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Introduction 
Almost all signal processing algorithms are initially represented as double precision floating-point in languages such as Matlab. 
For hardware implementations, these algorithms have to be converted to large precision fixed-point to have a sufficiently large 
dynamic range. However the inevitable quantization effects and the complexity of converting the floating-point algorithm into a 
fixed point one, limit the use of fixed-point arithmetic for high precision embedded computing.  
FPGAs have become an attractive option for implementing computationally intensive applications. However, the common 
conception has been that efficient FPGA implementations of floating-point arithmetic have a lot of performance, area and 
power overheads compared to fixed-point arithmetic. With recent technology advances, FPGA densities are increasing at a rate 
at which area considerations are becoming less significant. These advances have also reduced the performance and power 
overhead of floating-point arithmetic. With appropriate designs, floating-point applications can even be more efficient than 
fixed-point ones for large bitwidths. The overheads in the context of the overall application can be quite low. In this paper, we 
present a preliminary area, and power performance analysis of double precision matrix multiplication, an extensively used 
kernel in embedded computing and also show that FPGAs are good candidates for implementing high precision floating-point 
based applications when compared to a general-purpose processor.   
Currently many FPGA based floating-point units, both open source [2] and commercial [1], are available. However, most of 
them consider only single precision floating-point operations, and do not make use of the recent advances in FPGAs. Moreover, 
an area, and power performance analysis of the floating-point units in the context of a common application is lacking. 

Description of our Floating point units and the Matrix Multiply architecture 
For matrix multiplication, we require add and multiply floating-point units. Our floating-point units follow the IEEE 754 single 
and double precision (64-bit) format. We developed both deeply pipelined and moderately pipelined units. The units essentially 
consist of three stages: denormalization, the add/multiply, and normalization/rounding/renormalization. Exception handling at 
all stages is done and enable/done signals are provided for easy integration into a pipelined architecture. The implementation of 
floating-point units involves extensive use of fast fixed point adder/subtractors, multiplier units, and large bus multiplexers (for 
shifting operations). Recent FPGAs, such as Virtex-II Pro [4], provide a large number of embedded multipliers as well as fast 
carry chains for addition. Similarly, large multiplexers used in shifting can make use of the MUXCY, MUXF attributes on the 
FPGAs. Recent FPGA fabrics also contain a lot of registers, which can be utilized for extensive pipelining between stages.   
We used the block matrix multiplication architecture from [3] in which a linear array of n processing elements is used for an n x 
n matrix multiplication. Each processing elements essentially consists of an adder, a multiplier, storage elements, and related 
control logic. Since the matrix multiply architecture (see [3] for more details) is modular, multiple chips can be used in an array 
for large n. Here we use the GFLOPS per device for a given n as the performance metric.  
 
Analysis of the Floating-point units 
Table 1a and 1b show a comparison of the fixed and floating-point units for a bitwidth of 32 and 64. We see that the overhead 
for double precision is less than that for single precision. Note that, for the fixed-point designs, truncation to make the output 
bitwidth equal to the input bitwidth results in a lot of quantization error. Moreover the fixed-point multiplier unit takes up more 
embedded multipliers than the floating-point unit. We also show a comparison between an extensively pipelined and a 
moderately pipelined version of the floating-point units. We see that extensive pipelining to increase the clock frequency 
requires a lot of area for the registers in between the pipeline stages. The pipelining done to split the adder/multiplier, the large 
priority encoder and the shift registers for the normalizing unit shows an immediate improvement in frequency, without much 
increase in area. Further pipelining, shows diminishing returns in frequency and the area increases significantly. Hence a design 
trade-off will be the frequency required which influences the number of pipelining stages and area. Here, for the double 
precision matrix multiply, we decided to use the moderately pipelined units since we can achieve higher GFLOPs. From 
synthesis results, we saw that normalization takes up a lot of area (560 slices for the deeply pipelined and 200 slices for the 
moderately pipelined units, for double precision) and can also be the critical path for timing (because of a large priority encoder 
and shift registers). Hence a design trade-off would be the use of custom formats in the architecture, with conversion from and 
back to the IEEE754 standard at the interface to say, a processor. Considering power, the 64bit fixed-point multiplier unit with 
more embedded multipliers consumes a lot more power. Note that, for the power values of individual units, only clocks, logic 
and signal powers were included.   
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Table 1a: A comparison of addition units (Virtex2Pro-c2vp125-7) 

