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1 Objectives  

University of Southern California-Center for Software Engineering (USC-CSE's) 
dynamic, architecture-based assembly technology provided innovative capabilities during 
two key stages of software development. During specification and design time, 
component mismatch detection gauges are provided, indicating the particular type, 
dimension, and value of the mismatch. This mapped into USC-CSE's taxonomy of 
software architectural connectors [1] used for resolving the mismatch. Examples of 
mappings from the mismatches into the effective classes of connectors included 
procedure calls, events, arbitrators, adaptors, and distributors. USC-CSE developed 
techniques for specifying and analyzing properties of product line architectures (PLAs) 
[11] and extended existing architecture analysis techniques and tools for dynamic 
composition and assessment/verification to ensure that the selected components and 
connectors were appropriately configured and dynamically integrated into the operational 
system. At the deployment and run time stage, USC-CSE’s support focused on 
application architectures and gauges tailored for distributed, mobile, heterogeneous, and 
possibly resource constrained platforms [6]. Several different gauges were provided: 1) 
gauges for assessing new component versions when performing component upgrades, 2) 
gauges for assessing properties of heterogeneous connectors, and finally, 3) gauges to 
support awareness and quality of service (QoS) for distributed applications. USC-CSE’s 
Dynamic Assembly for Systems Adaptability, Dependability, and Assurance (DASADA) 
research extended these gauges based on a problem-driven set of priorities, determined in 
concert with a subcontractor, Lockheed Martin. 
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2 Approach  

2.1 Introduction and Motivation  

The DARPA DASADA vision involved the orchestrated use of (1) composability gauges 
enabling assessment of software component composability needs, (2) component and 
connector adaptation mechanisms to enable component composition, (3) verification 
mechanisms to ensure trouble-free composition, and (4) dynamic composition 
mechanisms for “on-the-fly” system reconstitution. The DASADA research challenge 
was to achieve these capabilities in ways that scaled up to large and complex systems, as 
well as dynamic and complex situations. That was also the reason why the most attractive 
emerging technology area for achieving the DASADA vision was software architecture 
and why USC-CSE’s efforts were centered on architecture-based system modeling, 
analysis, implementation, deployment, and evolution.  

2.2 Capabilities and Limitations in Current Software Architecture Technology  

Software architectures provide a simple set of abstractions: components (computational 
and data storage elements), connectors (component interaction facilities), and 
configurations (interconnections of components and connectors in a system). Of special 
interest to the software architecture community are software connectors. Given that the 
size, sophistication, and complexity of software components are steadily growing, it is 
reasonable to expect that their interactions will become more complex as well. 
Connectors facilitate communication, coordination, arbitration, and adaptation of 
components [1] and have been shown to directly enable architectural dynamism. In 
principle, architectural connectors provide an attractive set of capabilities for achieving 
the DASADA vision. USC-CSE’s DASADA work indeed focused on connectors as the 
centerpiece of its approach.  

2.3 Key elements of USC-CSE’s approach 

• USC-CSE’s emphasis on architecture-based software development enabled architects 
to detect mismatches, inconsistencies, and inadequacies early in the development 
process, thus reducing the overall development costs. 

• Support for modeling and analyzing architectures of large and complex software 
systems provided developers with the ability to detect design problems early. USC-
CSE focused on this problem by developing notations and their accompanying 
toolsets for describing different characteristics of software product families. 
Managing evolution of architectural artifacts had an impact on developing 
representation and analysis capabilities for product line architectures (PLA). 

• Reusable frameworks enabled architects and developers to build their tools such that 
they could reuse the communication capabilities of the underlying framework. USC-
CSE created a family of such frameworks to be used for architecture-based design 
and development of software systems on distributed, heterogeneous, mobile, and 
possibly resource-constrained devices. Communication across the network can be 
unpredictable and unreliable. Support for disconnected operations, security, and 
reliability at the architectural level was among the aspects supported by USC-CSE’s 
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frameworks.  The frameworks comprised reusable middleware platforms that 
substantially aided system development. 

• Software deployment techniques enabled managing software systems on the running 
platforms. It is important to develop and apply such techniques in an architecture-
centric fashion such that the mapping between the architecture, design, and the 
running system can be traced and controlled. USC-CSE focused on developing a 
deployment environment that was architecture-aware and provided capabilities for 
managing network related problems and their manifestations in the system.  

