
AN FPGA IMPLEMENTATION OF TWO-DIMENSIONAL FINITE-DIFFERENCE
TIME-DOMAIN (FDTD) ALGORITHM

Wang Chen, Prof. Miriam Leeser, Prof. Carey Rappaport, Panos Kosmas

Department of Electrical and Computer Engineering, Northeastern University
wchen@ece.neu.edu, mel@ece.neu.edu, rappaport@ece.neu.edu, pkosmas@ece.neu.edu

Three-Dimensional Finite-Difference Time-Domain (3D FDTD) is a powerful method for modelling the electro-
magnetic field. The 3D FDTD buried object detection forward model is emerging as a useful application in mine
detection and other subsurface sensing areas. However, the computation of this model is complex and time consum-
ing. Implementing this algorithm in hardware will greatly increase its computational speed and widen its use in many
other areas. We present an FPGA implementation to speedup the pseudo-2D FDTD algorithm which is a simplified
version of the 3D FDTD model. The pseudo-2D model can be upgraded to 3D with limited modification of structure.
We implement the pseudo-2D FDTD model and complete boundary conditions on an FPGA. The computational speed
on the reconfigurable hardware is about three orders of magnitude faster than the software implementation.

Understanding and predicting electromagnetic behavior is more and more needed in key electrical engineering
technologies such as cellular phones, mobile computing, lasers and photonic circuits [2]. After K. Yee first introduce
the FDTD method in 1966, people began to realize its accuracy and flexibility for solving electromagnetic prob-
lems [1]. The FDTD method provides a direct time-domain solution of Maxwell’s Equations in differential form by
discretizing both the physical region and time interval using a uniform grid. Because this method can solve Maxwell’s
equations on any scale with almost all kinds of environments, it has become a powerful method for solving a wide
variety of different electromagnetic problems [3].

However, the FDTD method was not used widely until the past decade when computing resources improved. Even
today, The computational cost is still too high for real-time application of the FDTD method. To solve this problem,
we present a reconfigurable hardware implementation of the 3D FDTD buried object detection forward model. This
FDTD model was developed at Northeastern University for use in research on subsurface sensing of landmines via
ground penetrating radar.

Fig. 1. 3D FDTD Buried Object Detection Forward Model Space

As shown in Figure 1, this model approximates a plane wave sent from ground penetrating radar with a45◦

incidence angle, which is then fed into a three-dimensional space grid and propagated through an air-soil interface. As
the wave is reflected from the boundary away from the location of the receivers, the possibility of detecting the small
signal scattered from the buried object is high.

This model is computational intensive. The model space is discretized to up to millions of computational cells.
For each of the cells, the FDTD algorithm updates all its parameters at every time step. Several hours may be needed
to simulate 100 time steps to achieve useful information. What’s more, the backward model, whose task is using the
forward model’s output data to detect the buried mines, runs the forward model iteratively to get the final result. So
the running speed of the forward model is critical to the real-time application of the backward detecting device.

Implementation of FDTD in hardware will greatly increase its computational speed. With higher speed, the FDTD
algorithm can be used in many other areas too. There are three methods we use to accelerate the algorithm:

1. Quantizing the 64-bit floating-point data to 30-bit fixed-point data while still achieving tolerable relative error.
2. Pipelining most of the calculations.
3. Parallelizing most of the pipelines to reduce processing time.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 AUG 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
An FPGA Implementation of the Two-Dimensional Finite-Difference
Time-Domain (FDTD) Algorithm

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Electrical and Computer Engineering, Northeastern
University

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001694, HPEC-6-Vol 1 ESC-TR-2003-081; High Performance Embedded Computing
(HPEC) Workshop (7th)., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Fig. 2. Relative error between fixed-point arithmetic and floating-point arithmetic on different bit-width

The original algorithm uses a 64-bit floating-point representation which costs more hardware resources, consumes
more power, and runs slower compare to using a fixed-point representation. Although the fixed-point representation
has less dynamic-range, it fits the FDTD algorithm well since all the data in this algorithm are electromagnetic field
values range between -1 and 1, and tend to be accurate to at most one part in 10,000. Figure 2 shows the relative error
of different fixed-point bit-width data in the FDTD algorithm compared to floating-point. We chose the data structure
with 26 bits after the binary point since this structure has an acceptable relative error and relatively short bit-width. In
addition, one of the dimensions of the 3D model was set to 2 to create a pseudo-2D model. The pseudo-2D model is
less complex and can be easily expand to the 3D model later, so we implemented this model first.