 
           Table 1b: A comparison of multiplication units (Virtex2Pro-c2vp125-7) 

 
Analysis of the Matrix Multiply 
The area and power performance overhead of the floating-point units has to be seen in the context of an application. Table 2 
shows the area and power performance of both fixed and floating-point implementations of a double precision, n-point matrix 
multiply on a FPGA. The double precision implementation shows us an interesting result of the floating-point unit having a 
better performance than the fixed-point implementation. The maximum number of fixed-point processing elements that the 
device can accommodate when block RAMs are used for storage, is smaller than the number of processing elements when slice 
based RAM is used. This is probably because of more routing resources used up due to the fixed locations of the block RAMs 
and the embedded multipliers. Moreover, the number of slices on a given device being constant, the device will accommodate 
fewer processing elements if deeply pipelined units occupy a large area. Hence, the performance of the device might be lower 
even if the frequency of the units is high. Also, the overall application’s architecture’s operating frequency should be 
considered. Performance was measured as one multiplication and one addition happening every clock cycle in each processing 
element. The total power for the matrix multiply takes into account output, input, quiescent, logic, signals and the clocks power. 
We see that floating-point unit overheads in terms of area, and power performance are not too drastic. Table 3 shows the 
performance comparison of a floating-point based n-point matrix multiplication both on an FPGA and a Pentium4 SSE2, 
1.5GHz processor. The performance of the design on FPGAs shows a 3.48x improvement over that of the processor. Moreover 
the power per GFLOP of the FPGA is much lower than that of the processor.  

Table 2: A comparison of double precision, fixed and floating-point, n-point Matrix Multiply, requiring n 
processing elements on FPGAs (Virtex2Pro-c2vp125-7) 

 
 

  

 32, 64bit Fixed-point 
(with 2, 4 pipeline stages) 

32, 64bit Floating-point  
(with 6, 8 pipeline stages) 

32, 64bit Floating-point  
(with 18, 23 pipeline stages) 

Area (slices) 36 139 293 693 504 1383 
Max Freq. (MHz) achievable 250 250 140 130 250 200 
Power (mW) at 100MHz 23.48 104 148.7 329 - - 

 
  

32, 64bit Fixed-point 
(with 5, 7 pipeline stages) 

32, 64bit Floating-point  
(with 9, 11 pipeline stages) 

64bit Floating-point  
(with 18, 23 pipeline stages) 

Area (slices)/Embedded multipliers 190 / 4 1024 / 16 249 / 3 775 / 10 492 / 3 1558 / 10 
Max Freq. (MHz) achievable 200 130 140 130 200 200 
Power (mW) at 100MHz 136.3 804 164.7 424 - - 

Fixed-point based  

using block 
RAM  

using slice 
based RAM 

Floating point based 
 (moderately pipelined) 
using block RAM 

Floating point based 
(deeply pipelined) 
(estimated) 

Area (slices) / BRAM / multipliers 
of each Processing element of 
matrix multiply 

1344 / 4 / 16 1626/ 0 / 16 1872 / 4 / 10 3441 / 4 / 10 

Maximum number of processing  
elements on the device 

28 32 29 16 

Frequency (MHz) of each element 130 130 130 200 
Power of each PE (mW) at 100MHz 843 894 762 - 
Frequency (MHz) achieved for the 
matrix multiply 

110 110 120 200 

Performance of matrix multiply, per 
device-Virtex2Pro xc2vp125-7 

6.16 GOPS 7.04 GOPS 6.96 GFLOPS 6.4 GFLOPS 

Total Power (W) per GOP or 
GFLOP for matrix multiply,  

 27.2 / 6.16 
     = 4.41 

33.04/ 7.04  
    = 4.68 

 26.4 / 6.96 
     = 3.79 

- 



  
 
 

   Table 3: A comparison of the performance of Matrix Multiply  

All the above results were obtained after the VHDL code was synthesized and placed and routed using the Xilinx ISE5.2i, on a 
Virtex2Pro XC2VP125-7f1696 device. Power values were obtained from Xpower. The Pentium4 SSE2 results were from [5]. 
Better results can be obtained after the units have been optimized more, by manually placing them.  

