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Abstract

Computational methods for simulation of the tunneling stage of penetration into semi-infinite

compressible geological targets of a hard (rigid) penetrator for intermediate impact velocities

(typically, below 1000 m/s) were developed. A compressible viscoplastic fluid constitutive equation

that captures the combined effects of high-strain rate and high-pressure (confinement)on yielding

was developed. To account for the experimentally observed characteristics of the response at

high-pressures the hypothesis of a locking medium was adopted (i.e. the density cannot exceed

a critical limit). To simulate steady-state penetration, a mixed finite-element and finite-volume

strategy is developed. Specifically, the variational inequality for the velocity field is discretized

using the finite element method and a finite volume method is adopted for the density equation. To

solve the velocity problem a decomposition-coordination formulation coupled with the augmented

lagrangian method is used. This approach is accurate in detecting the visco-plastic regions and

permit us to handle the locking condition. The ability of the proposed model to accurately describe

(i) the density changes in the target around the penetration tunnel, ii) the shape and location

of rigid/plastic boundary, iii) the directional damage/fracture ahead of the penetrator. Moreover

the fact that fracture occurs ahead of the penetrator and along planes which are not symmetric

with respect to the penetrator centerline, can explain trajectory instabilities.
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1 Introduction

Kinetic energy penetration phenomena are of interest in a variety of applications ranging from
terminal ballistics to protection of spacecraft due to meteoroid impact, containment of high
mass or high velocity debris due to accidents or high rate energy release, design of hardened
protective facilities, erosion and fracture of solids due to impact, etc. (Zukas [32]). The
occurrence of multiple phenomena in the target such as localization, plasticity, anisotropic
damage, fragmentation pushes the limits of existing modelling and computational capabilities
for description of the target response.

Since the deformation rates are very large (of the order of 105s−1), a fluid formulation in
eulerian description could describe the main features of the target deformation. Because shear
flow takes place only if a certain threshold is surpassed, a non-newtonian fluid model is not
appropriate. Since yielding cannot be neglected, viscoplastic fluid models such as Bingham
have been used [2, 9, 17, 18] in studies concerning penetration into metalic targets. It is to
be noted that such models are suitable for the description of the high-strain rate behavior
of metals for which yielding is insensitive to pressure and consequently are incompressible.
As opposed to metals, in geological materials yielding is pressure-dependent (e.g. [27]). For
these materials, compressibility is not a second order property as for non-newtonian fluids.
Indeed, the geologic and cementitious materials have a compaction rate up to 30% and their
mechanical properties (viscosity, yield limit, etc) depend significantly on density (4 to 400
times increase in yield limit for quasi-static and dynamic conditions, respectively). Thus,
compressible viscoplastic fluid models should be considered.

Only a limited number of 2-D and 3-D calculations of penetration into cementitious or
geologic materials for low to intermediate velocity impacts have been reported in the open lit-
erature. Finite-element and finite-difference models employing both Lagrangian and Eulerian
formulations have been used. Each of these methods has advantages and disadvantages as
a tool to model penetration. For example, with the finite-element method using Lagrangian
formulation, one needs to perform a remeshing whenever the mesh becomes highly distorted
as the projectile advances in the target. A finite-difference method generally utilizes an Eule-
rian description in which the mesh is fixed in space, and thus does not distort. The moving
boundary between the penetrator and the surrounding target is not sharp, and special inter-
face tracking methods are required (e.g. level set methods). Mesh-less methods have also been
proposed for tracking moving fronts of discontinuities.

In discrete element models (DEM) the material is treated as heterogeneous at the macro-
scale. Specifically, the material is discretized into individual elements or blocks, which are
allowed to interact as stress is applied [23]. Applications of DEM to modelling the dynamic
behavior of concrete have been reported [6, 10] and a very good agreement with experiments
was obtained. However, DEM is not applicable to large scale problems because the computa-
tion time required to solve even simple, routine problems can be excessive.

It is to be noted that the material models used in conjunction with the aforementioned
methods exhibit limited features such as pressure-dependent yield surfaces (e.g. Schwer et al.
[27]), strain-rate dependent yield surfaces (e.g. Batra [2]), pressure and strain-rate dependent
yield surfaces (e.g. Adamik and Matejovic, [1]), simple equations of state for porous materials
models (e.g. Tipton [31]). Most of the material models are incompressible.

