
Area, and Power Performance Analysis of a Floating-point based Application on FPGAs
Gokul Govindu, Ling Zhuo, Seonil Choi, Padma Gundala, Viktor K Prasanna

Department of Electrical Engineering, Systems
University of Southern California

Los Angeles, CA 90089
{govindu, lzhuo, seonilch, pgundala, prasanna}@usc.edu

Introduction
Almost all signal processing algorithms are initially represented as double precision floating-point in languages such as Matlab.
For hardware implementations, these algorithms have to be converted to large precision fixed-point to have a sufficiently large
dynamic range. However the inevitable quantization effects and the complexity of converting the floating-point algorithm into a
fixed point one, limit the use of fixed-point arithmetic for high precision embedded computing.
FPGAs have become an attractive option for implementing computationally intensive applications. However, the common
conception has been that efficient FPGA implementations of floating-point arithmetic have a lot of performance, area and
power overheads compared to fixed-point arithmetic. With recent technology advances, FPGA densities are increasing at a rate
at which area considerations are becoming less significant. These advances have also reduced the performance and power
overhead of floating-point arithmetic. With appropriate designs, floating-point applications can even be more efficient than
fixed-point ones for large bitwidths. The overheads in the context of the overall application can be quite low. In this paper, we
present a preliminary area, and power performance analysis of double precision matrix multiplication, an extensively used
kernel in embedded computing and also show that FPGAs are good candidates for implementing high precision floating-point
based applications when compared to a general-purpose processor.
Currently many FPGA based floating-point units, both open source [2] and commercial [1], are available. However, most of
them consider only single precision floating-point operations, and do not make use of the recent advances in FPGAs. Moreover,
an area, and power performance analysis of the floating-point units in the context of a common application is lacking.

Description of our Floating point units and the Matrix Multiply architecture
For matrix multiplication, we require add and multiply floating-point units. Our floating-point units follow the IEEE 754 single
and double precision (64-bit) format. We developed both deeply pipelined and moderately pipelined units. The units essentially
consist of three stages: denormalization, the add/multiply, and normalization/rounding/renormalization. Exception handling at
all stages is done and enable/done signals are provided for easy integration into a pipelined architecture. The implementation of
floating-point units involves extensive use of fast fixed point adder/subtractors, multiplier units, and large bus multiplexers (for
shifting operations). Recent FPGAs, such as Virtex-II Pro [4], provide a large number of embedded multipliers as well as fast
carry chains for addition. Similarly, large multiplexers used in shifting can make use of the MUXCY, MUXF attributes on the
FPGAs. Recent FPGA fabrics also contain a lot of registers, which can be utilized for extensive pipelining between stages.
We used the block matrix multiplication architecture from [3] in which a linear array of n processing elements is used for an n x
n matrix multiplication. Each processing elements essentially consists of an adder, a multiplier, storage elements, and related
control logic. Since the matrix multiply architecture (see [3] for more details) is modular, multiple chips can be used in an array
for large n. Here we use the GFLOPS per device for a given n as the performance metric.

Analysis of the Floating-point units
Table 1a and 1b show a comparison of the fixed and floating-point units for a bitwidth of 32 and 64. We see that the overhead
for double precision is less than that for single precision. Note that, for the fixed-point designs, truncation to make the output
bitwidth equal to the input bitwidth results in a lot of quantization error. Moreover the fixed-point multiplier unit takes up more
embedded multipliers than the floating-point unit. We also show a comparison between an extensively pipelined and a
moderately pipelined version of the floating-point units. We see that extensive pipelining to increase the clock frequency
requires a lot of area for the registers in between the pipeline stages. The pipelining done to split the adder/multiplier, the large
priority encoder and the shift registers for the normalizing unit shows an immediate improvement in frequency, without much
increase in area. Further pipelining, shows diminishing returns in frequency and the area increases significantly. Hence a design
trade-off will be the frequency required which influences the number of pipelining stages and area. Here, for the double
precision matrix multiply, we decided to use the moderately pipelined units since we can achieve higher GFLOPs. From
synthesis results, we saw that normalization takes up a lot of area (560 slices for the deeply pipelined and 200 slices for the
moderately pipelined units, for double precision) and can also be the critical path for timing (because of a large priority encoder
and shift registers). Hence a design trade-off would be the use of custom formats in the architecture, with conversion from and
back to the IEEE754 standard at the interface to say, a processor. Considering power, the 64bit fixed-point multiplier unit with
more embedded multipliers consumes a lot more power. Note that, for the power values of individual units, only clocks, logic
and signal powers were included.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 AUG 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Area, and Power Performance Analysis of a Floating-point based
Application on FPGAs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Electrical Engineering, Systems University of Southern
California Los Angeles, CA 90089