Conclusion and Future Work 
We have presented a preliminary analysis of a floating-point implementation of a computationally intensive application on 
FPGAs. We show that when the floating-point units are considered in the context of an application, their overheads in terms of 
area, and power performance are not too drastic. We also show that a significant increase in performance can be obtained on 
FPGAs over general-purpose processors with much lower power expended. Future work will involve extensive analysis of the 
floating-point units to identify more design trade-offs. We will also provide a documented and extensively tested, open source 
library of the floating-point units, shortly.  
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 FPGA 
(Virtex2Pro xc2vp125-7) 

Pentium4 with SSE2 
(1.5GHz) 

 GFLOPS 6.96 2 
Power (W) per GFLOP 26.4  / 6.96 = 3.79 57.9/2 = 28.95 



Slide: 1HPEC 2003

Area and Power Performance Analysis of Floating-
point based Applications on FPGAs

Gokul Govindu, Ling Zhuo, Seonil Choi, Padma Gundala,
and Viktor K. Prasanna

Dept. of Electrical Engineering 
University of Southern California

September 24, 2003

http://ceng.usc.edu/~prasanna



Slide: 2HPEC 2003

Outline

• Floating-point based Applications on FPGAs
• Floating-point Units

– Area/Power Analysis

• Floating-point based  Algorithm/Architecture Design
• Area, Power, Performance analysis for example kernels: 

– FFT
– Matrix Multiply

• Conclusion



Slide: 3HPEC 2003

Floating-point based Applications on FPGAs

Applications requiring
• High numerical stability, faster numerical convergence
• Large dynamic range
Examples: 
• Audio/Image processing, Radar/Sonar/Communication, etc.

Fixed-point vs. Floating-point
• Resources

– Slices
• Latency/Throughput

– Pipeline stages
– Frequency

• Precision
• Design complexity of fixed/floating-point units

Energy – Area – Performance
Tradeoffs
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Floating-point Device Options

Power

Performance

Emulation by 
Fixed-point DSPs

(TMS320C54X)

Low-power 
Floating-point DSPs

(TMS320C55X)

Low-power 
Floating-point GPPs

(PowerPC G4)

High-performance 
Floating-point DSPs

(TMS320C67X)

High-performance 
Floating-point GPPs

(Pentium 4)
FPGAs

(Virtex II Pro)

More flexibility, 
Better performance 

per unit power
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Need for FPU Design in the 
Context of the Kernel

Integration
• Latency

– Number of pipeline stages as a parameter
• Frequency

– FPU frequency should match the frequency of the kernel/application’s logic
• Area/Frequency/Latency tradeoffs
Optimal Kernel Performance
• High throughput 

– Maximize frequency
• Minimize Energy

– Architectural tradeoffs - FPUs parameterized in terms of latency/ throughput/ 
area

• Optimize F/A for FPU
– Maximize the performance of the kernel

Algorithm/Architecture Design
• Re-evaluation of the algorithm/architecture

– Tolerate latencies of FPU - low area vs. high frequency tradeoffs  
– Re-scheduling
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Our Floating-point Units

• Now, easier to implement floating-point units on FPGAs
– Optimized IP cores for fixed-point adders and multipliers
– Fast priority encoders, comparators, shift registers, fast carry chains…. 

