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Three-Dimensional Finite-Difference Time-Domain (3D FDTD) is a powerful method for modelling the electro-
magnetic field. The 3D FDTD buried object detection forward model is emerging as a useful application in mine
detection and other subsurface sensing areas. However, the computation of this model is complex and time consum-
ing. Implementing this algorithm in hardware will greatly increase its computational speed and widen its use in many
other areas. We present an FPGA implementation to speedup the pseudo-2D FDTD algorithm which is a simplified
version of the 3D FDTD model. The pseudo-2D model can be upgraded to 3D with limited modification of structure.
We implement the pseudo-2D FDTD model and complete boundary conditions on an FPGA. The computational speed
on the reconfigurable hardware is about three orders of magnitude faster than the software implementation.

Understanding and predicting electromagnetic behavior is more and more needed in key electrical engineering
technologies such as cellular phones, mobile computing, lasers and photonic circuits [2]. After K. Yee first introduce
the FDTD method in 1966, people began to realize its accuracy and flexibility for solving electromagnetic prob-
lems [1]. The FDTD method provides a direct time-domain solution of Maxwell’s Equations in differential form by
discretizing both the physical region and time interval using a uniform grid. Because this method can solve Maxwell’s
equations on any scale with almost all kinds of environments, it has become a powerful method for solving a wide
variety of different electromagnetic problems [3].

However, the FDTD method was not used widely until the past decade when computing resources improved. Even
today, The computational cost is still too high for real-time application of the FDTD method. To solve this problem,
we present a reconfigurable hardware implementation of the 3D FDTD buried object detection forward model. This
FDTD model was developed at Northeastern University for use in research on subsurface sensing of landmines via
ground penetrating radar.

Fig. 1. 3D FDTD Buried Object Detection Forward Model Space

As shown in Figure 1, this model approximates a plane wave sent from ground penetrating radar with a45◦

incidence angle, which is then fed into a three-dimensional space grid and propagated through an air-soil interface. As
the wave is reflected from the boundary away from the location of the receivers, the possibility of detecting the small
signal scattered from the buried object is high.

This model is computational intensive. The model space is discretized to up to millions of computational cells.
For each of the cells, the FDTD algorithm updates all its parameters at every time step. Several hours may be needed
to simulate 100 time steps to achieve useful information. What’s more, the backward model, whose task is using the
forward model’s output data to detect the buried mines, runs the forward model iteratively to get the final result. So
the running speed of the forward model is critical to the real-time application of the backward detecting device.

Implementation of FDTD in hardware will greatly increase its computational speed. With higher speed, the FDTD
algorithm can be used in many other areas too. There are three methods we use to accelerate the algorithm:

1. Quantizing the 64-bit floating-point data to 30-bit fixed-point data while still achieving tolerable relative error.
2. Pipelining most of the calculations.
3. Parallelizing most of the pipelines to reduce processing time.
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Fig. 2. Relative error between fixed-point arithmetic and floating-point arithmetic on different bit-width

The original algorithm uses a 64-bit floating-point representation which costs more hardware resources, consumes
more power, and runs slower compare to using a fixed-point representation. Although the fixed-point representation
has less dynamic-range, it fits the FDTD algorithm well since all the data in this algorithm are electromagnetic field
values range between -1 and 1, and tend to be accurate to at most one part in 10,000. Figure 2 shows the relative error
of different fixed-point bit-width data in the FDTD algorithm compared to floating-point. We chose the data structure
with 26 bits after the binary point since this structure has an acceptable relative error and relatively short bit-width. In
addition, one of the dimensions of the 3D model was set to 2 to create a pseudo-2D model. The pseudo-2D model is
less complex and can be easily expand to the 3D model later, so we implemented this model first.

The hardware design accelerates the algorithm with pipelining and parallellism. All three electric and magnetic
field-updating modules in the FDTD algorithm are pipelined and processed in parallel. The memory interface mod-
ule, implemented on the FPGA chip using BlockRam, reads data from on-board memories and feeds them into the
pipelines. All the processes are controlled by state machines. Since the FDTD algorithm has similar calculation and
relatively regular structure, it is very suitable to be implemented using pipelining and parallelism.

Ideally, the more parallelism, the greater the speed. As long as there is sufficient FPGA chip area, we can imple-
ment more pipelines in parallel to speed up the design. In the FPGA chip we are currently using, a Xilinx Virtex-E, it
is possible to use 6 or 12 pipelines instead of 3 pipelines to double or quadruple the processing speed.

The performance results of the software and hardware implementations are shown in Figure 3. The hardware
design running on the FPGA chip is 24 times faster than fixed-point software running on a 3.0GHz PC and more than
100 times faster than the floating-point code.

Fig. 3. Performance results - Softwares vs. FPGA Hardware

The FPGA hardware board we used is a Firebird Reconfigurable FPGA Computing Engine produced by Annapolis
Micro Systems, Inc. It uses the Xilinx VIRTEX-E XCV2000E FPGA with over 2.5 million system gates.
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FDTD Algorithm and Implementation

Finite Difference Time-Domain

Method for solving Maxwell’s equations

Used for buried object detection

Hardware Implementation

3D to 2D model simplification

Data dependency analysis

Fixed-point quantization
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Finite-Difference Time-Domain Method

Maxwell’s EquationsA direct time-domain 
solution of Maxwell's 
equations

Accurate and flexible for 
solving electromagnetic 
problems

Discretize time and 
electromagnetic space
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FDTD Method (cont’d)

One FDTD Equation
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FDTD Applications

Antenna Design

Discrete Scattering Studies

Medical Studies

The study of the cell phone 
electromagnetic waves' effect 
on human brain

The study of breast cancer 
detection using electromagnetic 
antenna
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Buried Object Detection Forward Model
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FDTD Simulated Model Space



8

FDTD Simulated Model Space (cont’d)
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Related Work
Software acceleration of FDTD

Parallel computers do not  provide significant speedup

FPGA implementations of FDTD
1D FDTD on hardware: architecture is too simple
Full 3D FDTD on hardware developed at UDel

Design is slower than software: 
uses complex floating-point representation
no parallelism or pipelining

Our 2D FDTD hardware implementation
24 times speedup compare to 3.0G PC:

fixed-point representation
expandable structure
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3D to 2D Model Simplification
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Exterior Boundary Conditions

3D Model Space

2D Model Space
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6 Faces and 12 Edges
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Data Dependency Analysis
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Hardware Acceleration
Smart memory interface 

Parallelism

Pipelining

Quantized fixed point representation 
Less area in datapath -- more parallelism

Careful error analysis to ensure accurate 
results

S A AA . B BBBBBBBBBBBBBBBBBBBBBBBBB
2  …  0     -1                                          ……                                       -26

26 bits3 bits



14

Fixed-point quantization
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Design Flow
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Firebird FPGA Board from Annapolis
A Xilinx VIRTEX-E XCV2000E 
with 2.5 million system gates

Processing clock up to 150MHz
FDTD runs at 70 MHz

Five independent memory banks 
(4 x 64-bit, 1 x 32-bit) 
288Mbytes in total

6.6Gbytes/sec of memory 
bandwidth

3Gbytes/sec of I/O bandwidth

54%46%Percentage Used

868837Number Used

16019200Number Available

BlockRAMSlices

Utilization of Xilinx XCV2000E FPGA Chip
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FDTD on Firebird Board
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Memory Interface

FPGA CHIP
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Pipelining and Parallelism
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Data Flow
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Results and Performance

A Software Floating-point   ~~ 25s
Fortran code at 440 MHz Sun Workstation

B Software Fixed-point  ~~ 3.375s
C code at 3.0 GHz PC

C Hardware                   ~~ 0.145s
Design working at 70MHz

Model space 100*100 cells
Iterate 200 time steps
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Conclusions

FPGA Implementation of FDTD exhibits 
significant speedup compared to software:
24 times faster than 3GHz PC

With larger FPGA, more parallelism will be 
available, hence more speedup

Current design easily extendible to handle 
multiple types of materials, 3D space
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Future Work
Upgrade curent design to handle multiple 
types of materials
Upgrade to 3D model space

Add three more field updating algorithms: 
same structure as the original three algorithms
Upgrade boundary condition updating 
algorithm
Redesign memory interface

Apply FDTD Hardware to other 
applications
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