• Measuring system properties at the architectural level is challenging. Defining 
metrics for comparing and measuring properties of a system’s architecture was 
another focal point of our research. 

• Finally, USC-CSE’s research focused on identifying and codifying the fundamental 
principles and “atomic” constructs that underlie all software architectures and 
architectural styles. 

USC-CSE’s efforts in the above areas were all concentrated around the same architectural 
concepts and were aimed in providing support for development from modeling 
architectures, to analysis, to system implementation, and, finally, evolution. The figure 
below shows the high level view that connects all the key elements in our approach. 
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3 Discussion of Tasks 

3.1 Incremental Modeling and Analysis of Architectures for Product Families 

USC-CSE developed a technique and accompanying tool support for specifying 
architectures of product families in terms of the key properties of the system (its 
structure, behavior, non-functional properties, etc.) [11]. The technique also supported 
the partial specification of services of an architectural component. This was 
representative of situations in which an OTS component was introduced into a system 
with a known interface (API), but unspecified behavior. Providing gauges that would 
quickly determine that such a component was not a good fit for the system would 
eliminate the costs of (ultimately unsuccessful) integration. A related gauge enabled 
automated component discovery and retrieval for insertion into an architecture, based on 
the requirements of the surrounding components/connectors and the specified match 
precision threshold. Finally, the use of invariants and pre- and postconditions resulted in 
a static view of component semantics. This static view was augmented with a dynamic 
behavior technique, namely StateCharts [24]. USC-CSE provided a gauge for ensuring 
the internal consistency of a given component’s static and dynamic models (i.e., ensuring 
that a component’s pre- and postconditions matched its hierarchical state machine).  

3.2 Architectural Refinement  

Refining an architecture into its implementation in a property-preserving manner was a 
challenging task for several reasons. Maintaining traceability of decisions and ensuring 
consistency between two software models at different levels of detail is inherently 
difficult. Furthermore, different refinement steps may require different modeling 
notations, motivating the need to augment (high-level) architectural notations with 
(lower-level) design notations [1]. USC-CSE employed the Unified Modeling Language 
(UML) for that purpose.  

USC-CSE pioneered an approach to relating Architecture Description Language (ADLs) 
and UML, resulting in the SAAGE environment. SAAGE provides a set of gauges that 
enable automatic transformation of an architectural model (described in USC-CSE’s 
C2SADEL language) into a corresponding UML model. Another, emerging aspect of this 
work was a framework for ensuring the consistency of multiple views in a software 
model. A preliminary prototype implementation of the framework, called UML/Analyzer, 
was based on UML as the modeling notation and was used in concert with SAAGE.  

3.3 Assessing the Structural Quality of Product Line Architectures 

USC-CSE developed several novel metrics to assess the structural quality of product line 
architectures. Throughout the evolution of a product line, these metrics would guide the 
architect in making more informed architectural decisions.  The metrics were based on 
the concept of service utilization and were designed to take into account the context in 
which individual architectural elements were placed.  
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3.4 Prism architectural style and Prism middleware  

USC-CSE proposed a new architectural style intended for use in architecting complex, 
highly distributed, mobile, and resource constrained systems. The software development 
in this new setting was referred to as programming-in-the-small-and-many (Prism). The 
style has inherent support for architectural monitoring and analysis, distribution, 
dynamism, mobility, and disconnected operation. USC-CSE chose to use the existing C2 
style as the basis of the Prism style, with three major enhancements to account for a set of 
new problems that arose in this novel setting: 

• Peer-to-peer interactions 

While it is still allowed to have the C2-style vertical topology in Prism architectures 
and communication via requests and notifications, a third component port (called 
side) and message category (called peer) were introduced. Side ports allowed to 
address the relative topological rigidity of C2. They proved particularly effective in 
component interactions across devices on a network. In order to maintain component 
decoupling, the side ports exchange peer messages through “peer” connectors. Basic 
peer connectors have simple message broadcast semantics: a peer message incoming 
on any port is forwarded as an outgoing message through all of the connector’s 
remaining ports. 