Our floating-point units
• Precision

– Optimized for 32, 48 and 64 bits

• IEEE 754 format
• Number of pipeline stages

– Number of pipeline stages parameterized
• For easy integration of the units into the kernel
• For a given kernel frequency, units with optimal pipelining and thus 

optimal resources, can be used

• Metrics
– Frequency/Area
– Overall performance of the kernel (using floating-point units) 
– Energy
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Floating-point Adder/Subtractor

Fixed-point
Adder/Subtractor 

Mantissa
Alignment

Shifter

• Pipeline stages: 6-18 
• Area: 390- 550; Achievable frequency: 150-250MHz
• Xilinx XC2VP125 –7

Exponent
subtraction

Mantissa
Normalization

Shifter

Priority 
Encoder

Rounding
(adder, muxes)

Add 
hidden 1 Swap

*Lat: 0-1
*Area: 20

*Lat: Latency 
*Area: Number of slices

Lat: 1-3
Area: 36-40

Lat: 0-1
Area: 20

Lat: 1-4
Area: 86-108

Lat: 1-2
Area: 19-24

Lat: 1-4
Area: 76-90

Lat: 0-1
Area: 15

Lat: 1-2
Area: 86-102

32 bits Precision
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Frequency/ Area vs. Number of Pipeline Stages

• Diminishing returns beyond optimal F/A
• Tools’ optimization set as “balanced - area and speed”

-Area and Speed optimization give different results in terms of area and speed

Adder Multiplier

0

0.15

0.3

0.45

6 9 12 15 18 21

No. of Pipeline Stages

F
re

q
/A

re
a 

(M
H

z/
S

lic
e)

32-bit

48-bit

64-bit

0

0.4

0.8

1.2

1.6

4 6 8 10 12 14

No. of Pipeline Stages

32-bit

48-bit

64-bit
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Addition Units: Some Trade-offs

64 bits 
with 21 
stages

64 bits 
with 19 
stages

64 bits 
with 4 
stages

32 bits 
with 19 
stages

32 bits 
with 14 
stages

32 bits 
with 2 
stages

230

102

200

463 529

220

1133933139

25420023.48Power(mW) at 
100MHz

250230250Max. Freq. (MHz)
achievable

55148536Area(slices)

Floating-pointFloating-pointFixed-point

Floating-point vs. Fixed-point 
• Area : 7x-15x
• Speed: 0.8x-1x
• Power:  5x-10x
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Multiplier Units: Some Trade-offs

64 bits 
with 15 
stages

64 bits  
with 10 
stages

64 bits 
with 7 
stages

Floating-pointFloating-pointFixed-point

32 bits 
with 10 
stages

32 bits 
with 7 
stages

32 bits 
with 5 
stages

130

414

175

390 419

215

1019/10838/101024/16

263227136.3Power(mW) at 
100MHz

220220200Max. Freq. (MHz)
Achievable

220/3180/3190/4Area(slices)/Embed
ded Multipliers

Floating-point vs. Fixed-point
• Area :  0.9x-1.2x
• Speed: 1.1x-1.4x
• Power: 1x-1.6x
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A Comparison of Floating-point units

.18

.07

.23

.22

0.6

.35

1.4

.45

477

770

910

933

124

391

182

551

90

50

NEU 64 bits
F         A      F/A

20595250Multiplier

200120250Adder

USC 64 bits
F         A      F/A

NEU 32 bits
F         A      F/A

USC 32 bits
F         A      F/A

Our units vs. the units from the NEU library* 

F: Frequency
A: Slices

* P. Belanovic, M. Leeser, Library of Parameterized Floating-point Modules and Their 
Use, International Conference on Field Programmable Logic (ICFPL), Sept., 2002 
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• Floating-point Units

– Area/Power Analysis

• Floating-point based  Algorithm/Architecture Design
• Area, Power, Performance analysis for example kernels: 

– FFT
– Matrix Multiply

• Conclusion
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The Approach: Overview

Problem
(kernel)

Problem
(kernel)

Performance model
(Area, Time, Energy
& Precision effects)

Performance model
(Area, Time, Energy
& Precision effects)

DeviceDevice

Implement building blocks

Tradeoff Analysis/Optimizations
( Fixed vs. Floating-point)

Tradeoff Analysis/Optimizations
( Fixed vs. Floating-point)

Estimate 
model 

parameters

e.g. Matrix multiplication

. . .
Algorithm & 
Architecture
Algorithm & 
Architecture

Algorithm & 
Architecture
Algorithm & 
Architecture

Domain

Design toolsDesign tools

Refine performance model, if necessary

Candidate 
designs

Candidate 
designs

Implementation/
Low-level simulation

Implementation/
Low-level simulation

1

2 3

4
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1. Domain

• FPGA is too fine-grained to model at high level
– No fixed structure comparable to that of a general purpose processor
– Difficult to model at high level

