Delivered Performance Predictions and Trends for RISC Processors in Radar Applications

Luke Cico and *Mark Merritt*
Mercury Computer Systems, Inc.
Phone: 978-967-1645
Fax: 978-244-0520
Email: lcico@mc.com
Email: mmerritt@mc.com

Abstract: Deployed radar and signal intelligence (SIGINT) systems require enormous amounts of real-time computational capability that must adhere to very confined power, weight and volume budgets. Computational requirements have been increasing as advanced adaptive signal processing techniques make their way from laboratories to deployed platforms. In many cases the computational requirements are increasing while power, weight and volume budgets are increasing only marginally if at all. These conflicting trends show an increase in processing requirements within existing platforms are driving physical and environmental budgets to ever higher levels of efficiency from commercial off-the-shelf (COTS) processing systems. This paper will address current trends in COTS processor designs and explore models that hopefully will predict how well these processors should perform per watt/kg/m³. The models will focus on space-time adaptive processing (STAP) and SIGINT processing requirements and how they map to very large-scale arrays of general-purpose programmable processors.

System designers are currently examining various technology options for increasing the levels of sustainable performance per watt/kg/m³ for their applications. These options include field-programmable gate arrays (FPGAs), alternative RISC processor architectures, and even a possible return to digital signal processor (DSP) devices. Each of these device classes has an associated cost of programmability, flexibility, upgradability, and interoperability with other devices. The question of efficiency of the device is not so easily stated, though, and is a function of the processing algorithms that must be performed as well as how well the devices can be interconnected in a large parallel processing system. It does not appear to be a question any more of “will” a particular device be applicable in high-end deployed systems, but “where” is it of the highest value in a processing chain. Heterogeneous systems are a certainty in future system designs. Part of these heterogeneous systems will continue to be large-scale processing arrays of advanced RISC processors that still hold much value for large amounts of the emerging application requirements. This presentation will examine trends in extracting more performance out of advanced RISC processors in order to meet stringent platform environmental and power budgets.
Delivered Performance Predictions and Trends for RISC processors in Radar Applications

Mercury Computer Systems, Inc. Chelmsford, MA 01824

Approved for public release, distribution unlimited

See also ADM001694, HPEC-6-Vol 1 ESC-TR-2003-081; High Performance Embedded Computing (HPEC) Workshop(7th). The original document contains color images.

Security classification of: unclassified, unclassified, unclassified

Limitation of abstract: UU

Number of pages: 7
Although the most flexible and easiest to program, extracting performance out of a RISC-type processor is a challenging endeavor. Today’s processors are highly complex and sophisticated architectures that include RISC cores, vector processing units, multi-stage memory hierarchies as well as high levels of integration of I/O interfaces and advanced data transport facilities. Furthermore, to use these devices in practical applications continues to require building large arrays of these devices in complex highly interconnected configurations. A system wide understanding of these complex systems is required in order to model their performance in radar and SIGINT applications. The models will include the effects of concurrent accesses of local memory systems by both the processor and network. System-level relative performance levels of existing and future RISC processors by various vendors will be examined, as will the effects of interconnect technologies and the network interface devices.
Delivered Performance Predictions and Trends for RISC processors in Radar Applications

Luke Cico (lcico@mc.com)
Mark Merritt (mmerritt@mc.com)
Mercury Computer Systems, Inc.
Chelmsford, MA 01824

The Ultimate Performance Machine
Goals of Presentation

- Provide an evaluation of the achieved performance levels of RISC processing nodes in radar applications
 - RT_STAP Benchmark is used as the representative benchmark
 - Evaluation over a 4-5 year span of node technologies

- We’ll then make projections of performance per watt for emerging PPC/AltiVec-based node architectures
 - Evaluation for the generation of technology that will be emerging within the next 1-2 years (2003-2005)
 - Examine where the major bottlenecks are and how much additional delivered performance we may obtain as we address these bottlenecks in a hypothetical node design (2005+)
- Throughput has increased by a factor of 5.6-6.4X
 - Power per node (PPC + Network Interface) has increased by ~10% over these generations
 - Throughput/watt has increased by factor of 5-5.7X
 - Overlapping communications and processing would get closer to the upper end of these performance ranges

![Graph showing Throughput Improvement factor](image-url)
Observations

• Throughput per node has made substantial improvements at the application level in the past few generations due to major architectural improvements: AltiVec
 ▪ > 5-6.5X throughput improvement with power per node holding constant
 ▪ Based upon this one application which maps fairly well to the AltiVec processor

• In order to get these benefits, heavy investments in IP (Intellectual Property) must be made
 ▪ Must investigate bottlenecks in the application and develop new routines that break these bottlenecks and exploit a new chip’s architecture (such as AltiVec)
 ▪ In this case the vendor has made those investments in their middleware
 ▪ By and large the application code base required trivial changes to use these new routines…no major structural changes in the code, ie., most of the burden is on the vendor’s middleware

• Although good, these results indicate that we’re not tracking Moore’s Law
 ▪ In 4-5 years only seeing a 5-6.5X improvement not the doubling every 1.5 years as Moore predicted
 ▪ This required a major architectural improvement: AltiVec
 ▪ Moore doesn’t predict performance per watt
Summary

- **Performance to date with AltiVec-type RISC + SIMD processors have measured up to the performance expectations**
 - But, as expected, this has involved a significant IP investment in software
 - This investment has been paid for by the vendor and the application has been largely insulated
 - RT_STAP benchmark has shown a 5-6.5X improvement in delivered performance per watt using currently available technology

- **Throughput/node is increasing with every generation**
 - To date AltiVec has yielded more than a quadrupling at the application level for a given power rating
 - Next-generation nodes should track clock increases assuming I/O rates increase at same rate
 - Generation after that could provide big step improvement due to architectural improvements in sustained IO per node

- **Power per node is increasing**
 - Throughput is absolutely increasing but so is the power
 - An improvement in the sustained IO per node should improve the delivered performance
 - Challenge for computer system designers is packaging these nodes in dense systems
 - Challenge for Radar system designers is cooling these systems on their platforms