• Architectural self-awareness 

Prism supports architectures at two levels: application-level and meta-level. The role 
of components at the Prism meta-level is to gauge and/or facilitate different aspects of 
the execution, dynamic evolution, mobility, and disconnected operation of 
application-level components. Application-level and meta-level components execute 
side-by-side in Prism. Meta-level components are aware of application-level 
components and may initiate interactions with them, but not vice versa. The Prism 
style rules apply to both component categories: meta-level components also engage in 
connector-mediated, message-based interactions with each other (and with 
application-level components). 

In support of this two-level architecture, Prism distinguishes among four types of 
messages. Similarly to C2, ApplicationData messages are used by application-level 
components to communicate during execution. The other three message types, 
ComponentContent, ArchitecturalModel, and SystemMonitoring, are used by Prism 
meta-level components. ComponentContent messages contain mobile code and 
accompanying information (e.g., the location of a migrant component in the 
destination configuration); ArchitecturalModel messages carry information needed to 
perform architecture-level analyses of prospective Prism configurations; finally, 
SystemMonitoring messages supply runtime data to Prism gauges. 

• Border connectors 

The third significant departure from C2 in formulating the Prism style is the key role 
of connectors that span device boundaries. Such connectors, called border 
connectors, enable the interactions of components residing on one device with 
components on other devices. The high degrees of distribution and mobility, as well 
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as the high probability of disconnected operation in Prism architectures created a need 
to place special importance upon border connectors. A single border connector may 
service network links to multiple devices. A border connector marshals and 
unmarshals data, code, and architectural models; dispatches and receives messages 
across the network; and monitors the network links for disconnection. It may also 
perform data compression for efficiency and encryption for security. 

Prism’s middleware, Prism-MW, comprises an extensible framework of implementation-
level classes representing the key elements of the Prism style (e.g., components, 
connectors, messages) and their characteristics (e.g., a message has a name and a set of 
parameters). An application architecture is then constructed by instantiating and/or 
extending the appropriate classes in Prism-MW with application-specific detail. 

 
Figure 2. Class design view of the Prism middleware core components 

 

3.5 Support for Dynamic Assembly, Assessment, and Adaptation of Heterogeneous 
Connectors 

USC-CSE identified primitives for representing various architectural styles at an 
“architectural assembly” level. These primitives form an assembly language for 
architectures, Alfa, which can be used to construct various architectural styles. There are 
four architectural styles based on Alfa that were successfully modeled and implemented: 
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Client-Server, pipe-and-filter, C2, and push-based. The models indicated that it was 
possible to construct various architectural styles, as well as various connectors used 
within different styles, out of the same primitives, and that there were repeating patterns 
across styles.   

 

4 Accomplishments 

On the runtime side of USC-CSE’s research, software connectors were upgraded to 
enable runtime adaptation of an application by modifying its architectural model. USC-
CSE provided a light-weight infrastructure for prototyping and implementing 
architectures, in which connectors remain explicit entities and the relationship between 
the architectural model and the implementation is maintained. It also provided runtime 
gauges that identify circumstances under which dynamic manipulation of connectors may 
and may not be safely performed.  

The rest of this section describes the major accomplishments. The complete list of 
publications is given in Section 7. 

4.1 Multi-Versioning Connectors (MVC) 

Representative of runtime monitoring gauges are multiversioning gauges, which monitor 
and analyze different versions of the same component that co-exist in a system and 
execute in parallel [10]. USC-CSE developed connectors that allowed flexible insertion 
of new component versions and multicasting of invocations and data to both the old and 
new versions; furthermore, the invocations and data originating from the multiple 
versions of the same component must be merged by the connector before they are 
forwarded to their target components. The multiversioning connectors are equipped with 
gauges enabling them to gather and evaluate each component’s runtime behavior to 
determine properties such as correctness, performance, and reliability. 

USC-CSE designed and implemented a preliminary version of multi-versioning software 
connectors (MVCs), used to gauge and ensure reliable upgrades of components at system 
runtime. These gauges directly aid the large, complex, long-lived systems undergoing 
continuous upgrades. Lockheed Martin expressed their interest in employing MVCs in 
their TBMCS system. National Reconnaissance Office also expressed initial interest in 
this capability. 