• A family of architectures and algorithms for a given kernel or application
– E.g. matrix multiplication on a linear array

• Imposes an architecture on FPGAs
– Facilitates high-level modeling and high-level performance analysis

FPGA

Architecture
• Choose domains by analyzing 

algorithms and architectures for 
a given kernel
– Tradeoffs in Area, Energy, 

Latency
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2.  Performance Modeling

• Domain Specific Modeling

• High-level model
– Model parameters are specific to the domain
– Design is composed based on the parameters
– Design is abstracted to allow easier (but coarse) tradeoff analysis and 

design space exploration
– Precision effects are studied
– Only those parameters that make a significant impact on area and

energy dissipation are identified

• Benefit: Rapid evaluation of architectures and algorithms without low-
level simulation
– Identify candidate designs that meet requirements
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3. Tradeoff Analysis and Manual Design Space 
Exploration

• Vary model parameters to see the 
effect on performance

• Analyze tradeoffs
• Weed out designs that are not 

promising

0.0
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0.6

0.8
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2 4 8 16
Block Size

N
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m
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Area

47%
32%

24%
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Multiplier Register I/O

76%

51%

14%
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30%

40%

50%

60%

70%

80%

90%

100%
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(a) 3x3 (b) 12x12

Example: Energy Tradeoffs
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4. Low Level Simulation of 
Candidate Designs

• Verify high-level estimation of area and energy for a design
• Select the best design within the range of the estimation error 

among candidate designs
• Similar to low-level simulation of components

VHDLVHDL

XPowerXPower

Xilinx
Place&Route

Xilinx
Place&Route

Xilinx
XST

Synthesis

Xilinx
XST

Synthesis

Candidate
Designs

Candidate
Designs

ModelSimModelSim

PowerPower

WaveformsWaveforms

VHDL File

Netlist

.ncd
file

.vcd
file

.ncd? VHDLArea, Freq.
constraints
Area, Freq.
constraints
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Outline

• Floating-point based Applications on FPGAs
• Floating-point Units

– Area/Power Analysis

• Floating-point based  Algorithm/Architecture Design
• Area, Power, Performance analysis for example kernels:

– FFT
– Matrix Multiply

• Conclusion
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Example 1: FFT Architecture Design Tradeoffs

? ? ? Local
Memory
Local

Memory

Interconnect

Main
Memory

Main
Memory

Parallelism

For n-point FFT, I/O complexity = ? (n logn / logc)

Size c

n-point FFT

I/O complexity: 
minimum information to 
be exchanged to solve a 

problem

??

xx

??

xx
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FFT Architecture Design Tradeoffs (2)

For Radix-4,
Possible 

parallelism?
1 = Vp = 4

Parallel or 
serial input ?

0

4

8

12

1

2

3

15

0

1

2

3

4

8

12

1

1

1

1

W1
16

W2
16

W2
16

W3
16

1

1

j

W6
16

W6
16

W3
16

W9
16

1

Stage 1 Stage 2
Twiddle

Computationn=16 index index

Can some 
twiddle 
factor 

computation
be 

bypassed?

Can the 
hardware for 
Stage 1 be 
shared with 

Stage 2
Or

More 
hardware?
1= Hp =

log4n

Data Buffer
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FFT Architecture Design Trade-offs (3)

Fixed-point

0
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(1,1) (1,2) (1,4) (4,1) (4,2) (4,4)
(Vp, Hp)

E
ne

rg
y 

di
ss

ip
at

io
n 

(u
J)

0

5

10

15

20

25

30

35

40

45

50

A
re

a 
(K

 s
lic

es
)

Floating-point 256 Point FFT (32 bits)

0
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I/O
Twiddle
Mux
Radix-4
Dbuf
Area

• Optimal FFT architectures with respect to EAT
• Fixed-point: (Vp, Hp) = (1,4) 
• Floating-point: (Vp, Hp) = (4,1) 
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Example 2: Matrix Multiplication 
Architecture Design (1)

? ? ? Local
Memory
Local

Memory

Interconnect

Main
Memory

Main
Memory

Parallelism

Size c
I/O complexity: 

minimum information to 
be exchanged to solve a 

problem

??

xx

??

xx

Theorem (Hong and Kung): For n ? n matrix multiplication 

I/O complexity = ? (n3/? c )

I/O Complexity of Matrix Multiplication
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Matrix Multiplication Architecture Design (2)

Multiplier

PEj

FromPEj-1 To PEj+1

BU

BL

BM

A

+

SRAM or
Registers

C’ij

PE1 PE2 PEp

Input

Floating-point Adder

Floating-point Multiplier

* J. W. Jang, S. Choi, and V. K. Prasanna, Area and Time Efficient Implementation of Matrix 
Multiplication on FPGAs, ICFPT 2002.

Processing Element Architecture*
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Matrix Multiplication Architecture Design (3)

• Our design
– Number of PEs =  n
– Storage = ? (n ? n)
– Latency = ? (n2)

• For n x n matrix multiplication, I/O complexity = ? (n3/? c)

• Our design has optimal I/O complexity
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Performance of 
32, 64 bits Floating-point Matrix Multiplication (4)

1801905021021590Achievable 
Frequency 
(MHz)

225625751524933991718Area(slices) of 
each Processing 
Element

3.6

36

Min

24.7

59

Optimal

56

24.1

24

8.6

OptimalMax

8.013.8Sustained 
Performance
(GFLOPS)

2177Max. No. PEs 

MaxMin

64 bits
XC2VP125 –7

32 bits
XC2VP125 –7

Pipeline stages

The performance (in GFLOPS) is maximum for the design with floating-
point units with maximum frequency/area.
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FPGA vs. Processor

0.11

59.3

6.56
(peak)

Pentium 4 
SSE2 *

2.53 GHz

0.4166

2.4 (core
power)

1.0
(peak)

Analog

TigerSharc *
500 MHz

0.20.70.95GFLOPS/W

301.8 (core 
power)

26Power(W)

6.22
(peak)

1.325
(peak)

24.7
(sustained)

GFLOPS

PowerPC 
G4 *

1.25 GHz

TI TMS320

C6713*
225 MHz

FPGA 
XC2VP125 –7

230MHz

FPGA vs. Processor
•Performance (in GFLOPS): up to 24.7x
•Performance/Power (in GFLOPS/W): up to 8.6x

* From data sheets

32 bits floating-point matrix multiplication on FPGA using our FPU and 
architecture
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FPGA vs. Processor

0.0180.0360.33GFLOPS/W

6054.726Power(W)

1.1
(peak)

2.0
(peak)

8.6
(sustained)

GFLOPS

AMD Athlon

1 GHz*
Pentium 4 SSE2

1.5 GHz*
FPGA 

XC2VP125 –7
200MHz

FPGA vs. Processor
• Performance (in GFLOPS): up to 7.8x
• Performance/Power (in GFLOPS/W): up to 18.3x

* From data sheets

64 bits floating-point matrix multiplication on FPGA using our FPU 
and architecture
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Conclusion and Future Work

Conclusion
• Floating-point based implementations are not prohibitively expensive 

either in terms of area or latency or power
• High performance kernels can be designed with appropriate FPUs
• In terms of GFLOPS and GFLOPS/W, FPGAs offer significant over 

general purpose processors and DSPs

Future Work
• Floating-point based beamforming….
• Tool for automatic integration of FPUs into kernels

http://ceng.usc.edu/~prasanna
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MILAN for System-Level Design:
Design Flow

Model PARIS kernels, 
end-to-end 
application, hardware 
choices, mission 
parameters, etc.

PARIS design space
Dynamic programming 
based heuristics
Multi-rate application 
optimization
Interval arithmetic 

ModelSim, 
XPower, PowerPC 
simulators
VHDL and C 
implementations
Energy, latency, 
and area estimates

Enhanced 
HiPerE
High-level 
estimator 
for FPGAs

Download-http://www.isis.vanderbilt.edu/Projects/milan/
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Questions?

http://ceng.usc.edu/~prasanna
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