The hardware design accelerates the algorithm with pipelining and parallellism. All three electric and magnetic
field-updating modules in the FDTD algorithm are pipelined and processed in parallel. The memory interface mod-
ule, implemented on the FPGA chip using BlockRam, reads data from on-board memories and feeds them into the
pipelines. All the processes are controlled by state machines. Since the FDTD algorithm has similar calculation and
relatively regular structure, it is very suitable to be implemented using pipelining and parallelism.

Ideally, the more parallelism, the greater the speed. As long as there is sufficient FPGA chip area, we can imple-
ment more pipelines in parallel to speed up the design. In the FPGA chip we are currently using, a Xilinx Virtex-E, it
is possible to use 6 or 12 pipelines instead of 3 pipelines to double or quadruple the processing speed.

The performance results of the software and hardware implementations are shown in Figure 3. The hardware
design running on the FPGA chip is 24 times faster than fixed-point software running on a 3.0GHz PC and more than
100 times faster than the floating-point code.

Fig. 3. Performance results - Softwares vs. FPGA Hardware

The FPGA hardware board we used is a Firebird Reconfigurable FPGA Computing Engine produced by Annapolis
Micro Systems, Inc. It uses the Xilinx VIRTEX-E XCV2000E FPGA with over 2.5 million system gates.

1. REFERENCES

[1] Karl S. Kunz, Raymond J. Luebbers, “The Finite Difference Time Domain Method for Electromagnetics”,CRC
Press, 1993.

[2] Ryan N. Schneider, Laurence E. Turner, Michal M. Okoniewski, “Application of FPGA Technology to Accelerate
the Finite-Difference Time-Domain (FDTD) Method”,FPGA 2002.

[3] Kosmas, P., Wang, Y., and Rappaport, C., “Three-Dimensional FDTD Model for GPR Detection of Objects Buried
in Realistic Dispersive Soil”,SPIE Aerosense Conference, Orlando, FL, April 2002, pp.330–338.

1

An FPGA Implementation of the
Two-Dimensional Finite-Difference

Time-Domain (FDTD) Algorithm
Wang Chen

Panos Kosmas
Miriam Leeser

Carey Rappaport

Northeastern University
Boston, MA

2

FDTD Algorithm and Implementation

Finite Difference Time-Domain

Method for solving Maxwell’s equations

Used for buried object detection

Hardware Implementation

3D to 2D model simplification

Data dependency analysis

Fixed-point quantization

3

Finite-Difference Time-Domain Method

Maxwell’s EquationsA direct time-domain
solution of Maxwell's
equations

Accurate and flexible for
solving electromagnetic
problems

Discretize time and
electromagnetic space

4

FDTD Method (cont’d)

One FDTD Equation

Y-AxisX-Axis

Z
-A

xi
s

Ez

Hx

Ez

Ez

Hz

Ex

Ex

Ex

Ey

Ey

Ey

Hy

∆
Z

∆Y

∆X

(i,j+1/2,k+1/2)

(i,j,k)

Yee Cell Taylor Series Expansion

Adjacent Cells

5

FDTD Applications

Antenna Design

Discrete Scattering Studies

Medical Studies

The study of the cell phone
electromagnetic waves' effect
on human brain

The study of breast cancer
detection using electromagnetic
antenna

6

Buried Object Detection Forward Model

Buried Object
Detection Model Space

Mine

X

Y

Z

Object X

Y

Z

Transmitting Antenna Receiving Antenna

Initialization

Excitation

Calculate E Field

Exterior
Boundary
Conditions

End

Time over?