4.2 Architectural modeling and analysis 

USC-CSE made several enhancements to the existing USC-CSE’s DRADEL 
environment for architecture-based modeling, analysis, and implementation of software 
systems. A type checking mechanism was developed to gauge the interface and behavior 
match between a given, possibly only partially modeled component and a target 
collection of components within an architecture. USC-CSE also developed a gauge to 
measure the consistency of a static model of a system's architecture described in the  
C2SADEL architecture description language (ADL), which utilized invariants and pre- 
and post-conditions, with the architecture's StateCharts dynamic model, which utilized 
states, transitions, events, and actions. USC-CSE also collaborated with Jet Propulsion 
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Laboratory (JPL) in applying this technology to their Mission Data Systems (MDS) 
project.  

USC-CSE also focused on the study of the techniques for specifying components' 
behavior. Component modeling was categorized in the following way:  
1. structural (interfaces), 
2. static behavior (pre- and post- conditions, invariants),  
3. dynamic behavior (extended FSM notation that describes internal functionality of the 

component), and 
4. interaction protocols. 
 
 

4.3 Prism middleware 

USC-CSE extended the Prism-MW middleware with several properties that were 
specifically intended to support development of highly-distributed, highly-mobile and 
resource constrained applications. These include efficiency, mobility, dynamic 
reconfigurability, awareness, and graceful degradation. The middleware was 
implemented in Java KVM, Java JVM, and Embedded Visual C++ and had been tested 
both on desktop (PC) and hand-held (Palm Pilot and Windows-CE compatible) platforms. 
USC-CSE enhanced this middleware with special-purpose, inter-device software 
connectors, including XML-based and infrared connectors. Several optional features for 
inter-device connectors were also implemented, such as data compression, security, and 
support for real-time message delivery. These connectors are equipped with gauges to 
measure their own throughput and load. These new versions of the middleware 
complemented the existing USC-CSE middleware versions implemented for the 
Windows and Unix platforms to allow architecture-based implementation, deployment, 
monitoring, and dynamic manipulation of applications in a distributed, mobile, and 
heterogeneous setting. Such a setting is commonly present in military applications, such 
as the USC-CSE prototype distributed troops deployment and battle simulation 
application. Both Lockheed Martin and the US Army TACOM group expressed a strong 
interest in this technology. Prism-MW was extensively and successfully evaluated by 
Lockheed Martin for possible use in their AWACS system. 

• Support for disconnected operation 

USC-CSE’s approach to the problem of disconnected operation proposed migrating 
components from neighboring hosts to a local host before the disconnection occurred. 
The set of components to be migrated is chosen such that it maximizes the autonomy of 
the local subsystem during disconnection, stays within the memory constraints posed by 
the device, and can be migrated within the time remaining before disconnection occurs.  

USC-CSE implemented an extension of a Border Connector to support disconnected 
operation. The Border Connector utilizes a degraded mode indicator for each operation 
exported by a component. The indicator is intended to reflect an operation’s dependence 
on component state: some operations do not depend on component state and are fully 
accessible during disconnection (allowed); other operations are delayed until the 
connection is restored; finally, access to yet other operations is disallowed.  
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• Deployment Support  
USC-CSE designed and implemented a prototype system deployment environment, 
Prism-DE. The environment integrates Microsoft’s Visio tool as a graphical front-end for 
specifying the deployment configurations. A deployment configuration is specified as a 
set of target hardware hosts, a set of processes that will run on these hosts, and a software 
(architectural) configuration that needs to be deployed onto each one of the processes. 
The environment ensures the validity of specified configurations before the automated 
deployment is performed, and provides monitoring of connectivity between specified 
hardware hosts. 

• Delivery Guarantees 

USC-CSE’s architectural middleware technology also provides support for connectors 
that handle messages with different delivery policies: at least once, at most once, best 
effort, and exactly once. By introducing priority-based scheduling of messages it was 
possible to provide support for handling messages with both soft and hard real-time 
delivery constraints. Different scheduling algorithms are used for periodic and aperiodic 
messages. Moreover, various gauges are used with USC-CSE connectors: they 
demultplex and dispatch incoming messages using request and notification filtering. 