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001694, HPEC-6-Vol 1 ESC-TR-2003-081; High Performance Embedded Computing
(HPEC) Workshop (7th)., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

34

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Table 1a: A comparison of addition units (Virtex2Pro-c2vp125-7)

 Table 1b: A comparison of multiplication units (Virtex2Pro-c2vp125-7)

Analysis of the Matrix Multiply
The area and power performance overhead of the floating-point units has to be seen in the context of an application. Table 2
shows the area and power performance of both fixed and floating-point implementations of a double precision, n-point matrix
multiply on a FPGA. The double precision implementation shows us an interesting result of the floating-point unit having a
better performance than the fixed-point implementation. The maximum number of fixed-point processing elements that the
device can accommodate when block RAMs are used for storage, is smaller than the number of processing elements when slice
based RAM is used. This is probably because of more routing resources used up due to the fixed locations of the block RAMs
and the embedded multipliers. Moreover, the number of slices on a given device being constant, the device will accommodate
fewer processing elements if deeply pipelined units occupy a large area. Hence, the performance of the device might be lower
even if the frequency of the units is high. Also, the overall application’s architecture’s operating frequency should be
considered. Performance was measured as one multiplication and one addition happening every clock cycle in each processing
element. The total power for the matrix multiply takes into account output, input, quiescent, logic, signals and the clocks power.
We see that floating-point unit overheads in terms of area, and power performance are not too drastic. Table 3 shows the
performance comparison of a floating-point based n-point matrix multiplication both on an FPGA and a Pentium4 SSE2,
1.5GHz processor. The performance of the design on FPGAs shows a 3.48x improvement over that of the processor. Moreover
the power per GFLOP of the FPGA is much lower than that of the processor.

Table 2: A comparison of double precision, fixed and floating-point, n-point Matrix Multiply, requiring n
processing elements on FPGAs (Virtex2Pro-c2vp125-7)

 32, 64bit Fixed-point
(with 2, 4 pipeline stages)

32, 64bit Floating-point
(with 6, 8 pipeline stages)

32, 64bit Floating-point
(with 18, 23 pipeline stages)

Area (slices) 36 139 293 693 504 1383
Max Freq. (MHz) achievable 250 250 140 130 250 200
Power (mW) at 100MHz 23.48 104 148.7 329 - -

32, 64bit Fixed-point
(with 5, 7 pipeline stages)

32, 64bit Floating-point
(with 9, 11 pipeline stages)

64bit Floating-point
(with 18, 23 pipeline stages)

Area (slices)/Embedded multipliers 190 / 4 1024 / 16 249 / 3 775 / 10 492 / 3 1558 / 10
Max Freq. (MHz) achievable 200 130 140 130 200 200
Power (mW) at 100MHz 136.3 804 164.7 424 - -

Fixed-point based

using block
RAM

using slice
based RAM

Floating point based
 (moderately pipelined)
using block RAM

Floating point based
(deeply pipelined)
(estimated)

Area (slices) / BRAM / multipliers
of each Processing element of
matrix multiply

1344 / 4 / 16 1626/ 0 / 16 1872 / 4 / 10 3441 / 4 / 10

Maximum number of processing
elements on the device

28 32 29 16

Frequency (MHz) of each element 130 130 130 200
Power of each PE (mW) at 100MHz 843 894 762 -
Frequency (MHz) achieved for the
matrix multiply

110 110 120 200

Performance of matrix multiply, per
device-Virtex2Pro xc2vp125-7

6.16 GOPS 7.04 GOPS 6.96 GFLOPS 6.4 GFLOPS

Total Power (W) per GOP or
GFLOP for matrix multiply,

 27.2 / 6.16
 = 4.41

33.04/ 7.04
 = 4.68

 26.4 / 6.96
 = 3.79

-

 Table 3: A comparison of the performance of Matrix Multiply

All the above results were obtained after the VHDL code was synthesized and placed and routed using the Xilinx ISE5.2i, on a
Virtex2Pro XC2VP125-7f1696 device. Power values were obtained from Xpower. The Pentium4 SSE2 results were from [5].
Better results can be obtained after the units have been optimized more, by manually placing them.

Conclusion and Future Work
We have presented a preliminary analysis of a floating-point implementation of a computationally intensive application on
FPGAs. We show that when the floating-point units are considered in the context of an application, their overheads in terms of
area, and power performance are not too drastic. We also show that a significant increase in performance can be obtained on
FPGAs over general-purpose processors with much lower power expended. Future work will involve extensive analysis of the
floating-point units to identify more design trade-offs. We will also provide a documented and extensively tested, open source
library of the floating-point units, shortly.

References
1. Nallatech, www.nallatech.com
2. P. Belanović, M. Leeser, Library of Parameterized Floating-point Modules and Their Use, International Conference on

Field Programmable Logic (ICFPL), September 2002.
3. J. Jang, S. Choi, and V. K. Prasanna, Area and Time Efficient Implementation of Matrix Multiplication on FPGAs,

International Conference on Field Programmable Technology (ICFPT), December 2002.
4. Xilinx, www.xilinx.com
5. J. Dongarra. An Update of a Couple of Tools: ATLAS and PAPI. Technical report, DOE Salishan Meeting, April 2001.

 FPGA
(Virtex2Pro xc2vp125-7)

Pentium4 with SSE2
(1.5GHz)

 GFLOPS 6.96 2
Power (W) per GFLOP 26.4 / 6.96 = 3.79 57.9/2 = 28.95

Slide: 1HPEC 2003

Area and Power Performance Analysis of Floating-
point based Applications on FPGAs

Gokul Govindu, Ling Zhuo, Seonil Choi, Padma Gundala,
and Viktor K. Prasanna

Dept. of Electrical Engineering
University of Southern California

September 24, 2003

http://ceng.usc.edu/~prasanna

Slide: 2HPEC 2003

Outline

• Floating-point based Applications on FPGAs
• Floating-point Units

– Area/Power Analysis

• Floating-point based Algorithm/Architecture Design
• Area, Power, Performance analysis for example kernels:

– FFT
– Matrix Multiply

• Conclusion

Slide: 3HPEC 2003

Floating-point based Applications on FPGAs

Applications requiring
• High numerical stability, faster numerical convergence
• Large dynamic range
Examples:
• Audio/Image processing, Radar/Sonar/Communication, etc.

Fixed-point vs. Floating-point
• Resources

– Slices
• Latency/Throughput

– Pipeline stages
– Frequency

• Precision
• Design complexity of fixed/floating-point units

Energy – Area – Performance
Tradeoffs

Slide: 4HPEC 2003

Floating-point Device Options

Power

Performance

Emulation by
Fixed-point DSPs

(TMS320C54X)

Low-power
Floating-point DSPs

(TMS320C55X)

Low-power
Floating-point GPPs

(PowerPC G4)

High-performance
Floating-point DSPs

(TMS320C67X)

High-performance
Floating-point GPPs

(Pentium 4)
FPGAs

(Virtex II Pro)

More flexibility,
Better performance

per unit power

Slide: 5HPEC 2003

Need for FPU Design in the
Context of the Kernel

Integration
• Latency

– Number of pipeline stages as a parameter
• Frequency

– FPU frequency should match the frequency of the kernel/application’s logic
• Area/Frequency/Latency tradeoffs
Optimal Kernel Performance
• High throughput

– Maximize frequency
• Minimize Energy

– Architectural tradeoffs - FPUs parameterized in terms of latency/ throughput/
area

• Optimize F/A for FPU
– Maximize the performance of the kernel

Algorithm/Architecture Design
• Re-evaluation of the algorithm/architecture

– Tolerate latencies of FPU - low area vs. high frequency tradeoffs
– Re-scheduling

Slide: 6HPEC 2003

Outline

• Floating-point based Applications on FPGAs
• Floating-point Units

– Area/Power Analysis

• Floating-point based Algorithm/Architecture Design
• Area, Power, Performance analysis for example kernels:

– FFT
– Matrix Multiply

• Conclusion

Slide: 7HPEC 2003

Our Floating-point Units

• Now, easier to implement floating-point units on FPGAs
– Optimized IP cores for fixed-point adders and multipliers
– Fast priority encoders, comparators, shift registers, fast carry chains….

Our floating-point units
• Precision

– Optimized for 32, 48 and 64 bits

• IEEE 754 format
• Number of pipeline stages

– Number of pipeline stages parameterized
• For easy integration of the units into the kernel
• For a given kernel frequency, units with optimal pipelining and thus

optimal resources, can be used

• Metrics
– Frequency/Area
– Overall performance of the kernel (using floating-point units)
– Energy

Slide: 8HPEC 2003

Floating-point Adder/Subtractor

Fixed-point
Adder/Subtractor

Mantissa
Alignment

Shifter

• Pipeline stages: 6-18
• Area: 390- 550; Achievable frequency: 150-250MHz
• Xilinx XC2VP125 –7

Exponent
subtraction

Mantissa
Normalization

Shifter

Priority
Encoder

Rounding
(adder, muxes)

Add
hidden 1 Swap

*Lat: 0-1
*Area: 20

*Lat: Latency
*Area: Number of slices

Lat: 1-3
Area: 36-40

Lat: 0-1
Area: 20

Lat: 1-4
Area: 86-108

Lat: 1-2
Area: 19-24

Lat: 1-4
Area: 76-90

Lat: 0-1
Area: 15

Lat: 1-2
Area: 86-102

32 bits Precision

Slide: 9HPEC 2003

Frequency/ Area vs. Number of Pipeline Stages

• Diminishing returns beyond optimal F/A
• Tools’ optimization set as “balanced - area and speed”

-Area and Speed optimization give different results in terms of area and speed

Adder Multiplier

0

0.15

0.3

0.45

6 9 12 15 18 21

No. of Pipeline Stages

F
re

q
/A

re
a

(M
H

z/
S

lic
e)

32-bit

48-bit

64-bit

0

0.4

0.8

1.2

1.6

4 6 8 10 12 14

No. of Pipeline Stages

32-bit

48-bit

64-bit

Slide: 10HPEC 2003

Addition Units: Some Trade-offs

64 bits
with 21
stages

64 bits
with 19
stages

64 bits
with 4
stages

32 bits
with 19
stages

32 bits
with 14
stages

32 bits
with 2
stages

230

102

200

463 529

220

1133933139

25420023.48Power(mW) at
100MHz

250230250Max. Freq. (MHz)
achievable

55148536Area(slices)