Calculate H Field

Yes

No, Go to Next
Time Step

t = n + 0.5

t = n n = n + 1

7

FDTD Simulated Model Space

8

FDTD Simulated Model Space (cont’d)

9

Related Work
Software acceleration of FDTD

Parallel computers do not provide significant speedup

FPGA implementations of FDTD
1D FDTD on hardware: architecture is too simple
Full 3D FDTD on hardware developed at UDel

Design is slower than software:
uses complex floating-point representation
no parallelism or pipelining

Our 2D FDTD hardware implementation
24 times speedup compare to 3.0G PC:

fixed-point representation
expandable structure

10

3D to 2D Model Simplification
Initialization

Initialize parameters of model space
and time step
Build parameters of soil and buried
object
Load all the EM space data into memory

Excitation

Calculate E Field
Update Exs field
Update Eys field
Update Ezs field

End

Time over?

Yes
No, Go to Next

Time Step

t = n + 0.5

t = n

n = n + 1

Calculate H Field
Update Hxs field
Update Hys field
Update Hzs field

Exterior Boundary
Conditions

Boundary of EYX
Boundary of EZX
Boundary of EZY

Boundary of EXY
Boundary of EXZ
Boundary of EYZ

Mine X

Y

Z

Transmitting
Antenna

Receiving
AntennaSimplify

Mine

X

Y

Z

Initialization
Initialize parameters of model space
and time step
Build parameters of soil and buried
object
Load all the EM space data into memory

Excitation

Calculate E Field
Update Eys field

End

Time over?

Yes
No, Go to Next

Time Step

t = n + 0.5

t = n

n = n + 1

Calculate H Field
Update Hxs field
Update Hzs field

Exterior Boundary
Conditions

Boundary of EYX Boundary of EYZ

Transmitting
Antenna

Receiving
Antenna

11

Exterior Boundary Conditions

3D Model Space

2D Model Space

4 Edges

6 Faces and 12 Edges

Mur-type Absorbing Boundary Condition

12

Data Dependency Analysis

Mine

Time step

Memory Space for
Electric Field Data

Memory Space for
Magnetic Field Data

T-1

T

T-2

T-3

S
e

q
u

en
ce

 o
f t

he
 p

ro
ce

ss
in

g

A

B

A

A

A

A
B

A

BB

B

B

M cells

N
 c

e
lls

Initialization
Initialize parameters of model space
and time step
Build parameters of soil and buried
object
Load all the EM space data into memory

Excitation

C
al

cu
la

te
 E

ys
 F

ie
ld

End

Time over?
Yes

No, Go to Next
Time Step

n = n + 1

Exterior Boundary
Conditions

Boundary of EYX Boundary of EYZ

C
al

cu
la

te
 H

zs
 F

ie
ld

C
al

cu
la

te
 H

xs
 F

ie
ld

2
Rows

13

Hardware Acceleration
Smart memory interface

Parallelism

Pipelining

Quantized fixed point representation
Less area in datapath -- more parallelism

Careful error analysis to ensure accurate
results

S A AA . B BBBBBBBBBBBBBBBBBBBBBBBBB
2 … 0 -1 …… -26

26 bits3 bits

14

Fixed-point quantization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

24bits 25bits 26bits 27bits 28bits

Bit-width

A
ve

ra
g

e
re

la
ti

ve
 e

rr
o

r
(%

)

Electric Field Value at R1

Electric Field Value at R2

Magnetic Field Value at R1

Magnetic Field Value at R2

Source Data

15

Design Flow

16

Firebird FPGA Board from Annapolis
A Xilinx VIRTEX-E XCV2000E
with 2.5 million system gates