• Security 

Secure communication in USC-CSE’s architectural middleware technology was achieved 
by using composite connectors that encapsulated various security services. USC-CSE 
developed authentication, authorization, encryption, and message integrity modules that 
might be added to an arbitrary connector. These services were gauged using various 
cryptographic algorithms.  

• Distributed Computing 
USC-CSE developed a simulation of distributed environments to be hosted on Prism-
MW. The environment provides simulation of distributed network comprising of a given 
number of hardware hosts, with varying properties (e.g., memory capacity of each host, 
network bandwidth and reliability of connectivity between hosts). Additionally, each host 
is capable of running a given set of software components, whose memory requirements 
and frequency of interaction can be varied. 

 

4.4 Managing architectural evolution 

USC-CSE developed a novel approach for managing architectural evolution. The existing 
DRADEL environment was integrated with UC Irvine's Ménage xADL 2.0 technologies. 
The result was an architectural evolution environment, called Mae, that enabled architects 
to specify, model, and analyze architectures of product families. Mae brings together 
architecture based software development and configuration management (CM).  It also 
provides the architect with capabilities to manage the evolution of architectural artifacts. 
This is done by designating components, connectors, and their interfaces as optional or 
variant, and bringing versioning schemas to the level of architectural artifacts. Mae 
utilizes behavioral invariants and pre- and post-conditions as well as specification of a 
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system’s configuration to analyze the system’s architectural model for possible 
inconsistencies and inadequacies.  This reduces the development costs by detecting faults 
early in the development process.  

  

4.5 Alfa 

USC-CSE implemented a framework for the Alfa architectural assembly language using 
Java. The framework supports a dynamic architectural model and allows dynamic 
adaptation of software connectors corresponding to a variety of architecture styles. The 
framework implementation allows users to verify the suitability of such an assembly 
language, and construct an experimental model for the use of Alfa. Further, the models of 
the client-server, pipe-and-filter, C2, and push-based styles expressed in Alfa were 
implemented in Java using the Alfa framework. These implementations verified USC-
CSE’s models, and provided useful assessment of the approach in terms of framework 
properties. 

USC-CSE also implemented an experimental database management system using these 
frameworks. The database was implemented using a combination of different kinds of 
connectors including object-oriented method calls, Alfa-level messages and calls, as well 
as Client-Server protocols. USC-CSE successfully completed adaptation of the system to 
different connectors using the Alfa framework and the implementation of the Alfa-Client-
Server framework. 

The Alfa framework was also applied to network-based architectural styles. The basis of 
this research was the observation that architectural styles shared many underlying 
concepts. These shared concepts lead to “architectural primitives” that can be 
systematically and constructively composed to obtain elements of architectural styles. 
Total of eight forms and nine functions were identified as architectural primitives since 
they reflected the syntactic and semantic characteristics of a large number of styles. 
While proving such a hypothesis was difficult in the general case, USC-CSE 
demonstrated it within the domain of network-based styles. Partial formal models of style 
elements composed from these architectural primitives were also constructed using Alloy 
and shown to be analyzable. 

USC-CSE also created an extensible notation, xAlfa, for precisely composing 
architectural styles in the Alfa framework. This notation was also used to construct 
architectures using architectural styles, as well as implement them using programming 
languages and style-compliant middleware. This notation was integrated with the xADL 
architecture description language in order to allow rapid development of associated tools.  
 

4.6 Assessing the Quality of Product Line Architectures 

USC-CSE developed several novel metrics to assess the structural quality of product line 
architectures.  Throughout the evolution of the product lines, these metrics would guide 
the architect in making more informed architectural decisions.  The metrics are based on 
the concept of service utilization and are designed to take into account the context in 
which individual architectural elements are placed [11].   
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USC-CSE evaluated these metrics in the context of different case studies. The first case 
study was a two-semester project course for computer science graduate students at the 
University of Southern California (USC). Assigned teams developed a variety of digital 
library applications for a real client, the Library Information Services Division (ISD) at 
USC. About sixty such applications were developed, comprising several distinct product 
lines [16]. Compared to the existing evaluations of the involved architectures by the 
project customers and course instructors, USC-CSE’s service utilization metrics’ values 
of this case study indicated that low values were a sign of low quality.  This was also 
confirmed with the project-based rankings assigned to these projects.  Additionally, 
alternative architectural solutions were tested based on the values generated by the 
proposed metrics.  For some of these solutions, the utilization values of certain 
components were increased, hence increasing the quality of the product line overall.     