A new model for describing steady-state penetration in geological or geologically derived
materials is presented in this paper which is outlined as follows. To account for the combined
effects of high-pressure and high strain-rate on the flow behavior, a new constitutive equation
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is proposed in section 2. The focus is on capturing the increase in the yielding limit with
the degree of compaction as well as the observed decrease in strain rate sensitivity. Since
in the range of impact velocities of interest, the target material displays both solid-like and
fluid-like behavior, the material model will be obtained by superposing a rigid-plastic solid to
a compressible viscous fluid.

The problem statement of steady state penetration and its variational formulations are
presented in section 3. A mixed finite-element and finite-volume strategy is developed in
section 4. Specifically, the variational inequality for the velocity field is discretized using the
finite element method and a finite volume method is adopted for the density equation. To solve
the velocity problem a mixed formulation with the augmented lagrangian method is used. The
model is further applied to axisymmetric penetration into concrete in section 5. The material
parameters are found following the recent experimental data obtained by Schmidt [29]. In
order to capture sharply the shape of the visco-plastic zone, we have used an anisotropic mesh
generator. The model predicts that around the penetrator, a fully compacted state is achieved,
the maximum compaction being in the nose zone. Fracture occurs ahead of the penetrator
and along planes which can be not symmetric with respect to the penetrator centerline. This
induced anisotropy can explain trajectory deviations

2 Material modeling

In the hypervelocity impact range, the flow behavior of the target could be described accurately
by classic fluid type constitutive equations. At low-to-intermediate impact velocity (below 1000
m/s), the impacted medium may display both solid and fluid-like properties. Thus, model for
fluids with yield limit are generally used. Since yielding of metals is insensitive to pressure,
these models are incompressible (e.g. Bingham type constitutive equation) [2, 9, 17, 18]). In
contrast, for geological materials yielding is pressure-dependent (e.g. [27]). The effect of the
density on flow cannot be neglected, since compressibility is not a second- order property as
for non-newtonian fluids. Thus, a compressible Bingham type model with yielding dependent
on the actual density (or compaction level) needs to be considered.

Let denote by u the material velocity, by D the rate of deformation tensor and by D′ =
D − 1

3(trD)I3 its deviator

D = D(u) =
1

2
(∇u+∇Tu), D′ = D′(u) = D(u)−

1

3
divuI3. (1)

Also, the Cauchy stress tensor is denoted by σ and its deviator by σ′ = σ−trσI3. In contrast
to a Navier-Stokes fluid, a classic Bingham fluid (see [3, 22, 8]), can sustain a shear stress
even at rest and it starts to flow only if the applied forces exceed an yield limit κ. To account
for the effect of compaction on the deviatoric response of cementitious or geologic materials,
in [4] the yield limit κ was considered to be a function of the current density. In this paper,
we consider an extension (see [11]) of the Bingham model which is obtained by superposing a
rigid-plastic solid to a compressible viscous fluid, i.e.

σ = S + [−p(ρ) + λ(ρ)(trD)]I3 + 2η(ρ)D (2)

F(S, ρ) ≤ 0 (3)

D′ = µ∂SF (4)
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where the tensor S is the part of the stress which describes the plastic properties of the
material, ρ is the density while η, λ > 0, are viscosity coefficients, F is the yield function and
µ is a scalar function such that

µ(t) = 0 if F(S, ρ) < 0 or F(S, ρ) = 0 and ∂SF(S, ρ) : Ṡ < 0

µ(t) > 0 if F(S, ρ) = 0 and ∂SF(S, ρ) : Ṡ = 0
(5)

Note that the viscosity coefficients η, λ as well as the yield function F are considered to be
functions of the current density ρ or alternatively on the compaction factor c = ρ/ρ0 − 1.

Further, it will be assumed that the Mises condition is satisfied, i.e.

F(S) = |S′|2 − κ2(ρ), (6)

where κ2(ρ) is the yield limit in shear which is considered to be a function of the current density.
Experimental studies of the dynamic behavior of cementitious materials have indicated a strong
dependence of yielding and subsequent flow on density (see for instance experimental data on
cementitious materials reported in [21, 26, 28]).

The material function p(ρ), describes the volumetric response of the material. Under hy-
drostatic conditions, most cementitious materials show a highly non-linear pressure-volumetric
strain response, the reversible decrease in volume being very small. The experimental observa-
tions also suggest that in the high-pressure regime, a very large increase in pressure is necessary
in order to produce even a very small change in density. Thus, the hypothesis of a ”locking
medium” can be made, i.e. the density cannot exceed a critical value. This critical density
ρ∗, called locking density, corresponds to a state in the material when all the pores and cracks
are closed. The pressure level at which this density is first reached, called locking pressure, is
denoted by p∗ = p(ρ∗). Hence,

{

p = p(ρ), if ρ < ρ∗

p ≥ p∗, if ρ = ρ∗
(7)

Since during unloading the reversible decrease of volume is very small, it can be neglected
and therefore the unloading process is rigid. Hence,

trD ≤ 0,

{

trS = 0, if trD < 0

trS ≥ 0, if trD = 0.
(8)

Following the procedure used to construct the classical Bingham fluid (see [8]), from equations
(2) to (5) we deduce the relationship between the deviatoric part of the rate of deformation
and the stress deviator:

D′ =







1

2η(ρ) + a

(

1−
κ(ρ)

|σ′|

)

σ′ if |σ′| > κ(ρ)

0 if |σ′| ≤ κ(ρ).
(9)

Next, by inverting the constitutive equation (9) we obtain that the shear response is governed
by







σ′ = 2η(ρ)D′ + κ(ρ)
D′

|D′|
if |D′| 6= 0

|σ′| ≤ κ(ρ) if |D′| = 0.

(10)
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The formulation of the model is completed by providing the equations governing the response
under hydrostatic conditions. From (2) and (8)

{

trσ = −3p(ρ) +
(

3λ(ρ) + 2η(ρ)
)

trD if trD < 0

trσ ≥ −3p(ρ) if trD = 0.
(11)

Subsequently we will refer to (10)-(11) as the constitutive equations of the compressible
Bingham-type material. Note that the classical Bingham fluid (1) is recovered if in (10) the
incompressibility condition (i.e. divu = 0) is imposed.

3 Statement of the problem

In this section we present the equations governing the steady-state motion of concrete, de-
scribed by the constitutive equation (10)-(11), over a rigid penetrator fully embedded in the
target, represented by a domain D ⊂ R

3 with a smooth boundary ∂D.

r

z
O A

B C

D

E

F

σθθσσσ

σ
θθ

Figure 1: A schematic representation of the domain D.

The domain D is assumed to be the whole space R
3 without the penetrator P and the

infinite tunnel T behind it. ∂0D where the velocities V are prescribed will be the infinity of
the domain D; ∂1D is the boundary of the tunnel while ∂2D, is the part of the boundary where
there is frictional contact with the projectile. However, post-test observations indicate that
the tunnel is of the order of the projectile diameter. For both grout and concrete targets a
change in density in the region around the penetration tunnel radially outward from the edge
of the tunnel to a distance of 1− 1.5 projectile diameters was reported (see Jones et al [19]).
Hence, the domain affected by the impact event is bounded and thus D will be restricted
to the domain shown Figure 1. To enable reasonable computational effort and still ensure
that the boundary conditions at infinity are accurately described, we limit the extent of this
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domain to 5 projectile radii. The projectile is considered to be rigid and axisymmetric. Since,
at striking velocities up to 1200 m/s, penetration paths are relatively straight and stable with
regard to the original shotline, the problem could be considered axisymmetric with respect to
the projectile centerline 0z.

The momentum balance law in the Eulerian coordinates reads

ρ(u · ∇)u− divσ = ρf in D, (12)

where ρ = ρ(x) ≥ ρ0 > 0 is the mass density distribution and f denotes the body forces. The
continuity equation is

div(ρu) = 0 in D. (13)

To the system of equations (10)-(11)and (12)we associate the following boundary conditions:

u = V on ∂0D, σn = 0 on ∂1D, (14)

where n stands for the outward unit normal on ∂D, un = u · n is normal velocity, σt =
σ − (σ · n)n stands for the tangential stress and V is the imposed velocity.

A slip-dependent frictional contact is assumed on the boundary ∂2D

un = 0,







ut = 0 =⇒ |σt| ≤ µ|σn|,

ut 6= 0 =⇒ σt = −µ|σn|
ut

|ut|
,

(15)

where σn = σn · n is the normal stress, ut = u− unn is the tangential velocity and µ is the
friction coefficient. According to (15), the the tangential (friction) stress is bounded by the
normal stress multiplied by the friction coefficient µ. If such a limit is not attained sliding
cannot occur; otherwise the friction stress is opposite to the slip rate. The friction coefficient
will be considered variable during the slip. Experimental observations indicate that the friction
coefficient depends on the slip rate |ut| i.e. µ = µ(|ut|). The simplest law of variation of µ on
the slip rate is a discontinuous jump from a “static” value (for |ut| = 0) down to a “dynamic”
or “kinetic” value (for |ut| 6= 0). In this work, we will consider a smooth and decreasing
function µ = µ(|ut|) of the slip rate.

The boundary condition for the conservation of mass equation is:

ρ = ρ0 on ∂ρD (16)

i.e. a given density is prescribed on ∂ρD ⊂ ∂D.

Setting

V =
{

v ∈ H1(D)3;v = V on ∂0D, vn = 0 on ∂2D
}

, V =
{

v ∈ V ; div v ≤ 0 in D
}

the kinematic admissible set, the variational formulation for the velocity field u ∈ V is:
∫

D
ρ(u · ∇)u · (v − u) +

∫

D
2η(ρ)D′(u) : (D′(v)−D′(u))+

∫

D
κ(ρ)(|D′(v)| − |D′(u)|) +

∫

D
[(λ(ρ) +

2

3
η(ρ)) divu− p(ρ)] div(v − u)

+

∫

∂2D
µ(|ut|)|σn|(|vt| − |ut|) ≥

∫

D
ρf · (v − u). (17)

for all v ∈ V.

Thus, the problem of the flow of compressible visco-plastic Bingham-type fluid becomes:

Find the velocity field u and the mass density field ρ such that equations (13), and (17)
hold.
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4 Numerical approach

In this section, we present the numerical approach adopted for solving the problem of the
stationary flow of a rigid-viscoplastic Bingham type material.

The algorithm consists of solving alternatively the variational inequality (17) for the ve-
locity field and the continuity equation (13) for the density field. More precisely, we shall
distinguish two problems : the ”velocity problem” and the the ”density problem”. For the
velocity problem we assume that ρ and the distributions of p, η, λ and κ are given, and we
find u ∈ V, the solution of (17). The density problem consists in finding the density field ρ
solution of (13) assuming that u is given.

As it follows from the next subsection the velocity problem will be solved by an iterative
procedure. At each iteration k we get a velocity field uk which will be used to solve the density
problem

div(ρkuk) = 0 in D, ρk = ρ0 on ∂ρD (18)

and getting ρk to update the density field.

4.1 The velocity problem

Suppose that D is discretized by using a family of triangulations (Th)h made of finite elements
of degree 2 where h > 0 is the discretization parameter representing the greatest diameter of
a triangle in Th. The finite element space Vh, which is an internal appoximation of V reads:

Vh =
{

vh; vh ∈
(

C(D)
)3
, vh|T ∈

(

P2(T )
)3
∀T ∈ Th, vh = V on ∂0D, vhn = 0 on ∂2D

}

,

where C(D) stands for the space of continuous functions on D and Pi(T ) represents the space
of polynomial functions of degree i on T .

Let Vh = V
⋂

Vh. Then, the velocity problem is discretized by considering uh ∈ Vh which
satisfies (17) for all v ∈ Vh. In order to simplify the notations we shall omit in all this
subsection the indexes h.

For all w ∈ Vh let Jw : Vh → R be given by

Jw(v) =

∫

D
η|D′(v)|2 +

∫

D

(

1

2
λ+

1

3
η

)

(divv)2 +

∫

D
κ|D′(v)|+

∫

∂2D
µ(|wt|)|σn(w)||vt|

+

∫

D
ρ(w · ∇)w · v −

∫

D
p divv −

∫

D
ρf · v. (19)

Hence, the velocity problem can be written as

u ∈ Vh, Ju(u) = inf
v∈Vh

Ju(v) (20)

The following iterative algorithm is proposed : given uk−1 ∈ Vh find uk ∈ Vh, the solution of
the following minimization problem

uk ∈ Vh, Jk(u
k) = inf

v∈Vh

Jk(v), Jk(v) = Juk−1(v) (21)

Since Jk is not Gâteaux differentiable, one can use (see for instance [17, 18, 5]) the function
ϕε(x) =

√

(x2 + ε2) − ε to regularize the euclidian norm of the second order tensors. With
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this technique, the material is not completely rigid anymore, and so it is difficult to capture
accurately the shape of the rigid zone. In this paper, we use a decomposition-coordination
formulation coupled with the augmented lagrangian method (see [14, 13]). This approach is
accurate in detecting the visco-plastic regions and permit us to handle the locking condition.

Let
∆h =

{

δh; δh ∈ L2(D)3, δh|T ∈ P1(T )
3 ∀T ∈ Th,

}

,

Θh =
{

θh; θh ∈ L2(D), θh|T ∈ P1(T ) ∀T ∈ Th,
}

and the Lagrangian Lε
k:

Lk(v,σ, θ, δ) =

∫

D
η|δ|2 +

∫

D

(

1

2
λ+

1

3
η

)

θ2 +

∫

D
κ|δ| −

∫

D
p θ +

∫

∂2D
µ(|uk−1

t |)|σn(u
k−1)|

uk−1
t · vt

√

|uk−1
t |2 + ε2

+

∫

D
ρ(uk−1 · ∇)uk−1 · v −

∫

D
ρf · v +

∫

D
(D′(v)− δ) : σ′ +

∫

D
(θ − divv) · trace σ

(22)

where v ∈ Vh, δ ∈ ∆h represents D′(v), θ ∈ Θh stands for divv and the lagrangian multiplier
σ ∈ ∆h is the stress inside the material. Let us introduce the augmented Lagrangian Lk:

Lk(v,σ, θ, δ) = Lk(v,σ, θ, δ) + rD

∫

D
|D′(v)− δ|2 + rH

∫

D
| θ − divv|2, (23)

where rH and rD are strictly positive constants. As it follows from [14, 13] Lk is quadratic
with respect with v and its saddle points coincide with those of Lk. Thus, the minimization
problem (21) becomes: find uk ∈ Vh, σ

k ∈ ∆h, θ
k ∈ Θh and δk ∈ ∆h such that

sup
θ,σ,δ

Lk(u
k,σ, θ, δ) ≤ Lk(u

k,σk, θk, δk) ≤ inf
v∈Vh

Lk(v,σ
k, θk, δk). (24)

In order to solve the above saddle point problem we shall use an Uzawa-type algorithm
(see [14]). For this let us put σk−1

0 = σk−1, θk−1
0 = θk−1 and δk−1

0 = δk−1 and let us introduce
two functions fH and fD useful in the description of the algorithm:

fD(σ, a) =
1

2η(ρ) + a

[

1−
κ(ρ)

|σ′|

]

+

σ′ (25)

fH(σ, a) =











[

3p(ρ) + trσ

3λ(ρ) + 2η(ρ) + a

]

−

if ρ ≤ ρ?

0 if ρ > ρ?
(26)

where [x]+ = (x + |x|)/2 and [x]− = (x − |x|)/2 represent respectively the positive and
the negative part. Let us remark that, by taking a = 0, (25) and (26) give us the complete
model of our material:

D = fD(σ, 0) +
fH(σ, 0)

3
Id = f(σ)

At the iteration i, we know σk−1
i−1 , δ

k−1
i−1 , θ

k−1
i−1 and we compute uk−1

i ,σk−1
i , δk−1

i , θk−1
i as follows

uk−1
i ∈ Vh, Lk(u

k−1
i ,σk−1

i−1 , θ
k−1
i−1 , δ

k−1
i−1 ) = inf

v∈Vh

Lk(v,σ
k−1
i−1 , θ

k−1
i−1 , δ

k−1
i−1 ).
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δk−1
i = fD

(

σk−1
i−1 + 2rDD(uk−1

i ), 2rD
)

, θk−1
i = fH

(

σk−1
i−1 + 2rHD(uk−1

i )), 2rH
)

(σk−1
i )′ = (σk−1

i−1 )
′+2rD

(

D′(uk−1
i )−δk−1

i

)

, traceσk−1
i = traceσk−1

i−1 +2rH
(

divuk−1
i −θk−1

i

)

.

For large enough i = imax we put uk = uk−1
imax ,σk = σk−1

imax , θk = θk−1
imax and δk = δk−1

imax . The
interest of this algorithm is that it transforms the non-differentiable problem into a sequence
of completely standard computations.

We shall use in the numerical results presented in the next sections a single pass (i.e.
imax = 1) Uzawa-type algorithm to deduce the following numerical approach for the velocity
problem.

A). The algorithm starts with arbitraries σ0, θ0 and δ0.

B). At the iteration k, we have σk−1, δk−1 and θk−1. From the previous density problem
we know also the density ρk−1, and therefore the distributions of p, η, λ and κ. Then we have
to compute the following three steps:

1 − First Step:

find uk ∈ Vh such that Lk(u
k,σk−1, θk−1, δk−1) = inf

v∈Vh

Lk(v,σ
k−1, θk−1, δk−1). (27)

This problem is equivalent to find uk such that:

−div
(

2 rDD
′(uk) +

2

3
rH div(uk)I3

)

= div
(

σk−1 − 2rDδ
k−1 −

2

3
rHθ

k−1I3
)

+

ρk−1
(

(uk−1 · ∇),uk−1 − f
)

,

with appropriate boundary conditions.

2 − Second Step: Compute explicitly θk and δk using the constitutive equations (25)
and (26):

{

δk = fD
(

σk−1 + 2rDD(uk), 2rD
)

,
θk = fH

(

σk−1 + 2rHD(uk), 2rH
)

.

3 − Third Step: Compute σk through the following formulas:

{

(σk)′ = (σk−1)′ + 2rD
(

D′(vk)− δk
)

,

traceσk = traceσk−1 + 2rH
(

divvk − θk
)

.

C). The algorithm stops when
||uk − uk−1||L2(D)

||uk||L2(D)
is small enough.

4.2 The density problem

A finite volume method (see for instance [12]) will be used to discretize equation (18). Let
denote by Kh the finite volume mesh, which is given by a family of disjoint polygonal connected
subsets of R

3 such that D is the union of the closure of the elements of Kh; h is the greatest
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diameter of a control volume in Kh. The finite volume mesh Kh is obtained from a finite
element triangulation Th. In two space dimensions, the middle of each side of a triangle T
is connected to the center of mass to obtain three pieces. A control volume K ∈ Kh, which
corresponds to the node A, is obtained from the union of all pieces which have the node A.

The finite volume discrete space is the space of piecewise constant functions, i.e. we are
looking for the solution ρkh of (18) as {ρkhK , K ∈ Kh}. In order to simplify the notations we
shall omit in all this subsection the indexes h and k and ρkh and uk

h will be denoted simply by
ρ and u.

Let us consider two control volumes K,P ∈ Kh with a common interface IKL = K
⋂

P .
Let n be the unit normal vector to IKP oriented from K to P . The we define the flux F (K,P )
at the interface IKP as

F (K,P ) =

∫

IKP

[u · n]+.

Note that at least one of the two fluxes F (K,P ) and F (P,K) is vanishing. If we denote by
N (K) the set of all neighbors of the control volume K then the finite volume numerical scheme
for (18) reads as a linear algebraic system for the unknowns (ρK)K∈Kh

∑

P∈N (K)

F (K,P )ρK − F (P,K)ρP = 0, for all K ∈ Kh. (28)

If a volume control L corresponds to a node which is on the boundary ∂ρD then we put ρP = ρ0

and we eliminate the corresponding equation.

5 Penetration in concrete

5.1 Material parameters model

To illustrate the predictive capabilities of the model, its application to concrete is presented.
The data available consists of laboratory quasi-static unconfined and confined compression
tests for confining pressures in the range 50-450 MPa under a strain rate of 10-6/s and both
confined and unconfined Split-Hopkinson bar data at strain rates of 60/s to 160/s. The ambient
density of the material is:ρ0 = 2000kgm−3 and the unconfined strength is of 60.00 MPa(data
after Schmdit[29]. The locking density is of ρ∗ = 2, 600 kgm−3 and locking pressure p∗ = 0.5
GPa.

The pressure - density relationship for this material can be approximated by







p(ρ) = p∗
ρ∗

ρ∗ − ρ0
(1−

ρ0

ρ
), if ρ0 ≤ ρ < ρ∗

p(ρ) ≥ p∗, if ρ ≥ ρ∗
(29)

The following law of variation of the yield limit with the current density describes well the
data:

κ(ρ) = κ0 + β(1−
ρ0

ρ
)

where β = (κ∗ − κ0)ρ0/(ρ
∗ − ρ0) and κ0, κ

∗ are the yield stress corresponding to the density
of the undeformed (ρ = ρ0) and locked medium (ρ = ρ∗). In the numerical simulations, we
have taken κ0 = 100MPa, and κ∗ = 800MPa.
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For the viscosity coefficients η(ρ) and λ(ρ) a similar variation law as for the yield limit is
used

η(ρ) = η0 + γ(1−
ρ0

ρ
)2, λ(ρ) = λ0 + δ(1−

ρ0

ρ
)2,

where γ = (η∗− η0)(ρ0/(ρ
∗− ρ0))

2 and δ = (λ∗−λ0)(ρ0/(ρ
∗− ρ0))

2. The set of values chosen
in the numerical simulations are: η0 = 20. kPa·s,η∗ = 5. kPa·s, λ0 = 10 kPa·s and λ∗ = 1.0
MPa·s.

5.2 Boundary conditions

On the boundary ∂0D, which consists of the polygonal line OFEC, the velocity is V ez, where
V is the impact velocity. Simulations were performed for an impact velocity of 500 ms −1. Since
the control volume D does not touch the tunnel we have ∂1D = ∅. Preliminary simulations, in
which a part of the tunnel was modelled have shown that the material in D which is behind
the projectile is rigid and thus does not influence the computations.

The frictional contact boundary is the boundary of the projectile, i.e. ABC on the figure
1. We have chosen Lim-Ashby-Klepaczko model (see [20]) to describe the influence of the
velocity on the friction coefficient between the concrete target and the metallic penetrator

µ(v) = a[1− b log(1 +
v

v0
)]

where a = 0.5, b = 0.263 and v0 = 1.0 ms−1. The boundary condition un = 0 prescribed on the
projectile is accurate everywhere apart from two small zones. The first one is located on the
nose of the projectile in the neighborhood of A. In this zone, rupture in the target material and
creation of a free boundary, which begins somewhere on OA and ends somewhere on AB, but
still very close to A is to be expected. In the second zone, which is located on the body of the
projectile behind and near B, the target material is no longer in contact with the projectile.
This corresponds to a second free boundary zone which starts and ends somewhere on the
body BC. The formulation and solution of these two free boundary problems is beyond the
scope of this study. However, the influence of these two zones on the resistance to penetration
seems to be very small.

5.3 Mesh adaptation

In order to capture sharply the shape of the visco-plactic zone, we have used the anisotropic
mesh generator BAMG (see [15, 16]). This generator requires a governing field for re-meshing
and refines the zones with high second derivative. The field E we used is the square root of
the dissipative energy associated to a velocity field u computed through δ and θ defined in
(22).

E =
√

σ(u) : D(u) =

√

η(ρ)|δ|2 + κ(ρ)|δ| − p(ρ)θ +
2η(ρ) + 3λ(ρ)

3
θ (30)

Note that E is continuous, but its first derivative is discontinuous across the zones of contact
between the rigid and visco-plastic regions; that means that the second derivative is very large
on this surface that the mesh generator will emphasize this boundary. Other regions have to
be refined, those ones with high rates of deformation. As we can expect, the zone around the
nose of the projectile will be also privileged.

In figure 2 we have plotted the initial finite element mesh of the domain OABCEF , and the
distribution of the deformation rate |D(u)|. Note that the boundary between the rigid zone
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and the visco-plastic one is not well captured. This mesh has 2304 nodes and 4356 triangular
elements. The finite element mesh obtained after remeshing is plotted in Figure 3. Using 6992
nodes and 13,719 triangular elements this mesh is able to give a satisfactory description of the
rigid zone.
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Figure 2: The initial finite element mesh (left), and the distribution of the deformation rate
|D(u)| (right). Note that the boundary between the rigid zone and the visco-plastic one is not
well captured.
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Figure 3: The finite element mesh obtained after remeshing (left), and the distribution of
the deformation rate |D(u)| (right). Note that the boundary between the rigid zone and the
visco-plastic one is sharply captured.
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6 Results and discussion

Figure 4 shows the distribution of density in the target. Note the existence of three distinct
zones: (1) a fully compacted zone around the penetrator, where the density is everywhere
equal to the locking density ρ∗ , (2) a compacted where the density varies between ρ0, the
density of the intact material, and ρ∗; (3) a zone that remains unaffected by the impact event
where the density is everywhere equal to ρ0. The streamlines are shown in figure streamlines.
It is worth noticing that all the particles ahead of the projectile which are at a distance from
the centerline less than R will enter the fully compacted zone (1).
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Figure 4: The distribution of density in the target and the streamlines computed in Kg m−3.

In figure 5 it is shown the distribution of the second invariant of the rate of deformation
deviator |D′(u)|. It is seen that a zone of intense plastic deformation develops around the
penetrator and it extends outward to approximatively 3 projectile radii from the centerline.
The maximum rate of deformation is achieved on the nose tip. Outside this zone, |D′(u)|
vanishes, hence according to the model no plastic deformation can occur.
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Figure 5: The distribution of the second invariant of the rate of deformation deviator |D ′(u)|
computed in s−1.

The distribution of the rate of volumetric deformation divu is displayed in Figure 6. We
note that around the penetrator, a fully compacted state is achieved, the maximum com-
paction being in the nose zone. Because the prescribed boundary conditions do not reflect
that the target material is not in contact with the projectile on a limited zone of the body
of the projectile, divu is slightly positive in a small region behind the projectile. This zone
corresponds to positive normal stresses. This can be seen in Figure 7 where it is shown the
distribution of the normal stress σn along the projectile. High compressive values on the tip of
the nose and very small values on the shank are obtained. The tangential velocity ut on the
projectile, plotted in Figure 7, is very small on the tip and gradually increases until it reaches
the value of the impact velocity on the shank.
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Figure 6: The distribution of the rate of volumetric deformation divu computed in s−1.
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Figure 7: Left: the distribution of tangential velocity ut along the projectile computed in
ms−1. Right : The distribution of the normal stress σn along the projectile computed in Pa.

Let us analyze now the stress distribution in the target and determine the zones where
tensile failure may occur. It is assumed that concrete tensile failure can be modelled with the
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classic maximum tensile strength criterion (see [25]), i.e. the material fails if the maximum
of the principal stresses reaches a critical limit denoted f . The tensile strength depends on
the level of compaction of the material. A power law variation of this tensile strength of the
material with the current density is assumed

f(ρ) = f0 + a(1−
ρ0

ρ
)2

where a = (f∗ − f0)(ρ0/(ρ
∗ − ρ0))

2 and f0, f
∗ are the tensile strength corresponding to the

density of the non deformed (ρ = ρ0) and locked medium (ρ = ρ∗). For the numerical tests
we have used f0 = 33.3MPa, and f∗ = 233.3MPa. The plot of the distribution of σθθ/f is
plotted in figure 8. We remark that in a wide region ahead of the projectile the tensile failure
can occur along Ozr planes orthogonal to eθθ (see figure 1). Following the stream lines a part
of this region will be fully compacted, hence in the lagrangian configuration fracture will not
be observed near the projectile.

From the analysis of the spatial distribution of damage in the target one can gain funda-
mental understanding of the stability of the penetrator trajectory. We have found that damage
occurs ahead the projectile and along planes which can be not symmetric with respect to the
penetrator centerline. This damage induced anisotropy can explain trajectory deviations.
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Figure 8: The distribution of σθθ/f in the target.
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7 Conclusions

A model for describing steady-state penetration of a rigid penetrator into a geologic or geo-
logically derived material was proposed.

Since for low-to-intermediate impact velocities, the impacted medium displays both solid-
like and fluid-like behavior a rigid visco-plastic fluid type constitutive was developed. To
capture the observed dependence of yielding and strain-rate sensitivity on compaction, an ex-
plicit dependence of the yield limit and viscosity coefficients on density was considered. To
reflect the observed characteristics of the pressure-density relationships in geologic materials
when subjected to high-pressure (of the order of GPa) the hypothesis of rigid unloading and
locking medium was adopted (i.e. the density cannot exceed a critical limit). Variational for-
mulations and algorithms for solving the minimization problems for the velocity field using the
finite element method were developed while finite-volume techniques were adopted for solving
the hyperbolic mass conservation equation. To solve the velocity problem a decomposition-
coordination formulation coupled with the augmented lagrangian method is used. The model
was applied to penetration into concrete. The deformation behavior was described using the
viscoplastic compressible fluid model developed while fracture was modeled using the classic
maximum tensile stress criterion. The model predicts that around the penetrator, a fully com-
pacted state is achieved, the maximum compaction being in the nose zone. Fracture occurs
ahead of the penetrator and along planes which can be not symmetric with respect to the
penetrator centerline. This induced anisotropy can explain trajectory deviations.
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