Award Number: DAMD17-03-1-0566

TITLE: Proteomics Analysis of Molecular Mechanisms of Multidrug Resistance in Breast Cancer Chemotherapy

PRINCIPAL INVESTIGATOR: Jian-Ting Zhang, Ph.D.

CONTRACTING ORGANIZATION: Indiana University
Indianapolis, Indiana 46202-5167

REPORT DATE: August 2004

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Proteomics Analysis of Molecular Mechanisms of Multidrug Resistance in Breast Cancer Chemotherapy

Jian-Ting Zhang, Ph.D.

Indiana University
Indianapolis, Indiana 46202-5167

E-Mail: jianzhan@iupui.edu

Recently breast cancer resistance protein (BCRP) has been found to be a frequent cause of MDR by causing increased efflux of a wide variety of cytotoxic drugs. Although it has been shown that transfection of BCRP into breast cancer cell line MCF7 caused drug resistance, it has also been found that the drug resistance level of these cells were much lower than that of the drug-selected cells. Thus, there must be other drug resistant mechanisms in the drug selected MCF7/AdrVp cells. This study is designed to test this concept.

Specifically, we plan to achieve the following objectives using proteomics technology: (a) to compare protein profiles between MCF7 and MCF7/AdrVp cells using two-dimensional gel analysis, (b) to identify the proteins of different levels between the two cell lines using MALDI-TOF mass spectrometry analysis, (c) to confirm the different level of the identified proteins using western blot, and (d) to test the role of these proteins in mediating MDR using MTT assay.

The information and probes obtained from this study will help us understand the molecular mechanism of drug resistance in breast cancer cells. This work may also help us discover new therapeutics for treating drug resistant breast tumors.
Table of Contents

Cover ... 1

SF 298 .. 2

Table of Contents ... 3

Introduction .. 4

Body ... 4

Key Research Accomplishments 4

Reportable Outcomes .. 4

Conclusions .. 4

References .. 5

Appendices .. 6
INTRODUCTION

The use of anticancer agents in appropriate combinations has led to major improvements in the treatment of malignant tumors. Previously fatal diseases, such as Hodgkin's disease, are now curable while others, such as breast cancer, can undergo remission. Resistance to chemotherapy frequently occurs in breast cancers and is a major obstacle to successful breast cancer treatment. Studies with tumor cell lines such as MCF7 have revealed that multidrug resistance (MDR) can develop and thus cause chemotherapy failure. Advances in elucidating the molecular basis of the MDR phenotype indicate that expression of P-glycoprotein (Pgp) and multidrug resistance protein 1 (MRP1) is a frequent cause of MDR in human breast cancers (Ambudkar et al., 1999). Recently, another membrane protein, breast cancer resistance protein (BCRP), has also been found to be a frequent cause of MDR (Doyle et al., 1998)-(Miyake et al., 1999). Pgp, MRP1 and BCRP all belong to the ATP-binding cassette transporter superfamily (Dean et al., 2001). Cancer cells over-expressing Pgp, MRP1, or BCRP have an increased ability to efflux a wide variety of cytotoxic drugs and, therefore, can survive chemotherapy (Gottesman et al., 2002).

BODY

This progress report is for a concept award. In the original application, we proposed to accomplish the following objectives: (a) to compare protein profiles between MCF7 and MCF7/AdrVp cells using two-dimensional gel analysis, (b) to identify the proteins of different levels between the two cell lines using MALDI-TOF mass spectrometry analysis, (c) to confirm the different level of the identified proteins using western blot, and (d) to test the role of these proteins in mediating MDR using MTT assay.

We have accomplished most of our studies as planned. Firstly, a regular SDS-PAGE was performed and a protein of 275 kDa was found over-expressed (see Figure 1 in the poster appended). This protein was later identified to be fatty acid synthase by MALDI-TOF mass spectrometry (see Table 1 in the poster appended). A two dimensional gel electrophoresis was then conducted on the cell lysates prepared from the parental drug sensitive MCF7 cells and the drug-selected MCF7/AdrVp3000 cells and 17 protein spots were found to be differentially expressed between the two cell lines (see Figure 2 in the poster appended) and were identified by MALDI-TOF mass spectrometry (see Table 1 in the poster appended). We then confirmed the expression level of some of these proteins using western blot and real time RT PCR (see Figures 4 and 5 in the poster appended). We are currently in the process of testing whether the altered expression of these proteins plays any role in drug resistance in breast cancer cells.

KEY RESEARCH ACCOMPLISHMENTS

1. Seventeen proteins were identified which have differential expression levels between the drug sensitive parental MCF7 and the drug resistant MCF7/AdrVp3000 cells.
2. The differential expression levels of some of these proteins were confirmed by western blot and/or real time RT PCR.

REPORTABLE OUTCOMES

CONCLUSIONS

In conclusion, at least 17 proteins have altered expression level in the drug selected MCF7/AdrVp3000 cells compared with the parental drug sensitive MCF7 cells. This observation suggests that other mechanisms are likely also responsible for drug resistance of MCF7/AdrVp3000 cells in addition to the known the increased drug efflux due to elevated expression of BCRP. We are currently testing these possibilities.
REFERENCES:
ABSTRACT

MCF-7/AdrVp3000, a drug resistant human breast cancer cell line derived from parental MCF-7 cells by stepwise selection with adriamycin in the presence of P-glycoprotein inhibitor verapamil, has been shown to over-express an ABC transporter ABC122 which was thought to cause the observed drug resistance phenotype in MCF-7/AdrVp3000 cells. However, MCF-7 cells with similar ABC2 level by induced enoxacin expression did not produce similar level of drug resistance, suggesting that other mechanism of resistance may have been selected in MCF-7/AdrVp3000 cells. To study this, we used proteomic approach to compare the global protein profile between MCF-7 and MCF-7/AdrVp3000 cells. Following two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, 17 proteins with differential levels between the two cell lines were identified. Twelve proteins including c-yes, ctk-5, 11, 4A-3-3, actin, tubulin, actin cytoskeleton, 14-3-3, and PKC substrates, protein disulfide isomerase (PDI), HSP72, cathepsin D, transphosphatase isomerase 1, prolylendopeptidase 6, electron transfer flavoprotein and fatty-acid synthase were found over-expressed in MCF-7/AdrVp3000 cells. Other proteins including non-enzymatic proteins such as adenosine deaminase, chymotrypsinogen A, dipeptidyl peptidase IV and myoglobin were found decreased in MCF-7/AdrVp3000 cells. The different levels of these proteins between these two cell lines were confirmed by western blotting and/or real-time RT-PCR. The differential expression of these proteins may also be responsible for the drug resistance in MCF-7/AdrVp3000 cells selected by adriamycin.

INTRODUCTION

A major obstacle in the efficient chemotherapy of human cancers is the intrinsic or acquired multidrug resistance (MDR) to cytotoxic and cytotoxic drugs. To study the mechanisms of drug resistance, many drug resistant cell lines have been developed in vitro by selecting with various agents. A drug resistant human breast cancer cell line, MCF-7/AdrVp3000, was isolated from parental MCF-7 cells by stepwise selection with adriamycin in the presence of P-glycoprotein inhibitor verapamil. MCF-7/AdrVp3000 displays an ATP-dependent reduction in the intracellular accumulation of anthracycline and anticancer drugs in the absence of over-expression of known multidrug resistance transporters such as P-glycoprotein or the multidrug resistance-associated proteins. A half ABC transporter, ABC122, was shown to be over-expressed in this cell line. MCF-7 cells transfected with ABC2 cDNA showed similar profile but with a much reduced level of drug resistance when compared with that of MCF-7/AdrVp3000 cells. In addition, two non-drug resistance proteins, H19 gene and NCA-99 (non-specific cross-reacting antigen), were also identified to be highly expressed in MCF-7/AdrVp3000 cells, a derivative cell line from the first step of selection. In an attempt to investigate whether other mechanisms may have been selected by adriamycin in MCF-7/AdrVp3000 cells but absent in the parental MCF-7 cells, we applied the proteomic approach which combines two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to compare the global protein profile and to identify the proteins with differential expression between MCF-7 and MCF-7/AdrVp3000 cells.