In addition to the structural quality, USC-CSE also investigated other relevant 
measurable quality attributes.  Architectural vulnerability was selected as a potential 
quality attribute. Architectural vulnerability assessment is the architectural examination 
of a system to identify the critical architectural elements (machines, components, 
methods, etc.) that may be at risk (a particular threat that will exploit a weakness in the 
architectural elements based on the resource access-levels these elements are granted) 
from an attack. As the software systems are becoming more decentralized and distributed, 
assessing quality attributes relevant to the system security is even more meaningful. 
Furthermore, the basic principles of USC-CSE’s approach relied on two concepts: 
permissions granted to the service elements (e.g. public interface methods), and the 
deployment of these service elements (e.g. which components reside on which machines).   
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5 Technology Transitions 

5.1 Collaboration with other DARPA DASADA contractors 

• USC-CSE collaborated with University of California at Irvine (UCI), Carnegie 
Mellon University (CMU), and Teknowledge on formalizing and assessing the 
strengths and shortcomings of the Unified Modeling Language (UML) in supporting 
architecture-based software development. This would enable software developers, in 
industry and academia, to specify, architect, and design software systems more 
accurately, and detect problems earlier during the development process. All this 
would result in the reduction of the development cost for a software system. 

• USC-CSE also collaborated with UCI, the University of Colorado at Boulder, and the 
University of Oregon, the goal of which was to assess the ability of combined 
capabilities to address problems faced by Lockheed Martin’s AWACS system.  

• Finally, the development of the Mae system for architectural evolution discussed 
above was a major collaboration effort between UCI and USC-CSE primarily, with 
CMU’s contribution housed in the development of the underlying xADL 
infrastructure used to integrate USC’s DRADEL and UCI’s Ménage tools. 

5.2 Technology Transition to other non DARPA DASADA efforts 

• In late 2000 USC-CSE completed the integration of the UML/Analyzer tool with 
Rational Rose, a commercial UML modeling tool, for the purpose of using them to 
create and modify modeling diagrams. Rational Rose models are converted through 
an automated process into a system model called UML-A where they are analyzed via 
UML/Analyzer. Transformed modeling information as well as identified model 
inconsistencies can be fed back into Rational Rose for visualization. The concepts 
behind UML/Analyzer were developed in collaboration with the Rational Software 
Corporation. Additionally, Rational implemented a version of USC-CSE’s 
UML/Analyzer tool under the name Rose/Architect.  For more information on 
UML/Analyzer please visit 
http://www.if.afrl.af.mil/tech/programs/dasada/tools/umlanalyzer.html. 

• Lockheed Martin evaluated the Prism-MW in the context of their AWACS project. 
This evaluation indicated that Prism-MW was efficient and suitable for use in the 
AWACS project. 

• USC-CSE’s architectural model-to-StateChart consistency rules were evaluated by 
the Jet Propulsion Laboratory (JPL) as a possible aid for their envisioned architectural 
testing framework in the MDS project. Furthermore, the Mae environment for 
managing architectural evolution was evaluated by JPL’s MDS group. The 
collaboration with JPL resulted in a prototype of integrated architectural analysis and 
testing gauges.  

• Our collaboration with UC Davis focused on their expertise in software security 
applied to USC-CSE’s architectural connectors.  
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• USC-CSE established a collaborative relationship with US Army TACOM, who 
acted as early evaluators of USC-CSE’s Prism technology for use in their ground 
vehicle systems. 

• Finally, USC-CSE started collaborating with Boeing Anaheim, who have expressed 
particular interest for USC’s DASADA technology for use in their on-going Future 
Combat Systems (FCS) project. 

 

6 Homepages 

Center for Software Engineering, University of Southern California 
• http://sunset.usc.edu 

DASADA project homepage 
• http://sunset.usc.edu/research/DASADA 

Software Architecture Research Group 
• http://sunset.usc.edu/~softarch 
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