Processing clock up to 150MHz
FDTD runs at 70 MHz

Five independent memory banks
(4 x 64-bit, 1 x 32-bit)
288Mbytes in total

6.6Gbytes/sec of memory
bandwidth

3Gbytes/sec of I/O bandwidth

54%46%Percentage Used

868837Number Used

16019200Number Available

BlockRAMSlices

Utilization of Xilinx XCV2000E FPGA Chip

17

FDTD on Firebird Board

PC
HOST

PCI BUS

FIREBIRD BOARD

FPGA

DESIGN
On-Board
MEMORY

On-Board
MEMORY

M
em

or
y

In
te

rf
ac

e

Simulated Electromagnetic Space

Electric
Field

Pipeline
Module

Magnetic
Field

Pipeline
Module

Boundary
Conditions Module

Memory in PC

Memory in PC

18

Memory Interface

FPGA CHIP

DESIGN

E
le

ct
ri

ca
l

Fi
e

ld
M

o
d

u
le

P
ip

el
in

ed

M
a

g
n

et
ic

F
ie

ld
M

od
u

le

P
ip

e
lin

ed

1EYS HZSHXS

2EYS HZSHXS

3EYS HZSHXS

0EYS HZSHXS

1EYS HZSHXS

2EYS HZSHXS

3EYS HZSHXS

0EYS HZSHXS

1EYS HZSHXS

2EYS HZSHXS

3EYS HZSHXS

0EYS HZSHXS

1EYS HZSHXS

2EYS HZSHXS

3EYS HZSHXS

0EYS HZSHXS

1EYS HZSHXS

2EYS HZSHXS

3EYS HZSHXS

0EYS HZSHXS

1EYS HZSHXS

2EYS HZSHXS

3EYS HZSHXS

0EYS HZSHXS

1EYS HZSHXS

2EYS HZSHXS

3EYS HZSHXS

0EYS HZSHXS

1EYS HZSHXS

2EYS HZSHXS

3EYS HZSHXS

0EYS HZSHXS

D D

C
C

B

B

A A
Result

B
o

un
da

ry

Result O
N

-B
O

A
R

D
M

E
M

O
R

IE
S

O
N

-B
O

A
R

D
M

E
M

O
R

IE
S

Result

α, β δ, σ

Input BlockRAMs Ouput BlockRAMs

19

Pipelining and Parallelism

DTin_2

DTin_1

-

x x

-
+

Write to Eys

Read
Hzs_A

Read
Hzs_B

Read
Hxs_B

Read
Hxs_A

-

Read
Eys_A

0

1

2

3

4

5

6

7

8

9

DTin_2

DTin_1

-

x x

+

-

Write to Hxs

Read
EysCo

Read
EysBoEzs

Ezs

-

Read
Hxs_C

DTin_2

DTin_1

-

x x

+

-

Write to Hzs

EXS

EXSRead
EysBo

Read
EysDo

-

Read
Hzs_C

20

Data Flow
Electric Field

On-board
Memory α

Electric Field
On-board
Memory δ

Magnetic Field
On-board
Memory β

Magnetic Field
On-board
Memory σ

P
ip

el
in

e
E

ys

P
ip

el
in

e
H

xs

BlockRam

Source
Adder

P
ip

el
in

e
H

zs

Memory Interface Module
BlockRam

Memory Interface Module
BlockRam

P
ip

el
in

e
B

ou
nd

ar
y

Source Data
On-board
Memory ρ

BlockRam

21

Results and Performance

A Software Floating-point ~~ 25s
Fortran code at 440 MHz Sun Workstation

B Software Fixed-point ~~ 3.375s
C code at 3.0 GHz PC

C Hardware ~~ 0.145s
Design working at 70MHz

Model space 100*100 cells
Iterate 200 time steps

0

5

10

15

20

25

A B C

Performance Result

E
xe

cu
tin

g
T

im
e

(S
ec

on
d)

22

Conclusions

FPGA Implementation of FDTD exhibits
significant speedup compared to software:
24 times faster than 3GHz PC

With larger FPGA, more parallelism will be
available, hence more speedup

Current design easily extendible to handle
multiple types of materials, 3D space

23

Future Work
Upgrade curent design to handle multiple
types of materials
Upgrade to 3D model space

Add three more field updating algorithms:
same structure as the original three algorithms
Upgrade boundary condition updating
algorithm
Redesign memory interface

Apply FDTD Hardware to other
applications

	Abstract button:
	Presentation button:
	Agenda button:
	Next button:

