stages, namely, segmentation, feature
calculation, and classification. Segmentation is arguably one of the most important aspects of
CADy — particularly for masses - because a strong diagnostic predictor for masses is shape.
Specifically, many malignant masses have ill-defined, and/or spiculated borders and many
benign masses have well-defined, rounded borders. Furthermore, breast masses can have
unclear borders and are sometimes obscured by glandular tissue in mammograms. During the
search for suspicious areas it is possible that masses of this type are overlooked by radiologists.
When a specific area is deemed to be suspicious, the radiologist analyzes the overall mass,
including its shape and margin characteristics. The margin of a mass is defined as the interface
between the mass and surrounding tissue, and is regarded by some as one of the most important
factors in determining its significance’. Specifically, a spiculated mass consists of a central
mass body surrounded by fibrous extensions, hence the resulting stellate shape. In this context,
“extension” refers to those portions of the mass containing ill-defined borders, spiculations,
fibrous borders, and projections. Although the diameters of these cancers are measured across
the central portion of the mass, microscopic analysis of the extensions also reveals associated
cancer cells, i.e., the extended projections may contain active mass growth”®, In addition, the
features of the extended projections and ill-defined borders are highly useful for identifying
masses. Hence, proper segmentation - to include the body and periphery - is extremely
important and is essential for the computer to analyze, and in turn, determine the malignancy of
the mass in mammographic CADy systems.

Te Brake and Karssemeijer’ implemented a discrete dynamic contour model, a method
similar to snakes, which begins as a set of vertices connected by edges (initial contour) and
grows subject to internal and external forces. Li' developed a method that employs k-means
classification to classify pixels as belonging to the region of interest (ROI) or background.
Petrick et al.'! developed the Density Weighted Contrast Enhancement (DWCE) method, in
which series of filters are applied to the image in an attempt to extract masses. Pohlman et al.'?
developed an adaptive region growing method whose similarity criterion is determined from
calculations made in 5x5 windows surrounding the pixel of interest. Mendez et al." developed
a method, which combined bilateral image subtraction and region growing to segment masses.

Several studies have also used probability-based analysis to segment digitized
mammograms. Li et al."* developed a segmentation method that first models the histogram of
mammograms using a finite generalized Gaussian mixture (FGGM) and then uses a contextual
Bayesian relaxation labeling (CBRL) technique to find suspected masses. Furthermore, this
method uses the Expectation-Maximization (EM) technique in developing the FGGM model.
Comer et al.”® utilized an EM technique to segment digitized mammograms into homogeneous
texture regions by assigning each pixel was to one of a set of classes such that the number
incorrectly classified pixels was minimized.  Kupinski and Giger'® developed a method, which
combines region growing w ith p robability analysis to d etermine final s egmentation. In their
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method, the probability-based function is formed from a specific composed probability density
function, determined by a set of image contours produced by the region growing method. This
method is a highly effective one and it was implemented by Te Brake and Karssemeijer in their
work® that compared the results of a model of the discrete dynamic contour model with those of
the probability-based method. For this reason we chose to investigate its use as a possible
starting point from which a second method could be developed. Consequently for our
implementation of this work we discovered an important result, i.e., the steepest changes of a
cost function composed from two probability density functions of the regions. It appears that in
many cases this result produces contour choices that encapsulate important borders such as mass
spiculations and ill-defined borders.

Several CADx classification techniques have been developed. They are described here
to underscore the importance of accurate segmentation in CAD, studies. Lo et al.!” has
developed an effective analysis method using the circular path neural network technique that was
specifically designed to classify the segmented objects and can certainly be extended for the
applications related to mass classification. Polakowski et al.'® used a multilayer perceptron
(MLP) neural network to distinguish malignant and benign masses. Both Sahiner et al."” and
Rangayyan et al.2’ used linear discriminant analysis to distinguish benign masses from malignant
masses. While many CAD; systems have been developed, the development of fully-automated
image segmentation algorithms for breast masses has proven to be a daunting task.

II. METHODS
A. Segmentation method — Maximum change of cost function as a continuation of
probability-based function analysis

As a point of clarification, in this work we refer to the function used to find o ptimal
region growing contours in Kupinski and Giger’s study'® as the probability-based function and
we refer our function as the cost function. The two functions are similar; however they differ in
terms of the images used in their formation. As an initial segmentation step, region growing is
used to aggregate the area of interest'> '*?!, where grayscale intensity is the similarity criterion.
This phase of the algorithm starts with seed point whose intensity is high, and nearby pixels with
values greater than or equal to this value are included in the region of interest. As the intensity
threshold decreases, the region increases in size, therefore there is an inverse relationship
between intensity value and contour size. In many cases the region growing method is
extremely effective in producing contours that are excellent delineations of mammographic
masses. However, the computer is not able to choose the contour that is most highly correlated
with the experts’ delineations, specifically, those masses that contain ill-defined margins or
margins that extend into surrounding fibroglandular tissue. Furthermore, the task of asking a
radiologist to visually choose the best contour would be both time intensive and extremely
subjective from one radiologist to another.

The segmentation technique described in this work attempts to solve and automate this
process by adding a two-dimensional (2D) shadow and probability-based components to the
segmentation algorithm. Furthermore, we have devised a steepest descent change analysis
method that chooses the best contour that delineates the mass body contour as well as its
extended borders, i.e., extensions into spiculations and areas in which the borders are ill-defined
or obscured. It has been discovered that the probability-based function is capable of extracting
the central portion of the mass density as demonstrated by the previous investigators'®, and in
this work the method has been advanced further such that it can include the extensions of the
masses. The enhanced method can produce contours, which closely match expert radiologist
traces. Specifically, it has been observed that this technique can select the contour that
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accurately represents the mass body contour for a given set of parameters. However, further
analysis of the cost function composed from the probability density functions inside and outside
of a given contour revealed that the computer could choose a set of three segmentation contour
choices from the entire set of contour choices, and later make a final decision from these three
choices.

1. Region growing and pre-processing

Initially, a 512512 pixel area surrounding the mass is cropped. The region growing
technique'® '**! to aggregate the region of interest was employed, where the similarity criterion
for our region growing algorithm is grayscale intensity. To start the growth of first region, a
seed point was placed at the center of the 512x512 ROI.  The region growing process continues
by decreasing the intensity value until we have grown a sufficiently large set of contours.
Next, the image is multiplied by a 2D trapezoidal membership function with rounded corners
whose upper base measures 40 pixels and lower base measures 250 pixels (1 pixel = 50 microns).
This function was chosen because itis a good model of the mammographic mass’s intensity
distribution.  Since the ROI's have been cropped such that the mass's center was located at the
center of the 512 pixel x 512 pixel area, shadow multiplication emphasizes pixel values at the
center of the ROI and suppresses background pixels. The image to which the shadow has been
applied is henceforth referred to as the "processed" image. The original image and its
processed version were used to compute the highest possibility of its boundaries. The
computation method is comprised of two components for a given boundary: (1) formulation of
the composed probability as a cost function and (2) evaluation of the cost function.

The contours were grown using the original image as opposed to the processed image and
this accounts for a major difference between the current implementation and that implemented
by the previous investigators'®. By using c ontours generated from the o riginal image a cost
function composed from the probability density functions inside and outside of the contours was
produced. In many situations, the greatest changes in contour shape and size occur at sudden
decreases within the function. In analyzing these steep changes it was observed that the
intensity values corresponding to the steep changes typically produced contours that
encapsulated both the mass body as well as its spiculated projections or ill-defined margins.
This phenomenon would be suppressed if the processed image was used to generate the contour.
A more detailed discussion of steep changes within the cost function is forthcoming in section
IL.A2.3.

The processed image was mainly used to construct the cost function. A common
technique used in mass segmentation studies is to pre-process the images using some type of
filtering mechanism'"'® in an effort to separate the mass from surrounding fibroglandular tissue.
This method could be particularly beneficial to the region growing process because it would aid
in preventing the regions from growing into surrounding tissue. Alternatively, the filtering
process could impede our goal of attempting to encapsulate a mass’s extended borders as well as
borders that are ill-defined due to the filtering process’s a tendency to create rounded edges on
margins that are actually jagged, i.e., spiculated. This phenomenon could potentially defeat the
goal of extracting mass borders. For these reasons, we have chosen to aggregate the contours
using the original ROI rather its processed version.

2. Formulation of the composed probability as a cost function



In the context of this work, the composed probability is defined as the probability density
functions of the pixels inside and outside a contour using a processed and non-processed version
of animage. Specifically, for a contour (S;), the composed probability (C;) is calculated:

C/S, = li!p(f,- (x, yXS,»)le plm(x,v)s,) (1)

The quantity fi(x,y) is the set of pixels, which lie inside the contour S; (see Fig. 1a), and this area
contained processed pixel values. The quantity p(fi(x,y)|S;) is the probability density function of
the pixels inside S; (fi(x,y)), where ‘i’ is the intensity threshold used to produce the contours
given by the region growing step, and % is the maximum intensity value. The quantity m;(x,y)
is the set of pixels, which lie outside the contour S; (see Fig. 1b), and this area contained
non-processed pixels. The quantity p(m(x,y)|S;) is the probability density function of the pixels
outside S;, where i’ is the intensity threshold used to produce the contours given by the region
growing step, and ‘4’ is the maximum intensity value. For implementation purposes, the
logarithm of the composed probability of the two regions, C; was used.

Log(C|s,)= log(gp(ﬁ (x.7)8, )) + log(gp(mi (x.7)s, )] @)

Intensity=2884 Intensity=2810

6r1gma image (2) (b) (a) (b)

Intensity=2752

@ W)

Fig. 1: Four grown contours used to construct the cost function : starts from high intensity thresholds and
moves towards low intensity thresholds. Each contour separates the ROI into two parts: (a) Segmented
image (based on processed image) used to compute density function p(fi(x,y)|S,) and (b) Masked image
(based on non-processed original image) used to compute density function p(m,(x,y)|S;) for four intensity
threshold values

3. The cost function based on the composed probability density functions

To select the contour that represents the fibrous portion of the mass, it is appropriate to
examine the maximum value of the cost function:

argmax(Log(C||S, }S,,i =1,...n) 3)

It has been assessed (also by other investigatorsg’w) that the intensity value corresponding to this
maximum value is the optimal intensity needed to delineate the mass body contour. However,
in the current implementation it was discovered that the intensity threshold corresponding to the
maximum value confines the contour to the fibrous portion of the mass, i.e., the mass body. In
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the study many of these contours did not include the extended borders. It is therefore,
hypothesized that the contour represents the mass’s extended borders may well be determined by
assessing the greatest changes of the cost function, i.e., locate the steepest value changes within
the function:

%(Log(c,. 15,}S,,i=1,..n) @

Based on this assumption, the cost functions associated with masses were analyzed. The analysis
reveals that the most likely boundaries of masses associated with expert radiologist traces are
usually produced by the intensity value corresponding to the first or second steepest change of
value immediately following the maximum value on the cost function (see Fig. 2a). The
description of this discovery is given below followed by a validation study described in section
ILB and results shown in section IIl. The overarching goal of the steep descent method is to
determine the possibility that a certain contour is the best contour, which represents the mass and
its extended borders.

3. The definition of steepest change

The term "steepest change" is rather subjective and in the context of this work can be
defined as a location between two or more points in the cost function where the values
experience a significant change. When the values are plotted as a function of intensity, these
significant changes are often visible in the function. In some cases the cost function increases
at a slow rate, therefore a potential steepest change location could be missed. The algorithm
design compensates for this issue by calculating the difference between values in steps over
several values and comparing the results to two threshold values. The difference equation is

- given by:
d(t)= fz—wt)~ fz - wlt+1) t=0K ,m 5)

where f'is the cost function , z is the maximum intensity, w is the width of the interval over which
the cost function differences are calculated (e.g. — for w=5 differences are calculated every 5
points), and  is the total number of points in the searchable area divided by w. Note that “wt”
is associated with a specific contour “i” described earlier. If the value of d(t) yields a value
greater than or equal to a given threshold, then the intensity corresponding to this location is
determined to be a steepest change location. The threshold algorithm occurs as follows:

Ifdt)>TVy; t=0,...m ,

Then choice 1 = intensity where that condition is satisfied.
Ifd(t)>TV,); t=m,...,z
Then choice 2 = intensity where that condition is satisfied.

where TV and TV, are pre-defined threshold values, m is the location in the function where the
choice 1 condition is satisfied, and z is the location in the function where the choice 2 condition
is satisfied. During the examination of the contour growth with respect to the cost function , the
first steepest change (i.e., d(t)vci as choice 1) is determined by TV; immediately after the
location of the maximum cost function value (corresponding to mass body discussed earlier).
The second the steepest change (i.e., d(t)mcz as choice 2) is determined by TV, after the first
steepest change has been established.

As an example Fig. 1a is used to illustrate how the algorithm is carried out. In this figure,
the maximum value on the cost function occurs for a grayscale intensity value of approximately
3330. The searching process begins from this maximum point and it is discovered that the first
steepest change (d(t)mci as choice 1) occurs for a grayscale intensity value approximately equal
t0 3200. From this point the continue the searching process continues and it is discovered that
the second steepest change (d(t)ucz as choice 2) occurs for a grayscale intensity value
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approximately equal to 3175. In summary, intensity values o f 3330, 3200, and 3175 can be

used to grow 3 potential mass delineation candidates, and the large set of intensity choices has

been narrowed to 3 choices. In many cases intensities, which produced the three contour

choices gave the following results:

(1) Intensity corresponding to the maximum value on the cost function: The central body of the
mass was encapsulated

(2) Intensity corresponding to the first steepest change on the cost function: The central body
of the mass + some of its extended borders (i.e., projections and spiculations) was
encapsulated

(3) Intensity corresponding to the second steepest change on the cost function: The central
body of the mass + more extended borders + surrounding fibroglandular tissue encapsulated

The intensity corresponding to the first steepest change provides the best choice, and an

examination of this observation is shown and discussed in sections III and IV of this work.

As stated previously the steep changes within the cost function would be suppressed if the
processed image was used to generate the contour, therefore the function would be relatively
smooth.  This issue is evident in Fig. 2b, which shows a probability-based function produced by
contours that were grown using a processed ROI.
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Fig. 2: (a) Example of cost function with steepest change location indicators (b) Example of a
probability-based function without an obvious steepest change location.

B. Validation method

In several segmentation studies the results were validated using the overlap statistic
alone, however, it was necessary to analyze the performance of the steepest change algorithm on
the basis of four statistics to verify that the algorithm is indeed capable of categorizing mass and
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background pixels correctly. This type of analysis provides helpful information regarding
necessary changes for the algorithm’s design and can possibly aid in its optimization.

The segmentation method w as validated on the basis o f overlap, accuracy, sensitivity,
and specificity™ 2, These statistics are calculated as follows:

E1 P
Overlap = ——— 6
"PTEYP ©
Accuracy = Nip + Ny (7
Npp+ Npy + Npp + Ny

Sensitivity = ﬂ—— ®

NTP + NFN
Specificity = N )

Npy + Ngp

where E is the drawing produced by the expert radiologist, P is the segmentation result, Np is
the true positive fraction (part of the image correctly classified as mass), Nyy true negative
fraction (part of the image correctly classified as surrounding tissue), Np is the false positive
fraction (part of the image incorrectly classified as mass), and Ny is the false negative fraction
(part of the image incorrectly classified as surrounding tissue). This method requires a gold
standard, or, contour to which the segmentation results can be compared. The gold standards
for the experiments performed in this work were mass contours, which have been traced by
expert radiologists.

The experiments produced contours for the intensity values resulting from three locations
within the cost functions : (1) The intensity for which a value within the cost function is
maximum (2) The intensity for which the cost function experiences its first steepest change and
(3) The intensity for which the cost function experiences its second steepest change . It has
been observed that the intensity for which the cost function experiences its first steepest change
produces the contour trace that is most highly correlated with the gold standard traces, regarding
overlap and accuracy. In cases for which better results occur at the second steepest change
location, there is no significant difference between these results and the results calculated for the
first steepest change location. Second, it has been observed that the results are more closely
correlated with one expert than with the second expert. These hypotheses were tested using the
one-way Analysis of Variance (ANOVA) test?*?*.  In this study, three significance levels (i.e., p
<0.001, p <0.01, and p< 0.05) were used to categorize the ANOVA results as described in the
next section.

III. EXPERIMENTS AND RESULTS ,

The following sections describe the database and experiments as well as provide results
and ANOVA test results.
A. Database

For this study, a total of 124 masses were chosen from the University of South Florida's
Digital Database for Screening Mammography (DDSM)?. The DDSM films were digitized at
43.5 or 50 um's using either the Howtek or Lumisys digitizers, respectively. The DDSM cases
have been ranked by expert radiologists on a scale from 1to 5, where 1 represents the most
subtle masses and 5 represents the most obvious masses. Table 1 lists the distribution of the
masses studied according to their subtlety ratings.  The images were of varying contrasts and
the masses were of varying sizes.
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Table 1: Distribution of DDSM masses studied according to their subtlety ratings

Subtlety Category Cancer Benign
Number of masses with arating=1 5 3
Number of masses with a rating=2 12 12
Number of masses with a rating=3 18 17
Number of masses with a rating=4 9 23
Number of masses with a rating=5 15 10

The first set of expert traces was provided by an attending physician of the GUMC, and is
hereafter referred to as the Expert A traces. The second set of expert traces was provided by the
DDSM, and is hereafter referred to as the Expert B traces.

B. Experiments

As mentioned previously, the term “steepest change” is very subjective and therefore a set of
thresholds needed to be set in an effort to define a particular location within the cost function
as a “steepest change location”. For this study the following thresholds were experimentally
chosen: TV;=1800, TV,=1300, where TV;= threshold for steepest change location 1 for the cost
function, and TV, = threshold for steepest change location 2 for the cost function. A number
of experiments w ere p erformed in an effort to prove that (1) the intensity for which the ¢ ost
function experiences the first steepest change location produces the contour trace, which is
most highly correlated with the gold standard traces with regard to overlap and accuracy. In
cases for which the second steepest change location achieves better results, there are no
significant differences between the values obtained from the first steepest change location and
the second steepest change location. The experiments linked with these hypotheses comprise
the studies for a single observer. ~ We have also set out to prove that (2) our results are more
closely correlated with one expert than with the second expert. The experiments linked with
this hypothesis comprise the studies between two observers. First segmentation results for two
malignant cases are presented, followed by segmentation results for two benign cases. Second,
the ANOVA results for a set of hypotheses are presented. The contours produced by the
maximum value as well as the steepest change locations within the cost functions are labeled as
follows:

(1) group 1:  The intensity for which a value within the cost function is maximum

(2) group 2:  The intensity for which the cost function experiences its first steepest change

(3) group 3:  The intensity for which the cost function experiences its second steepest change.
C. Results ‘

Figures 3-6 display the results for two malignant cases accompanied by their cost
functions and results for two benign cases accompanied by their cost functions . The
ANOVA results appear in a set of tables (sections 2-4), where each table lists the hypothesis
tested along with p-values and their corresponding categorizations. The p-values are
categorized in the following way: not significant (NS for p > 0.05), significant (S for p <0.05),
very significant (VS for p<0.01), and extremely significant (ES for p < 0.001). Each p-value
table is followed by a second table, which contains the mean values of overlap, accuracy,
sensitivity, and specificity for each group. Sections 2 and 3 are identical regarding the
experiments, however, the pathologies of the masses are different (section 2 — malignant masses,
section 3 — benign masses). Although the experiments are identical they have been separated
for clarity purposes.

A larger set of segmentation results has been placed in an image gallery ¢ ontaining 7

malignant mass results (Fig. A1) and 7 benign mass results (Fig. A2). These figures are located
in the Appendix.
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1. Segmentation results

Original ROI | Expert A Trace Expert B Trace
Spiculated Margins

Group 1 Group 2 Group 3
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Fig. 3 — (a) Segmentation results for a malignant mass with spiculated margins (subtlety = 2)
(b) the corresponding cost function
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Fig. 4 — (a) Segmentation results for a malignant mass with ill-defined margins (subtlety = 3)
(b) the corresponding cost function
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Fig. 5 — (a) Segmentation results for a benign mass with ill-defined margins (subtlety = 3)
(b) the corresponding cost function
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Fig. 6- (a) Segmentation results for a benign mass with circumscribed margins (subtlety = 4)
(b) the corresponding cost function
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2. ANOVA test results for comparison of contour groups with single observer: malignant cases

Table 2:  Single observer results (expert A gold standard, malignant masses)

ANOVA Test P-value P-value P-value
(group1lvs. (group 2 vs. (group 1 vs.
group 2) group 3) _group 3)

Difference between groups (overlap) 1.78x10° (ES) 2.91x10%(S) NS

Difference between groups (accuracy) NS 3.14x102 S) NS

Difference between groups (sensitivity) 1.88x10° (ES) NS 1.85x107™ (ES)

Difference between groups (specificity) 5.12x10™ (ES) 2.40x10'3(VS) 2.71x107? (ES)

Table 3: Mean values for overlap, accuracy, sensitivity, and specificity
(expert A gold standard, malignant masses)

Measurement Mean Value Mean Value Mean Value

(group 1) (group 2) (group 3)
Overlap 0.47 0.60 0.53
Accuracy 0.88 0.90 0.87
Sensitivity 0.49 0.75 0.81
Specificity 0.99 0.94 0.88

Table 4:  Single observer results (expert B gold standard, malignant masses)

ANOVA Test P-value P-value P-value
(group 1 vs. (group 2 vs. (group 1 vs.
group 2) group 3) __group 3)

Difference between groups (overlap) 3.96x10° (ES) NS 1.58x10

Difference between groups (accuracy) NS NS NS

Difference between groups (sensitivity) 4.88x10® (ES)  4.31x107 (S)  4.25x10"% (ES)
Difference between groups (specificity) 2.70x10 (ES)  4.36x10™* (ES)  1.44x107 (ES)

Table 5: Mean values for overlap, accuracy, sensitivity, and specificity
(expert B gold standard, malignant masses)

Measurement Mean Value Mean Value Mean Value
(group 1) (group 2) (group 3)

Overlap 0.38 0.54 0.51
Accuracy 0.83 0.86 0.84
Sensitivity 0.38 0.56 0.60
Specificity 1.00 0.98 0.94
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3. ANOVA test results for comparison of contour groups with single observer:  benign cases

Table 6: Single observer results (expert A gold standard, benign masses)

ANOVA Test P-value P-value P-value
(group 1 vs. (group 2 vs. (group 1 vs.
group 2) group 3) group 3)

Difference between groups (overlap) 3.19x10 (ES) 8.38x10™ (ES) NS

Difference between groups (accuracy) NS 4.73x10” (V, S) 2.51x107 (VS)

Difference between groups (sensitivity) 1.14x10° (ES) 1.89x102(S)  7.51x10"(ES)
Difference between groups (specificity) 8.93x10° (VS)  1.24x10° (VS) 3.32x10"° (ES)

Table 7: Mean values for overlap, accuracy, sensitivity, and specificity
(expert A gold standard, benign masses)

Measurement Mean Value Mean Value Mean Value
(group 1) (group 2) (group 3)

Overlap 0.46 0.58 0.45
Accuracy 0.90 0.91 0.85
Sensitivity 0.49 0.73 0.82
Specificity 0.99 0.94 0.86

Table 8:  Single observer results (expert B gold standard, benign masses)

ANOVA Test P-value P-value P-value
(group 1 vs. (group 2 vs. (group1vs.
group 2) group 3) _group 3)
Difference between groups (overlap) 8.82x10™ (ES) NS 1.62x10™ (S)
Difference between groups (accuracy) NS 2.62x102(S)  2.48x107 S)
Difference between groups (sensitivity) 1.61x107 (ES) NS 3.14x10"? (ES)

Difference between groups (specificity) 1.18x102(S)  1.27x10? (S) 1.25x107 (ES)

Table 9: Mean values for overlap, accuracy, sensitivity, and specificity
(expert B gold standard, benign masses)

Measurement Mean Value Mean Value Mean Value

(group 1) (group 2) (group 3)
Overlap 0.36 0.51 0.44
Accuracy 0.88 0.89 0.83
Sensitivity 0.36 0.61 0.69
~ Specificity 0.99 0.94 0.86
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4. ANOVA test results for comparison of contour groups between two observers

Table 10: Two observer results: expert A vs. expert B, malignant masses

ANOVA Test ' P-value P-value P-value
(group 1 vs. (group 2 vs. (group 1 vs.
group 2) group 3) group 3)

Expert A vs. Expert B (overlap) 3.12x10° (VS) 3.32x10°(S) NS
Expert A vs. Expert B (accuracy) 1.20x10 (S)  4.46x102 (S) NS
Expert A vs. Expert B (sensitivity)  9.43x10™* (ES) 3.38x10™ (ES) 3.67x10™ (ES)
Expert A vs. Expert B (specificity) NS NS NS

Table 11: Mean values for overlap, accuracy, sensitivity, and specificity
(expert A vs. expert B, malignant masses)

Measurement Mean Mean Mean Mean Mean Mean
Value, Value, Value, Value, Value, Value,
Expert A ExpertB ExpertA ExpertB ExpertA ExpertB
(group 1) (group 1) (group 2) (group 2) (group 3) (group 3)

Overlap 0.49 0.38 0.62 0.55 0.55 0.51
Accuracy 0.89 0.83 0.91 0.87 0.87 0.84
Sensitivity 0.52 0.38 0.75 0.60 0.82 0.68
Specificity 0.99 1.00 0.95 0.97 0.89 0.91

Table 12: Two observer results: expert A vs. expert B, benign masses

ANOVA Test P-value P-value P-value
(group 1vs. (group2vs. (groupl1vs.
group 2) group 3) group 3)

Expert A vs. Expert B (overlap) NS NS NS
Expert A vs. Expert B (accuracy) NS NS NS
Expert A vs. Expert B (sensitivity) 3.56x107 (S) 4.90x10?(S) 2.03x102(S)
Expert A vs. Expert B (specificity) NS ‘NS NS

Table 13:  Mean values for overlap, accuracy, sensitivity, and specificity:
expert A vs. expert B, benign masses

Measurement Mean Mean Mean Mean Mean Mean
Value, Value, Value, Value, Value, Value,
Expert A ExpertB  Expert A ExpertB ExpertA ExpertB

(group 1) (group1)  (group 2) _(group2) (group3) (group3)

Overlap 0.42 0.35 0.57 0.50 0.48 0.44
Accuracy 0.90 0.88 0.91 0.89 0.85 0.83
Sensitivity 0.44 0.36 0.71 0.61 0.79 0.69
Specificity 0.99 0.99 0.94 0.94 0.86 0.86
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IV. DISCUSSION

A. Segmentation Results

From the ROI’s shown in Figures 3 and 4 it is evident that the intensity produced by the
maximum value is capable of accurately delineating the mass body contour, and in some cases
this intensity corresponding to the maximum value produces a contour, which falls inside the
mass body contour. This can be potentially problematic because low segmentation sensitivities
can produce large errors during the feature calculation and diagnosis phases of CAD,. Of the
three available segmentation choices for each mass, it appears that the first steepest change
location produces the contours with strongest correlation in comparison to both gold standards.
These contours appear to cover both the mass body contour as well as the extended borders. In
some instances the region grows into some areas that are not declared as mass areas by the gold
standards — we call this flooding - and fails to grow into other areas that have been declared as
mass areas. Finally, the second steepest change location produces contours that also cover both
the mass body contour as well as the extended borders, and, the contours tend to also include
surrounding fibroglandular tissue; hence, the flooding phenomenon is a common occurrence.
In the cases shown, it is clear that steepest change location 1 produces the best contours, in
comparison to the gold standards, however the ANOVA test results allow us to make such a
claim. The following discussion is divided into five sections: single observer malignant
results, single observer benign results, and two observer results (malignant and benign),
algorithm performance, and an additional discussion on methods.

B. Malignant Cases with Single Observer

For both the Expert A and Expert B gold standards, Tables 2-5 show a statistically
significant difference between groups 1 and 2 on the basis of overlap and sensitivity, where the
mean values of group 2 were higher than the mean values of group 1 for these statistics. These
results are expected because as shown in the figures, the group 2 contours consistently covered
more of the mass area (and correctly covered this mass area) as compared to the group 1
contours, according to both experts. There was a statistically significant difference in
sensitivity between group 1 and group 3, where the mean of group 3 was higher than the mean of
group 1. This is an expected result because out of all the groups, group 3 contours consistently
cover the most mass area. For the Expert B gold standard there was a statistically significant
difference in overlap between group 1 and group 3, where the mean of group 3 was higher than
the mean of group 1.  This is an expected result because out of all the groups, group 3 contours
correctly cover the most mass area.

C. Benign Cases with Single Observer

For the Expert A there were statistically significant differences between the group 2 and
group 3 traces on the basis of overlap, accuracy, and sensitivity, where the group 2 mean values
for overlap and accuracy were higher than those of group 3 (see Tables 6-9). This is an
expected result because it is likely that many of the group 3 contours contained flooded areas,
which will cause both of these values to be lower than contours without flooded areas. The
overlap and sensitivity values for group 2 were significantly higher than those of group 1. This
is an expected result because the group 2 contours not only covered more mass area and correctly
cover this area. Finally, the group 3 accuracy and sensitivity values were significantly higher
than those for group 1. This is an expected result because the group 3 contours not only cover
more mass area but also correctly cover this area.
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For the Expert B gold standard there were statistically significant differences between the
group 2 and group 3 traces on the basis of accuracy and sensitivity, where the group 2 mean
values for overlap and accuracy were higher than those of group 3. This is an expected result
because it is likely that many of the group 3 contours contained flooded areas, which will cause
both of these values to be lower than contours without flooded areas. There were statistically
significant differences between group 1 and group 2 on the basis of overlap and sensitivity,
where the mean values for group 2 were higher than the mean values for group 1. This is an
expected result because the group 2 contours not only cover more mass area and correctly cover
this area. There were statistically significant differences between group 3 and group 1 on the
basis of overlap and sensitivity, where the mean values for group 3 were higher than those of
group 1. This is an expected result because the group 3 contours not only covered more mass
area and correctly covered this area.

In nearly all cases for the single observer studies, it was expected that the specificity values
for group 1 would always be higher for group 1 than those for groups 2 and 3 because this
contour always covered the smallest mass area, consequently its background was always highly
correlated with the background areas dictated by the gold standards. Moreover, in some cases
the group 2 and group 3 contours grew into areas that were not regarded as mass, but rather were
regarded as background, therefore their specificity values had a lower correlation with the gold
standard as compared to the group 1 contours.

D. Malignant and Benign Cases with Two Observers

For the two observer studies, comparisons were made between experts A and B on a
group-by-group basis in an effort to prove that there were significant differences between the two
radiologists on the basis of overlap, accuracy, sensitivity, and specificity (see Tables 10-13).
For the malignant masses there were statistically significant differences between the two experts
on the basis of overlap, accuracy, and sensitivity. There was a statistically significant
difference between the two experts for group 3 on the basis of sensitivity. For the benign
masses, there were statistically significant differences between the two experts for all three
groups on the basis of sensitivity. For all cases Expert A’s values were consistently higher than
those of Expert B. It is an expected result that there were statistically significant differences
between the experts due to their differences in opinion. The fact that Expert A’s mean values
were higher than those for expert B, however does not warrant the conclusion that Expert A is a
more reliable expert; however it does not warrant the conclusion that there is stronger
agreement between the computer’s results and Expert A’s traces. Further, there were less
statistically significant differences for the benign cases than for the malignant cases. This is an

expected result because in general, benign masses have better defined borders so it was expected
that the two experts would strongly agree.

E. Algorithm performance

It appears that the thresholds chosen produce first steepest change location intensities that
generate contours that are closely correlated with the expert traces. In some instances the
second steepest change location is extremely far from the first steepest change location, which
implies that the function in question increases very slowly; and, many of the second steepest
change location intensities produce contours with flooded areas. For the majority of the cases
in which the second steepest change location contour achieves a higher sensitivity value, but not
a significantly higher sensitivity value, we can still choose the first steepest change location
contour because the difference between the two contours is likely to be negligible.
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In analyzing the probability-based cost functions, we found that those functions with very
steep changes are typically associated with masses that have well-defined borders while those
functions that increase slowly are associated with masses that have ill-defined borders. This
phenomenon may make it necessary to develop an adaptive threshold process for the steepest
change evaluation such that the functions are grouped into various categories (e.g. — smooth
versus steep) because a threshold value that is optimal for the steep function may not be optimal
for a smooth function.

F. Additional discussion on methods used

In this study it appears that the steepest descent method has the advantage of locating
ill-defined margins as well as extensions such as malignant spiculations and projections for
mammographic masses. If the human eye is solely used, it can be difficult to separate the mass
from surrounding fibroglandular tissue. Therefore, it is believed that this method has the
potential to complement the process of reading mammographic films. One of the downfalls of

- the method is its dependence upon the assumption that masses are generally light in color. This
assumption impedes the region growing process because masses that contain darker areas and are
surrounded on one or more sides by bright tissue can cause contours to flood into areas that are
not actual mass tissue. Typically, this situation occurs for the mass located on the border of the
breast region on a mammogram.

All of the segmentation methods surveyed in the introduction o f this paper are e xcellent
solutions for the problems the authors set out to solve, however, in some cases it is difficult to
make comparisons between different methods without the availability of a set of several visual
results. In several studies, the focus was either to detect masses or to distinguish malignant
from benign masses. So the validation process did not take the form of a comparison with
expert radiologist manual traces, but rather features were calculated on the ?otentlal mass
candidates and they were later classified as being mass tissue or normal tissue'®'"'%13,  The
purpose of Li’s study' wasto distinguish normal and abnormal tissue so the authors d1d not
provide any statistics such as overlap or accuracy. Nevertheless, the study contains a figure of
60 masses that contain both computer and radiologist annotations to give the reader an idea of
the computer algorithm’s performance. Te Brake and Karssemeijer’s study’ used the overlap
statistic to test the efficacy of their method and they indicated that the central mass area of the
mass was delineated by the radiologist and their computer results were compared to these
annotations. Kupinski and Giger’s study'® also used the overlap statistic to test the efficacy of
their method and set a threshold for which the mass was considered to be successfully
segmented. For example, masses whose overlap values are greater than 0.7 imply that there
was successful segmentation.

The technical method presented herein shows that the results obtained from the
maximization of the composed probability density function (i.e., the cost function) are equivalent
to those obtained from previous methods presented by previous investigator. However, the

steepest change of the composed probability density function is most close to the radiologist
determination.

V. CONCLUSION

We have shown that our fully automatic boundary detection method for malignant and
benign masses can effectively delineate these masses using intensities, which correspond to the
first steepest change location within their cost functions . Additionally, it appears that the
method is more highly correlated with one set of expert traces than with a second set of expert
traces, regarding the accuracy and overlap statistics. This result shows that inter-observer
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variability can be an important factor in segmentation algorithm design, and it has motivated us
to seek the opinions of more expert radiologists to test the robustness of our algorithm. The
second steepest change location intensity will always yield contours with higher sensitivity
values, however, it behooves us to choose the first steepest change location intensity because it
avoids the risk of choosing contours that contain substantial flooding. In future work, a
worthwhile study would be to run the experiments for different threshold values in an effort to
discover the possibility of deriving an optimal threshold procedure. We believe that such a
procedure would improve the method of choosing optimal contours.
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APENDIX Segmentation Results
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Fig. Al — Segmentation results for a set of malignant masses
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APPENDIX 4

Workshop on Dynamic Spectroscopy and Measurement of Physiology and Function
International Society of Magnetic Resonance in Medicine, September 6-8, 2003, Orlando, F1

A Pharmacokinetic Study of Trifluoperazine Crossing Blood-Brain-Barrier Due to P-glycoprotein Modulation

'Paul C Wang, 2Adorjan Aszalos, 'Ercheng Li, 'Renshu Zhang, 'Huafu Song
~ 'Department of Radiology, Howard University, Washington, DC
National Cancer Institute, Bethesda, MD, and Food and Drug Administration, College Park, MD

INTRODUCTION Elderly patients and patients with cancer are often treated with combination therapy such as depression, and
cardiopulmonary diseases in addition to for their primary symptoms. The potential for drug-drug interaction under these conditions is
high. Such interactions may cause changes in the pharmacokinetics, especially for drugs with narrow therapeutic indices (1, 2). These
changes can alter efficacy and toxicity of the administered drugs. Drug-drug interactions may occur due to common metabolic
pathways, but also due to interference at the P-glycoprotein (Pgp) level. Pgp, which is a nonspecific transport protein, is expressed
constitutively at the blood-brain-barrier (BBB), intestine, kidney, and liver (3). Interaction at the blood-brain barrier may occur if Pgp
is blocked by a drug and a concomitantly administered second drug, which would not penetrate brain if administered singly, can then
penetrate the brain freely (4,5). The potential for drug-drug interactions is not routinely studied at the Pgp level during drug
development. Its presence is assumed only after unexpected clinical symptoms. In this study, we have used a dynamic NMR method
based on detection of a fluorinated drug, trifluoperazine (TFP), in the brain, in combinations with an immune suppressor, cyclosporin
A to demonstrate the drug penetration through the blood-brain-barrier due to Pgp modulation.

METHODS Sprague-Dawley rats, weight 200 g, were used. The rats were anesthetized by i.p. injection of sodium pentobarbital
40 mg/kg. After anesthesia, a Pgp modulator cyclosporin A (15 mg/kg) was administrated through the tail vein. Fifteen minute later,
trifluoperazine (25 mg/kg) was injected. For detection of trifluoperazine in the brain, F NMR studies were performed using 4.7 T, 33
cm horizontal bore NMR machine. A 22 mm x 17 mm surface coil was positioned immediately adjacent to the rat skull. A small bulb
containing trifluoroacetic acid was used as an extern reference. After shimming and tuning, a series of 10 minutes spectra were
obtained. The repetition time was one second. :

RESULTS In Figure 1, the spectrum A shows a control, in which only TFP was administered. The spectrum B shows an
increase amount of TFP crossing BBB after co-administering a Pgp modulator, cyclosporin A. This demonstrates the synergistic effect
of cyclosporin A with TFP. Figure 2 shows nine continuous '°F spectra from the rat brain after administering cyclosporin A and TFP.
Each spectrum takes 10 minutes. The first spectrum in the Figure 2 is taken before TFP injection as a baseline. For the second 10
minutes during the TFP injection, there is an increase of fluorine signal. The following spectra 3-9 show the accumulation of TFP and

gradual decreasing of fluorine signal due to metabolism.
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DISCUSSION  This experiment has demonstrated that concomitantly administered a Pgp modulator enhanced TFP, an antipsychotic
drug, crossing BBB in vivo. It also demonstrated the pharmacokinetics of TFP accumulation in the brain. The pharmacology of this
noninvasive model for realizing opening of the BBB in case of possible drug-drug interaction at the Pgp level was based on drug know
to modulate Pgp and on the drug which can be detected by °F NMR spectroscopy. In case of polypharmacy, like with elderly or
cancer patients, drug-drug interaction is not always understood. The noninvasive dynamic NMR spectroscopy study of drug-drug
interactions can be a very useful tool in drug development.
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A NMR Study of Trifluoperazine Crossing Blood-Brain-Barrier Due to P-glycoprotein Modulation
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INTRODUCTION Elderly patients and patients with cancer are often treated with a combination of therapies for secondary illnesses such as depression,
and cardiopulmonary diseases in addition to their primary illnesses. The potential for drug-drug interaction under these conditions is high. Such interactions may cause
changes in the pharmacokinetics, especially for drugs with narrow therapeutic indices (1, 2). These changes can alter efficacy and toxicity of the administered drugs.
Drug-drug interactions may occur due to interaction of common metabolic pathways, but can also be caused by interference at the P-glycoprotein (Pgp) level. Pgp,
which is a nonspecific transport protein, is expressed constitutively at the blood-brain-barrier (BBB), intestine, kidney, and liver (3). Interaction at the blood-brain
barrier may occur if Pgp is blocked by a drug, allowing a concomitantly administered second drag, which would not penetrate brain if administered singly, to be able to
penetrate the brain freely (4,5). The potential for drug-drug interactions is not routinely studied at the Pgp level during drug development. Its presence is assumed only
after unexpected clinical symptoms arise. In this study, we used a dynamic NMR method based on detection of a fluorinated drug, trifluoperazine (TFP), in combination
with an immune suppressor, cyclosporin A (CsA), to monitor the drug penetration through the blood-brain-batrier due to Pgp modulation (6).

METHODS Sprague-Dawley rats, weight 100-400 g, were used. The rats were first anesthetized by ip. injection of sodium pentobarbital (40 mg/kg). A
catheter (0.26 mm id)) was then inserted into the tail vein for later drug infusions. A Pgp modulator, cyclosporin A (15 mg/kg) was administrated 15 min before
trifluoperazine (25 mg/kg) was injected. '’F NMR using a Varian 4.7 T machine was utilized to detect trifluoperazine in the brain. A 22 x 17 mm RF coil was positioned
immediately adjacent to the rat skull. A small bulb containing trifluoroacetic acid was used as an extern reference. After shimming and tuning, a series of 10 minutes
spectra were obtained. The repetition time was one second. The same animal was used as control without cyclosporin A. The test results of five different rats were
averaged for each data point.

RESULTS Figure 1 shows TFP crossing BBB as function of TFP dosages ranging from 5 to 35 mg/kg. This demonstrates that '°F signal can be used as a
reliable probe to monitor TFP accumulation in the brain. In Figure 2, the spectrum A shows a control, in which only TFP was administered. The spectrum B shows a
22% increase of TFP crossing BBB in a 200 gm rat after co-administering a Pgp modulator, cyclosporin A. Figure 3 shows the increased amount of TFP crossing BBB
as function of age (or body weight). Younger rats weighing below 100 gm showed no increase of TFP penetration. However, for older adult rats weighing more than
200 gm, a 20-25% increase of TFP crossing BBB was evident.
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DISCUSSION This experiment has demonstrated that a concomitantly administered Pgp modulator enhanced the amount of TFP, an antipsychotic drug, to
cross blood-brain-barrier in vivo. The pharmacology of this noninvasive model for increasing the crossing of drugs over the BBB due to drug-drug interactions was
based on previously attained knowledge about how to modulate Pgp, and also because the drug was able to be detected by in vivo ’F NMR spectroscopy. It also
demonstrated that Pgp modulation is more problematic for older rats. In the case of polypharmacy, particularly for elderly or cancer patients, drug-drug interaction is
not always understood. The noninvasive dynamic NMR technique can be a very useful tool to study multidrug interactions in drug development.
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MR Image Enhancement by Tumor Cell Targeted Immunoliposome Complex Delivered
Contrast Agent '
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Paramagnetic contrast agents such as gadolinium chelates have been used to enhance MR image
contrast by disturbing the local magnetic field and the magnetization of surrounding proton spins. The
uptake of the contrast agent into the tumor interstitial space is based upon permeation of contrast agent
through arterioles and its diffusion within intercellular space. The uptake process is not specific. We
have made use of a cationic immunoliposome system that employs a single-chain antibody variable
fragment (scFv) to target a liposome-contrast agent complex preferentially to the human transferrin
receptor (TfR) of cancer cell. Cationic liposomes are composed of positively charged lipid bilayers that
are complexed to gadolinium chelates, Magnevist, by simple mixing. The resulting complex has a net
positive charge that facilitates transfection of the cells, and a small size that allows penetration through
the capillaries to the tumor cells. Magnevist is diluted in water and added to scF v-Lip at a defined
ratio. The equivalent dose of Magnevist is 0.3 mM/kg. Human leukemic cells K562 were transfected
with the solution containing TfR-scFv-Lip-Magnevist complex, or Magnevist only. After transfection,
the cells were cultured for additional 48 hours. The cells then were pelleted for MRI study. T1-
weighted MR images (SE TR/TE, 1000ms/13ms) of cell pellets show an intensity increase of 6 folds
for TfR-scFv-Lip-Magnevist complex compared to Magnevist only. Also, a study of transfection time
shows the intensity change reaches a plateau after 60 minutes exposure. The advantages of targeted
liposome as contrast agent delivery vehicle are its low toxicity, simplicity of preparation, its relative
stability, and most significantly its ability to preferentially target tumor cells and efficiently transfer the
constrast agent to them. Therefore use of this deliver system has the potential to enhance the sensitivity
of the contrast agent.
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Topic (Complete): Enhancing Delivery and Traversing Barriers
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In-Vivo and In-vitro Stereological Analysis of Hippocampal and Brain Volumes in Young and Old
APP/PS1 Mice Using Magnetic Resonance Neuroimages
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Previous stereological studies of cortical volumes in human brains at autopsy show only slight
changes during normal aging. In contrast, autopsied brains from patients suffering neurological disease,
including acquired immunodeficiency syndrome (AIDS) and Alzheimer's disease (AD), show significant
loss (atrophy) of cortical and whole brain volumes compared to age-matched controls. In the case of
AD the severity of cortical atrophy is highly correlated to the severity of cognitive impairment (Mouton
et al., Neurobiol Aging 19:371-377, 1998). Early detection of cortical atrophy would help to better
understand the natural history of neurodegenerative changes and improve the efficacy of strategies for
therapeutic management of these diseases. We addressed this issue using high-resolution magnetic
resonance imaging (MRI) to visualize the right hippocampal formation and right hemisphere of mice
double transgenic for two mutant proteins associated with AD (amyloid precursor protein and
presenilin-1). Young and aged dtg APP/PS1 mice were imaged using a spin-echo T1-weighted MRI
imaging technique. '

Total volumes of right hemisphere (Vbrain), and total right hippocampal formation (VHF) were
estimated from systematic-random series of coronal MRI images using point counting-Cavalieri method.
We estimated the hemispheric and hippocampal formation volumes in the brains perfused and processed
for histology, and the estimates of Vbrain, and VHF were repeated after final tissue processing. The
preliminary findings In-vivo for WT and dtg APP/PS1 mice show a 15 % reduction in volume of
hippocampal formation and no change in the volume of the brain. The In-vitro analysis showed
consistant shrinkage of 65-75% for each examined brains. :

These stereological studies of mouse MRI images document the changes in brain volumes
associated with agonal and tissue processing, and support quantitative neuroimaging for characterization
of rodent models of neurological disease. Additional studies will address whether the age-related
changes in cortical brain volumes in dtg APP/PS1 mice mimic the patterns that occur in AD.
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