Floating-pointFloating-pointFixed-point

Floating-point vs. Fixed-point
• Area : 7x-15x
• Speed: 0.8x-1x
• Power: 5x-10x

Slide: 11HPEC 2003

Multiplier Units: Some Trade-offs

64 bits
with 15
stages

64 bits
with 10
stages

64 bits
with 7
stages

Floating-pointFloating-pointFixed-point

32 bits
with 10
stages

32 bits
with 7
stages

32 bits
with 5
stages

130

414

175

390 419

215

1019/10838/101024/16

263227136.3Power(mW) at
100MHz

220220200Max. Freq. (MHz)
Achievable

220/3180/3190/4Area(slices)/Embed
ded Multipliers

Floating-point vs. Fixed-point
• Area : 0.9x-1.2x
• Speed: 1.1x-1.4x
• Power: 1x-1.6x

Slide: 12HPEC 2003

A Comparison of Floating-point units

.18

.07

.23

.22

0.6

.35

1.4

.45

477

770

910

933

124

391

182

551

90

50

NEU 64 bits
F A F/A

20595250Multiplier

200120250Adder

USC 64 bits
F A F/A

NEU 32 bits
F A F/A

USC 32 bits
F A F/A

Our units vs. the units from the NEU library*

F: Frequency
A: Slices

* P. Belanovic, M. Leeser, Library of Parameterized Floating-point Modules and Their
Use, International Conference on Field Programmable Logic (ICFPL), Sept., 2002

Slide: 13HPEC 2003

Outline

• Floating-point based Applications on FPGAs
• Floating-point Units

– Area/Power Analysis

• Floating-point based Algorithm/Architecture Design
• Area, Power, Performance analysis for example kernels:

– FFT
– Matrix Multiply

• Conclusion

Slide: 14HPEC 2003

The Approach: Overview

Problem
(kernel)

Problem
(kernel)

Performance model
(Area, Time, Energy
& Precision effects)

Performance model
(Area, Time, Energy
& Precision effects)

DeviceDevice

Implement building blocks

Tradeoff Analysis/Optimizations
(Fixed vs. Floating-point)

Tradeoff Analysis/Optimizations
(Fixed vs. Floating-point)

Estimate
model

parameters

e.g. Matrix multiplication

. . .
Algorithm &
Architecture
Algorithm &
Architecture

Algorithm &
Architecture
Algorithm &
Architecture

Domain

Design toolsDesign tools

Refine performance model, if necessary

Candidate
designs

Candidate
designs

Implementation/
Low-level simulation

Implementation/
Low-level simulation

1

2 3

4

Slide: 15HPEC 2003

1. Domain

• FPGA is too fine-grained to model at high level
– No fixed structure comparable to that of a general purpose processor
– Difficult to model at high level

• A family of architectures and algorithms for a given kernel or application
– E.g. matrix multiplication on a linear array

• Imposes an architecture on FPGAs
– Facilitates high-level modeling and high-level performance analysis

FPGA

Architecture
• Choose domains by analyzing

algorithms and architectures for
a given kernel
– Tradeoffs in Area, Energy,

Latency

Slide: 16HPEC 2003

2. Performance Modeling

• Domain Specific Modeling

• High-level model
– Model parameters are specific to the domain
– Design is composed based on the parameters
– Design is abstracted to allow easier (but coarse) tradeoff analysis and

design space exploration
– Precision effects are studied
– Only those parameters that make a significant impact on area and

energy dissipation are identified

• Benefit: Rapid evaluation of architectures and algorithms without low-
level simulation
– Identify candidate designs that meet requirements

Slide: 17HPEC 2003

3. Tradeoff Analysis and Manual Design Space
Exploration

• Vary model parameters to see the
effect on performance

• Analyze tradeoffs
• Weed out designs that are not

promising

0.0

0.2

0.4

0.6

0.8

1.0

2 4 8 16
Block Size

N
or

m
al

iz
ed

 V
al

ue
s

Latency
Energy
Area

47%
32%

24%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Design 1 Design 2 Design 3

E
ne

rg
y

D
is

tr
ib

ut
io

n

Multiplier Register I/O

76%

51%

14%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Design 1 Design 2 Design 3

E
ne

rg
y

D
is

tr
ib

ut
io

n

(a) 3x3 (b) 12x12

Example: Energy Tradeoffs

Slide: 18HPEC 2003

4. Low Level Simulation of
Candidate Designs

• Verify high-level estimation of area and energy for a design
• Select the best design within the range of the estimation error

among candidate designs
• Similar to low-level simulation of components

VHDLVHDL

XPowerXPower

Xilinx
Place&Route

Xilinx
Place&Route

Xilinx
XST

Synthesis

Xilinx
XST

Synthesis

Candidate
Designs

Candidate
Designs

ModelSimModelSim

PowerPower

WaveformsWaveforms

VHDL File

Netlist

.ncd
file

.vcd
file

.ncd? VHDLArea, Freq.
constraints
Area, Freq.
constraints

Slide: 19HPEC 2003

Outline

• Floating-point based Applications on FPGAs
• Floating-point Units

– Area/Power Analysis

• Floating-point based Algorithm/Architecture Design
• Area, Power, Performance analysis for example kernels:

– FFT
– Matrix Multiply

• Conclusion

Slide: 20HPEC 2003

Example 1: FFT Architecture Design Tradeoffs

? ? ? Local
Memory
Local

Memory

Interconnect

Main
Memory

Main
Memory

Parallelism

For n-point FFT, I/O complexity = ? (n logn / logc)

Size c

n-point FFT

I/O complexity:
minimum information to
be exchanged to solve a

problem

??

xx

??

xx

Slide: 21HPEC 2003

FFT Architecture Design Tradeoffs (2)

For Radix-4,
Possible

parallelism?
1 = Vp = 4

Parallel or
serial input ?

0

4

8

12

1

2

3

15

0

1

2

3

4

8

12

1

1

1

1

W1
16

W2
16

W2
16

W3
16

1

1

j

W6
16

W6
16

W3
16

W9
16

1

Stage 1 Stage 2
Twiddle

Computationn=16 index index

Can some
twiddle
factor

computation
be

bypassed?

Can the
hardware for
Stage 1 be
shared with

Stage 2
Or

More
hardware?
1= Hp =

log4n

Data Buffer

Slide: 22HPEC 2003

FFT Architecture Design Trade-offs (3)

Fixed-point

0

10

20

30

40

50

60

(1,1) (1,2) (1,4) (4,1) (4,2) (4,4)
(Vp, Hp)

E
ne

rg
y

di
ss

ip
at

io
n

(u
J)

0

5

10

15

20

25

30

35

40

45

50

A
re

a
(K

 s
lic

es
)

Floating-point 256 Point FFT (32 bits)

0

5

10

15

20

25

(1,1) (1,2) (1,4) (4,1) (4,2) (4,4)
(Vp, Hp)

E
ne

rg
y

di
ss

ip
at

io
n

(u
J)

0

5

10

15

20

25

A
re

a
(K

 s
lic

es
)

I/O
Twiddle
Mux
Radix-4
Dbuf
Area

• Optimal FFT architectures with respect to EAT
• Fixed-point: (Vp, Hp) = (1,4)
• Floating-point: (Vp, Hp) = (4,1)

Slide: 23HPEC 2003

Example 2: Matrix Multiplication
Architecture Design (1)

? ? ? Local
Memory
Local

Memory

Interconnect

Main
Memory

Main
Memory

Parallelism

Size c
I/O complexity:

minimum information to
be exchanged to solve a

problem

??

xx

??

xx

Theorem (Hong and Kung): For n ? n matrix multiplication

I/O complexity = ? (n3/? c)

I/O Complexity of Matrix Multiplication

Slide: 24HPEC 2003

Matrix Multiplication Architecture Design (2)

Multiplier

PEj

FromPEj-1 To PEj+1

BU

BL

BM

A

+

SRAM or
Registers

C’ij

PE1 PE2 PEp

Input

Floating-point Adder

Floating-point Multiplier

* J. W. Jang, S. Choi, and V. K. Prasanna, Area and Time Efficient Implementation of Matrix
Multiplication on FPGAs, ICFPT 2002.

Processing Element Architecture*

Slide: 25HPEC 2003

Matrix Multiplication Architecture Design (3)

• Our design
– Number of PEs = n
– Storage = ? (n ? n)
– Latency = ? (n2)

• For n x n matrix multiplication, I/O complexity = ? (n3/? c)

• Our design has optimal I/O complexity

Slide: 26HPEC 2003

Performance of
32, 64 bits Floating-point Matrix Multiplication (4)

1801905021021590Achievable
Frequency
(MHz)

225625751524933991718Area(slices) of
each Processing
Element

3.6

36

Min

24.7

59

Optimal

56

24.1

24

8.6

OptimalMax

8.013.8Sustained
Performance
(GFLOPS)

2177Max. No. PEs

MaxMin

64 bits
XC2VP125 –7

32 bits
XC2VP125 –7

Pipeline stages

The performance (in GFLOPS) is maximum for the design with floating-
point units with maximum frequency/area.

Slide: 27HPEC 2003

FPGA vs. Processor

0.11

59.3

6.56
(peak)

Pentium 4
SSE2 *

2.53 GHz

0.4166

2.4 (core
power)

1.0
(peak)

Analog

TigerSharc *
500 MHz

0.20.70.95GFLOPS/W

301.8 (core
power)

26Power(W)

6.22
(peak)

1.325
(peak)

24.7
(sustained)

GFLOPS

PowerPC
G4 *

1.25 GHz

TI TMS320

C6713*
225 MHz

FPGA
XC2VP125 –7

230MHz

FPGA vs. Processor
•Performance (in GFLOPS): up to 24.7x
•Performance/Power (in GFLOPS/W): up to 8.6x

* From data sheets

32 bits floating-point matrix multiplication on FPGA using our FPU and
architecture

Slide: 28HPEC 2003

FPGA vs. Processor

0.0180.0360.33GFLOPS/W

6054.726Power(W)

1.1
(peak)

2.0
(peak)

8.6
(sustained)

GFLOPS

AMD Athlon

1 GHz*
Pentium 4 SSE2

1.5 GHz*
FPGA

XC2VP125 –7
200MHz

FPGA vs. Processor
• Performance (in GFLOPS): up to 7.8x
• Performance/Power (in GFLOPS/W): up to 18.3x

* From data sheets

64 bits floating-point matrix multiplication on FPGA using our FPU
and architecture

Slide: 29HPEC 2003

Conclusion and Future Work

Conclusion
• Floating-point based implementations are not prohibitively expensive

either in terms of area or latency or power
• High performance kernels can be designed with appropriate FPUs
• In terms of GFLOPS and GFLOPS/W, FPGAs offer significant over

general purpose processors and DSPs

Future Work
• Floating-point based beamforming….
• Tool for automatic integration of FPUs into kernels

http://ceng.usc.edu/~prasanna

Slide: 30HPEC 2003

MILAN for System-Level Design:
Design Flow

Model PARIS kernels,
end-to-end
application, hardware
choices, mission
parameters, etc.

PARIS design space
Dynamic programming
based heuristics
Multi-rate application
optimization
Interval arithmetic

ModelSim,
XPower, PowerPC
simulators
VHDL and C
implementations
Energy, latency,
and area estimates

Enhanced
HiPerE
High-level
estimator
for FPGAs

Download-http://www.isis.vanderbilt.edu/Projects/milan/

Slide: 31HPEC 2003

Questions?

http://ceng.usc.edu/~prasanna

	Abstract button:
	Presentation button:
	Agenda button:
	Next button:

